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Highlights1

Diagnosis Based on Sensory Data: Application to Wheat Grading Quality2

Melanie Munch,Cedric Baudrit,Hubert Chiron,Luc Saulnier,Benoît Méléard,Kamal Kansou3

• Food quality can be assessed using a diagnostic approach.4

• Analysing historical sensory data helps to contextualise a sensory test.5

• Clustered joint probabilities reveal implicit expert practices.6

• When used to assess the quality of wheat, two main dough profiles emerge.7

• New wheat quality profiles were formulated and linked to analytical measures.8
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18 A B S T R A C T19

20

Sensory evaluation is an important aspect of food quality and control. However, even when21

carried out by a group of experts, it is generally difficult to link the results of a sensory evaluation22

to physico-chemical or technological measurements. This study is based on the premise that23

formalising the interpretation of sensory observations in terms of the physical state of the product24

can help to link together sensory and physical properties. The main proposal of this paper is25

a methodological framework adapted from a diagnostic approach to capture the relationships26

between sensory evaluations of a type of product, here wheat dough, and its physical states called27

quality profiles. A probabilistic analysis is proposed to identify the quality profiles and their28

signatures, i.e. the corresponding sensory observations that result from grouping the probabilities29

of the observations. This work is supported by the analysis of a large historical sensory evaluation30

dataset from the routine application of the French baking standard to estimate the baking value of31

common wheat (Triticum aestivum L.) flour. Application of the method to this dataset revealed32

two defective quality profiles for wheat dough, Slackening (due to weakness of the gluten33

network) and Resistant (excessive strength of the gluten network), along with their signatures34

in terms of sensory observations of the dough. Promising relationships were found between the35

quality profiles attributed to the wheat samples and usual technological criteria of the wheat36

flour quality: gluten index, (Ie) elasticity index and (W) dough strength. This methodological37

framework applied to food opens up interesting perspectives for the use of sensory data for crop38

and food quality assessment using computational approaches.39

40

1. Introduction41

In agri-food systems, the evaluation of crop or product quality often includes a dose of sensory evaluation, in42

addition to measurements from technological tests and compositional analysis. Sensory evaluation is used, for example,43

for grading crops before primary transformation, as in the Speciality Coffee Association of America (Lingle, 2011)44

standards for grading coffee beans, or the Bread Baking Assay standard (NF V03-716) for grading soft/common wheat45

in France. Among the various types of measurements used to assess the quality of crop or food, sensory evaluation is46

generally close to the perception of the end user but difficult to relate to the physical properties and composition of the47

product.48

Ruan and Zeng (2004) distinguish two types of sensory evaluations on industrial products, the one performed by49

trained experts for product design and development (B2B) using analytical and neutral descriptors and the one used for50

consumer and marketing research (B2C) by untrained consumer panels using analytical and hedonic descriptors. The51

sensory evaluation of agricultural product quality using standards belongs clearly to the first type. The involvement52

of trained experts and the use of neutral sensory descriptors, generally associated to the technological knowledge on53

the product, should reduce the intra-individual variability and produce consistent evaluation over time compared to54

hedonic evaluations. Even in these controlled conditions, the inter-individual variability may be significant and the55

relations between physical/chemical or technological features of the product and the sensory criteria are complex (e.g.56

∗Corresponding author
melanie.munch@inrae.fr (M. Munch)

ORCID(s): 0000-0001-6704-1446 (M. Munch); 0000-0003-4320-3345 (C. Baudrit); 0000-0002-0618-2672 (L. Saulnier);
0000-0002-6262-4447 (K. Kansou)

Munch M., Baudrit C., Chiron H., Saulnier L., Méléard B., Kansou K.: Preprint submitted to Elsevier Page 1 of 16



Diagnosis Based on Sensory Data

nonlinear) (Ruan and Zeng, 2004). Moreover training expert to sensory evaluation is time and resource consuming;57

not surprisingly, food technology has sought to replace sensory evaluation with technological measurements (see58

(Bourne, 2002) for a reference book on this topic). Establishing the relationships between sensory data and the physical59

conditions of a food product is critical for decision support, for example for monitoring physical changes in the product60

(Curt, Trystram, Nogueira-Terrones and Hossenlopp, 2004; Baudrit, Sicard, Wuillemin and Perrot, 2010). However,61

this requires an appropriate method to exploit the data obtained from the sensory evaluations of the food products,62

which is an additional difficulty.63

Classical statistics and factorial analysis methods have been used for a long time to address the problem of physical64

interpretation of sensory observations, but they are sometimes insufficient (Ruan and Zeng, 2004), as for example65

MCA, which provides a low-dimensional representation of the data that can lead to a loss of information. Intelligent66

computing techniques (especially fuzzy logic) have been applied in the field of food quality and control to mimic67

the reasoning of experts on sensory criteria (Allais, Perrot, Curt and Trystram, 2007a; Birle, Hussein and Becker,68

2013; Mavani, Ali, Othman, Hussain, Hashim and Rahman, 2022; Nunes, Ribeiro, de Carvalho, Ferreira, de Oliveira69

and Pinheiro, 2023). In particular, they have been applied to sensory control of food transformations processes such70

as cheese ripening (Curto, Moreno, García-Esteban, Blanco, González, Vivar and Revilla, 2020; Baudrit et al., 2010;71

Perrot, Agioux, Ioannou, Mauris, Corrieu and Trystram, 2004), sausage drying and biscuit aeration (Allais, Perrot, Curt72

and Trystram, 2007b), or the prediction of coffee bean sorting (Livio and Hodhod, 2018) or wheat dough condition73

(Ndiaye, Valle and Roussel, 2009; Kansou, Chiron, Della Valle, Ndiaye and Roussel, 2014). Most of these models74

were designed to compute sensory observations in order to support decision in an industrial context, they did not75

integrate the physical interpretation of these observations. An illustration of model relating sensory observations to76

the product physical/chemical state is provided by Baudrit et al. (2010)’s dynamic Bayesian network of the cheese77

ripening. This model combines a model of the physical/chemical processes and expert-based sensory indicators of the78

ripening phases. The approach used to capture the sensory indicators is presented in Sicard, Baudrit, Leclerc-Perlat,79

Wuillemin and Perrot (2011); it is based on the understanding of operator’s cognition during the process control.80

Roughly experts learn with experience to relate characteristic groups of sensory observations, called “chunks, with81

the product condition which helps them to diagnose a process drift or a defective product for example; main aspects82

of this theory are reported in Sect.2.1. Thus, chunks helps experts to make the link between sensory observations83

and the product physical state, therefore our first hypothesis is that the identification of chunks can be used to relate84

the sensory observations with the physical/chemical or technological measurements. However in the food domain85

the relation between the product defective states and the corresponding chunk of sensory observations is largely tacit86

knowledge held by domain experts, making it difficult to capture (Kansou, Laurier, Charalambides, Della-Valle, Djekic,87

Feyissa, Marra, Thomopoulos and Bredeweg, 2022). Our second hypothesis is that chunks can be approximated by88

clusters of sensory observations obtained from an appropriate analysis of sensory data. To assess these two hypotheses89

this work is grounded on the analysis of sensory data collected through the routine application of the bread baking90

test standard (NF V03-716) to characterise the quality of soft wheat grain grown in France over the last two decades,91

which amounts to more than 10000 sensory evaluations.92

This works led up to two contributions, for both the sensory evaluation in food industry (Section 2) and the wheat93

quality (3). In Section 2 this article presents a novel method for modelling expert interpretation of product quality94

based on a probabilistic analysis of historical sensory data. In Section 3, a real-world application, which aims to better95

integrate sensory evaluation in the determination of wheat quality, is fully addressed. This includes the assignment96

of wheat quality classes and the confrontation with the usual technological measurements of wheat quality. Section 497

discusses the various results and possible extensions that this work opens up for sensory analysis in general.98

2. A Diagnosis Approach for the Sensory Evaluation of Food99

This section presents the formalisation of the diagnostic approach for the use of sensory data. By way of illustration,100

the example of the wheat dough kneading sensory evaluation is presented in the context of the French Breadmaking101

Assay. The application to the other unit operations of the bread-making assay is given in section.3.102

2.1. Sensory-based Diagnosis for Food Product103

The act of diagnosis is the act of proposing a defect (the output) as a plausible cause for a set of observations104

of a product (the input) (Schreiber, Akkermans, Anjewierden, Hoog, Shadbolt, Velde and Wielinga, 2001), denoted105

signature (Cordier, Travé-Massuyès and Pucel, 2006). In the case of a food quality, the state of the product, denoted106
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Figure 1: Principle of food quality diagnosis based on sensory data. In green (Expert Knowledge) the reasoning steps
of a diagnostic process through chunks (i.e. expert-based group of observations). In blue (Data Analysis) the approach
followed in this work, which uses the historical sensory data set to establish the diagnostic process steps through the
identification of signatures (i.e. data based group of observations).

quality profile, is the output diagnosed from the analysis of observations that are the results of technological tests or107

sensory evaluations (inputs).108

Intuitively, the quality profile is based on the knowledge and understanding of the product’s behaviour, while the109

observation is based on human perception. For Raufaste et al. (Raufaste, Eyrolle and Mariné, 1998), medical diagnosis110

involves two processes, cognitive (knowledge of the possible inputs and outputs of the diagnosis) and perceptual111

(how the inputs are perceived). Perceptual processing in particular plays an important role in sensory analysis, while112

cognitive knowledge is useful in formulating a plausible causal explanation for the observations. Experts in particular113

are able to associate a set of observations with a piece of knowledge: Ballester et al. (Ballester, Patris, Symoneaux114

and Valentin, 2008) shows for example that trained experts are able to recognise and characterise a wine better than115

novices. To explain this ability, Chase et al. (Chase and Simon, 1973) introduce the concept of chunks through the study116

of chess, where expert players identify patterns that allow faster mobilisation of knowledge. Thus, chunks are typical117

configurations of situations acquired by experts during their practice. Sicard et al. (Sicard et al., 2011) apply this theory118

to capture expertise in the cheese ripening process. In this study, chunks of sensory observations used by experts to119

determine the main stages of ripening were made explicit, and this knowledge was integrated into a predictive model120

of cheese ripening dynamics (Baudrit et al., 2010).121

As shown in Fig.1, baking experts associate quality profiles (the output) with chunks (patterns within the122

observations, the inputs) when making a diagnosis from sensory evaluations. Therefore, a food diagnostic model123

must rely on domain expertise to define the quality profiles and then to associate the chunks of observations with124

the quality profiles. To elicit domain expertise, Sicard et al. (Sicard et al., 2011) conducted interviews with experts in125

cheese making, but this approach is time consuming and exhausting for domain experts because the know-how of food126

experts, built up through experience, is often tacit knowledge that is particularly difficult to put into words (Wooten127

and Rowley, 1995; Kansou et al., 2022). In addition, human perceptions of probability are known to be biased by prior128

knowledge or expectations (Kahneman and Tversky, 1973; Raufaste, da Silva Neves and Mariné, 2003), making it129

difficult to objectively associate quality profiles with observations.130

As shown in Fig.1, our working hypothesis is that historical sensory data (i.e. a large collection of test results)131

can be used to identify signatures and bypass expert chunk elicitation using data analysis. This hypothesis assumes132

that expert chunks are reflected by patterns in the data set. The approach presented in this paper shows how expert133

knowledge and data analysis of sensory data can be combined to build a diagnostic model for the sensory evaluation134

of a food product.135

Example 2.1. A simple test to characterise a sample of bread during kneading is considered. It consists of five sensory136

attributes (Dough Stickiness, Slackening, Consistency, Extensibility and Elasticity) extracted from the sensory137

Bread Making test (Sec.3 details more in-depth results). Three values are defined: Normal and either Insufficient or138

Excessive, the two latter being problematic. In this small example, only five defects are considered: Excessive Dough139

Stickiness, Slackening, Consistency and Elasticity, and Insufficient Extensibility. According to experts, three dough140

quality profiles can be diagnosed: a gold standard one (i.e. no defect is observed) and two defective dough behaviours,141

slackening dough due to weak gluten network (𝖶𝖦) and resistant dough due to strong gluten network (𝖲𝖦). The test142
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P(Consistency|Elasticity) Consistency(I) Consistency(E)
Elasticity(I) 0.11 0
Elasticity(E) 0 0.03

P(Elasticity|Consistency) Elasticity(I) Elasticity(E)
Consistency(I) 0.79 0
Consistency(E) 0.17 0.39

Table 1
Example of a conditional probability tables describing relationships between Consistency and Elasticity defects. For
instance, P(Consistency(I)|Elasticity(I)) (0.11) represents the probability of having an insufficiency of Consistency when
an insufficiency in Elasticity is already known. Conversely, P(Elasticity(I)|Consistency(I)) (0.79) represents the probability
of having an insufficiency of Elasticity when an insufficiency in Consistency is known. Bolded probabilities represent the
maximum likelihood.

principle is to assess deviations from the Normal value for the five attributes. The signature of the gold standard profile143

is the normal value for the five attributes. The quality profiles 𝖶𝖦 and 𝖲𝖦 have no defined signatures. The aim of this144

example is to show how the signatures can be identified from sensory data.145

2.2. Probabilistic Analysis of the Observations146

In order to reason on a probability basis, this section introduces the formal notation of sensory tests. Be a test147

with 𝑛 attributes denoted 𝑋𝑖 (𝑖 ∈ [1; 𝑛]), and 𝑋𝑖(𝑣) an observation of this attribute taking the value 𝑣. Following148

the probabilistic notation, each observation 𝑋𝑖(𝑣) is associated to its probability of happenstance, denoted P(𝑋𝑖(𝑣)).149

For instance, P(𝑋𝑖(𝑣)) = 0.4 means that 𝑋𝑖 has a probability of 0.4 to take the value 𝑣. By extension, given 𝑖 ≠ 𝑗,150

P(𝑋𝑖(𝑣𝑖)|𝑋𝑗(𝑣𝑗)) denotes the probability of observing 𝑋𝑖(𝑣𝑖) knowing that 𝑋𝑗(𝑣𝑗) is known.151

Example 2.2. Tab.1 shows the conditional probability table between the Consistency and Elasticity defects.152

The first table shows the observation of Consistency when Elasticity is known, the second the observation of153

Elasticity when Consistency is known. These two examples show the non symmetry of conditional probabilities:154

P(Consistency(I)|Elasticity(I))=0.11 while P(Elasticity(I)|Consistency(I))=0.79. In other words, this means that an155

insufficiency in Elasticity is highly probable (p=0.79) when an insufficiency in Consistency is known; but knowing156

there is an insufficiency in Elasticity doesn’t guarantee (p=0.11) to observe an insufficiency in Consistency.157

While this approach is not causal (one cannot say from P(𝑋𝑖(𝑣𝑖)|𝑋𝑗(𝑣𝑗)) that observation 𝑋𝑗(𝑣𝑗) caused 𝑋𝑖(𝑣𝑖)), it158

gives an overview of the correspondences between pairs of observations: "When 𝑋𝑗(𝑣𝑗) is known, the probability of159

observing 𝑋𝑖(𝑣𝑖) is low/high". This approach helps to discover patterns (groups of observations that occur together)160

that could constitute potential signatures.161

2.3. Signatures Identification162

This section shows how naive Bayes network models (Zhang, 2004) are used to identify patterns and associate them163

with signatures. We consider a food product with different quality profiles 𝑑, and a test with 𝑚 boolean observations164

𝑜𝑘 (𝑘 ∈ [1, 𝑚]), each representing whether or not an attribute took a specific value. A naive Bayes model is proposed165

(Fig.2), whose simple structure makes it easy to understand how each feature contributes to the final diagnosis. It is166

composed of (a) each observation 𝑜𝑘 (boolean variables indicating whether a value is observed or not) and (b) the167

variable Quality Profile (taking its value within the set of all possible quality profiles 𝑑). The relations are such that:168

1. Knowing the value 𝑑 of Quality Profile gives total information about each observation 𝑜𝑘.169

2. Each observation 𝑜𝑘 is independent of the others when Quality Profile is known. This is due to the independence170

property of naive Bayes: when Quality Profile is known, information does not flow between observations:171

knowing 𝑜𝑖 has no effect on 𝑜𝑗 if their common cause Quality Profile is defined.172

To uncover potential signatures, a conditional probability table, i.e.𝑚x𝑚 matrix is constructed so that, given a row173

𝑖 and a column 𝑗, the probability P(𝑜𝑗|𝑜𝑖) is given. The matrix is then clustered in row and column, using the Ward174

pairwise distance method:175

1. Horizontal clusters (Behaviour clusters) between observations when their value is KNOWN, to study how they176

affect the remaining ones. This cluster describes groups of observations that can be used as potential signatures177
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Figure 2: Naive Bayes model for diagnosis. The value of quality profile has influence over the different attributes’
observations. Knowing the quality profile value guarantees independence between observations. Observations 𝑜𝑘 (𝑘 ∈ [1, 𝑚])
are booleans representing whether or not an attribute takes a value.

for quality profiles. If observations 𝑋𝑖(𝑣) and 𝑋𝑗(𝑘) are clustered together, it suggests that other defects will have178

the same probability of happening when one of the both is known;179

2. Vertical clusters (Accuracy clusters) between the remaining OBSERVED defects when another one is known,180

to study their frequency. This cluster helps refine potential signatures by trimming observations that are not181

sufficiently characteristic of a quality profile. If observations 𝑋𝑖(𝑣) and 𝑋𝑗(𝑘) are clustered together, it suggests182

that 𝑋𝑖(𝑣) and 𝑋𝑗(𝑘) have similar behaviour when different defects are known;183

Results are presented in a clustermap.184

Example 2.3. Fig.3 presents the relations between different observations. It shows for instance that when Slacken-185

ing(E) is KNOWN, the OBSERVED attributes Dough stickiness(E) and Extensibility(I) both happen with probabilities186

of respectfully 0.91 and 0.42. Looking at their Behaviour cluster 𝐶1 shows that Dough Stickiness(E) has a similar187

impact on OBSERVED defects. Being in the same Accuracy cluster 𝐶𝐴, they also roughly have the same probability of188

appearing when another defect is KNOWN: for instance, Dough stickiness(E) and Extensibility(I) have respectively189

probabilities of 0.09 and 0.05 when Consistency(E) is known.190

2.3.1. Behaviour clusters191

In the map reported in Fig.3, rows are grouped as the Behaviour clusters. Behaviour clusters group by similarity192

the observations that condition the likelihood of the other observations, namely 𝑋𝑗(𝑣𝑗) in P(𝑋𝑖(𝑣𝑖)|𝑋𝑗(𝑣𝑗)), describing193

behaviours exhibited by the sample. Behaviour clusters thus represent potential signatures for quality profiles.194

Example 2.4. The clusters of the example are shown in Fig.3. The observations in 𝐶1 describe a dough with195

Stickiness(E) and Slackening(E) happening together; while those in 𝐶2 describe a dough with Consistency(E),196

Extensibility(I) and Elasticity(E) happening together. This clustering is compatible with the two quality profiles197

expected by the experts, where 𝐶1 describes a dough with a weak gluten network and 𝐶2 a strong gluten network.198

Thus, in a first approach, both 𝐶1 and 𝐶2 are assigned with signatures 𝑠𝖶𝖦 and 𝑠𝖲𝖦 for the weak and strong gluten199

network defect profiles.200

2.3.2. Accuracy Clusters201

In the map reported in Fig.3, columns are grouped as the accuracy clusters. Accuracy clusters are used to trim202

potential signatures described in Behaviour clusters; they convey information about the probability of the observations,203

namely 𝑋𝑖(𝑣𝑖) in P(𝑋𝑖(𝑣𝑖)|𝑋𝑗(𝑣𝑗)). More formally, given a known quality profile 𝑑, a good signature 𝑠𝑑 is one with204

• The highest sensitivity 𝑃 (𝑠𝑑|𝑑), which is the probability of observing 𝑠𝑑 knowing that 𝑑 is true (true positive).205

• The lowest fall-out 𝑃 (𝑠𝑑|¬𝑑), which is the probability that 𝑠𝑑 is observed knowing 𝑑 is false (false positive).206

The tolerance for both values depends on the expectations experts have of the diagnostic tool. For example, a207

sensitivity of 0.5 may not be high enough, as it means its associated quality profile, when true, would be detected on208

average once out of two times. On the other hand, a low fallout guarantees the absence of false alarms: a fallout of 0.5209

might be too high, as the signature would be observed once out of two times, even if the quality profile is not true.210
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Figure 3: Clustermap of probabilities for the reduced example. Each case (𝑖; 𝑗) (row 𝑖, column 𝑗) indicates the probability
P(𝑗|𝑖), 𝑖.𝑒. the probability of the observed defect 𝑗 when defect 𝑖 is known. Probabilities between two identical
observations are not indicated, since their value is 1 by definition. Behaviour clusters define 𝐶1 and 𝐶2. Accuracy clusters
define 𝐶𝐴, 𝐶𝐵, 𝐶𝐶 and 𝐶𝐷.

However, Quality Profile 𝑑 is a hidden variable: its probability cannot be computed directly and must be211

approximated to estimate sensitivities and fallout. If 𝑑 is true and 𝑠𝑑 is its signature (which has been identified by212

Behaviour clusters), then the observations 𝑜 ∈ {𝑜1,… 𝑜𝑚} that are true in 𝑠𝑑 must be observed. Given an observation213

𝑜, we approximate 𝑃 (𝑜|𝑑) as214

𝑃 (𝑜|𝑠𝑑) =
1

|𝑠𝑑∕𝑜|
∑

𝑜𝑗∈𝑠𝑑∕𝑜
𝑃 (𝑜|𝑜𝑗) (1)

Note that this approximation does not take into account the probability of the signature occurring, nor the possible215

interactions between the observations. The aim of this calculation is only to highlight whether 𝑜 has a high (or low)216

average probability of occurring along 𝑠𝑑’s observations.217

Example 2.5. Tab.2 shows for each accuracy cluster the average probability of its observations with respect to 𝑠𝖶𝖦218

and 𝑠𝖲𝖦. For example, 𝑃 (Stickiness(E)|𝐶2) is the average between 0.09, 0.22 and 0.06. Since 𝐶𝐴 has high sensitivities219

and low fallout for 𝑠𝖶𝖦 (0.91 versus 0.12 for Stickiness(E), 0.25 versus 0.03 for Slackening(E)), and 𝐶1 = 𝐶𝐴, we220

keep 𝑠𝖶𝖦 = 𝐶1 ={Stickiness(E), Slackening(E)}.221

On the other hand, the observations of 𝐶2 are split between 𝐶𝐵 , 𝐶𝐶 and 𝐶𝐷. Both 𝐶𝐶 and 𝐶𝐷 have a low sensitivity222

(0.29 and 0.03), and 𝐶𝐵 has a much too high fallout (0.42). The definition 𝑠𝖲𝖦 = 𝐶2 ∩ (𝐶𝐶 ∪ 𝐶𝐷) means that the223

diagnosis would be hard to get (since the highest sensitivity is 0.29), but could be trusted (since the highest fallout is224

0. 02); 𝑠𝖲𝖦 = 𝐶2 ∩ (𝐶𝐵 ∪ 𝐶𝐶 ∪ 𝐶𝐷), on the other hand, guarantees a better detection of the associated quality profile225
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Accuracy Defect 𝑠𝖶𝖦 = 𝐶1 𝑠𝖲𝖦 = 𝐶2

𝐶𝐴
Stickiness(E) 0.91 0.12
Slackening(E) 0.25 0.03

𝐶𝐵 Extensibility(I) 0.42 0.92
𝐶𝐶 Elasticity(E) 0.02 0.29
𝐶𝐷 Consistency(E) 0.01 0.03

Table 2
Average probability of each defect to appear along 𝑠𝖶𝖦 and 𝑠𝖲𝖦 (maximum likelihood).

Figure 4: Overview of the historical sensory data analysis that allows signatures to be linked to quality profiles. Behaviour
clusters are used to identify patterns describing potential signatures; accuracy clusters trim the potential signatures to keep
only observations with high sensitivity and low fallout for their assigned quality profile.

(since Extensibility(I) has a sensitivity of 0.92, making it certain to be observed if 𝑑 = 𝑆𝐺), but with a higher risk of226

error if only Extensibility(I) is observed.227

2.4. Conclusion228

In conclusion, this approach aims at proposing a new way to look at sensory data, and a method to actually determine229

the components of a diagnostic model, summarised in Fig.4.230

• Behaviour clusters highlight groups of KNOWN defects which have a similar impact on the other OBSERVED231

defects conditional probabilities. Associated with quality profiles, they represent potential signatures for232

diagnosis.233

• Accuracy clusters make it possible to visualise the sensitivity (the odd of detecting a given profile) and the fallout234

(the odd of false detections) of OBSERVED defects when a KNOWN defects is fixed. They give an indication of235

the diagnostic performance of the signature. To be noted however, the signature composition itself is a matter236

of choice, one could choose to increase the sensitivity or, on the contrary, to keep low fallout to reduce false237

positive.238

Example 2.6. Signature truncation can occur for a number of reasons. In the example Tab.2, Consistency(E) is a very239

rare observation, but it is slightly more likely to be associated with a 𝖲𝖦 quality profile. For this reason it could be240

included in the 𝑠𝖲𝖦 signature, while keeping in mind that the absence of Consistency(E) for a dough does not exclude241

a strong gluten quality profile.242

Finally, it is important to note that signatures only reflect how close a food is to a quality profile: the more243

observations it shares with a signature, the more confident the diagnosis is. Confidence can be expressed in different244

ways: the next section presents an application with an ad hoc score that illustrates how much a bread sample expresses245

(or does not express) a quality profile.246
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3. Application to the Bread Making Test247

In this section, an application is developed to show how observation clustering was used to determine signatures248

for new quality profiles. It is composed of several steps:249

1. Experts define the expected quality profiles (in this application, slackening and resistant) they use to qualify250

wheat quality.251

2. From a database of sensory observation, a matrix of conditional probabilities is computed to reflect the defects252

relations. A clustering in row and column is then applied to obtain the Behaviour and Accuracy clusters.253

3. Signatures are built from the clustering to reflect the two quality profiles expected by experts. From these254

signatures a score is derived to compute the closeness of a given sample and the two behaviours.255

4. From the two scores derived from signatures seven new quality profiles are designed using expert’s inputs. These256

profiles illustrate the existing diversity of dough’s behaviours.257

The seven new quality profiles are then evaluated by comparing their correlation with technological measures.258

3.1. Database Description259

The database used in this work has been developed to store the measurements commonly used for wheat quality.260

It consists of two parts:261

1. Breadmaking test results. This test, described in AFNOR standard NF-V03-716, is widely used in the French262

context to assess the baking value of common wheat. The dataset contains the results for 11184 batches of263

wheat collected over the period 2002-2022 by ARVALIS, the French applied agricultural research organization264

dedicated to arable crops. The size and time range guarantee a good representation of the different quality profiles265

likely to be encountered during the breadmaking test.266

2. Technological measurements. In addition to the baking tests, the assessment of wheat quality is also based on267

technological measurements carried out on wheat (Hajšelová and Alldrick, 2003). For 10897 wheat samples the268

measurements are non-systematic and changing, for the 287 wheat lots measured during the period 2021-2022269

the measurements are exhaustive and complete. In contrast to the baking test, the technological measurements270

were not performed systematically over the twenty years. The technological data will be used to validate the271

method.272

The remainder of this section presents in more detail (1) the characteristics of the bread-making test and (2) the273

four technical measures selected: protein content, gluten index and two measures from Chopin’s alveograph, Ie and W.274

3.1.1. Bread Making Test275

The French Bread Baking Test describes the different operation units of bread making and the associated sensory276

measurements used to characterise the process and bread quality. It includes a rating scale with a maximum of seven277

values (from Insufficiency to Excess, 1 ≺ 4 ≺ 7 ≺ 10 ≺ 7 ≺ 4 ≺ 1), with the reference value for a standard French278

bread making process as the central value equal to 10. By definition, a defect is characterized by a rating <10. Some279

attributes have only one type of defect and are then rated on a four-point scale, e.g. stickiness can only be excessive,280

never insufficient. The test assesses the main unit operations of the breadmaking process, from kneading to baked bread281

(including crumb and crust evaluation). In this article we focus only on the diagnostic of the dough which involves the282

following operation units:283

• Kneading (K). After the mixing of the ingredients of common french bread, six attributes are measured (such284

as the dough smoothing, the stickiness, ...).285

• First Rising (FR). The dough is left to rise a first time. Only one attribute (the slackening) is measured.286

• Dividing (D). Once the dough has risen, dough pieces are formed to shape the future breads. Four attributes287

(lengthening, tearing,...) are measured.288

• Second Rising (SR). Dough pieces are left to rise a second time. Two attributes (rising level, tearing) are289

measured.290

• Baking (B). Dough pieces are baked. Before being put in the oven, two attributes are measured (stickiness and291

free standing).292
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𝐶𝐴 𝐶𝐵 𝐶𝐶 𝐶𝐷 𝐶𝐸
𝑠𝖲𝖯 = 𝐶1 0.04 (±0.01) 0.10 (±0.02) 0.45 (±0.05) 0.60 (±0.02) 0.29 (±0.03)
𝑠𝖱𝖯 = 𝐶2 0.43 (±0.13) 0.08 (±0.04) 0.64 (±0.11) 0.06 (±0.02) 0.02 (±0.01)

𝐶3 0.18 (±0.07) 0.05 (±0.03) 0.52 (±0.19) 0.22 (±0.02) 0.07 (±0.02)

Table 3
Average probability for each intersection of behaviours and accuracy clusters (95% confidence interval computed over the
set of all probabilities included in the intersection). Bolded values represent the maximum likelihood.

• Bread analysis (Ba). While not directly about dough, experts have underlined that dough’s behaviour and the293

size of the bread’s section lengthwise (after being cut) could be strongly linked. That is why this attribute is also294

added in the study.295

The results are presented in a specific evaluation grid from which three scores are calculated as a weighted sum296

on a scale from 0 to 100, one for the dough (denoted dough grade), one for the bread aspect and one for the crumb.297

The sum of the three scores gives the overall score of the baking test, widely used in the wheat production sector298

to distinguish between gold standard and defective quality products. A maximum value (300) is reached when all299

the attributes score 10. As such, the global score is a relevant and widely used indicator of the distance between a300

given dough characteristic and gold standard quality. However, it does not provide any information about the defective301

properties. Indeed, insufficiencies or excesses are penalised in roughly the same way. To trace back the defects at the302

origins of a low score, it is necessary to look at the sensory observations reported in the grid. Diagnosing the physical303

state at the origin of the defects requires specific knowledge of the baking test and the physical behaviour of the dough.304

3.1.2. Technological measurements305

The protein content is a widely accepted criterion used worldwide for wheat quality. Roughly speaking, the protein306

content is a proxy for the insoluble protein content, which is directly related to the ability to form the gluten network307

of the dough. In the database, protein content is measured using a near-infrared spectrometer (standard method NF EN308

15948).309

The Gluten Index is a measure of the strength of the gluten network. It is determined by weighing the remaining310

quantity of gluten from a dough after washing, using the Perten Glutomatic (NF EN ISO 21415-2).311

The Chopin alveograph method (NF EN ISO 27971) is a wheat flour characterisation method based on dough312

rheology (Dubois, Dubat and Launay, 2008) to provide information on dough extensibility and elasticity. This study313

focuses on two measurements: W, widely used for flour evaluation worldwide (Dobraszczyk, 2004), and Ie, a good314

predictor of dough behaviour according to domain experts and highly correlated with a critical rheological property315

(Strain Hardening Index) (Jødal and Larsen, 2021).316

3.2. Quality Profiles Signatures Determination317

In addition to the gold standard quality profile (no defect), two consensual quality profiles for French bread making318

were elicited from four domain experts. Based on their explanations, they can be defined as follows:319

(a) Slackening Profile 𝖲𝖯 describes a dough that is too sticky, lacks consistency and elasticity and tends to flow.320

This quality profile is associated with a weak gluten network.321

(b) Resistant Profile 𝖱𝖯 describes a strong dough able to resist intensive mechanical action. For French bread322

making, it is difficult to handle as it retracts too much. In particular, it presents an insufficient lengthening. This323

quality profile is associated with a excessively elastic gluten network.324

Similar to the example developed in section.2, the focus is on defects, namely when the attribute value is either325

Excess or Insufficiency. Given the quality profiles descriptions, the clustering is shown in Fig.5 for all the selected326

breadmaking steps. The clusters 𝐶1 and 𝐶2 are easily assigned to the quality profiles from the definitions provided by327

the experts as follows: 𝑠𝖲𝖯 = 𝐶1 and 𝑠𝖱𝖯 = 𝐶2. In addition, the cluster map shows a third cluster 𝐶3 which, according328

to the experts, does not correspond to any known defect profile nor typical dough behaviour.329

From the results shown in Fig.5, sensitivities are calculated using Eq.1 and shown in Tab.3. It shows that 𝐶𝐷 ∪𝐶𝐸330

has the best sensitivities (0.60 and 0.29) and fall-out (0.06 and 0.02) for 𝑠𝖲𝖯. Since (𝐶𝐷 ∪ 𝐶𝐸) ⊂ 𝐶1, this gives331

𝑠𝖲𝖯 = 𝐶𝐷 ∪ 𝐶𝐸 . The remaining observations from 𝐶1, SR.Dough Tearing(E) and K.Smoothing(E), both in 𝐶𝐵 , are332

Munch M., Baudrit C., Chiron H., Saulnier L., Méléard B., Kansou K.: Preprint submitted to Elsevier Page 9 of 16



Diagnosis Based on Sensory Data

Figure 5: Clustering over the probabilities P(𝑋𝑗|𝑋𝑖), given two defects 𝑋𝑖 (row) and 𝑋𝑗 (column). Comparisons between
identical or opposite defect are marked by a (.), comparisons never observed in the database are marked by a (o).

rare events with low probability of occurrence and can be left out of 𝑆𝖲𝖯. Similarly, only 𝐶𝐴 has a significant sensitivity333

(0.43) and fallout (0.04 and 0.18) for 𝑠𝖱𝖯. The only observation not in 𝐶𝐴 ∩ 𝐶2, K.Consistency(E), is also too rare an334

event to be informative. The signature of 𝖱𝖯 is thus defined as 𝑠𝖱𝖯 = 𝐶2 ∩ 𝐶𝐴.335

The remaining observations of 𝐶3 are either in 𝐶𝐵 or 𝐶𝐶 , two clusters whose average probabilities are not336

significantly different in 𝑆𝖲𝖯, 𝑆𝖱𝖯 or 𝐶3. In a first approach, 𝐶3 is thus not a signature of a particular quality profile, but337

rather a group of observations that are not typical for a quality profile, either because they never happen (𝐶𝐵) or because338

they happen too often (𝐶𝐶 ). However, 𝐶𝐶 has a high confidence interval (around 0.1) compared to the other clusters.339

Looking at each individual observation of𝐶𝐶 , it appears that K.Extensibility(I) has an average probability significantly340

higher for 𝑠𝖱𝖯 (0.75±0.17) than for 𝑠𝖲𝖯 (0.4±0.07). This could be due to distinct evaluation practices, as already noted341

for this assay in a previous paper (Kansou et al., 2014). Since Tab.3 shows that 𝑠𝖱𝖯 has a low average sensitivity (0.43),342

including K.Extensibility(I) to 𝑠𝖱𝖯 improves the detection level of 𝖱𝖯; while the risk of false positives mirrored by the343

high fall out for 𝑠𝖲𝖯 is compensated by the relatively high number of observations that composes 𝑆𝖲𝖯 (15 observations).344

A signature-based scoring method is presented in the next section to validate how signatures are mapped to quality345

profiles.346
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Figure 6: Distribution of Bread Making Test observations between Slackening Profile 𝖲𝖯 and Resistant Profile 𝖱𝖯, and an
example of score calculation. The size of the patches (weight) indicates the relative importance of the intensity of a defect
in the evaluation of a score. Less weight was given to 7, as experts often perceive this grade as not too problematic: when
asked, they tend to classify as gold standard quality a sample with no 1 or 4 but several 7s.

3.3. Computing Quality Profiles Scores347

In total three quality profiles have been identified so far for wheat dough from the baking test dataset: the slackening,348

the resistant and the gold-standard (no defect) profiles. However the three profiles are rather extreme. In practice the349

sensory evaluation of an actual wheat dough is somewhere in-between the three profiles signatures, and samples could350

display observations belonging to distinct signatures. For example, a dough might behave mostly like gold-standard351

with only some slackening traits. In addition, the severity of the defect is expressed by the seven-level rating scale of352

the evaluation grid; an example of dough evaluation using the baking test grid is provided in Fig.6 for illustration. This353

is also important information to include in a diagnostic model applied to the baking test.354

To account for these two aspects, three scores are computed to quantify the distance between a sensory evaluation355

and the three signatures. The score associated to the gold standard signature (all criteria are rated 10, no defect is356

observed) is simply the dough grade obtained from the application of the baking test procedure. It is roughly a weighted357

sum giving a score between 0 and 100, which measures the growing similarity between the sensory observations and358

the gold standard. The dough grade involves all the attributes of the evaluation grid. each sensory observation affects359

more or less the dough grade depending on the seriousness of the defects, e.g. a sticky dough is strongly penalized.360

Two similar scores are developed to quantify the similarity between an evaluation and 𝑠𝖲𝖯 and 𝑠𝖱𝖯. As shown361

in Fig.6, each signatures observation are assigned the following value which reflects the "severity" of the defect:362

0 no defect, 0.2 mild, 0.8 strong, 1 extreme. This corresponds to the rating scale, where 10 indicates no defect,363

7 mild, 4 strong and 1 extreme. The final score for 𝑠𝖲𝖯 (resp. 𝑠𝖱𝖯) is the mean of the values assigned to all the364

observations of the signature. Hence 0 indicates total dissimilarity and 1 observations that certainly corresponds to365

the quality profile signature. A score of 0.5 indicates that about half of the observations matches the quality profile366

signature. In the example provided in Fig.6, the wheat produces a dough with strong defects such as D.Lengthening(E),367

D.Elasticity(E), D.Stickiness(E), associated to the Slackening profile, resulting in a score of 0.72 for 𝑠𝖲𝖯. The score of368

0.16 for 𝑠𝖱𝖯 is due to the defect K.Extensibility(I). However, as noted previously this defect is prone to false positives.369

To obtain a more progressive qualification of the wheat in-between the three extreme profiles, four intermediary370

quality profiles are defined, giving a total of seven quality profiles. These were defined using expert inputs to reflect371

the transition between the different extreme behaviours, so that each one is an unique combination of slackening and372

resistant scores with respect to the dough grade. Fig. 7 shows this distribution among the quality profiles:373
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Figure 7: Box plots of the distribution of slackening and resistant scores and dough grade across the quality profiles. Quality
profiles (Slackening, Sl.-ND, ...) are defined using experts inputs. Each is defined by an average slackening score, dough
grade and resistant score. For instance, the Slackening profile is characterized by a mean slackening score of 0.6, a mean
dough grade of 25 and a mean resistant score of 0. (11184 samples)

• Slackening (Sl.) and Resistant (Re.) profiles obtains respectively the highest slackening and resistant average374

scores (0.6 and 0.4) for the lowest average dough grades (respectively 25 and 60). The difference between the low375

dough grade value for slackening is due to the higher penalties for the observations of the slackening signature.376

• Slackening-No Defect (Sl.-ND) and Resistant-No Defect (Re.-Sl.) obtains lower average slackening and377

resistant scores (0.35 and 0.38), for higher average dough grades (55 and 78). Compared to the slackening and378

resistant profiles this indicates that certain defects are less severe or missing, hence the higher dough grade.379

• No Defect-Slackening (ND-Sl.) and No Defect-Resistant (ND-Re.) have an average low score (0.1 and 0.18)380

and high average dough grades (75 and 80). They still show a tendency towards 𝖲𝖯 or 𝖱𝖯, but the severity is less381

pronounced.382

• No Defect (ND) is the gold-standard quality profile. It has the highest possible average dough grade (90). Some383

observations from 𝑠𝖲𝖯 or 𝑠𝖱𝖯 may be observed, but never with a high severity (e.g. no rating equal to 1 in the384

evaluation grid).385

3.4. Quality Profiles Evaluation386

Fig.8 shows a detail of the average value of the evaluation grid attributes across the seven quality profiles387

defined above. This first result highlights the accuracy of some attributes over others. For example, D.Lengthening388

is significantly better associated with the quality profiles than K.Extensibility: this shows that, within the database,389

D.Lengthening is the most informative attributes of the evaluation grid. This analysis also shows that the seven quality390

profiles depict a progressive and consistent evolution of several dough properties (stickiness, elasticity, lengthening free391

standing, section) which demonstrates the consistency of the profiles definition and assignment to the wheat lots.392

Fig.9 shows the distribution of values for the four selected technical attributes across the seven quality profiles. The393

figure shows that the lowest mean values of Gluten Index are associated with quality profiles with slackening tendencies.394

Similarly, both Ie and W mean values have a tendency to increase along with the dough’s resistant behaviour: the more395

resistant the dough is, the higher the mean values are.396

According to Migliorini et al. (Migliorini, Spagnolo, Torri, Arnoulet, Lazzerini and Ceccarelli, 2016), a Gluten397

Index between 65 and 80 reflects an optimal gluten network condition. This range corresponds mainly to the ND-Sl.398

quality profile in Fig.9, which is slightly lower than the average value for the No Defect quality profile, which is above399

80. Furthermore, prior research has demonstrated a positive correlation between the Gluten Index and Ie (Baudouin,400
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Figure 8: Distribution of mean attributes across quality profiles. Shaded areas represent 95% confidence intervals. The
percentage in the legend indicates the percentage of profiles observed in the dataset (11184 samples).

Figure 9: Distribution of values the four technical attributes for each profile. Number of samples: Proteins Content (10566),
Gluten Index (3733), Ie (1452), W (10395).

2012). Additionally, W has been validated as an indicator of gluten strength, as it correlates with both the quantity401

and quality of gluten present in the dough (Jødal and Larsen, 2021). Finally, Fig.9 shows that, apart from the Re.ND402

and Resistant quality profiles, the protein content is on average the same for all profiles. However, the protein content403

gives an indirect indication of the quantity of insoluble proteins involved in the gluten network and, unlike the other404

measurements, does not give an indication of the quality of the gluten network, which can vary considerably for the405

same protein content value.406

The quality profiles, which represent a gradation of the expert’s assessment of the strength of the gluten network,407

correspond to the technical measures of the dough: slackening quality profiles are associated with weak gluten quality408

(low gluten index, low Ie and low W) and resistant quality profiles with strong gluten quality (high proteins content,409

high gluten index, high Ie and high W). In conclusion, this validates the signatures for identifying quality profiles and410

opens up new ways of defining the quality of a wheat.411

4. Conclusion412

This article’s main contributions are summarised in Fig.10.413
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Figure 10: Article contributions. Methodological Contribution includes the clustering of conditional probabilities
approach presented in Sec.2. Conditional Probability tables are presented in Sec.2.2; clustermap in Sec.2.3. Domain
Contribution includes the application to the wheat quality evaluation presented in Sec.3. Database is presented in
Sec.3.1; clustermap applied to the domain in Sec.3.2; grading grid in Sec.3.3; new quality profiles in Sec.3.4.

In this paper, we present a methodological framework for capturing and modelling relationships between sensory414

evaluations of food products and their interpretations in term of product physical states, called quality profiles. Based on415

the clustering of conditional probabilities table, the method can reveal implicit expert practices reflected by the sensory416

data and support the identification of the relationships between the sensory observations and quality profiles, specific417

to the context. In particular, in contrast to a more classical clustering method, this method compute the accuracy of the418

defects, i.e. the amount of information they convey. It also distinguishes rare from very frequent observed defects. For419

stakeholders in the food industry, this methodological contribution offers several key benefits:420

• Clarification of the context of a sensory dataset by highlighting expert practices;421

• Integration of the tacit knowledge of the experts about the physical interpretation of the sensory observations;422

• Establishment of quality profiles that can be correlated with analyticalor technological measurements;423

• Evaluation of the effectiveness of sensory testing in identifying quality profiles.424

In the case of wheat grain quality grading, the domain contribution is useful for425

• Formulating new quality profiles based on expert knowledge of dough behaviour;426

• Linking these quality profiles to established analytical/technological measurements, which validates our hypoth-427

esis;428

• Computing new features for wheat grading that can be used to feed machine learning models.429

A limit of this approach is is that it depends on the representativeness of the dataset and on the clustering method430

chosen. Different sources of sensory data or clustering algorithms will affect the quality profiles signatures. Moreover,431

an untracked change in the context of the sensory evaluation (e.g. a change in the sensory evaluation process, or the432

introduction of a new evaluator) can hinder the clusters identification. Finally, this approach relies on expert knowledge433

to identify quality profiles. If a quality profile is not described in advance, then it cannot be used to analyse the clusters.434

Thus, this work presents a new method for exploiting sensory data through the identification of food quality profiles.435

In particular, the good correlations between wheat flour quality profiles and technological measurements describing436

the wheat dough behaviour obtained for the real case application of the method open up interesting perspectives for437

development of a predictive machine learning model.438
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