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Abstract. With the evolving landscape of cybersecurity, forensic anal-
ysis has become increasingly pivotal, especially with the integration
of machine learning (ML) techniques. However, the use of ML in cy-
bersecurity, and especially in heap dump analysis is still in its infancy,
both due to the lack of quality datasets and the difficulty of process-
ing large-scale heap dumps collections. Another complex task lies in
the transition from raw byte heap dump data into dense vector rep-
resentations, or embeddings, that can be used with ML models. This
paper addresses these challenges by introducing a novel methodology
and the Mem2Graph tool for processing large-scale heap dumps col-
lections. This method has been introduced while developing a novel
approach to enhance the detection of session keys in OpenSSH heap
dumps. Such a novel approach has significantly advanced the state of
the art in predicting the location of keys in OpenSSH heap dumps. Im-
portantly, it paves the way for automated ML applications that lever-
age the structure and embeddings from reconstructed memory graphs,
opening new frontiers in both cybersecurity and data science.

Keywords: SSH keys · Heap dumps · Embeddings · Machine learning
· Knowledge graphs · Graph Convolutional Networks · Memory Graphs

1 Introduction

Encrypted communications have become ubiquitous in maintaining privacy
and security over the internet. Among these, Secure Shell (SSH) is pivotal
for encrypted remote server access, but this encryption poses challenges for
forensic analysis [18]. Traditional methods for obtaining decrypted SSH traf-
fic, such as active man-in-the-middle attacks or binary manipulation, have
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limitations in terms of detectability and ethical implications [10]. A novel ap-
proach, as explored in SSHKex [18], leverages virtual machine introspection
(VMI) to extract SSH session keys from memory, thereby decrypting SSH
traffic with minimal alteration of server binaries that is nearly undetectable
by users. However, the method introduced with SSHKex is highly specific
and requires a large amount of manual work, and a precise match of pro-
gram versions. This makes it difficult to apply this approach to a broader set
of versions or to extend it to other programs. New research proposed by the
SmartKex team demonstrates the interest of machine learning techniques
for the detection of session keys in OpenSSH heap dumps [6].

Contributions This paper builds on the foundation laid by SSHKex and
SmartKex, introducing a twofold advancement in the realm of memory foren-
sics. The main contributions are:

– A general methodology and open source tool (Mem2Graph5) capable of
processing large-scale heap dump dataset for advanced exploration and
ML model training. This tool not only segregates corrupt files but is also
both capable of constructing memory graphs and semantic-rich vector
representation of heap dumps.

– The method directly serves as a novel approach to enhance the detection
of session keys in OpenSSH heap dumps. Our approach surpasses the ex-
isting state of the art, enabling direct prediction of session key locations
(direct address) within the heap, a significant leap forward compared to
previous technique. The method is also much more generic and could be
applied to other programs.

The following provides a methodology for processing heap dump datasets,
followed by a novel approach for enhancing SSH key detection in heap
dumps. Finally, findings and discussions will be presented.

2 Background

Memory forensics, a subfield of digital forensics in cybersecurity, focuses
on the analysis of volatile data in a computer’s memory. This field is critical
for investigating cyberattacks, as volatile data contains information like run-
ning processes, open network connections and associated encryption keys.
Being able to analyze this data is crucial for identifying malicious activity
and gathering evidence of cyberattacks. Programs like OpenSSH, an open-
source implementation of SSH that is widely used across various platforms,
play a significant role in secure communication. It relies on volatile data to
store its session keys and other sensitive information.

5 Open Source: https://github.com/passau-masterarbeit-2023/mem2graph

https://github.com/passau-masterarbeit-2023/mem2graph
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2.1 Heap Dumps in Memory Forensic

In program memory, data structures are typically stored in the heap, a region
of memory used for dynamic memory allocation. Heap dumps are snapshots
of the heap memory at a specific point in time. Their analysis is influenced by
factors such as the version of the program, operating system, and architec-
ture. Understanding heap dumps involves parsing these snapshots to reveal
intricate connections between data structures and pointers. To do so, mini-
mum knowledge is required, such as the heap start address, the endianess
and the memory layout. Below is an example of content of a raw memory
dump file:

1 --offset: ------value in hex: --ASCII:
2 00000048: 0000 0100 0000 0001 ........
3 00000050: 8022 1a3a 3456 0000 .".:4V..
4 00000058: 007f 1a3a 3456 0000 ...:4V..

Listing 1.1. 8 bytes per line visualization of a piece of Hex Dump from
Training/basic/V_7_8_P1/16/5070-1643978841-heap.raw.

The following terminology will be used throughout the paper:

– memory graph: It refers to a directed graph that represents the mem-
ory of a heap dump file. The memory graph is defined in sec. 4.2 as the
main data structure used for the embedding step.

– block: A sequence of 8 bytes. A heap dump file is composed of a se-
quence of blocks where each has an address and a value.

– chunk: A chunk is a sequence of blocks. This concepts directly comes
from the malloc function in C. At its core, a chunk has a user data body
composed of blocks and a malloc header block.

2.2 OpenSSH

OpenSSH, an open-source implementation of SSH, plays a significant role in
secure communication. OpenSSH uses different algorithms and hash func-
tions, for securing data, with a focus on forward secrecy. SSH key manage-
ment involves a key exchange process using algorithms to establish a shared
secret for encryption, with up to 6 keys per session (2 for encryption, 2 for
integrity checks, and 2 for initialization vectors) [18]. This process results in
multiple session keys stored in the heap.

3 Related Work

This section outlines the advancements in OpenSSH key extraction.
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3.1 SSHKex

SSHKex, a project utilizing VMI, focuses on extracting SSH keys and de-
crypting SSH traffic non-intrusively. It requires detailed knowledge of SSH
implementation data structures and function tracing in OpenSSH, leverag-
ing its open source implementation. It uses breakpoints in specific functions
to extract keys, ensuring stealthiness and evidence integrity. Communica-
tions are also captured between the targeted client and server for later de-
cryption using the extracted keys [18].

3.2 SmartKex

SmartKex extends SSHKex’s work, aiming to automate SSH key extraction
from heap memory dumps using machine learning. Unlike SSHKex, it does
not directly obtain key locations, because it has no prior knowledge of the
program implementation. Instead, it identifies high-entropy heap sections
likely to contain keys. This identification using a RandomForest model is
followed by a brute-force approach for actual key extraction [6].

3.3 Research gap and objectives

Previous works have focused on extracting keys from OpenSSH heap dumps
using either implementation knowledge (SSHKex) or ML enhanced entropy-
filtered bruteforce (SmartKex), but there is a lack of research on the pre-
processing of heap dumps for ML techniques. This paper aims to bridge this
gap by introducing a novel methodology and the Mem2Graph tool that cov-
ers different approaches for heap dump exploration and embedding, with a
focus on ML and deep learning applications applied to OpenSSH key predic-
tion. This new approach is directly inspired from recent advances in the field
of knowledge graphs and graph neural networks (GCNs). The Mem2Graph
tool has been designed with genericity in mind, and is available on GitHub6.

4 Methodology

This section dives into the methodology for Heap Dump Processing, Memory
Graph Construction as well as the different possible embeddings.

4.1 Heap Dump Processing

The present work relies on a dataset of heap dump files from OpenSSH ses-
sions, generated on a x86_64 architecture, Linux (Debian)7 OS with Debian

6 https://github.com/passau-masterarbeit-2023/mem2graph
7 According to Hans Reiser: Linux debian10 4.19.0-16-amd64 #1 SMP Debian

4.19.181-1 (2021-03-19) x86_64 GNU/Linux

https://github.com/passau-masterarbeit-2023/mem2graph


Heap Dump Embedding for ML and OpenSSH Key Prediction 5

GLIBC 2.28-10. Since OpenSSH implementation is in C, it relies on the mal-
loc function from the GLIBC library to allocate memory on the heap. malloc
uses a boundary tag method to manage in-use and remaining free chunks
of memory. Each chunk contains metadata that helps in the allocation and
deallocation of memory [4,7]. Those components can be used to retrieve in-
formation about the chunk like its size, its status (in-use or free), and the
address of the next chunk [2,4]. Figure 1 is a diagram of an allocated chunk
in GLIBC [7]:

Fig.1. Diagram of an allocated chunk in GLIBC 2.28 [7]. Each rectangle represents
a block.

-last-footer-

-malloc-header-

-chunk-user-data-

-chunk-footer-

-next-malloc-header-

Previous chunk size. If unallocated, next P=0

Header: Size of chunk (bytes), flags |A|M|P

User data starts here...

(size of chunk, but used for application data)

Size of next chunk, in bytes |A|0|1

...next blocks...

...previous blocks...

in-use user data

Assumptions We consider the following assumptions for each heap dump:

– Same program origin: The embeddings are developed to capture in-
formation about the memory of a specific program, here OpenSSH.

– Heap dump file size: A multiple of 8 bytes as a sequence of blocks.
– Chunk chaining: All the heap dump files have been generated using

the same malloc implementation for memory pattern consistency. Each
file is expected to start by a first allocated in-use chunk. Using informa-
tion from chained malloc headers, exploration of the heap dump file is
possible [4]. Note that only the malloc header is really needed, meaning
that this method can be adapted to other allocation functions that rely
on the same boundary tag technique.

– Dataset annotations: Additional annotations are needed for the explo-
ration and embedding of heap dump files:
• Heap start address: Required to compute the real address of blocks

in the heap. This is the address of the first block of the heap dump file
in the program memory, which needs to be stored when generating
the heap dump file.

• Endianess: Needed to correctly interpret the value of each block,
and especially pointers.
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• Other annotations: Depending on the program and task to perform
on the dataset, additional annotations might be needed. In the case of
OpenSSH key prediction, the address of each session key is required
for training.

A first cleaning step is needed to ensure that all the heap dump files
are valid by following the assumptions stated above. A valid heap dump can
thus be parsed by following the chaining of malloc headers. The following
diagram shows the typical structure of a heap dump file:

Fig.2. Heap dump showing a mix of free and in-use chunks.

...in-use...

Chunk 0: In-use header has P=1

Chunk 1: In-use header has P=1

Chunk 2: Free header has P=1

Chunk 3: In-use header has P=0

...in-use...

Chunk 100: In-use header has P=1

Chunk 101: Free header has P=1

Chunk 103: In-use header has P=0

...in-use...

4.2 Memory Graph construction

The memory graph stands as the principal data structure employed in the
embedding phase. Its design is fundamentally driven by the objective to
encapsulate the memory architecture inherent in heap dump files for ML
purposes. It is pivotal in addressing the challenges posed by the dataset
imbalanceness and the curse of dimensionality (see sec. 5.1). The memory
graph is a directed graph drawing direct inspiration from the principles of
Knowledge Graph (KG) theory [11]. There are 2 types of such graphs:

– Block graph: Composed of nodes that represent blocks and edges that
represent pointers from one block to another, or chunk ownership re-
lationship from a malloc header considered as a chunk root node to its
block nodes contained within the chunk. This second relationship is di-
rectly inspired from the rdf:Bag container of the Resource Description
Framework (RDF) ontology, which is used to model unsorted collections
of resources in a KG[3, p69]. This graph contains all the information of
the heap dump file, but is very large and thus difficult to process.

– Chunk graph: Composed of nodes that represent chunks and edges
that represent pointers from one chunk to another. It is several orders of
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magnitude smaller than the block graph, and is thus much more efficient
to process. In the following, we will focus on this type.

This graph is constructed for each heap dump by a dual parsing process:

1. Chunk parsing: The first parsing of the heap dump follows the chunk
chaining assumption (see 4.1) to construct all the chunk nodes.

2. Pointer parsing: The second one consists at iterating over all the chunk
nodes and parsing their blocks to construct the pointer edges.

Note that, for ML purposes, the addition of block or chunk annotation
is possible in a third stage. A block is considered a pointer if its value is a
valid address within the heap dump address range. This is based on the fact
that, for any block of 8 bytes, and a typical heap dump containing 100 000
blocks (as per our dataset), the probability of a random block to be a pointer
is very low. This stays true even for bigger heap dumps, as this probability
is approximately equal to 5× 10−15 (it is equal to n÷ 2k×8 bits where n is the
number of blocks in the heap dump (the range) which is generally around
100 000, and k is the block size which is equal to 8). Once the memory graph
is constructed, it can be saved in different formats for further processing.
Mem2Graph supports the popular human-readable DOT format [5].

4.3 Embeddings

Embeddings are a pivotal concept in data representation, particularly in ma-
chine learning. A feature, in this context, refers to measurable attributes or
characteristics of phenomena. An embedding is defined as a fixed-size fea-
ture vector representation of a high-dimensional object, serving the purpose
of capturing complex relationships between those objects. This is especially
useful in scenarios such as Natural Language Processing (NLP) or graph
analysis, where embeddings involve mapping discrete objects like words or
nodes to vectors of values in a lower-dimensional space, thereby simplifying
and enriching their representation [8]. Embeddings can be manually engi-
neered (feature engineering) or automatically learned using deep learning
techniques. The following section describes 2 different embedding strate-
gies compared in this work.

Embedding from Bytes Those embeddings are directly obtained from the
content of each chunk which can vary in size:

– Embeddings based on feature engineering from chunk memory graph:
• Padding Method: Add zeros at the end of the chunk to match the

size of the largest chunk. However, this approach results in very
large embeddings (65536 features) and is not efficient.
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• Trimming Method: Cut down larger chunks to match the size of
smaller ones but the size of the cut needs to be determined.

• Statistical Method: Compute statistics on the bytes of the chunk,
including the mean, standard deviation, MAD (Mean Absolute Devia-
tion), Skewness [21], Kurtosis [21], Shannon entropy, and N-grams8.

• Those embedding are completed with 4 common features: the chunk
size in bytes, the number of pointers inside the chunk, the number of
other blocks inside the chunk and the chunk position in the dump.

– Automated embeddings using Deep Learning NLP models:

• Consider the byte content of the chunk as sentences and combina-
tions of bytes as words.

• Two state-of-the-art, advanced NLP models have been tested:
Word2Vec [13] and Transformers [20].

Embedding from graph Graph embedding techniques aim to map nodes
and edges in a graph to vectors in a low-dimensional space [11]. The primary
goal is to preserve the graph’s structural properties, such as node connec-
tivity and community structure, in the embedded space. Many embeddings
have been developed [11], like Node2Vec [9], DeepWalk [15], LINE [19],
Graph Factorization, etc. Node2Vec has been chosen following the need to
capture the specificities (see 4.1) and complex local structures from mem-
ory graphs for later ML applications. While its versatility is a strong point, it
comes at the cost of increased resource consumption due to the introduction
of several hyperparameters controlling the Random Walks.

5 Application to OpenSSH Session Key Prediction

The following describes the application of the methodology to the problem
of OpenSSH session key prediction.

5.1 Dataset

The dataset provided by the SmartKex team9 [6], and refined by the au-
thors10 following the assumptions (see 4.1), is composed of 26202 valid heap
dump binary files from OpenSSH11 together with their JSON annotation file.
The task of predicting the addresses withing each dump is highly imbal-
anced. Each heap dump is composed of around 100 000 blocks, and only 6
keys, meaning 6 addresses are positively labelled. Thus, the imbalance ratio

8 Combination of N bits
9 Available on Zenodo: https://zenodo.org/records/6537904

10 Available on Zenodo: https://zenodo.org/records/10514199
11 OpenSSH on different versions (from V6.0 to V8.8). Architecture, see 4.1

https://zenodo.org/records/6537904
https://zenodo.org/records/10514199
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is around 1:17000 positive blocks. However, an important discovery is that
the keys are always located at the beginning of their parent chunk. This al-
lows to reconsider the problem as a binary chunk classification, where the
goal is to predict if a chunk contains a key or not. This improves the bal-
ancing of the dataset since every dump is only composed of around 1000
chunks. So the new ratio is around 1:170 positive chunks. Chunk filtering
strategies have also been tested, like entropy filtering (see 3.2), chunk size
(16, 32, 64 bytes depending on the size of keys) or in-used chunk filtering.

5.2 Embeddings and model comparison for key prediction

Comparing the embeddings is not a trivial task. Indeed, the embeddings
from bytes12 are much more memory efficient than the embedding from
graph. The limiting factor being memory, 2 experiments were launched in
parallel on 2 servers with 512 GB of RAM. The first experiment is done on the
whole dataset and compares the different embeddings from bytes. Chunk fil-
tering techniques have been used to reduce the imbalance ratio, as well as a
feature selection method (Pearson correlation matrix [1]) to ensure a subset
of 8 fair features for each compared embedding. The RandomForest model is
used for comparison with previous work [6]. The second experiment is done
on small subsets of the dataset and compares all the embeddings, alone or
in combination. It was also used to test other ML and Deep Learning (DL)
models (RandomForest, SGDClassifier, LogisticRegression from Scikit-Learn
[14]) and some custom GCN models:

– Very simple GCN: minimalist model with one GCN layer, followed by
one fully connected layer. Convolution layer takes input features and
transforms them into a 16-dimensional space. A ReLU activation function
is applied to the output to introduce non-linearity in the model.

– Simple GCN: Similar but with 2 GCN layers.
– First GCN Model: First implemented version with 2 GCNs and 3 fully

connected layers.
– GCN with dropout: Same as previous, with additional dropout (rate of

0.5 after each ReLU activation) and batch normalization layers to make
the model both more robust and faster to train.

– Advanced GCN: Similar to previous but with 3 GCN layers (32, 64 and
128 dimensions).

6 Results and Discussion

The following section regroups the results of the 2 experiments conducted.
The focus is on the recall because the objective is to detect all the potential

12 Note: The trimming embedding considers the first 12 bytes of the chunk since the
smallest key is 12-byte long.
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keys to be used later with a bruteforce post-validation. For each series, train-
ing and evaluation subsets are used, but no cross-validation (CV) is done due
to a range of factors: the added computation cost, the dataset limited num-
ber of positives, the fact that CV is not recommended for feature selection,
or the fact that many instances are trained and need to be comparable [16].

6.1 Previous results from SmartKex

The following table 1 is extracted from the SmartKex paper [6]:

Table 1. Results from SmartKex [6].

Classifier Accuracy Precision Recall F1-score

High Precision 0.9975 0.9317 0.8437 0.8855

High Recall 0.9906 0.5553 0.9962 0.7131

stacked 0.9956 0.7609 0.9160 0.8313

window to address
for comparison

0.0622 0.0475 0.0572 0.0519

An important caveat about those results is that the predictions are done
on raw “128-byte slice of data” [6], and thus require bruteforce for key ex-
traction whereas the current work predicts directly the address of keys, and
thus is 16 times more precise from start, by design.

6.2 Results of first experiments on full dataset

The first series of experiments was focused on exploring features and em-
bedding models and their impact on key prediction. As such, this series was
conducted using the whole cleaned dataset. It used 24699 heap dumps from
Training (20964) and Validation (3735), with a ratio of 0.178 between
training and evaluation steps. It also included a timeout (5600s), memory
limit (around 512 GB), and a limited hyperparameter grid-search (see 2 and
3) to match the performance imperative of the experimental setup.

Table 2. Tested hyperparameters for the instances of the Transformer model.

Word size 16 16 8 8 16 16 8 8

Embedding dimension 8 16 8 16 8 16 8 16

Transformer units 2 2 2 2 4 4 4 4

Num heads 2 2 2 2 4 4 4 4

Num layers 2 2 2 2 4 4 4 4

Dropout rate 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3

According to table 4, the best embedding for key prediction on recall is
the trimming method with Random undersampling filtering, on the whole
dataset achieving great improvement from results provided by SmartKex (1
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Table 3. Tested hyperparameters for the instances of the Word2Vec model.

Embedding dimension 8 8 8 8 16 16 16 16 100 100 100 100

Window character size 8 8 16 16 8 8 16 16 8 8 16 16

Word size 2 4 2 4 2 4 2 4 2 4 2 4

Table 4. Byte embedding performance results

Methods Filter Precision Recall Accuracy f1-score

trimming
method

Random undersampling 0.7391 1.0000 0.9985 0.8499
Chunk size filter 0.8354 0.9995 0.9990 0.9101

Entropy filter 0.9176 0.9977 0.9853 0.9559
Chunk size and entropy filter 0.8972 0.9999 0.9735 0.9458

Statistical
method

Random undersampling
Out Of Memory (OOM)

Chunk size filter
Entropy filter 0.9686 0.9980 0.9945 0.9831

Chunk size and entropy filter 0.9335 0.9902 0.9811 0.9610

Best DL
instance

Chunk size and entropy filter 0.9511 0.9992 0.9879 0.9746

versus 0.0572). Note that the same embedding with both chunk size and en-
tropy filtering is just one missed key away from the previous, but has a much
better precision. This is maybe due to noise. The best F1-Score is the Sta-
tistical method with Entropy filtering (0.9831 vs 0.0519). The DL instances
(Transformers and Word2Vec) have always lesser results compared to the
other embeddings. This is probably a consequence of the limited hyperpa-
rameter search. The statistical method has run OOM because of its size (280
features due to the N-Gram metric).

6.3 Results of second experiments on small subset of the dataset

This series of experiments was conducted on an increasing subset of the
cleaned dataset, containing 16, 32 and 64 heap dumps with a ratio of 0.2
for evaluation over training. It totals more than 400h of in-parallel com-
putation time on an 80-core server with 512 GB of RAM. The goal was to
compare the different embeddings and models on a small dataset, especially
the Node2Vec and GCN models, which are computationally and memory-
intensive. A more extensive hyperparameter search was also conducted on
both Node2Vec and classification models13.

In total, the experiments including hyperparameter search lead to 13427
different models trained and tested, with a total Node2Vec embedding time
of more than 136 days of synchronous time, or 29.86 times higher than the

13 Raw CSV of results with hyperparameters can be directly consulted here: https:
//github.com/passau-masterarbeit-2023/masterarbeit_report_onyr/blob/
main/src/results/csv/concatenated_csv/concatenated_raw_result_v2.csv

https://github.com/passau-masterarbeit-2023/masterarbeit_report_onyr/blob/main/src/results/csv/concatenated_csv/concatenated_raw_result_v2.csv
https://github.com/passau-masterarbeit-2023/masterarbeit_report_onyr/blob/main/src/results/csv/concatenated_csv/concatenated_raw_result_v2.csv
https://github.com/passau-masterarbeit-2023/masterarbeit_report_onyr/blob/main/src/results/csv/concatenated_csv/concatenated_raw_result_v2.csv
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Table 5. Best instance for each model, with respect to f1 score.

Model Accuracy Precision Recall F1 Score Embedding

sgd-classifier 0.9924 0.4615 1.0000 0.6316 node2vec

very-simple-gcn 0.9946 0.6000 0.5000 0.5455 node2vec

first-gcn 0.9935 0.5000 0.5000 0.5000 node2vec

simple-gcn 0.9935 0.5000 0.5000 0.5000 node2vec

logistic-regression 0.9912 0.3333 0.5000 0.4000 node2vec

gcn-with-dropout 0.9858 0.2110 0.7667 0.3309 node2vec

advanced-gcn 0.9898 0.2097 0.4333 0.2826 node2vec

random-forest 0.9984 1.0000 0.0833 0.1538 trimming

training time. Since the focus is on graph embedding, the chunk memory
graphs from heap dumps need to be complete meaning that it was not possi-
ble to use chunk filtering. According to table 5, Node2Vec graph embedding
is clearly the best for all but RandomForest where the first series of ex-
periments showed excellent results for this model on byte embeddings like
trimming.

Table 6. Best model instance for each metric.

Metric Model Accuracy Precision Recall F1 Score Embedding

accuracy random-forest 0.9984 1.0000 0.0833 0.1538 trimming

precision logistic-regression 0.9944 1.0000 0.0417 0.0800 node2vec

recall first-gcn 0.9826 0.2727 1.0000 0.4286 node2vec

f1 score sgd-classifier 0.9924 0.4615 1.0000 0.6316 node2vec

With table 6, the best classification model instance for optimal recall is
given with several models like SGDClassifier and FirstGCN ; and for preci-
sion, with models like RandomForest and LogisticRegression. The best over-
all model (with highest F1-Score) is SGDClassifier, but its score of 0.6316 is
much worse than the ones obtained with the full dataset in the first series
of experiments (0.9831 with Statistical and Entropy filter). More complex
GCN models tend to have decreasing precision but improved recall. This
is probably due to the fact that the dataset is very small, and the models
are overfitting. The best GCN model is the simplest one, with a F1-Score of
0.5455 which is worse than expected.

6.4 Discussing limitations

Several limitations with this work needs to be considered. First, no time
comparison between the different embeddings is provided, but Node2Vec is
clearly several order of magnitude slower during the training phase. Sec-
ond, it was not possible to test all state-of-the-art graph embeddings and
classifiers due to time and resources constraints. Third, there was no GPU
computing because of VRAM limitations.
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7 Conclusion

Within memory forensic analysis, heap dumps are a rich source of informa-
tion. However, they are difficult to process, and there is no standard way of
representing them. Machine learning techniques have been shown to be use-
ful for heap dump analysis, but they require a dense representation of the
heap dumps. This report demonstrates that memory-graph representation
of heap dumps can be efficient for providing byte and graph embeddings.
The authors have introduced the Mem2Graph tool for this precise task, as
well as a methodology for dealing with heap dump files for ML purposes.
Simple classification models like RandomForest and SGDClassifier can be
trained very efficiently and appear to be better than more complex models
like GCNs for key prediction. Our experimental results show much better re-
sults than previous state-of-the-art work on key prediction from heap dumps.
This paper opens the door to further research on the use of graph modeliza-
tion from heap dump for ML tasks.

Future Work Many avenues for future work are possible. These include
conducting a more comprehensive comparison of different embedding and
classification techniques, analyzing the impact of different C libraries and
programming languages on memory layout, and enhancing Mem2Graph to
support a wider range of graph formats and heap dump types. The authors
have also tried some clustering techniques on chunks, but those research
would need to be pushed further. Pursuing this direction could significantly
advance the development of a universal machine learning-assisted memory
forensics tool for key extraction and other tasks.
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