
HAL Id: hal-04669699
https://hal.science/hal-04669699v1

Preprint submitted on 9 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-level deep domain decomposition method
Victorita Dolean, Serge Gratton, Alexander Heinlein, Valentin Mercier

To cite this version:
Victorita Dolean, Serge Gratton, Alexander Heinlein, Valentin Mercier. Two-level deep domain de-
composition method. 2024. �hal-04669699�

https://hal.science/hal-04669699v1
https://hal.archives-ouvertes.fr

Two-level deep domain decomposition method

Victorita Dolean[0000−0002−5885−1903] , Serge Gratton[0000−1111−2222−3333] ,
Alexander Heinlein[0000−0003−1578−8104] , and Valentin Mercier[0000−1111−2222−3333]

1 Introduction

The successful application of machine learning in image and language processing has
extended its reach to solving physical equations. One example for the combination of
scientific computing and machine learning is the field of physics-informed machine
learning, with physics-informed neural networks (PINNs [10]) becoming its most
prominent example. The idea of this method is to integrate the partial differential
equation directly into the loss function for training a neural network to approximate
the solution of a boundary value problem (BVP). Therefore, let us consider the
generic BVP:

N[𝑢] (𝑥) = 𝑓 (𝑥) ∀𝑥 ∈ Ω

B[𝑢] (𝑥) = 𝑔(𝑥) ∀𝑥 ∈ 𝜕Ω

with Ω ∈ R𝑑 and 𝜕Ω its boundary, N a differential and B a boundary operator.
The approximation of this problem using a neural network 𝑢𝜃 parametrized by

weights and biases gathered in 𝜃 can be found by the following optimization problem:

Victorita Dolean
Eindhoven University of Technology, Department of Mathematics and Computer Science, PO Box
513, 5600 MB Eindhoven, the Netherlands e-mail: v.dolean.maini@tue.nl

Serge Gratton
Université de Toulouse, INP-ENSEEIHT, IRIT, ANITI, Toulouse,France. e-mail:
serge.gratton@toulouse-inp.fr

Alexander Heinlein
Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD
Delft, Netherlands e-mail: a.heinlein@tudelft.nl

Valentin Mercier
Université de Toulouse, ANITI, CERFACS, IRIT, Toulouse, and BRLi, France. e-mail:
valentin.mercier@toulouse-inp.fr

1

2 Victorita Dolean, Serge Gratton, Alexander Heinlein, and Valentin Mercier

𝜃∗ = arg min
𝜃

M(𝜃),

where

M(𝜃) = 𝜆Ω

𝑁Ω

𝑁Ω∑︁
𝑖=1

(N [𝑢𝜃] (𝑥𝑖) − 𝑓 (𝑥𝑖))2 + 𝜆𝜕Ω

𝑁𝜕Ω

𝑁𝜕Ω∑︁
𝑖=1

(B[𝑢𝜃] (𝑥𝑖) − 𝑔(𝑥𝑖))2 (1)

Here, {𝑥𝑖}𝑖=𝑁Ω

𝑖=1 and {𝑥𝑖} 𝑗=𝑁𝜕Ω

𝑗=1 are sets of collocation points sampled in Ω respec-
tively on 𝜕Ω. The back-propagation algorithm allows for both the evaluation of the
residual of the partial differential equation (PDE) and the optimization of the loss
function eq. (1) with respect to the network parameters 𝜃.

While domain decomposition methods (DDMs) are well-established solvers for
PDEs using classical discretizations, the use of neural network-based discretizations,
in particular, PINNs has been explored more recently. This concept has been explored
in various studies like for example in [12], where the authors discuss non-overlapping
DDMs for parallel training. Extensions to Schwarz methods for Deep Ritz networks,
which integrate the variational form into the loss function, are presented in [7]. The
coupling in the finite basis PINNs (FBPINNs) approach in [9] differs from the afore-
mentioned approaches; the authors introduce an overlapping domain decomposition,
and the coupling is performed via a corresponding partition of unity scaling and hard
enforcement of boundary conditions. For a broader overview over the combination
of domain decomposition and machine learning methods, we refer to the review [6].

Our focus is on employing PINNs as the subdomain solver in a classical Schwarz
approach iteration; this is known as the Deep Domain Decomposition Method (Deep-
DDM) introduced in [8]. Given that the subdomain problems can be solved suf-
ficiently accurately, the convergence properties are the same as for the classical
Schwarz iteration. As a result, the method is not numerically scalable when increas-
ing the number of subdomains. In this paper, we will incorporate a coarse level, in
order to retain numerical scalability. A related two-level Schwarz approach, which
uses a different coupling between the two levels of a classical Schwarz iteration has
been presented in [5]. Other related multilevel approaches are, for instance, multi-
level FBPINNs [1, 2] and multilevel optimization methods using frequency-aware
networks [4].

2 The Deep Domain Decomposition Method

Let the computational domain Ω be decomposed into 𝑆 overlapping subdomains
Ω1, . . . ,Ω𝑆 . Then, we consider the classical Schwarz iteration [11], which involves
an independent problem on each subdomain Ω𝑠: find 𝑢𝑠

Two-level deep domain decomposition method 3
N(𝑢𝑠) = 𝑓 in Ω𝑠 ,

B(𝑢𝑠) = 𝑔 on 𝜕Ω𝑠\Γ𝑠 ,
D(𝑢𝑠) = D(𝑢𝑟) on Γ𝑠 ,

(2)

where D is an operator for the transmission conditions (e.g., Dirichlet, Neumann, or
Robin) on the subdomain boundary, and Γ𝑠 is the interface between the subdomain
Ω𝑠 and the neighboring subdomains Ω𝑟 , with Ω𝑟 ∩ Ω𝑠 ≠ ∅. For convenience,
we define the multiple overlapping subdomains as a single subdomain Ω𝑟 with a
corresponding solution network 𝑢𝑟 . In order to train a PINN model to solve eq. (2),
we incorporate an additional term accounting for the transmission conditions into
the loss function eq. (1). In particular, the loss term is computed by sampling points
on the interface denoted {𝑥𝑖}𝑁Γ

𝑖=1 ⊂ 𝜕Ω𝑟 . A visualization of all sampling points is
shown in fig. 1 (2). For the transmission to Ω𝑟 , with Ω𝑟 ∩ Ω𝑠 ≠ ∅, we incorporate
the loss term:

MΓ (𝜃) =
1
𝑁Γ

𝑁Γ∑︁
𝑖=1

|D(𝑢𝑠 (𝑥𝑘)) −𝑊𝑖 |2 (3)

In this term, we minimize the difference between the trained network 𝑢𝑠 and the
neighboring networks 𝑢𝑟 on the interface with respect to the transfer operator D.
Here,

𝑊𝑖 = D(𝑢𝑟 (𝑥𝑘)) (4)

is defined based on the network 𝑢𝑟 from the previous outer Schwarz iteration. Once
all the local subnetworks have been trained up to a certain stopping criterion (e.g.,
number of iterations or tolerance), the interface values 𝑊𝑖 are being updated, and we
proceed to the next outer iteration.

The one-level Deep DDM algorithm, without the red parts, is shown in algo-
rithm 1. Initially, two stopping criteria were used to assess convergence: differences
in the network solution between subsequent iterations, both in the interior and at the
boundary. In addition, a loss criterion variation was used to terminate the training of
each network, alongside a maximum epoch limit. This method made comparisons
between runs difficult as the number of epochs varied. Here we simplify by using a
fixed number of epochs per training and fixed outer iterations. For further details on
the original criteria, refer to [8].

Algorithm 1 Two-level DeepDDM; coarse level
1: Sampling the fine and the coarse collocation points
2: Initialization of the network parameters 𝜃0

𝑠 and 𝜃𝑐
3: Initialization of interface values 𝑊 = [𝑊1, ..., 𝑊𝑠]
4: Initialization of weights 𝜆 𝑓 and 𝜆𝑐

5: while Iteration limits not reached do
6: Local network training
7: Coarse network training
8: Compute

∑𝑆
𝑠=1 𝐸𝑠 (𝜒𝑠𝑢𝑠 (𝑥𝑖,𝑐𝑜𝑎𝑟𝑠𝑒) for each coarse points

9: Update of 𝑊𝑘 values at interfaces with eq. (3) or eq. (5)
10: Update 𝜆 𝑓 and 𝜆𝑐

4 Victorita Dolean, Serge Gratton, Alexander Heinlein, and Valentin Mercier

As mentioned in the introduction, the convergence of the one-level method does
not scale with the number subdomains. We consider two types of scalability:

• Strong scalability: Strong scalability is defined as how the solution time varies
with the number of cores for a fixed total problem size. Ideally, the elapsed time
is inversely proportional to the number of processing units.

• Weak scalability: Weak scalability is defined as how the solution time varies with
the number of cores for a fixed problem size per core. Ideally, the elapsed time
is constant for a fixed ratio between the size of the problem and the number of
processing units.

Since these terms are not clearly defined for of deep learning, we will assume
that the size of our problem is the number of points sampled to solve the problem,
and the number of processing units is the number of PINNs models used to solve the
problem (and therefore the number of subdomains).

×

×

×
×

×

×
×

×
×

×

××

×

×

×

×
×

×
×

×

×
×

××
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

××

×

×

×

×

×
×
×

× ×
×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×
×

×
××

×

×

×

×

×

×

×

×

×

××

×

×××

×

×

×

× ×

×

×

×

×

×

×
×

×

×
×
×

×
×

×

×
×

×

×

××

×

×

×

×

×
× ×

×
××

×

×
××

×

×

×

×
× ×

×
×

×

×

×

×

×

×
×

×

×

×

×

×
×

×

×

×

×
×

×× ×

×

××

×

×

×
××

×

×

××

×
×
×

××
×

×

×

×

×

×

×

×
×

×

×

××

×

×
×

×

×

×
×

×
×

×

×

×
×

×

×

×
×

×

×

×
×

×

××

×

×
×

×

×

×

×

×
×

×

×
×

×

×
×

×

××

×

×

×

×
×

××
×

×

×

×

×

×

×

××
×

×

×

×

×

×

×

××

×
×

×

×
×

×

×
×

×

×

×

×
×

×

×

×

×
×

×

××
×

××

×

×

×

×

×

×

××

×

×

×

×
×

× ×

× ×

××
×

×× ×

××

×

×

×
×

×

××

×

×

×

×

××

×
×

×

××

×

×
×

×

×

×

×

×

×

× ×

×

×
×

×

×
×

×

×

×

×

××

×

× ×

×

× ×

×

×
×
×

×

×

×

×

×
×

×

×
×

×

×

×

×

×
×

×

××

×
×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

×

× ×

×

×

×

×
×

× ×
×

×

×

×
×

×

×

×

×
×

×
×

×
×

×

× ×

×

× ×

×

××

×

×

×××

××
×

×

×

×

×

×

×

×

×

×
×

×

×
×

××

×× ××

×

××

×

×
×

×

×

×

×

×

×

×

×
×

×

×

×
×
××

×

×

×

×

×
×

×

×

×

×

××
×

×
×

×

××
×
×

×

×

××
×

×
×

× ×
×

×

×

×

×
× ×

×

×

×

×

×
× ×

×

×

×

×
××

××

×

×

×

×

×

×

××
×

×

×
×

× ×

×
×

×

××
×

×

××

×

××

××
×

×
×

×

×

×
××

× ×

××

×

×

×

××

×

×

×
×

×

×

×

×
×

×

×
×

×

×

×

×

×
×

×

×
×

×

×
×
××

×
××

×
×

× ×

×

× ×
×

× ×

×

×
×

×
× ×
×

×

×

××

×
××

×

×

××

×

× ×

×

×

× × ×

×

××
×

×

×

×

×

×

×

×

×

×

×××

××

×

×

×

×
×
×

×

×

×

×
×

×

×

×

×

×
×

××
×

×

×

×

×
×

×
××

×

×

×

×

××

××

×

×

×

×

×

×

×

×

×

×

×
×

×

××

×

×

××

××

×

×

×

× ××

×

××

×

×

×
× ×

×

×

×

××

×

×

×

×

××

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

××

×

×

×

×
×

×

×

××

×

×

×

×

×

×

× ×
×

×
×

××

××

×
× ×

×

×

×

× ×
×

×

× ×
×

×

×
×

×

×
×

×

×

×

×

×
××

×
×

×

×

×

×

×

×

×
×

×
×

×

×
×

×
×

×
× ×

×
× ×

×

×

×

×

×
×

×

×

×
×

×
×

××

×

×

× ×

×
×

×

×
×

×
×

××

×
×

×

×××

×
×

×
×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×
××

×

×

×

×

×
×

××
×

×

×
×

×

×

×

×

×

×

×

×

××

××

×
×

×

×

×
×

×
×

×

×
×

×

×

×

×

×
×

×

×

×××

× ×

×

×

×

××

×

×

×

××

×

×

×

×

×

×××

×

× ×

×

×
×

× ×

×

×

×

×

×

×
×

×

×

×

×
×× ×

×
×

×

×

×
×

×

×

×

×
×

×

×

×
×

×
×

×
×

×

×

××

×

×

×

×

×

×

×

××

×

×
×

× ×

×
×

×
×

×
×

×

××

×

×

×

×

×

×
×

×
×

×

××× ×
×

×

×

××

×××

×

×

×

×

×

×

×

×
×

× ×

×

×
×

×

×

×

×

×

×

×
×

×

× ××

××
×

×

×

×

×

×
×

×

×

×
×× ×

×

×

×

×
× ×

×
×

×

×

×

×

×

×
×

××

××
×

×

×
×

×

×
×

× ×
×

×

×

×

×
×× ×

×
×

×

×

×
×

××

×

×

×
×

×
×

×
××

×

××

×

×

×

×

×× ×

×

×

×

× ×

×

×
×

×
××

×
×

×

×
×

×

×

×

×

×
×

×

×

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×
×

××

×

×

×

×

×

×

×

×

× ×
×

×

×

×
×

×

×

××

×

×

×
×

× ×
× ×

×

×

×

××

×

×

××
×

×

××

×

×
×

×
××

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

× ×

×

×
×

×
× ×

×
×

×

×

×
×
× ×

×

×

×

××
×

×

×
×

×

×

×

×

×
×

×

×

×
××

×

×

×
×

×
×

×
×

×

×
×

×

×

×

×
×

×

×
×

×

×

×

×

×
×

×

×

×
×

×
××
×

×

× ×

×

×

×
×

×

×

×
×

×

×

×

× ×

×

×

×
×

×
××

×
×
×

×

×

×

×

×

××
×

×

×
×

×
×

×

×

×

×

×
×

×
××

× ×

×

×

×

×

× ×

× ×

×
×

× ×

×

×

×

×
×

×

×

×

× ×

×

×

×

×

× ×

×

×
×

×
××

×

×

×
××

×

××

×

×

×
×

×

×

×

×

××
×

×

× ×

×
×

×

×

×

×

×

×
×

×
×

×

××

×
×

×

×

×
×

× ×
×

×
× ×

×

×
×

×
×

×
×

× ×
××

× ×

×

× ×
×

×

×
×

×
×

××

×

×
×
×

×

×

×××
×

×

×

× ×

×

×

×

×

×

×

×

× ×

×

× ×

×

×

×
××

×
×

×

××

×

×

×

×
×

×

×× ×
×

×

×

×
×

××

×

×

×

×

×

×

×

×

×

× ×
×

×

×

×××

×

×
××

×

×

×

×

×

×

×

×

×

××

×
×

×

×

×

× ××

×

×

×

×

×
×

×

×

××

×
× ×

××

×××
×
×

×
×

×

×

××

×

××

×
×

××

××

×
×

×

×

×

×
× ×

×

×

×

×

×

××

×

×
×

×

××

×

×
×

×
×

× ×

×
×

×
×

×

× ×

×
×

×

×
×

× ×

× ×

×

×

×
× ×
×

××
×

××

×

×

×

×

×

×

×

×
×

×

×

×
×

×

×

×

×

×××

×

×

×

×
×

×
×

×

×

××

×
×

×
× ××

×
×

×

×
×

×

×

×

×

×

× ×
×× ×

×
×

×

×

×

×
××

×

× ×

×
×

×

×

×

×
×

×
×

×
×

×
×

×

×

× ×
×

×
×

×

×
×××

×

×

×

×

×

×
×

×

×

×

×

×

×

×
×

×

×
××

×

×

×

×

×

×

×
×

×
×

×

××

××

× Residual points Boundary points Interface points

Coarse points

Fig. 1 (1) Strong scalability test on the Deep-DDM method (2) Sampling points for the two-level
Deep-DDM method

We consider a Poisson equation with Dirichlet boundary conditions:{
Δ𝑢 = 𝑟 (𝑥) in Ω = [0, 1] × [0, 1],
𝑢 = 𝑔(𝑥) on 𝜕Ω.

We choose 𝑟 and 𝑔 such that the exact solution is 𝑢(𝑥) = 𝑠𝑖𝑛(𝜔1𝜋𝑥1)𝑠𝑖𝑛(𝜔1𝜋𝑥2) +
𝑠𝑖𝑛(𝜔2𝜋𝑥1)𝑠𝑖𝑛(𝜔2𝜋𝑥2), in this paper we will perform tests for several values of 𝜔1
and𝜔2. To investigate the scalability of the one-level method we choose𝜔1 = 𝜔2 = 1
and we perform 1500 epochs per training (other settings are the same as in 4). Here,
we test the strong scalability on regular rectangle domain decomposition. A regular
rectangle domain decomposition with overlap divides Ω = [𝐿𝑥0 , 𝐿𝑥1] × [𝐿𝑦0 , 𝐿𝑦1]
into 𝑁𝑥 ×𝑁𝑦 subdomains, each overlapping by 𝛼𝑥Δ𝑥 and 𝛼𝑦Δ𝑦. The total number of
points sampled remains the same in each experiment, corresponding to our problem
size, while we increase the number of subdomains and thus the number of processing

Two-level deep domain decomposition method 5

units. In fig. 1 (1), the mean squared error over outer Schwarz iterations for several
numbers of subdomains are plotted. We observe that the convergence deteriorates
when increasing the number of subdomains. Therefore, in the next section, we will
introduce a coarse level for the Deep-DDM, which facilitates fast global transport of
information, to retain scalability.

3 Extension via a Coarse Network

Our coarse level corresponds to training a neural network acting on the entire domain,
which we will denote as the coarse network. The convergence of the two-level
method will then depend on the coarse network solution as well as the exchange of
information with the local networks on the first level of the method. In particular,
as the coarse network, we train a classical PINN model on the global domain and
add an additional loss term incorporating the local subdomain networks. Conversely,
after training the coarse network, we will incorporate the coarse network into the
loss function for the training of the local networks.
Extension operators and a partition of unity [3]: Let us define an extension
operator

𝐸𝑠 (𝑤𝑠) =
{
𝑤𝑠 in Ω𝑠

0 otherwise.

Here, 𝑤𝑠 is a function defined onΩ𝑠 . Moreover, we define partition of unity functions
𝜒𝑠 with 𝜒𝑠 ≥ 0, supp(𝜒𝑠) ⊂ Ω𝑠 , 𝜒𝑠 (𝑥) = 0 for 𝑥 ∈ 𝜕Ω𝑠\𝜕Ω, and

𝑤 =

𝑆∑︁
𝑠=1

𝐸𝑠 (𝜒𝑠𝑤 |Ω𝑠
)

for any function 𝑤 defined on Ω. We then add the term

M 𝑓 𝑖𝑛𝑒 (𝜃𝑐) =
1

𝑁Ω𝑐

𝑁Ω𝑐∑︁
𝑘=1

��𝑢𝑐 (𝑥𝑐𝑘) − 𝑆∑︁
𝑠=1

𝐸𝑘 (𝜒𝑠𝑢𝑠 (𝑥𝑐𝑘))
��2,

to the loss function eq. (1) for the training of the coarse network. Here, {𝑥𝑐
𝑘
}𝑘=𝑁Ω𝑐

𝑘=1
are the sampling points for the coarse network Ω related loss (example in fig. 1
(2)), and 𝑢𝑐 and 𝜃𝑐 are the coarse network and its network parameters, respectively.
This term which transfer information from the fine solution to the coarse network is
weighted with 𝜆 𝑓 . As we aim to train the coarse network concurrently with the fine
networks, making our algorithm fully parallelizable, we use the 𝑢𝑠 from the previous
outer iteration. This information is unavailable for the first iteration, so in this case,
we set 𝜆 𝑓 to 0.

In order to transfer information from the coarse to the local networks, we introduce
a loss term into the 𝑀Γ loss of the local networks via the interface term eq. (4):

6 Victorita Dolean, Serge Gratton, Alexander Heinlein, and Valentin Mercier

𝑊𝑖 = 𝜆𝑐D(𝑢𝑟 (𝑥𝑖)) + (1 − 𝜆𝑐)D(𝑢𝑐 (𝑥𝑖)), (5)

where 𝜆𝑐 ∈ [0, 1] is a weight balancing the impact of the coarse network on the
local networks.

Note that, since the accuracy of the local networks is often poor in the first
iterations, we adjust the corresponding weight in the loss function 𝜆 𝑓 during the
Schwarz iteration. The final two-level algorithms is given in algorithm 1, including
the red parts.

4 Numerical Results

In this section, we will conduct tests on the previously defined Poisson’s problem us-
ing the following settings. The collocation points are sampled using Latin hypercube
sampling in Ω and on 𝜕Ω and Γ. For our strong scaling tests, we fix 𝑁Ω = 30 000
and 𝑁𝜕Γ = 𝑁Γ = 16 000 for the whole problem while increasing the number of sub-
domains. All networks are trained using the Adam optimizer with an initial learning
rate of 2 × 10−4 and an exponential decay of 0.999 every 100 epochs. Each neural
network is composed of two hidden layers with 30 neurons. The overlap is set to
30% of the subdomain larger side. In each Schwarz iteration, each local and coarse
network is trained for 2 500 epochs. The weight controlling the impact of the coarse
network on the local networks is set to 𝜆𝑐 = 1 × 0.9𝐼 where 𝐼 is the index of the
Schwarz iteration. This increases the impact of the coarse network during the course
of the outer Schwarz iteration. The coefficient 𝜆 𝑓 controlling the impact of the fine
networks on the coarse network is set to a fixed value of 0.5. All weights 𝜆∗ have
been optimized using a rough grid search to obtain good performance.

Our implementation uses TensorFlow2 (version 24.02) and runs numerical exper-
iments on a single Nvidia A100-80 GPU. Both the fine and coarse network training
processes run concurrently on the GPU using multiprocessing. Although this setup
is suboptimal due to the unaddressed GPU load and the complex interaction between
TensorFlow and multiprocessing, it allows us to compare the wall time between
one-level and two-level methods. The results presented are the median of three
independent training runs, each initialized with different seeds.

We focus on investigating the impact of our two-level domain decomposition
on the spectral bias or f-principle [14, 13] of neural networks; this refers to the
observation low-frequency components of the target functions are learned much
faster than the high-frequency components. The Deep-DDM method tackles this
issue by splitting the global problem into smaller subproblems, allowing for better
approximation of high frequency components, while the coarse network is supposed
to learn the low frequency components.

In order to investigate this, we consider two different pairs of coefficients
(𝜔1, 𝜔2) ∈ {(1, 3); (1, 6)}. For the lower frequency pair of coefficients, that is,
(𝜔1, 𝜔2) = (1, 3), we observe a noticeable improvement in convergence with the
addition of a coarse level; cf. fig. 2. In particular, the convergence seems to be inde-

Two-level deep domain decomposition method 7

Fig. 2 (1) Strong scalability test for test problem with 𝜔1 = 1, 𝜔2 = 3 : Test with 2 500 epoch (2)
an example of sampling with a 6 × 6 decomposition

Fig. 3 Strong scalability test for test problem with 𝜔1 = 1, 𝜔2 = 6 : (1) Test with 2 500 epoch (2)
Test on 6 × 6 decomposition with variation in the number of epochs

2500 epochs 5000 epochs 7500 epochs
One-level method 66 min 148 min 190 min
Two-level method 71 min 136 min 201 min

Table 1 Median of the wall time for the experiments of the figure 3 (2)

pendent of the number of subdomains. However, when we increase the frequency of
the solution, that is, (𝜔1, 𝜔2) = (1, 6), we notice that it takes longer for the two-level
method before it converges; cf. fig. 3 (2). We observed that this problem can be easily
solved by improving hyper parameter settings. In particular, for 6×6 subdomains, we
observe that we can significantly improve the scalability by increasing the number of
epochs for each subproblem; cf. fig. 3 (3). Notably, with 5 000 and 7 500 epochs per
subproblem, the two-level methods clearly outperforms the one-level Deep-DDM.

8 Victorita Dolean, Serge Gratton, Alexander Heinlein, and Valentin Mercier

5 Conclusion

We have presented a two-level approach to improve the convergence of the one-
level Deep-DDM method . The additional coarse networks facilitates faster global
transport of information and enhances the scalability of the Deep-DDM method to
larger numbers of subdomains. The cost of training the coarse network is relatively
low compared with the total cost of the method and the method is well-suited for
a parallel implementation with only small differences in wall time (1) with a non
optimized parallelization.

References

1. V. Dolean, A. Heinlein, S. Mishra, and B. Moseley. Finite basis physics-informed neural
networks as a Schwarz domain decomposition method, 2023.

2. V. Dolean, A. Heinlein, S. Mishra, and Ben Moseley. Multilevel domain decomposition-based
architectures for physics-informed neural networks. Computer Methods in Applied Mechanics
and Engineering, 429:117116, 2024.

3. V. Dolean, P. Jolivet, and F. Nataf. An Introduction to Domain Decomposition Methods.
Society for Industrial and Applied Mathematics, 2015.

4. S. Gratton, V. Mercier, E. Riccietti, and P. L. Toint. A block-coordinate approach of multi-level
optimization with an application to physics-informed neural networks, 2023.

5. D.-K. Jang, K. Kim, and H. H. Kim. Partitioned neural network approximation for partial dif-
ferential equations enhanced with Lagrange multipliers and localized loss functions, December
2023. arXiv:2312.14370 [physics].

6. A. Klawonn, M. Lanser, and J. Weber. Machine learning and domain decomposition methods
– a survey, 2023.

7. K. Li, K. Tang, T. Wu, and Q. Liao. D3M: A deep domain decomposition method for partial
differential equations. IEEE Access, 8:5283–5294, 2020. arXiv: 1909.12236.

8. W. Li, X. Xiang, and Y. Xu. Deep Domain Decomposition Method: Elliptic Problems.
arXiv:2004.04884 [cs, math], April 2020. arXiv: 2004.04884.

9. B. Moseley, A. Markham, and T. Nissen-Meyer. Finite basis physics-informed neural networks
(FBPINNs): a scalable domain decomposition approach for solving differential equations,
2021.

10. M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations, 2017.

11. H. A. Schwarz. Ueber einen Grenzübergang durch alternirendes Verfahren. Zürcher u. Furrer,
1870.

12. K. Shukla, A. D. Jagtap, and G. E. Karniadakis. Parallel Physics-Informed Neural Networks
via Domain Decomposition. arXiv:2104.10013 [cs], April 2021. arXiv: 2104.10013.

13. S. Wang, H. Wang, and P. Perdikaris. On the eigenvector bias of fourier feature networks:
From regression to solving multi-scale pdes with physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 384:113938, October 2021.

14. Z.-Q. J. Xu. Frequency principle: Fourier analysis sheds light on deep neural networks.
Communications in Computational Physics, 28(5):1746–1767, 2020.

