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Exploring protein interactome data with

IPinquiry: statistical analysis and data

visualization by spectral counts

Lauriane Kuhn, Timothée Vincent, Philippe Hammann and Hélène Zuber

Abstract

Immunoprecipitation mass spectrometry (IP-MS) is a popular method for the identi-

fication of protein-protein interactions. This approach is particularly powerful when

information is collected without a priori knowledge and has been successively used

as a first key step for the elucidation of many complex protein networks. IP-MS con-

sists in the affinity purification of a protein of interest and of its interacting proteins

followed by protein identification and quantification by mass spectrometry analysis.
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We developed an R package, named IPinquiry, dedicated to IP-MS analysis and

based on the spectral count quantification method. The main purpose of this pack-

age is to provide a simple R pipeline with a limited number of processing steps to

facilitate data exploration for biologists. This package allows to perform differential

analysis of protein accumulation between two groups of IP experiments, to retrieve

protein annotations, to export results and to create different types of graphics. Here

we describe the step-by-step procedure for an interactome analysis using IPinquiry

from data loading to result export and plot production.

Key words Immunoprecipitation, Mass spectrometry, Data processing, Dif-

ferential analysis, Volcano plots, Spectral counts, R package

1 Introduction

Affinity purificationmass spectrometry (AP-MS) or immunoprecipitationmass spec-

trometry (IP-MS) is a popular without a priori method for the identification of

protein-protein interactions that has been successfully used for resolving numer-

ous complex protein networks [1–3]. IP-MS is a first key step of the experimental

workflow for protein partner identification and usually precedes validation using

alternatives approaches. IP-MS starts with the affinity purification of the protein of

interest, referred to as the bait protein, and of its interacting proteins by using a

resin coupled to an antibody recognizing either the bait itself or an epitope tag ex-

pressed fused to the bait. The eluted protein mixture is then subjected to proteolytic

digestion and identified by MS analysis (see Figure 1). The latter classically involves

peptide separation by reverse-phase liquid chromatography combined with tandem

mass spectrometry (LC-MS/MS). Experimental design of IP-MS approaches differs

according to biological questions and available biological material. In particular, the

use of appropriate controls is crucial as the eluted protein mixture contains bona fide
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protein partners but also various non-specific interactors, such as proteins binding

to the epitope tag or to the resin. A good control should enable assessing protein

backgrounds resulting from the various contamination sources and its choice should

not be neglected. Classically, when the aim is to analyze the protein interactome of

a protein of interest by using cells expressing a tagged bait protein, control IPs are

performed using wild-type cells, that do not express the tagged bait protein, and/or

using cells that express an unrelated tagged protein. Proteins found to be enriched

in bait compared to control IPs are then considered as potential protein partners.

Alternatively, when the question is to test the impact of a particular protein motif or

domain on the protein interactome, IPs using the wild-type version of the bait protein

are compared to the one using a mutated version. The potentially interesting proteins

correspond then to those depleted in mutant IPs. Finally, a frequent question is also

to test the impact of different conditions or treatments on the interactome of a protein

of interest. IPs performed from samples of different conditions are then compared

and both significantly enriched and depleted proteins are considered as potentially

interesting. In all cases, the data analysis consists in comparing the differential accu-

mulation of proteins between two groups of IPs. Two metrics can be used for protein

quantification: the spectral count, defined as the total number of spectra identified for

a protein, and the peptide abundance derived from MS1 peak area [4]. The second

strategy is now often preferred notably because of its higher performance for the

detection of low abundant proteins. Yet, the spectral count quantification method

still represents a popular fast and simple approach that demonstrates its efficiency in

IP-MS approaches to resolve protein interactomes.

Here we describe the analysis of IP-MS data based on spectra counts using the

IPinquiry R package. The main purpose of this package is to provide a simple R

pipeline with a limited number of processing steps to facilitate as much possible data
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exploration and plot creation for biologists. IPinquiry compiles several functions

to: i) identify proteins significantly enriched or depleted between two groups of IP

experiments, ii) retrieve annotations for detected proteins, iii) export result tables,

and iv) create different graph types, such as interactive volcanoplots that display

protein changes (fold changes) according to statistical significance (p-value). In or-

der to calculate p-values associated with protein accumulation changes, the package

uses the negative binomial generalized linear models, with or without quasi-likehood

tests, implemented in the EdgeR package [5, 6]. EdgeRGLMmodels were developed

for RNA-seq analysis to assess gene differential analysis between two conditions or

genotypes. RNA-seq and proteomic data share common features in a statistical point

of view: both types of data are discrete, are usually linked to high biological disper-

sion and to a reduced number biological replicates, often below 5. Because of these

common properties, the EdgeR GLM model was previously proposed for analyzing

MS-MS data [7] and was already successfully applied to explore protein interactome

based on IP-MS experiments [8–10]. We detailed hereafter the step-by-step proce-

dure for data analysis based on spectral counts using IPinquiry from data loading

to result export and plot production. The package includes example datasets from

[11] to help users apprehending IPinquiry utilization.

2 Material

2.1 Considerations for IP-MS approaches

1. Choosing a good antibody.

(a) When available, IP can be performed using an antibody against the protein

of interest. This is the ideal situation as protein-protein interactions can be

analysed at physiological level.
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Fig. 1 Schematic overview of main steps of IP-MS approaches

(b) When such an antibody is not available, the protein of interest fused to an

epitope tag needs to be of expressed in cells (see Note 1).

2. Choosing good controls for IPs, the objective being to remove as much as possible

contaminant proteins.

3. Optimizing affinity purification conditions (seeNote 2): optimization of the sam-

ple lysis, homogenization and grinding, choice of detergents and bead type, ad-

justment of wash and elution stringency, etc. The goal is to obtain an efficient and

reproducible purification with a good balance between the number of detected

proteins and the number of contaminants.
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4. Optimizing and standardizing the quantity of starting material for IP and MS.

Once optimized, the same number of cells or the same dry weight from plant has

to be used.

5. Selecting the number of biological replicates (see Note 3). This choice depends

on the expected variation and on the biological and technical variability. We

recommend analyzing at least three biological replicates (see Note 4). We also

encourage the analysis of different transgenic lines, when using cells expressing

the tagged bait protein.

6. Selecting the method for protease digestion. Gel-free trypsin digestion is widely

used and well suited in most cases as it allows to better control the reproducibility

of the process compared to gel-purified protein complexes.

7. Selecting ion source. Electrospray Ionization Source (ESI) is the most widely

used ion source.

8. Selecting mass analyzers. Sensitivity and high duty cycle of actual mass spec-

trometers allow to efficiently identify moderately complex mixtures, like in the

case of an AP-MS sample.

9. Selecting and optimizing LC-MS parameters. For protein quantification with LC-

MS, we favor long chromatographic gradients and a single injection under discov-

ery mode for each sample. Several methods of data acquisition are also available

such as data-dependent acquisition, targeted acquisition and data-independent

acquisition. Finally, a key parameter is the dynamic exclusion time that needs to

be optimized to obtain a good balance between the number of detected proteins

and the number of spectra obtained for each protein (see Note 5).

10. Selecting protein identificationmethod. It depends on theMS acquisition strategy.

Identification should be validated according to the actual guidelines (FDR<1%

on both spectral and protein level) and protein redundancy should be carefully

managed.
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11. Selecting the quantification method, i.e. spectral count or peptide abundance

derived from MS1 peak area. This chapter is dedicated to the analysis based on

spectral counts (see Note 6).

2.2 Requirements

IPinquiry is a package written in R [12]. If not already done, R needs to be

downloaded and installed. We also recommend the use of RStudio, which provides

a nice R user interface making life easier for R beginners. In addition, the following

R packages are needed (see Note 7).

1. for statistical analysis (required for package installation):EdgeR [5, 6],limma [13],

statmod [14]

2. for the creation of interative volcanoplots : plotly [15], htmlwidgets [16]

3. for the creation of interactive tables : DT [17], htmlwidgets [16]

4. for the creation of others graphs :ggplot [18],pheatmap [19],RColorBrewer [20]

5. for protein annotation: biomaRt [21, 22]

6. for saving result tables as excel files: xlsx [23]

2.3 Software installation

IPinquiry can be downloaded and installed from Github using devtools [24]. If

needed, install devtools and load the library:

install.packages("devtools")

library(devtools)

IPinquiry package can then be installed (see Note 8).
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install_github("https://github.com/hzuber67/IPinquiry4")

2.4 Data format

Input data consist in two files :

1. a Count table (text file with tab-separated values) that contains spectral counts

for all proteins detected in IPs. Each row corresponds to one protein detected in

IP and each column corresponds to one IP experiment (see Figure 2).

accession Mut_L0_1 Mut_L0_2 Mut_L3_1 Mut_L3_2
URT1_L12_
1_2019

URT1_L12_
2_2019

URT1_L17_
1_2019

URT1_L17_
2_2019

1 AT1G01080.2 0 0 1 1 0 1 1 1
2 AT1G01090.1 1 2 2 2 1 2 1 2
3 AT1G01100.1 0 1 0 1 0 2 0 0
4 AT1G01300.1 11 11 10 9 8 10 9 14
5 AT1G01320.1 1 1 1 0 2 1 0 1

Fig. 2 Screenshot of the count table for the first dataset (top part)

2. a Sample table (text file with tab-separated values) that gives information about

samples. First column indicates the IP names, second column the conditions and

finally the third column is optional and allows for indicating potential batch effect,

related to different experiment times for example (see Figure 3) (see Note 9).

IP_names sample
1 Mut_L0_1 M1
2 Mut_L0_2 M1
3 Mut_L3_1 M1
4 Mut_L3_2 M1
5 URT1_L12_1_2019 urt1
6 URT1_L12_2_2019 urt1
7 URT1_L17_1_2019 urt1
8 URT1_L17_2_2019 urt1

IP_names sample batch
1 F016864_2014_S17_control_C1 control one
2 F016865_2014_S17_control_C2 control one
3 F016867_2014_S17_URT1_H1 urt1 one
4 F016878_2014_S25_control_C5 control one
5 F016880_2014_S25_URT1_H5 urt1 one
6 F016882_2015_S12_CTRL_1 control two
7 F016883_2015_S12_CTRL_2 control two
8 F016884_2015_S12_CTRL_3 control two
9 F016886_2015_S12_URT1_myc2 urt1 two
10 F016887_2015_S12_URT1_myc3 urt1 two

Fig. 3 Screenshots of sample tables for the first (on the left) and the second (on the right) datasets
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2.5 Example dataset

Two example datasets corresponding to IP experiments in Arabidopsis [11] (see

Note 10) are included in the package.

1. The first dataset contains results for two groups of IPs performed from plants

expressing a wild-type version of the URT1 TUTase fused to an epitope tag,

named URT1-myc, or a mutated version, named m1URT1-myc. Each group is

composed of four replicates. The goal was to test the impact of the M1 motif of

URT1 on its interactome in planta (see Note 11). Directories for the example

and sample tables are:

> CountTable1 <- system.file("extdata", "CountTable1.txt",

package = "IPinquiry4")

> SampleTable1 <- system.file("extdata", "SampleTable1.txt",

package = "IPinquiry4")

Top part of the count table can be vizualized as follow (see Figure 2):

> Count_tb1 <- read.table(CountTable1, sep="\t", header=TRUE)

> head(Count_tb1)

Sample table can be vizualized as follow (see Figure 3):

> Sample_tb1 <- read.table(SampleTable1, sep="\t", header=TRUE)

> print(Sample_tb1)

Conditions in the sample table are named "urt1" and "M1" for URT1-myc or

m1URT1-myc IPs, respectively.

2. The second dataset contains results for four replicates of IPs performed from

plants expressing the wild-type version of URT1 fused to an epitope tag. Control
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IPs were performed in parallel using wild-type plants that do not express the

tagged URT1 with six biological replicates. The goal here was to identify protein

partners of the URT1 TUTase in planta. IP experiments were performed for two

different tissues at two different times inducing a batch effect that will be latter

taken into account in the statistical model. Directories for the example count and

sample tables are:

> CountTable2 <- system.file("extdata", "CountTable2.txt",

package = "IPinquiry4")

> SampleTable2 <- system.file("extdata", "SampleTable2.txt",

package = "IPinquiry4")

Top part of the count table can be vizualized as follow:

> Count_tb2 <- read.table(CountTable2, sep="\t", header=TRUE)

> head(Count_tb2)

Sample table can be vizualized as follow (see Figure 3):

> Sample_tb2 <- read.table(SampleTable2, sep="\t", header=TRUE)

> print(Sample_tb2)

Conditions in the sample table are named "urt1" and "control" for bait and control

IPs, respectively. The sample table contains a third column indicating a batch

effect.

2.6 Data loading

1. To load IPinquiry library in your R environment, enter in the R console:

> library(IPinquiry4)
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2. IP data can then be loaded using load_IP_data function (see Note 12). Here,

the two example datasets are successively loaded by indicating their directories

as defined above (see Subheading 2.5).

> # Load dataset1

> IP_data1 <- load_IP_Data(CountTable1, SampleTable1)

> # Load dataset2

> IP_data2 <- load_IP_Data(CountTable2, SampleTable2)

3. Arguments taken by the function are the directories for count and sample tables.

When analyzing your own data, simply indicate their directories on your computer.

For example :

> my_IP_data <- load_IP_Data("/Users/me/Documents/my_count_table.txt",

"/Users/me/Documents/my_sample_table.txt")

3 Methods

3.1 Visualization of the overall variability between samples

Multidimensional scaling (MDS) plots can be used to visualize distances or dissim-

ilarities between the different IP experiments. Here, the Euclidean distance is used

to perform the MDS.

1. MDS can be plotted based on raw data (norm="nothing", by default) or on

normalized data either based on the total number of counts (norm="total") or on

the median-to-ratios method as used in DESeq2 R package [25] (norm="DEseq")

(see Note 13).

MDS without prior normalization can be obtained as follow (see Figure 4):

# MDS for the first dataset
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> MDSplot(IP_data1)
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Fig. 4 MDS plot for the first dataset with all or with URT1-myc IPs

2. Functions subset{\_}IPObj{\_}treat and subset{\_}IPObj{\_}batch

can also be used to subset the dataset prior to plot the MDS. subset_IPObj_treat

allows the selection of specific treatments/conditions. subset_IPObj_batch allows

the selection of specific batches.

Here we plot the MDS for the treatment “urt1” (see Figure 4):

# MDS for the first dataset for the treatment “urt1”

IP_urt1 <- subset_IPObj_treat(IP_data2, "urt1")

MDSplot(IP_urt1)

3.2 Statistical analysis for differential analysis

The statistical analysis is based on the GLM model developed by the EdgeR pack-

age [5, 6]. This model was previously proposed to analyze MS data based on spectral

counts in the msmsTests package [7]. A refined description of these statistical
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models are provided in Chapter XXX. By default, IPinquiry package uses the Ge-

newise Negative Binomial Generalized Linear Model with Quasi-likelihood Tests

implemented in EdgeR (see Note 14).

1. Statistical comparison needs to be performed for each pairwise comparison. For

the first dataset, we have two treatments, "urt1" and "M1", and :

(a) Low abundance protein are filtered out before the calculation of the disper-

sion. Here, only proteins with a total sum of counts above 10 are used. This

correspond to the 50% most abundant proteins (min.disp=10) (seeNote 15).

(b) The size correction factor (offset) is calculated using the median to ratio

method [25] (div="DEseq", (see Note 16)).

> test1 <- stat_test(IP_data1, "urt1", treatment = "M1",

div="DEseq", min.disp=10)

2. This function return a data frame with six columns: Protein ID as row.names,

LogFC, quasi-likelihood F-statistics, P-values as calculated by EdgeR, P-values

ajusted according to the Benjamini and Hochberg method and the protein rank

based on ajusted p-values.

3. In the case of the first dataset, we are interested in identifying proteins that are

significantly depleted when URT1 M1 motif is mutated. The list of proteins sig-

nificantly depleted in m1URT1-myc compared URT1-myc IPs can be visualized

as follows (see Figure 5):

> print(subset(test1, test1$adjp<0.05&test1$LogFC<0))

4. A batch effect can be taken into account into the statistical model by adding

batch="TRUE" (seeNote 17). If so, a third column has to be added in the sample

table to indicate the batch of each IPs (see Subheading 2.4). For the second dataset,

we take into account the batch effect as two sets of experiments were performed.
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LogFC F p.value adjp number

AT1G26110.1 -2.6756838 126.78115 9.505361e-19 1.559830e-15 1

AT5G45330.1 -6.0490263 75.81482 2.016451e-11 1.102999e-08 3

AT2G45810.1 -1.2679256 50.79735 1.550362e-08 6.360360e-06 4

AT4G00660.2 -1.0963299 41.08400 3.488022e-07 1.144769e-04 5

AT3G13300.1 -0.9810462 35.63486 1.990222e-06 4.665648e-04 7

AT3G61240.1 -1.0198458 33.62240 4.228655e-06 8.674029e-04 8

AT4G20360.1 -0.8466879 31.30745 7.568390e-06 1.379970e-03 9

AT1G27090.1 -2.1257515 30.70430 2.544579e-05 4.175654e-03 10

AT1G48410.2 -1.7462989 27.82227 6.489081e-05 9.680530e-03 11

AT3G58510.1 -0.8828883 24.12936 1.003564e-04 1.372373e-02 12

AT3G58570.1 -0.9571052 22.12210 2.273244e-04 2.664566e-02 14

AT2G42520.1 -0.9563024 20.29599 4.466130e-04 4.311129e-02 16

AT5G47010.1 -1.4477632 21.46352 4.218413e-04 4.311129e-02 17

AT4G38680.1 -1.0716476 20.39479 5.152760e-04 4.632652e-02 18

AT5G40490.1 -1.5120287 20.85829 5.363826e-04 4.632652e-02 19

Fig. 5 Data frame with statistical results for significantly depleted proteins

> test2 <- stat_test(IP_data2, "control", treatment = "urt1",

div="DEseq", batch=TRUE)

5. In the case of the second dataset, we are interested in identifying proteins that

are significantly enriched in URT1 IPs compared to control IPs. These proteins

will be considered as potential protein partners of URT1. The list of proteins

significantly enriched can be vizualized as follow:

> # Subset enriched proteins

> test2_enriched <- subset(test2, test2$adjp<0.05&test2$LogFC>0)

> # Print subtable

> print(test2_enriched)

6. By adding the argument glm="classic" , you can use instead the EdgeR function

based on the Genewise Negative Binomial Generalized Linear Models without

Quasi-likelihood Tests (see Note 18).

7. An additional low abundance filter can be added, e.g. filter=5 (see Note 19).

If a filter value is indicated, the output data frame includes a seventh column
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indicating if, "YES" or "NO", proteins meet this additional criterion. This filter

does not affect the statistics calculation.

3.3 Retrieve annotations for each protein

Functional annotations are retrieved using thebiomaRt package [21, 22].Annotation

are collected from the Ensembl database [26]. Active internet connection is necessary

to access the remote database and query it on-line.

1. Here, annotations from Arabidopsis thaliana are retrieved.

> annotated_table_At <- addBiomaRtAnnotation(test,

biomart="plants_mart", dataset="athaliana_eg_gene")

2. By default, the function searches for Ensembl peptide identifiers. This argument

needs to be adjusted according to the identifiers used in the row names of the

count table. It can be "ensembl_peptide_id", "ensembl_transcript_id",

"ensembl_gene_id" or "external_gene_name".

3. The new output data frame contains three additional columns: ensembl ID,

external gene name and description

4. Of course, this function can be used for all other species for which annotations

are available at Ensembl. biomart, dataset and host arguments need to be

adjusted according to the analyzed species.

(a) For listing available databases:

> library(biomaRt)

> listMarts()

> dataset_list <- listDatasets(useMart("ENSEMBL_MART_ENSEMBL"))

> print(dataset_list)
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(b) For example, for Drosophila melanogaster:

> annotated_table_Dm <- addBiomaRtAnnotation(droso_results,

biomart = "ENSEMBL_MART_ENSEMBL",

dataset = "dmelanogaster_gene_ensembl", host = "www.ensembl.org")

(c) Another example, for human:

> annotated_table_Hs <- addBiomaRtAnnotation(human_results,

biomart = "ensembl", dataset = "hsapiens_gene_ensembl",

host = "www.ensembl.org", features="external_gene_name")

3.4 Create and export an html table

IPinquiry package includes a function based on DT package [17] to create an

interactive table with results.

1. The following code creates an interactive table from the annotated_table_At

data frame that contains statistical results and protein annotations:

> # Interactive table for dataset 1

> createTable(annotated_table_At)

2. This table is interactive and can be used to sort and search proteins, select and

copy interesting rows, export results, etc.(see Figure 6)

3. This interactive table can also be saved as an html file.

> p <- createTable(annotated_table_At)

> htmlwidgets::saveWidget(p,"interactive_table_1.html",

selfcontained = TRUE)

4. You can also specify the directory where the file has to be saved (see Note 20):
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Fig. 6 Screenshot of the interactive table with statistical results and protein annotations. The
interative table allows data sorting, section and export.

> htmlwidgets::saveWidget(p,

"/Users/me/Documents/My_results/interactive_table_1.html",

selfcontained = TRUE)

3.5 Export result table as excel or text file

Alternatively, results table can also be saved:

1. As an excel file, using the xlsx package with the following command line:

> library(xlsx)

> write.xlsx(annotated_table_At, "IP_results.xlsx",

sheetName = "Statistics")

2. As a text file, using write.table R function:

> write.table(annotated_table_At, "IP_results.txt", sep="\t",

col.names=NA, quote=FALSE)
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3. As previously (see Subheading 3.4), you can specify the directory where the file

has to be saved for both functions. For example for write.table function:

> write.table(annotated_table_At,

"/Users/me/Documents/My_results/IP_results.txt",

sep="\t", col.names=NA, quote=FALSE)

3.6 Create interactive volcanoplot

1. The interactive volcanoplot created by IPinquiry is based on the Plotly R

package [15]. The volcanoplot shows the log2 fold change according to p-value

or to adjusted p-value.

Volcanoplot for the first dataset (see Figure 7):

> #Dataset 1 volcanoplot

> htmlPlot(annotated_table_At, sign="adjp")

For the second dataset, we are interested in the proteins that are enriched in URT1

IP when compared to control IP. The volcanoplot is drawn only for enriched

proteins, with LogFC>0 (see Figure 7).

Volcanoplot for the second dataset:

> #Dataset 2 volcanoplot for enriched proteins

> htmlPlot(subset(test2, test2$LogFC>0), sign="adjp")

2. By default, point labels correspond to row names of the input table accompanied

with the point coordinates. Custom texts can also be used instead using the

custom_text argument. For example, the R code below allows using the 30 first

letters of protein annotation found in the description column of the result table.

> # extract the 30 first letters of the description column
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Mutated vs wild-type URT1 IPs Wild-type URT1 vs control IPs

Fig. 7 Screenshots of interactive volcanoplots obtained for example datasets 1 and 2 shown on the
left and on the right, respectively. Text labels of points appear when the cursor is moved over them.

> my_test = paste(row.names(annotated_table_At) , "_",

substr(annotated_table_At$description,1,30))

> # add annotation as point label for the dataset 1 volcanoplot

> htmlPlot(annotated_table_At, custom_text=my_test)

3. By default, point colors are set according to the significance and dotted lines

are set both according to p-value and LogFC. P-value and LogFC cut-offs can

be ajusted using max.pval and min.LFC arguments. Defaut values are 0.05 and

1, respectively. Point colors can also be used to highlight specific proteins. For

example , the R code below is used to pinpoint three proteins linked to decapping

(see Note 21).

> # List of interesting proteins

> smallTrueList <- c("AT1G26110.1", "AT5G45330.1", "AT3G13300")

> # Create interactive plot

> htmlPlot(annotated_table_At, listGenes = smallTrueList,

custom_text=my_test)

4. There is also the possibility to set colors according to a supplemental column.

This column can contain additionnal information for example concerning gene
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ontology. IPinquiry package contains a text file with supplemental information

related to the first dataset. This file is composed of two columns, a first one with

protein identifiers and a second one with protein classifications based on their

molecular function.

(a) Directory for this information table is :

> Supplemental <- system.file("extdata", "Supplemental_information.txt",

package = "IPinquiry4")

(b) When analyzing your own data, simply indicate the directory on your computer

of the text table containing the information of interest. For example :

> Supplemental_me <- "/Users/me/Documents/Interesting_information.txt"

(c) The add_suppl_information function of IPinquiry can be used to com-

bine your result table with another table containing classification criteria. The

code below combines the result table for the first dataset with the information

table.

> # Add a supplemental column with criteria for color classification

> annotated_table_At2 <- add_suppl_information(annotated_table_At,

Supplemental)

> head(annotated_table_At2)

(d) This new column can then be used to set point colors.

> # Create the volcanoplot with colors according to this new column

> htmlPlot(annotated_table_At2,

colforcolor = annotated_table_At2$Classification)

5. The interactive volcanoplot can be directly saved under html format.

> p <- htmlPlot(annotated_table_At2,
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colforcolor = annotated_table_At2$Classification)

> htmlwidgets::saveWidget(p,"interactive_volcanoplot_plot.html",

selfcontained = TRUE)

3.7 Create ggplot2 based volcanoplot

1. IPinquiry also includes a function, named PDF_Plot, to create a volcanoplot

based on the ggplot2 package [18]. As previously, the volcanoplot shows the

log2 fold change according to p-value or to adjusted p-value. The advantage of

using ggplot2 is that the volcanoplot can then be saved as a vector image, using

pdf or eps format (see Note 22).

> # Volcanoplot for example dataset1

> PDF_Plot(annotated_table_At2)

> # Volcanoplot for example dataset2

> PDF_Plot(subset(test2, test2$LogFC>0), sign="adjp")

2. PDF_Plot function contains many arguments that can be adjusted (see Figure 8):

(a) Point colors and sizes.

(b) Axis limits.

(c) p-value andLogFCcut-offs.Bydefault,max.pval = 0.05 andmin.LFC = 1.

(d) Text labels and font size. Text labels are added only for proteins with a signif-

icant p-value.

(e) Text labels and cut-off red lines can also be removed.

> # Custom volcanoplot for example dataset 1

> graph1 <- PDF_Plot(annotated_table_At2, sign="p.value", max.pval = 0.05,

min.LFC = 1, line=TRUE, point_color= c("gray", "purple"), min_x=-6, max_x=6,

min_y=0, max_y=20, point_size=3, label=TRUE, label_size=2,
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custom_text=annotated_table_At2$external_gene_name,

title="Mutated vs wild-type URT1 IPs")

> graph1

>

> # Custom volcanoplot for example dataset 2

> graph2 <- PDF_Plot(subset(test2, test2$LogFC>0), sign="adjp",

max.pval = 0.05, line=FALSE, point_color= c("gray", "darkred"),

min_x=-0.5, max_x=11, min_y=-0.5, max_y=10, point_size=3,

label=TRUE, label_size=2, title="Wild-type URT1 vs control IPs")

> graph2
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Fig. 8 Volcanoplots obtained using PDF_Plot function for example datasets 1 and 2 shown on the
left and on the right, respectively. These graphs can be saved as pdf file using the ggsave function.

3. Volcanoplots can be saved as a pdf file using the ggsave function of ggplot2 R

package:

> library(ggplot2)

> ggsave("Volcanoplot1.pdf", graph1, height=3, width=5)

> ggsave("Volcanoplot2.pdf", graph2, height=3, width=5)
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3.8 Create heatmap

1. The heatmap allows the visualization of protein expression pattern between sam-

ples. It can be useful when you have multiple groups and you want to sort your

interesting proteins based on their abundance in the different groups of IPs. The

function IP_heatmap creates an heatmap for a list of selected protein. This

heatmap is performed based on the pheatmap package [19].

2. Heatmap can be drawn for all detected proteins or for a subset of interesting

proteins, for example proteins that show differential accumulation according to

the conditions. For the example dataset 1, the heatmap can be drawn for proteins

related to RNA metabolism based on the functional classification in the last

column of the result table (see Subheading 3.6).

> # Make a table with only proteins with classification linked

> # to RNA metabolism.

> # The code below removes proteins with empty classification (NA).

> class <- annotated_table_At2[

!is.na(annotated_table_At2$Classification),]

3. Nicely, pheatmap package allows also to add a color code based annotation for

columns or rows. For example for the dataset 1, row color code can be added to in-

dicate classification of the proteins used for the heatmap (see Figure 9). This color

code can be added by specifying, as annotation_row argument, a dataframe

with protein identifiers as row names and their corresponding classification as

first column.

> # Creation of a one-column dataframe with

> # the classification for each selected protein

> # and the protein ID as row.names

> class2 <- class[,"Classification", drop=F]
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4. Heatmap can be plotted based on raw data (norm="nothing", by default), or on

normalized data either based on the total number of count (norm="total") or on

themedian-to-ratiosmethod as used inDESeq2R package [25] (norm="DEseq").

Here, the median to ratio method (DEseq2) was used to normalize data (see Note

23).

> IP_pheatmap(IP_data1, GeneList=row.names(class), norm="DEseq",

annotation_row = class2, fontsize_row=8)

Heatmap for dataset 1
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Fig. 9 Heatmap for the example dataset 1 drawn for proteins related to RNA metabolism. Color
code on the left of the heatmap indicates the different classifications. These graphs can be saved as
pdf file using pdf and dev.off functions.

5. Several other arguments of IP_pheatmap can also be adjusted:

(a) font sizes.

(b) title and its font size.
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(c) hierarchical clustering of columns or rows can be removed.

For argument usages enter :

>help(IP_heatmap)

6. The heatmap can also be saved as a pdf file using pdf and dev.off R function.

> pdf("Heatmap_dataset1.pdf", width=8, height=6)

> IP_pheatmap(IP_data, GeneList=row.names(class), norm="DEseq",

annotation_row = class2, fontsize_row=8,title="Heatmap for dataset 1")

> dev.off()

4 Notes

1. Stable expression system should be favored and, when possible, the expression

level of the tagged protein should be as close as possible of the endogenous level of the

protein of interest in order to better reflect physiological protein-protein interactions.

2. In this chapter, we focus on IP-MS approach but other affinity approaches are

often used in interactomics, as for example the Tandem Affinity Purification tag

system (TAP-tag) [27].

3. Biological replicates are parallel measurements of biologically distinct samples

that reflect random biological variation whereas technical replicates are repeated

measurements of the same biological sample that reflect random technical vari-

ability [28]. In the context of IP-MS, technical variability can be linked to sample

preparation or affinity purification.

4. In addition to biological replicates, we also encourage analyzing affinity repli-

cates in a first approach to evaluate technical variability related to affinity purification.

5. Dynamic exclusion can be enabled or not for spectral count based quantification.

Yet, [29] showed that enabling dynamic exclusion leads to higher peptide counts and
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better reproducibility for the detection of relatively low abundant proteins. They

found that the optimal duration of this exclusion depends on the average width of the

chromatographic peak, mass spectrometry parameters and sample complexity.

6. The quantificationmethod based on spectral counts is a fast and simple approach

to resolve a short list of potential protein interactors. One shortcoming of the spectral

count approach is its limitation towards the detection of low abundant proteins that

can lead to an underestimation of differentially accumulated proteins. Alternatively,

or as a complement, MS1 peak area quantification can be performed on the sameMS

raw files. Of note, the statistical model implemented in IPinquiry is not appropriate

for statistical analysis based on MS1 peak area quantification

7. These packages are not automatically installed when installing IPinquiry and

have to be installed from CRAN [12] or Bioconductor [30].

8. IPinquiry is meant to evolve in order to allow for bug fixes and/or improve-

ments. Please update IPinquiry regularly.

9. Sample names in count and sample tables have to be identical and must not start

with numbers.

10. In this study [11], Scheer, de Almeida et al. performed interactomic and func-

tional analyses of the TUTase URT1, the main enzyme responsible for mRNA uridy-

lation in Arabidopsis. Their data supports that URT1 participates in a molecular

network connecting several translational repressors/decapping activators.

11. M1 motif is a short linear motif in the N-terminal region of URT1. In [11],

M1 was shown to mediate direct interaction between URT1 and DCP5, a decapping

activator.

12. Documentation can be accessed by using the R function help for each function

of the IPinquiry package.

13. IPinquiry includes threemethods of data normalization.Whennorm="nothing"

is used, scale factor is set to 1. When norm="total" is used, spectral counts are di-
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vided by the total number of counts and scale factors are calculating using the R code

div<- apply(data,2,sum). Finally, when norm="DEseq" is used, counts are di-

vided by sample-specific size factors determined by median ratio of spectral counts

relative to geometric mean per protein. The geometric mean is calculated using

the R code prod(x)ˆ(1/n) with n <- length(x). The scale factor is calculated

using the R code div <- apply((data+1)/ apply(data + 1,1,gmean),2,

median). By default, norm="total".

14. When glm=QL, the stat_test function applies the three following EdgeR

functions: estimateDisp, glmQLFit, glmQLFTest.

15. Low abundance proteins can adversely affect the dispersion estimation. The

min.disp argument allows users to set an appropriate cut-off value for the calcula-

tion of the dispersion. Only proteins with total sum of counts above this value are

used. By default, the cut-off value used by the EdgeR estimateDisp function is 5.

16. GLM models implemented in EdgeR and msmsTest packages normalize data

with the help of an offset term in the model. IPinquiry includes three alternative

ways for the offset calculation : no normalization (norm="nothing"), normalization

using the total number of counts (norm="total") and normalization based on the

median-to ratio method (norm="DEseq") (see Note 13 for details about scale factor

calculation).

17. If batch=TRUE, the batch variable is added as a blocking factor in the GLM

model.

18. when glm=classic, the stat_test function applies the three following EdgeR

functions: estimateDisp, glmFit, glmLRT. Output includes the same elements ex-

cept that quasi-likelihood F-statistics values are replaced by likelihood ratio statistics

value. This model is the one included in msmsTest package [7].

19. "YES" or "NO" tags indicate proteins with sum of counts across all IPs higher

or lower than this filter value, respectively.
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20. The directory where data are saved can be specified for all functions al-

lowing data export, for example in this pipeline for saveWidget, write.xlsx,

write.table, ggsave and pdf.

21. Decapping is a critical step of mRNA degradation and consists in the hydrolysis

of the 5’ cap structure of mRNA. Data in Scheer, de Almeida et al. suggest that

URT1 connects decapping activators.

22. The aim of PDF_Plot is to facilitate the creation of graphs that are suitable for

pdf or eps saving. Of course, if you are familiar with the ggplot2 package, you can

skip the PDF_Plot function and use the ggplot2 suite of functions. You will then

have the possibility to control more graphical parameters.

23. Counts are log2 transformed using the equation :

;>62(G + 1) (1)
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