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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Interactions on dairy farms influence the
effectiveness of management practices
that aim to improve farm performances.

• Conditional Kendall’s tau assesses de-
viations in the correlation between two
variables as a function of a third one.

• Digestible organic matter ingestion
influenced the correlation between milk
production and enteric methane
emissions.

• Total annual precipitation influenced
the correlation between concentrated
feed fed and milk production.

• Additional variables are needed to
interpret the deviations.
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A B S T R A C T

Context: Understanding how multiple factors interact in complex systems is an important issue. In particular,
agricultural production systems are based on biological and ecological processes that are influenced by envi-
ronmental and human factors, all of which interact. When evaluating such systems statistically, these multiple
dependences and interactions make it more difficult to model system performances as a function of management
practices and weather.
Objective: Our objective was to assess interactions among management practices, weather and system perfor-
mances. We aimed in particular to identify subsets of farms whose correlations for given pairs of variables as a
function of another variable deviated greatly from the traditional correlation between the variables (i.e., atypical
farms).
Methods: We investigated a measure of dependence that assesses whether (and if so, how) the correlation be-
tween two variables varies as a function of a third one: conditional Kendall’s tau. We applied this measure to a set
of variables that described management practices (e.g., concentrated feed fed), weather (e.g., precipitation) and
performances (e.g., milk production, enteric methane emissions) for dairy-cattle systems in France in 2013 and
2014 (2523 and 804 farms, respectively).
Results and conclusions: In 2013, the amount of digestible organic matter in the ration ingested per cow influenced
the correlation between milk production per cow and enteric methane emissions per livestock unit. In particular,
the correlation was negative for a set of atypical farms whose ingested digestible organic matter was ≈ 2050-
2900 kg.cow− 1. In addition, total annual precipitation in 2013 influenced the correlation between the amount of
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concentrated feed fed per cow and milk production per cow for farms surveyed in either year. In 2013 and 2014,
the correlation began decreasing strongly beyond a certain threshold of precipitation (ca. 1400 and 1100 mm,
respectively), which highlighted the need to adapt each farm’s practices to its agricultural and weather context.
Significance: Application of conditional Kendall’s tau identified interactions that caused the effectiveness of
management practices to vary and how they did so.

1. Introduction

Dairy-cattle farms are a source of several greenhouse gases (GHGs),
such as methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2)
(Dumont et al., 2017). In the context of climate change, the environ-
mental performances of dairy farms need to be improved, but certain
social and economic objectives (e.g., food security, farm revenue) make
doing so more difficult. To attempt to meet these multiple objectives, it
is necessary to understand how management practices and environ-
mental conditions interact to influence the interacting biological and
ecological processes of farming systems. Changing a practice may
improve the economic or environmental performance but also influence,
sometimes indirectly, other characteristics of the farm. For instance,
analyzing the effectiveness of on-farm measures to mitigate environ-
mental impacts is complex, since the analysis should consider effects on
all pollutant emissions of all production processes (Weiske et al., 2006).
Likewise, sources of GHG emissions associated with milk production (e.
g., enteric fermentation, manure management, agricultural soils, land-
use change, energy consumption) are influenced by the rations of
dairy cattle (Hawkins et al., 2015). Similarly, increasing the ration’s
starch content or changing manure management can reduce CH4 emis-
sions (Jayasundara et al., 2016). Multiple interactions among farm
management practices and their agricultural contexts can influence the
mitigation potential of changes in practices; for instance, manure
deposited in grasslands cannot be used to feed biogas plants, and
increasing the use of legume crops decreases the mitigation potential of
decreasing fertilizer use (Pellerin et al., 2017). To help understand and
model these multiple interactions, researchers use a variety of multi-
criteria methods.

Complex simulation models (e.g., IFSM, DairyWise, FASSET) have
been developed to model the dynamics of dairy farms as a whole
(Jacobsen et al., 1998; Wastney et al., 2002; Schils et al., 2007;
Vayssières et al., 2009; Rotz et al., 2012). Life cycle assessment (Bau-
mann and Tillman, 2004) is also widely used to estimate and compare
environmental impacts of farms based on the agricultural products they
produce (Sieverding et al., 2020). In addition, statistical models are used
for more specific objectives. For instance, multiple regressions based on
several variable-selection procedures were used to quantify and
compare the influence of several covariates on nitrogen-use efficiency at
the farm level in Flanders (Ramírez and Reheul, 2009). Multiple re-
gressions were also used to predict emissions of enteric CH4 from
lactating cows using different combinations of covariates at the farm
level (Santiago-Juarez et al., 2016). To assess how agroecological, socio-
territorial and economic sustainability interact to influence overall farm
sustainability, principal component analysis (PCA), followed by
ascending hierarchical classification, was applied to small dairy farms in
northern Tunisia (Attia et al., 2022). Similarly, PCA was used to assess
representative types of dairy-cattle and fodder-crop production systems
at the regional scale in Europe (Díaz de Otálora et al., 2022).

In the present study, we used statistical models to help understand
interactions that can render management practices, implemented to
improve production or environmental performances, less effective. To
this end, we investigated the conditional Kendall’s tau coefficient, which
measures the influence of at least one covariate on the dependence be-
tween two other covariates (Derumigny and Fermanian, 2019). The
conditional Kendall’s tau is based on copulas, which are functions that
formalize the joint dependence structure among multiple variables
regardless of the variables’ distributions. The copula method has other

advantages, such as modeling many types of complex dependence
structures (e.g., non-linear, among extreme values), due to the wide
variety of copulas that exist (Genest and Favre, 2007; Nadarajah et al.,
2017). Several agricultural studies (Chen et al., 2013; Madadgar and
Moradkhani, 2013; Emmanouilides and Fousekis, 2015; Goodwin and
Hungerford, 2015; Fousekis and Grigoriadis, 2017; Gaupp et al., 2017;
de Almeida and Barbosa, 2020; Hasan and Abdullah, 2022) have used
copulas, especially to estimate economic risks to farmers and social
impacts as a function of crop yield and weather conditions. Recently, a
copula-based local Kendall’s tau was applied to study dependences in
the tails of distributions of energy, agriculture and metal commodity
markets over time (Albulescu et al., 2020).

Since the true value of conditional Kendall’s tau remains unknown
by construction, we investigated an estimator of conditional Kendall’s
tau which, to our knowledge, has not been used to help understand in-
teractions among variables in agricultural systems to improve their
environmental performances. It approximates the correlation between
two variables as a function of another explanatory variable, unlike
traditional correlation coefficients (e.g., Spearman’s rho, Blomqvist’s
beta), which remain constant. It provides a good compromise between a
traditional correlation coefficient and more complex methods (e.g.,
PCA) to study dependences among a set of variables. The main objective
of this study was to examine how interactions can influence the effec-
tiveness of management practices that aim to improve farm perfor-
mances (i.e., the strength of the correlation between them) by using the
conditional Kendall’s tau. Consequently, conditional Kendall’s tau was
applied to assess correlations between farm production and environ-
mental performances as a function of a management practice, as well as
those between management practices and production performances as a
function of weather conditions.

2. Materials and methods

2.1. Data

The data were extracted from the CAP’2ER database (https://cap2er.
eu/) of the French Livestock Institute (IDELE). As part of IDELE’s LIFE
Carbon Dairy project, 2523 French farms were surveyed in 2013 and
804 potentially different farms were surveyed in 2014. The database
provides more than 240 qualitative and quantitative variables that
describe annual farm characteristics (e.g., cow breeds, percentage of
grassland in the main forage area (MFA)), milk production, pollutant
emissions (i.e., GHG emissions) and management strategies (e.g.,
amount of concentrated feed fed, percentage of maize silage or grazed
grass in the ration). GHG emissions in the database were estimated by
applying emissions equations and factors to sources of farm emissions
(CAP’2ER Team, 2022). In particular, CH4 emissions from enteric
fermentation were estimated as a function of dry matter intake, pro-
portion of concentrated feed in the ration, digestibility of the ration and,
for dairy cows, addition of fats to the ration (Eq. S1 in Section S1 of the
Supplementary Material) (Dong et al., 2006; Sauvant and Nozière, 2013;
INRA, 2018).

In 2013 and 2014, the main cattle breed was Holstein (77.8% and
78.6% of farms, respectively), and the main region of France represented
was Bretagne (77.4%) or Pays-de-la-Loire (68.3%), respectively. Farms
were categorized into five types as a function of their geographic situ-
ation (i.e., mountain or plain) and their percentage of maize in the MFA
(Table 1). The distribution of farm types differed significantly between
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the two years (p ≤ 0.05, chi-square test), with a higher percentage of
mountain/grass farms in 2013 and mountain/maize farms in 2014.

To assess the influence of weather conditions, we downloaded daily
temperature and precipitation data for 2012, 2013 and 2014 for main-
land France (in an 8 km × 8 km grid) from the SAFRAN climate data-
base, provided by Météo-France, via the SICLIMA platform developed by
the AgroClim unit of INRAE. We used them to calculate annual precip-
itation (Table 2) and six other annual or growing-season meteorological
indices (Table S1), which we associated with each farm by selecting the
cell whose centroid lay closest to the centroid of the municipality to
which the farm belonged (since exact farm locations were not available).
For annual precipitation, we calculated the precipitation that each farm
had received during the year it was surveyed, as well as that during the
previous year, since surplus forage can be stored and fed to cows the
following year (Wilkinson and Rinne, 2018).

2.2. Estimator of the conditional correlation

2.2.1. Conditional Kendall’s tau
The conditional version of Kendall’s tau is derived from its non-

conditional version (τ), whose value (from − 1 to 1) describes the

proportionality (i.e., positive correlation) or inverse proportionality (i.
e., negative correlation) between two columns of ranked data (Kendall,
1938). In other words, Kendall’s tau is a non-parametric association
measure, which indicates a weak association between variables when
close to zero. Kendall’s tau depends on the bivariate function C : [0,1]2↦
[0, 1] (a copula), which models the dependence structure between two
continuous random variables, X and Y, such that (Nelsen, 2006):

τ = 4
∫

[0,1]2
C(u, v)dC(u, v) − 1 (1)

where (u, v) belongs to [0, 1]2. Copula C is a function that connects the
cumulative distribution functions (cdfs) F and G of X and Y, respectively,
to the joint cdfH of the pair (X,Y) such thatH(x, y) = C(F(x) ,G(y) )with
u = F(x) and v = G(y) (Sklar, 1959).

To define conditional Kendall’s tau, let X, Y and Z be continuous
random variables. In addition, note CX,Y|Z the conditional copula that
connects the cdfs FX|Z and GY|Z of X and Y conditional on Z, respectively,
and HX,Y|Z, which is the joint conditional cdf of pair (X,Y). Conditional
Kendall’s tau is defined by inserting the conditional copula into Eq. (1),
such that:

τX,Y|Z = 4
∫

[0,1]2
CX,Y|Z(u, v)dCX,Y|Z(u, v) − 1 := τ(z) (2)

Since CX,Y|Z and thus the true measure of τX,Y|Z are unknown, an
estimator τ̂(z) of conditional Kendall’s tau is defined by replacing the
conditional copula in Eq. (2) by its estimator ĈX,Y|Z. Both estimators τ̂(z)
and ĈX,Y|Z were defined using a kernel-smoothing method weighted by
covariate Z (Section S4). See Derumigny and Fermanian (2019) for the
equation for the estimator τ̂(z) and its associated theoretical properties.

Table 1
Percentage of farms by type (geographic situation and dominance or percentage
of grassland or maize silage in the main forage area) per survey year.

Farm type 2013 2014

Mountain/grass 2.8 0.4
Mountain/maize 0.6 4.2
Plain < 10% maize 2.2 1.0
Plain 10 − 30% maize 21.1 26.2
Plain > 30% maize 73.3 68.2

Table 2
Descriptive statistics of the main variables analyzed for 2523 dairy farms surveyed in 2013 and 804 dairy farms surveyed in 2014. Shaded cells represent additional
variables that were used to interpret the results. LU: livestock unit. GrassDM: grazed grass dry matter. MaizeDM: maize dry matter. MFA: main forage area.

1Data were available only for 714 of the 804 farms.

N. Ouachene et al.



Agricultural Systems 220 (2024) 104089

4

2.2.2. Choosing the kernel and smoothing bandwidth
Applying estimator τ̂(z) requires choosing a probability density

function (i.e., a “kernel”) and a smoothing bandwidth h. The kernel
(traditionally symmetric) is related to the weights attributed to the
neighboring observations used to approximate each point of the esti-
mate, while the smoothing bandwidth represents its size (Fig. S1). The
smoothing bandwidth chosen is important since it influences the trade-
off between bias and variance. A bandwidth that is too narrow will yield
an erratic estimate of conditional Kendall’s tau, while a bandwidth that
is too wide will yield an overly smooth estimate that can conceal
potentially meaningful deviations.

We chose the optimal smoothing bandwidth hCV using a cross-
validation procedure with the “leave-one-out” method (i.e., calculate
scores for multiple values of h and select the h with the lowest score)
(Section S5). A recurrent issue when performing least squares cross-
validation is the presence of multiple local minima (Hall and Marron,
1991; Savchuk et al., 2011). We addressed this issue by choosing the
bandwidth that was the most consistent with the scale of the data (i.e.,
10–30% of the range of variable Z). The Epanechnikov kernel (Tsyba-
kov, 2004) was applied using the R package CondCopulas (Derumigny,
2022). To assess the uncertainty in the estimates, we calculated a 95%
confidence interval (CI) by using a bootstrap sampling method.

2.3. Applying the conditional correlation coefficient

We applied conditional Kendall’s tau to the dataset to identify re-
lations among variables for the dairy-cattle systems in 2013 and 2014.
We selected 20 variables from the database (Tables 2 and S2) and the
seven meteorological indices to explore the influence of one variable on
correlations between two others. We first explored many combinations
of conditional and conditioned variables for the farms surveyed in 2013
and ultimately selected the combinations with the largest variations in
conditional Kendall’s tau. We then applied the conditional Kendall’s tau
to these same combinations for the farms surveyed in 2014. In partic-
ular, we aimed to assess the influence of a management practice on the
correlation between farm production and an environmental perfor-
mance, as well as the influence of a weather condition on the correlation
between a management practice and a production performance.

For example, we studied the correlation between milk production per
cow and enteric CH4 emissions per livestock unit (LU) as a function of
the amount of digestible organic matter ingested (DOMI) per cow, since
the ration directly influences milk production (Sanh et al., 2002) and
enteric CH4 emissions (Beauchemin et al., 2008). By representing the
ration’s composition by its amount of DOMI, we investigated how a
change in the ration, particularly in its digestibility, may have influ-
enced the dependence of enteric CH4 emissions on milk production,
which can vary due to the ration’s influence on each of them
individually.

We also studied the correlation between the amount of concentrated
feed fed to cows and milk production per cow as a function of the pre-
cipitation of the same year or the previous year. Concentrated feed is
often fed to cows, along with other forages (often produced on the farm),
to stimulate their milk production (Sanh et al., 2002). The objective was
to assess whether the environmental context (i.e., weather conditions)
influenced the dependence of milk production per cow on concentrated
feed.

2.3.1. Empirical conditional correlation and identification of sets of
atypical farms

We first examined the empirical conditional Kendall’s tau of the sets
of variables by grouping farms into subsamples that had the same in-
terval of Z (chosen to optimize the number of subsamples along Z and
the number of farms in each subsample) and then calculating the mean
empirical Kendall’s tau of each subsample, which we compared to the
estimated conditional Kendall’s tau (τ̂). We then identified groups of
farms whose τ̂, for a given pair of conditioned variables and a

conditioning covariate Z, deviated greatly from the standard Kendall’s
rank correlation coefficient between the conditioned variables (i.e.,
identified subsets of atypical farms). Covariates in the sets of variables
(e.g., percentage of grazed grass dry matter in the ration, percentage of
maize in the MFA) were then assessed to characterize the feeding stra-
tegies, resources and/or agricultural contexts of the farms in each group.
Differences in medians of covariates were tested using the Mann-
Whitney-Wilcoxon median comparison test and considered significant
at p ≤ 0.05.

3. Results

3.1. Influence of digestible organic matter ingested on the correlation
between milk production and enteric methane emissions

One strong deviation in the conditional Kendall’s tau was observed
for farms surveyed in 2013 between milk production per cow (MILK13)
and enteric CH4 emissions per LU (CH413) as a function of the amount of
digestible organic matter ingested per cow (DOMI13).

3.1.1. Estimated conditional Kendall’s tau
When examining the empirical conditional Kendall’s tau between

MILK13 and CH413, the number of farms per subsample of DOMI13
varied, and only 1.4% of the farms lay in the extremes (Fig. 1a). The
mean empirical Kendall’s tau per subsample varied from ca. − 1.00 to
0.25. In comparison, the non-conditional Kendall’s tau between each
pair of variables was strong and significant: 0.75 between CH413 and
DOMI13, 0.89 between MILK13 and DOMI13, and 0.69 between MILK13
and CH413.

The optimal smoothing bandwidth (hCV) was set to 380. The esti-
mated conditional Kendall’s tau (τ̂) varied strongly as a function of
DOMI13 (Fig. 1b), and four groups of farms were identified:

• group 1: τ̂ < 0, with DOMI13 ≈ 2050-2900kg.cow− 1

• group 2: τ̂ in [0, 0.25[, with DOMI13 < 2050kg.cow− 1 and also
≈ 2900-3600kg.cow− 1

• group 3: τ̂ ≥ 0.25, with DOMI13 ≈ 3600-5300kg.cow− 1

• group 4: τ̂ < 0.25 and DOMI13 > 5300kg.cow− 1

Group 3 contained most (94.5%) of the farms surveyed in 2013, and
its τ̂ (0.26–0.44) were the most similar to the non-conditional Kendall’s
tau (0.69).

3.1.2. Characterization of farm groups
The feeding strategies of the groups of farms were characterized as a

function of the percentages of maize dry matter (MaizeDM) and grazed
grass dry matter (GrassDM) in the ration. Farms in group 1 (i.e., negative
τ̂ between MILK13 and CH413 and the smallest DOMI13) had the lowest
percentage of MaizeDM in the ration (median of 0%) (Fig. 2a).
Conversely, farms in groups 3 (i.e., τ̂ ≥ 0.25) and group 4 had a high
percentage of MaizeDM in the ration (median of 69% and 76%, respec-
tively). Farms in group 2 had an intermediate correlation and percent-
age of MaizeDM in the ration (median of 23%). The median percentage of
MaizeDM in the ration of groups 1 and 2 differed significantly from that
in the ration of groups 3 and 4 (Fig. 2a).

The percentage of GrassDM in the ration was the highest for farms in
groups 1 and 2 (ca. 46% and 44%, respectively), which had the weakest
(and sometimes negative) conditional correlations and the smallest
DOMI13 (Fig. 2b). Conversely, the percentage of GrassDM in the ration
was low (median of 25%) for farms in groups 3 (i.e., with the strongest
conditional correlation) and 4 (i.e., with a weak or negative conditional
correlation) (median of 15%). The median percentage of GrassDM in the
ration of farms in group 3 differed significantly from those of the farms
in the other three groups (Fig. 2b). Similar results were obtained for the
conditional correlation between MILK14 and CH414 as a function of

N. Ouachene et al.
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DOMI14 for the farms surveyed in 2014 (Section S6).

3.2. Influence of annual precipitation on the correlation between
concentrated feed and milk production

Another strong deviation in the conditional Kendall’s tau was
observed for farms surveyed in 2013 and 2014 between the amount of
concentrated feed fed to cows (CONC13 and CONC14, respectively) and
milk production per cow (MILK13 and MILK14, respectively) as a func-
tion of the precipitation in 2013 (i.e. the same year (PRECIP13(F13)) for
farms surveyed in 2013 or the previous year (PRECIP13(F14)) for farms
surveyed in 2014).

3.2.1. Estimated conditional Kendall’s tau
For the farms surveyed in 2013, empirical conditional Kendall’s tau

between CONC13 and MILK13 as a function of PRECIP13(F13) (range of
580-2170 mm) differed little from the non-conditional Kendall’s tau
(0.42), except for precipitation of ca. 1400-1700 mm, for which it was −

0.07 (Fig. 3a). The non-conditional correlations between PRECIP13(F13)

and both MILK13 and CONC13 were weak but significant: − 0.15 and −

0.07, respectively. The optimal smoothing bandwidth (hCV) was set to
320. The estimated conditional Kendall’s tau between MILK13 and
CONC13 as a function of PRECIP13(F13) was consistent with the empirical
version, except for precipitation of ca. 1400-1700 mm, when it
decreased strongly to a minimum of ca. 0.16 (Fig. 3b). The 95% CI was
narrowest for precipitation lower than 1400 mm, since this interval
contained 96.2% of the farms. For the farms surveyed in 2013, three
groups were identified:

• group 1: τ̂ ≈ non-conditional τ, with PRECIP13F(13) < 1400 mm
• group 2: τ̂ < non-conditional τ, with PRECIP13F(13) ≈ 1400-1700 mm
• group 3: τ̂ > non-conditional τ, with PRECIP13F(13) > 1700 mm

In comparison, for the farms surveyed in 2014, the empirical con-
ditional Kendall’s tau between MILK14 and CONC14 as a function of
PRECIP13(F14) (range of 580-1560 mm) varied from ca. − 0.33 to ca. 0.40

Fig. 1. Conditional Kendall’s tau correlation between milk production per cow and enteric CH4 emissions per livestock unit as a function of the amount of digestible
organic matter ingested per cow (DOMI13) for farms surveyed in 2013.

Fig. 2. Boxplots of percentages of (a) maize dry matter (MaizeDM) and (b) grazed grass dry matter (GrassDM) in the ration of farms surveyed in 2013 as a function of
farm groups 1–4 (digestible organic matter ingested ≈ 2050-2900; < 2050 and also ≈ 2900-3600; 3600-5300; and > 5300kg.cow− 1, respectively). Different letters
indicate significant differences between groups (adj.p < 0.05, Mann-Whitney-Wilcoxon median comparison test). Whiskers represent 1.5 times the interquartile
range. The dotted horizontal line indicates the overall median of all groups combined.

N. Ouachene et al.
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(Fig. 4a). Each extreme of PRECIP13(F14) contained few farms. Most
farms had PRECIP13(F14) of ca. 800-1100 mm, for which the empirical
conditional Kendall’s tau between MILK14 and CONC14 was similar to
the non-conditional one (0.31). PRECIP13(F14) was not correlated with
either MILK14 ( − 0.03) or CONC14 ( − 0.01). For farms surveyed in
2014, the optimal bandwidth (hCV) was set to 150. Like for the farms
surveyed in 2013, the estimated conditional Kendall’s tau decreased to a
minimum ( − 0.40), but this time from ca. 1100 mm of precipitation
(Fig. 4b). The 95% CI was narrowest for precipitation lower than 1100
mm, since this interval contained 91.3% of the farms. For farms sur-
veyed in 2014, two groups were identified:

• group 1: τ̂ ≥ non-conditional τ, with PRECIP13F(14) < 1100 mm
• group 2: τ̂ < non-conditional τ, with PRECIP13F(14) ≥ 1100 mm

Similar results were obtained for the conditional correlation between
MILK14 and CONC14 as function of precipitation of the same year
(PRECIP14F(14)) for farms surveyed in 2014, and between MILK13 and
CONC13 as function of precipitation of the previous year (PRECIP12F(13))
for farms surveyed in 2013 (Sections S7 and S8, respectively).

3.2.2. Characterization of farm groups
The groups of farms were characterized as a function of the per-

centage of GrassDM in the ration (to describe feeding strategies), the
percentage of grass and maize in the MFA (to describe farm resources
and the agricultural context), milk production per cow and the amount
of concentrated feed fed to cows. For the farms surveyed in 2013, those
in group 1, which had a nearly constant estimated conditional Kendall’s
tau (ca. 0.40), had a higher MILK13 (median of 7734 l.cow− 1), higher
percentage of maize in the MFA (median of 38%), but lower percentage
of grass in the MFA (median of 60%) than those of farms in the other two
groups (Table 3). Conversely, farms in group 3, which had the highest
estimated conditional Kendall’s tau (0.43-0.57), had median MILK13 of
6176 l.cow− 1 and 0% of maize in the MFA, since all of them were based
on grasslands alone. Farms in group 2, which had the minimum esti-
mated Kendall’s tau (0.16), had median MILK13 of 6909 l.cow− 1, a
median percentage of maize in the MFA of 14% and an intermediate
median percentage of grass in the MFA of 86%, all of which differed
significantly from those of farms in the other two groups. Farms in
groups 1 and 2 had a similar CONC13 (median of 1161 and
1011 kg.cow− 1, respectively), which was significantly lower than that
of farms in group 3 (1461 kg.cow− 1). Conversely, farms in groups 2 and
3 had the same percentage of GrassDM in the ration (median of 39%),
which was significantly higher than that of farms in group 1 (median of

Fig. 3. Conditional Kendall’s tau correlation between the amount of concentrated feed fed to cows and milk production per cow as a function of total precipitation
received in 2013 for farms surveyed in 2013 (PRECIP13(F13)).

Fig. 4. Kendall’s tau correlation between the amount of concentrated feed fed to cows and milk production per cow as a function of total precipitation received in
2013 by farms surveyed in 2014 (PRECIP13(F14)).
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25%).
For the farms surveyed in 2014, MILK14 did not differ significantly

between groups 1 and 2 (median of 7722 and 7375 l.cow− 1, respec-
tively) (Table 3). However, farms in group 1 had significantly lower
CONC14 than those in group 2 (median of 1373 and 1634 kg.cow− 1,
respectively), higher percentage of GrassDM in the ration (median of 18%
and 16%, respectively), lower percentage of grass in the MFA (median of
60% and 75%, respectively) and higher percentage of maize in the MFA
(median of 39% and 25%, respectively).

4. Discussion

4.1. Influence of digestible organic matter ingested on the correlation
between milk production and enteric methane emissions

For the farms surveyed in 2013, the negative conditional correlation
between milk production and enteric methane emissions (CH413) at the
extremes of DOMI13 (i.e., farms in group 1 and some farms in group 4)
was unusual, given the strong positive non-conditional correlation be-
tween them and since increasing dry matter intake tends to increase
both milk production and enteric CH4 emissions per LU (Dall-Orsoletta
et al., 2019). Nonetheless, enteric CH4 emissions can be decreased by
increasing the percentage of concentrated feed or maize silage in the
ration (up to a certain percentage) (Beauchemin et al., 2008) or
increasing the digestibility of fodder or grazed grass (O’Neill et al., 2011;
Wims et al., 2010).

Since most farms in group 1 were based on grassland and thus fed a
grass-based ration, the negative correlation could have been due to the
increasing percentage of MaizeDM in the rations, which, by increasing
their digestibility and energy content, thus decreased enteric CH4
emissions while increasing milk production (i.e., creating a negative
correlation). In comparison, group 2 contained farms with somewhat
more maize in the MFA, while group 3 contained mainly conventional
farms with more than 30% of maize in their MFA. An equivalent increase
in the percentage of MaizeDM in their already maize-based rations may
not have increased digestibility sufficiently to decrease enteric CH4
emissions. For group 4, whose farms were the most intensive and had a
low percentage of grass in the ration, the weak or negative correlation
may have been due to a scale effect, since intensive farms produce more
milk per cow but emit less enteric CH4 per LU because they have more
cattle.

Other studies have assessed relations among milk production, CH4
emissions and the composition of cow rations (i.e., types and amounts of
forages and concentrated feed). For instance, one study measured
enteric CH4 emissions of individual cows during milking on 21 com-

mercial dairy farms for three years (Bell et al., 2014). While CH4 emis-
sions increased for most farms as milk production increased, they
decreased for certain farms due to differences in ration composition and
energy use by cows. The rations on the farm with the largest negative
relation included mainly maize silage, whole linseed meal and high-fat
concentrated feed, all of which can decrease CH4 emissions. Similarly,
Wattiaux et al. (2019) highlighted how decreasing the ratio of forages (i.
e., alfalfa and maize silage) to concentrated feed (i.e., high-moisture
maize, ground maize grain, soybean by-products and cottonseed) can
decrease CH4 emissions without decreasing milk production. They also
highlighted that cows fed legumes emit less CH4 than those fed grass,
perhaps because the fiber of legumes is less digestible and contains more
hemicellulose than that of grass (Wattiaux et al., 2019). However, since
maize silage contains more starch than other types of silage, replacing
cereal or legume silage with it tends to decrease enteric CH4 emissions
while increasing milk production (Jayasundara et al., 2016; Eugène
et al., 2021).

4.2. Influence of annual precipitation on the correlation between
concentrated feed and milk production

Precipitation in 2013 (PRECIP13(F13) and PRECIP13(F14)) seemed to
have a similar impact on the correlation between milk production per
cow (MILK13 and MILK14) and the use of concentrated feed fed to cows
(CONC13 and CONC14) whether farms were surveyed in 2013 or 2014. In
both cases, the correlation reached a minimum beyond a certain
threshold (ca. 1400 or 1100 mm for farms in group 2 surveyed in 2013
or 2014, respectively).

When considering feeding strategies, group 2 of farms surveyed in
2013 or 2014 had a high median percentage of grasslands in the MFA
(86% and 75%, respectively). In 2013, group 2 had a higher median
percentage of GrassDM in the ration and fed a smaller median amount of
concentrated feed per cow than did group 1 (i.e., with τ̂ ≈ or ≥ non-
conditional τ). In 2014, it was the opposite, since group 2 had a lower
median percentage of GrassDM in the ration and fed a larger median
amount of concentrated feed per cow than did group 1. In addition, as
mentioned, the distribution of farms among farm types differed slightly
between 2013 and 2014.

Thus, similarities between the two curves of conditional Kendall’s
tau suggest an influence of precipitation beyond a certain threshold,
which was stronger than those of the feeding strategy and farm type, for
farms surveyed in both years. Beyond this threshold of precipitation
during the current or previous year (depending on the feeding strategy),
the weaker correlation between milk production per cow and concen-
trated feed fed per cow can be explained by decreased dependence on
concentrated feed on farms (Dumont et al., 2022) due to a better envi-
ronmental context for forage production. However, the influence of
precipitation identified in the present study more likely represented
differences in mean precipitation among regions of France than above-
average precipitation received by the farms surveyed. Studying the
same farms for multiple years would help to identify the influence of
above-average precipitation. Examining the dependence of milk pro-
duction on concentrated feed, studies have observed that replacing
concentrated feed with high-quality forage and a sufficient amount of
crude protein did not decrease milk production during late lactation
(Hymøller et al., 2014). Similarly, Åby et al. (2019) observed that
increasing the quality of grass silage (which depends in particular on the
cutting frequency and weather conditions) decreases dependence on
concentrated feed and can decrease GHG emissions per l of milk while
maintaining milk production.

Farms in group 3 surveyed in 2013 that had received a large amount
of precipitation (≥ 1700 mm) had a stronger correlation between
MILK13 and CONC13. These farms were grassland farms, since 100% of
their MFA was grasslands. The increased dependence of grassland farms
on concentrated feed to produce milk reflected difficulties that they

Table 3
Median values of characteristics of farms surveyed in 2013 or 2014 in the groups
defined as a function of deviation in estimated conditional Kendall’s tau (τ̂). In
2013, groups 1–3 represent τ̂ ≈, <, or > non-conditional τ, respectively, while in
2014, groups 1–2 represent τ̂ ≥ or < non-conditional τ, respectively. Different
letters indicate significant differences (p ≤ 0.05) for a given year according to
the Mann-Whitney-Wilcoxon median comparison test. MFA: main forage area.
GrassDM: grazed grass dry matter.

Year 2013 2014

Characteristic Group
1

Group
2

Group
3

Group
1

Group
2

Milk production (l.cow− 1) 7734a 6906b 6176c 7722a 7375a

Amount of concentrated
feed (kg.cow− 1)

1161b 1011b 1461a 1373b 1634a

Percentage of GrassDM in
the ration

25b 39a 39a 18a 16b

Percentage of grass in the
MFA

60c 86b 100a 60b 75a

Percentage of maize in the
MFA

38a 14b 0c 39a 25b
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encountered in feeding their cows when annual precipitation, which
ranges from 500-2000 mm in France (1991–2020) (Météo-France,
2023), was high, which made them less resilient (Dumont et al., 2022;
Bowen and Chudleigh, 2021). Along the same lines, an economic study
assessed effects of weather conditions on milk production in Spain
through their influence on cow productivity and forage production
(Perez-Mendez et al., 2019). In particular, it observed that weather
conditions that deviated from the average influenced forage production,
which led to large changes in milk production and a maximum differ-
ence in profits of 10%. Qi et al. (2015) observed that weather conditions
in Wisconsin, USA, influenced milk production differently depending on
the season. While higher temperature in summer and autumn decreased
milk production, it increased milk production in winter and spring; in
comparison, higher precipitation always decreased milk production.
Likewise, Roche et al. (2009) assessed the seasonal influence of weather
conditions (e.g., temperature, relative humidity, evapotranspiration) in
18 farmlets of a farm in New Zealand on grass production, nutrient
contents and mineral concentrations, and thus on animal production in
grazing systems, helping to understand short-term changes in animal
performance. Controlling for season and farmlet, weather conditions
explained at most 14% of the variation in grass nutrient content. In
particular, seasonal precipitation and grass-related variables (e.g.,
organic matter digestibility, metabolizable energy content) were
moderately correlated.

4.3. Conditional Kendall’s tau

Estimating conditional Kendall’s tau is a useful approach for
assessing more precisely the variation in the correlation between two
variables as a function of another variable, unlike non-conditional
Kendall’s tau, which remains constant. It was particularly useful in the
present study since cause-and-effect relations in agricultural systems (e.
g., milk production and GHG emissions, feeding strategies and milk
production) are influenced by other factors (e.g., management practices,
weather conditions) (Pellerin et al., 2017). Ultimately, the best approach
is to apply the method when the conditioned variables and conditioning
variable(s) are specifically identified. Similarly, a copula-based esti-
mator of conditional Spearman’s rho (Gijbels et al., 2011) was used to
assess correlations between yields and prices of wheat, maize and grapes
as a function of weather conditions (Bousebata et al., 2020). However,
the estimator we chose seems more robust, since its simpler equations
ease calculations and increase confidence in the estimate.

Conversely, other methods such as PCA would not have helped study
the variation in correlations, nor the dependence among such a small
group of variables (Attia et al., 2022). Since the principal components in
PCA are linear combinations of the original variables (Jolliffe and
Cadima, 2016), non-linear dependences and potential correlations in the
data are ignored, which may bias the results (Jiang and Eskridge, 2000).
Associated tools such as the correlation circle represent the variables
and their mutual correlation with the principal components, which de-
scribes the direction and degree to which variables are related to each
other and which component(s) summarize their information. However,
PCA does not describe how the correlation between two variables varies
as a function of other variables. PCA is often followed by clustering (Díaz
de Otálora et al., 2022) to identify and characterize groups of individuals
as a function of the components (i.e., groups of variables). The condi-
tional Kendall’s tau goes further because it can identify groups of in-
dividuals (i.e., farms) differently, based not only on the variables, but on
variations in the correlations between them. However, additional
covariates are needed to characterize the groups of farms identified in
more detail.

Confidence in the estimated conditional Kendall’s tau decreased as
the number of farms decreased. Because the number of farms was not
uniformly distributed for each conditioning variable, the extremes of the
curve usually contained few farms. Thus, deviations in the correlations
and wide CIs at the extremes seemed due more to the few farms there

than to edge effects caused by the kernel-smoothing method, as shown
by the wide 95% CI obtained by the bootstrap sampling method. Thus,
results for the extremes need to be interpreted with caution. However,
highlighting rare situations is sometimes interesting since extreme or
unusual phenomena can occur (Senga Kiessé et al., 2022), but they are
difficult to identify, model and understand.

Results of using the estimator of conditional Kendall’s tau indicate
that other variables should be investigated to try to characterize atypical
groups of farms. This method has also been generalized for more than
two conditioning variables, but it may be difficult to interpret its results
in real-life applications (Derumigny and Fermanian, 2019). A natural
next step would be to explore statistical methods that can assess more
than three variables simultaneously and are useful for modeling multi-
ple interactions without compromising the interpretation, such as vine
copulas (Czado and Nagler, 2022).

5. Conclusion

The variable correlation observed between milk production and
enteric CH4 emissions as a function of the amount of digestible organic
matter ingested supported observations that increasing the digestibility
of cow rations can mitigate CH4 emissions without decreasing milk
production. In addition, the variable correlation observed between the
amount of concentrated feed in the ration and milk production as a
function of precipitation of the current or previous year confirmed that
milk production depends less on concentrated feed when high-quality
forages are available. Although additional variables were needed to
interpret deviations in the conditional correlations, the study demon-
strated the utility of using conditional Kendall’s tau to assess a variable’s
influence on the dependence between two other variables.
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