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Abstract

Ovaries are of paramount importance in reproduction as they produce female gametes through
a complex developmental process known as folliculogenesis. In the prospect of better under-
standing the mechanisms of folliculogenesis and of developing novel pharmacological approaches
to control it, it is important to accurately and quantitatively assess the later stages of ovarian
folliculogenesis (i.e. the formation of antral follicles and corpus lutea). Manual counting from
histological sections is commonly employed to determine the number of these follicular structures,
however it is a laborious and error prone task. In this work, we show the benefits of deep learn-
ing models for counting antral follicles and corpus lutea in ovarian histology sections. Here, we
use various backbone architectures to build two one-stage object detection models, i.e. YOLO
and RetinaNet. We employ transfer learning, early stopping, and data augmentation approaches
to improve the generalizability of the object detectors. Furthermore, we use sampling strategy to
mitigate the foreground-foreground class imbalance and focal loss to reduce the imbalance between
the foreground-background classes. Our models were trained and validated using a dataset con-
taining only 1000 images. With RetinaNet, we achieved a mean average precision of 83% whereas
with YOLO of 75% on the testing dataset. Our results demonstrate that deep learning methods
are useful to speed up the follicle counting process and improve accuracy by correcting manual
counting errors.

Keywords— Artificial intelligence, object detection, computer vision annotation, deep learning, folliculo-
genesis, corpus luteum, antral follicle, reproduction.

1 Introduction

Folliculogenesis is a highly complex and dynamic process which culminates with the ovulation of one or more
oocyte(s) at each cycle. During each estrous cycle, the follicles develop from a dormant primordial pool. The
oocytes start to grow and maturate while surrounded by an increasing number of granulosa cells. Various
classifications have been used to describe the different stages of oocyte and follicle development[1, 2]. Briefly,
primordial follicles contain a partial or complete single layer of squamous granulosa cells. Primary follicles
contain a single layer of cuboidal granulosa cells. Antral follicles are characterized by multiple layers of granulosa
cells and a cavity named antrum. The remaining of the antral follicle following ovulation is called corpus luteum.
It is composed of granulosa cells, thecal cells and blood vessels. The evaluation of follicle numbers across
these different classes at various stages of development and/or upon exposure to hormonal/pharmacological
treatments is crucial in many fields of biology. The number of follicles and corpus luteum can vary between
estrus cycles in response to physiological and non-physiological factors. These factors include endocrine-
disrupting chemicals [3, 4], maternal aging, chemotherapy [5], infection [6], and inflammation [7]. All of them
have been shown to affect ovarian reserve. As the antral follicles and corpus lutea represent the hallmark of late
follicular development and ovulation, counting their number is necessary when studying infertilities, improving
assisted reproduction technologies or evaluating of the effects of drugs.

Research and pre-clinical phase of drug development extensively use rodents as experimental models to
evaluate potential efficacy and/or repro-toxicity [8, 9]. Consequently, the refinement of follicle quantification
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methods has gained heightened significance. It is imperative for researchers to understand the strengths and
weaknesses of the available counting approaches to ensure the accurate interpretation of results. Histological
counting have been widely accepted and used in reproductive biology research to estimate the number of
follicles. It enables the distinction of various types of follicles including, primordial, primary, secondary, and
antral follicles. It offers spatial distribution and organization of follicles within the ovary. However, it remains
a tedious and time-consuming technique based on the visual assessment by the expert. This approach rely
entirely on the expert and, therefore, is prone to human errors.

Artificial intelligence (AI)-based methods have gained popularity in recent years and have been successfully
applied in many domains such as image recognition [10], robotics [11], speech recognition [12], life sciences [13,
14, 15, 16], etc. Advances in biomedical technologies are providing us with large amounts of data such as
proteomics, genomics, and medical images [17]. They have shown great performance in image analysis due to
the availability of large amount of labelled dataset, sometimes even surpassing the contributions of experts [18].
Follicle detection from histology images using deep learning methods remains largely an uncharted territory.
The high resolution of the whole slide digital images (WSI) obtained from digital slide scanners combined with
different AI methods, can reduce the workload and inconsistencies of current methods [19, 20]. This paper
highlights the benefits of AI methods, particularly deep learning, for counting antral follicles and corpus lutea.
Regarding deep learning methods to count follicles in mouse ovaries, in [21] authors proposed a convolutional
neural network (CNN) with a sliding window algorithm to count primordial follicles. They used data of 9
million images of mouse ovaries to train the model and 3 million images to test the model. They achieved
precision of 65% and recall of 91%. Later in [22] authors performed detection of 5 classes of follicles (primordial,
primary, preantral, secondary, and tertiary). They started with generating sub-images from the input image,
then these sub-images were classified into edge, follicle, and background classes, and finally a binary image was
created representing the background and follicle class, and position of these binary sub-images were drawn on
the original input image. In the final classification phase, all follicles localized in the input image were classified
into 5 classes. Their dataset consists of 1750 images for the training set and 222 images for the testing set. On
the testing dataset, they achieved a mean accuracy of 95%. In contrast to earlier research, where primordial,
primary, preantral, secondary, and tertiary were detected, our primary focus of this study are late follicles,
i.e., the antral follicles and corpus luteum. Furthermore, we report state-of-the-art mean average precision
(MaP) metric for the evaluation of the proposed object detection models which is absent in the aforementioned
methods. The proposed model represents a first step towards automating the quantitative assessment of late
folliculogenesis.

The remainder of the paper is structured as follows. In Section 2, we introduce the background on late
follicles, their annotation, and describe the proposed machine learning framework for follicles counting. In
Section 3, we present and compare our results. In Section 4, we identify limitations, give concluding remarks
and describe future work.

2 Methods

2.1 Animals

All experimental and care procedures were by the European and French Directives and approved by the local
ethical committee CEEA Val de Loire N°19 and the French ministry of teaching, research, and innovation
(APAFIS #18035 − 2018120518194796). C57BL/6JOlaHsd mice were purchased from Inotiv.inc. These fe-
male mice of 12 − 20 week-old were housed in the rodent animal facility, experimental unit: UEPAO (PAO,
INRAE: Animal Physiology Facility, https://doi.org/10.15454/1.5573896321728955E12) in an environmentally
controlled room maintained at 21◦C, humidity of 55 percent with a 12h light − 12h dark photoperiod, ad
libitum access to food and water.

2.2 Tissue collecting and processing

The mice were sacrified by cervical dislocation. Ovaries were collected, trimmed from the fat pad and fixed
in Bouin’s solution (Sigma Aldrich, HT10132) at 4◦C overnight. The samples were dehydrated using ethanol
water sequential incubations and embedded in paraffine blocks (see figure 1). They were sequentially sectioned
into 7µm using a microtome (Leica HistoCore AUTOCUT). The whole sections were mounted on microsocope
superfrost plus slides. Between 7 to 15 consecutive sections were placed onto a single slide. After 48h at room
temperature, each slide was deparaffinized, rehydrated and stained with hematoxylin-eosin (Sigma Aldrich,
HHS32, HT110132) for morphological observation. The sections were mounted in Depex (DPX new, Merck
GaA, Darmstadt, Germany).
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2.3 Manual follicle counting

The slides were digitized after 72h using a histology slide scanner Axio scan Z.1 Zeiss, running under Zen
software (ZENblue 3.5 edition) with a magnifcation of 10x (numerical aperture 0.45) (see figure 1). Follicles
containing multiple layers of granulosa cells and a follicular antrum were designed as antral follicles. To avoid
counting the same follicle on serial sections, only those containing a clear visible oocyte were scored. The total
number of antral follicles is the sum of the antral follicles from all sections of a complete ovary. The corpus
luteum is more a solid structure, made of granulosa cells (rounded cells), theca cells (elongated cells), and
blood vessels.

2.4 Deep learning framework for automatic counting ovarian follicles

2.4.1 CVAT annotation and data extraction

The sections on the slides were extracted in Joint Photographic Experts Group format (JPG) by using ZENblue
3.5 edition to annotate with Computer Vision Annotation Tool (CVAT), a free open source, suitable for image
and video labeling [23]. We decided to use bounding boxes for annotation purposes for two reasons: 1) Boxes
require relatively less workload to annotate as compared to other formats such as polygon, etc. 2) It has been
shown previously that other formats do not necessarily increase performance [24] by large margin while causing
more workload for the annotator. Three structures were annotated: 1) antral follicle (AF), 2) antral follicle
without ovocyte (AFWO), and 3) corpus luteum (CL). In figure 1, we show the manual annotation workflow.

Figure 1: Data extraction process for annotation of whole slide images. (a) Sample processing - Ovaries
were dissected out and trimmed from the fat pad, fixed in Bouin’s solution, dehydrated and embedded
in paraffine blocks. (b) Image digitation - The stained slides were digitized by Axio scan Z.1 Zeiss
with a magnification of 10x. (c) Follicle annotation - Follicles containing multiple layers of granulosa
cells and a follicular antrum were designed as antral follicles (Pink box), The antral follicles lacking a
visible nucleus were labelled as antral follicle without oocytes (Blue box) and the temporary endocrine
structures formed from the remanants of the ovarian follicle after ovulation were identified as corpora
luteum and annotated (Yellow box).

2.4.2 Data augmentation

In our work, we use on-the-fly data augmentation since it eliminates the need to save additional datasets
and enhances computational efficiency by dynamically generating augmented data during the training process,
thereby improving model generalization and robustness.

2.4.3 Class imbalance

Classification algorithms are known to be very sensitive to unbalanced data when the aim is to derive classi-
fication and prediction tools for categorical classes. In general, the algorithms will correctly classify the most
frequent classes and lead to higher misclassification rates for the minority classes, which are often the most
interesting ones. In our case, we observe that the AFWO is an over-represented class. We can see from table 1
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that we have approximately 1.5x more samples of AFWO as compared to AF and approximately 2x more
samples of AFWO as compared to CL. To deal with the data imbalance, we sampled the dataset as shown
in the sampled dataset column. In object detection tasks, we have foreground-background class imbalance in
addition to foreground-foreground class imbalance. It is unavoidable because majority of the boxes are labeled
as the background during the training process. In this paper, we employ sampling methods to deal with the
foreground-background imblance. Refer to [26] for a detailed review of various data imbalance strategies.

2.4.4 Object detection models

Object detection includes both locating and classifying objects of interest in images (in our case, full sections of
ovaries). In general, two types of detectors can be used: two-stage and one-stage detectors. Two-stage detectors
are slower but more accurate due to their complicated approach which involves first generating region proposals
before detection and classification tasks. One-stage detectors are more efficient in their approach to object
detection and classification, as they do not require filtering of the region proposals, making it faster but slightly
less accurate than two-stage detectors.

In our work, we compare the performance of two one-stage detectors: RetinaNet [27] and YOLO [28]. Since
our objective is to choose an architecture with real-time detection capabilities, we decided to develop model
based on one-stage approach. Furthermore, we adopt the transfer learning approach to improve performance
of our models by utilizing pre-trained models on other tasks [29]. Finally, we use the early stopping criteria to
halt the training of a model when its performance no longer improves.

In figure 2, we show high level overview of RetinaNet and YOLO (You Only Look Once). RetinaNet is a
popular one-stage detector which combines feature pyramid network (FPN) for detecting multi scale objects
and focal loss to handle imbalance between background and foreground class. RetinaNet has two separate
output detection head, one for the classification and one for the bounidng box regression. These heads are
shared among all the features of the FPN. We used different backbone (ResNet50, CSPDarkNet, MobileNetV3,
EfficientNetV2) architecture trained previously on ImageNet 2012 to gauge difference in performance and to
establish baseline performance. Our goal is to select a backbone model which can be used to build a tool used
by biologists with real-time performance.

YOLO is extremely fast, real-time one-stage detector where a single neural network is used to simultaneously
predict multiple boxes and their classification probabilities. YOLO is relatively less accurate but incredibly
fast object detection architecture, it is commonly utilized in security cameras. YOLO divides an entire image
into a S x S grid, and if the center of a certain object falls within the grid cell, then this grid is responsible for
detecting that specific object. Each grid cell can predict several bounding boxes along with their confidence
scores and classes. The confidence score indicates whether or not the object has been detected. YOLO
multiplies the class probabilities for each grid cell with confidence scores of the bounding box to obtain final
detections. In our work, we use the most latest variation of YOLO called YOLOv8 with a small backbone
YOLOV8 pretrained on COCO dataset. This architecture comes with two major modification, i.e., anchor-free
detection and mosaic data augmentation.
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Figure 2: High level overview of one-stage detectors. RetinaNet employ feature pyramid network to
extract multiple scales information. Detection heads takes information from multiple levels to perform
prediction. YOLO takes the whole image, resize it, apply single convolutional network over it, and
finally employs non-max suppression based on model’s confidence scores.

2.5 Evaluation metrics

In this paper, we use state-of-the-art metrics to evaluate the performance of our object detection models, i.e.,
average precision (AP). AP relies on precision, recall, and intersection over union (IoU) metrics.

2.5.1 Intersection over Union

In object detection, we localize objects and predict their classes using boundary boxes. Object detection models
take into account the quality of the predictions by calculating the intersection between the ground truth object
box G and the predicted bounding box G. IoU represents the ratio of the intersection over union between the
ground truth and predicted boxes (see eq 1). We generally measure the performance of the object detection
model using various IoU thresholds. In figure 3, we highlight different IoU thresholds, orange represents the
predicted box while blue represents the ground truth box.
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IoU(G,G) =
A(G ∩G)

A(G ∪G)
(1)

where A represents the area of the bounding box.

(a) Excellent with IoU = 0.95 (b) Good with IoU = 0.75 (c) Poor with IoU = 0.30

Figure 3: Intersection over Union (IoU) with different threshold showing the quality of prediction.

2.5.2 Precision and Recall

The term “precision” is used to describe how precise our model is, i.e., how many of the total detections for
a given class actually belonged to that class. Recall refers to the number of cases of particular class instances
that our model is able to predict out of the total number of ground truths for that particular class. There is
usually a trade-off between precision and recall; increasing one value can result in a drop of the other. We aim
to increase the precision and recall values as much as possible. The precision and recall are calculated using
equations 2 and 3, respectively.

P =
TP

all; detections
=

TP

TP + FP
(2)

R =
TP

all; ground; truths
=

TP

TP + FN
(3)

A true positive (TP) represents the number of true predicted boxes where IoU is equal to or greater than
a certain threshold. A false positive (FP) is a predicted bounding box that either does not match any ground
truth box (IoU is below the threshold), incorrectly matches the class label, or is an extra detection when
multiple boxes are predicted for the same object (only one is kept as TP). A false negative (FN) indicates the
model’s inability to identify an object present within the image, i.e., no predicted box overlaps with the ground
truth box above the IoU threshold or the predicted box overlaps but the class is not correctly identified.

2.5.3 Average precision

Average precision (AP) can be used to summarize the precision and recall values into a scaler. It represent the
area under the precision-recall curve and is calculated using equation 4 for each class:

AP =

∫
1

r=0

p(r)dr (4)

where p is the precision and r is the recall.
We calculate mean average precision (MaP) using using eq 5:

MaP =
1

N

N∑
i=1

APi (5)

where N is the total number of classes, in our case 3, APi is the average precision for class i, and MaP is the
average precision of all class’s average precision.

6



3 Results

3.1 Image annotations

Since we are performing object detection task in a supervised manner, it is necessary to obtain labeled data
of objects of interest in different histology images. We use CVAT to manually annotate images to identify
categories of follicles and their boundary box coordinates. In figure 4, we show the annotation of one whole
slide image in the CVAT software. Approximately 60 hours were required to annotate the whole data set. A
total of 1373 antral follicles with nucleus, 1941 antral follicle without nucleus and 869 corpus luteum.

Figure 4: Annotation of whole slide images (WSI) using the Computer Vision Annotation Tool (CVAT).
This figure illustrates the CVAT interface used for the annotation of ovarian structures for image
analysis. The interface displays an image of an ovary section with annotated regions highlited by
colored boxes. The yellow box indicated the area corresponding to the corpus luteum. The blue box
delineates an antral follicle lacking a visible nucleus. The pink box represented an antral follicle with
a discernible nucleus.

The input data of our model consists of four numeric values which represent where the object is located
on the image and one more value that shows what kind of an object it is. Different formats can be used
to represent boundary boxes. For example, one can define the boundary box by specifying a set of corner
coordinates, width and height. Another way is to describe it using the coordinates of its top-left and bottom-
right corners, i.e., [x1, y1, x2, y2]. To specify coordinates in our study, we use the [x, y, w, h] format. The top-left
corner is represented by two values x and y, width and height are represented by w and h values.

3.2 Data description

Our full dataset consists of 1209 ovarian sections. Within these sections, we counted 1373 antral follicles, 1941
antral follicles without oocytes, and 869 corpus lutea. The sampled dataset consists of 999 images with 1373
antral follicles, 1549 antral follicles without oocytes, and 869 corpus lutea objects. Both datasets were randomly
divided into training (70%), validation (15%) and testing (15%) sets. In table 1, we show characteristics of our
dataset.
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Full data Sampled data

AF AFWO CL AF AFWO CL

Training 981 1352 620 948 1100 650
Validation 199 297 102 232 233 92
Testing 193 292 147 193 216 127
Total 1373 1941 869 1373 1549 869

Table 1: Training, testing, and validation sets. AF : Antral Follicle, WO : Antral Follicle without
oocytes, CL : Corpus luteum

3.3 Preprocessing

We converted XML files obtained through the CVAT software to CSV files to perform object detection tasks.
We use the OpenCV python library [30] to remove the excessive white patches from histology images.

It is well established that image resolution has a direct impact on the classification and localization of
objects. In particular, it is difficult to detect small objects in low-resolution images. In general, for CNN-based
detectors, images are down-sampled to a resolution of 256 x 256. Our initial findings confirmed that resolution
does impact the performance of object detectors. We observed that high resolution, although computationally
more expensive, does not translate systematically into improved performance, which has also been shown
previously in other studies [31, 32]. In our case, we set the image resolution to 640 x 640 pixels.

To deal with the background-foreground class imbalance, we used focal loss [27]. This loss function modifies
classic cross entropy function in a way that it down weights the loss contribution of well classified examples
(background class) and quickly leading the model to focus on difficult examples. In order to deal with the
object class imbalance, we used the data sampling technique. We kept only those images that had at least
one of the antral follicle or corpus luteum objects, leading to the elimination of 210 images. Note that these
images did not have any antral folllicle and corpus luteum objects. In this paper, we refer to this dataset as a
sampled dataset.

Data augmentation in object detection models is more challenging and complex as compared to simple
classification models as we must take into account the underlying bounding boxes during various transforma-
tions. We performed on-the-fly data augmentation using Keras-CV library [33], which propose native support
for data augmentation with bounding boxes. We used random flip and jittered resize techniques for increasing
the diversity of our dataset. In figure 5, we show two images from our training set before (see figure 5a) and
after augmentation (see figure 5b).

(a) Before data augmentation (b) After data augmentation

Figure 5: Images before and after data augmentation. We observe that the images were flipped and/or
resized while preserving the bounding box coordinates during transformation.

3.4 Comparative models

The experiments were performed on a server with a NVIDIA A30 24GB PCIe NonCEC Accelerator GPU card.
We build our dataset using tensor flow data API and models using keras-CV library [33].

The dataset is divided into training, validation and testing sets. During the training phase, the model
parameters (weights and biases) are updated. During model training, the validation of the model is carried
out by calculating the MaP using the validation dataset. In general, neural network training imply two main
phases: (i) forward propagation and (ii) backward propagation. In the forward propagation, outputs of all
nodes while moving from the input layer to the output layer are generated. At the output layer, error between
the predicted output and the expected output is computed. In the second phase, the error is backpropagated
to update the network parameters. These phases are iterated so as to minimize the final error by adjusting the
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values of parameters. Once training is finished, the neural network can be used to generate predictions for the
testing dataset, and several criteria are used to assess the accuracy of these predictions. In our case, we save the
model with the highest MaP, and then later use it to make predictions on the testing dataset. We employed a
stochastic gradient descent (SDG) optimizer with a batch size of 16. Exploding gradient is a common problem
that arises when developing object detection models. The huge update to the model parameters caused by the
high gradient values results in an unstable network. Gradient clipping, which relies on a threshold value, is used
to cope with the exploding gradient problem. When a gradient value exceeds a predetermined threshold, the
value is set to the threshold’s value. After completion of the training phase, we use testing dataset to measure
the model’s generalizability. In figure 6, we show loss function of the object detectors, orange represents the
validation loss and blue represents the training loss. We observe that there is a sudden change in gradient in
the beginning of the training which stabilizes with time.

(a) RetinaNet with MobileNet as backbone (b) YOLOv8 with coco weights

Figure 6: Graphs of loss function. The x-axis represents the number of epochs during the training
process. The y-axis represents the value of the loss function. The goal during training is to minimize
this value, as a lower loss indicates better alignment between the model’s predictions and the actual
data.

In table 2, we show comparison of full dataset and sampled dataset using RetinaNet detector. It takes
≈ 22h to train on a full dataset without any performance gain as can be observed from table 2, while it takes
approximately ≈ 12h hours of training on sampled dataset. In addition to the computational overhead, model
trained on the full dataset does not performed well on CL class as compared to the WO and AF class using
validation and testing sets (IoU 0.50). Furthermore, our model built using sampled dataset is able to classify
the remaining 200 images with a MaP of 0.83 (IoU 0.50) which were initially deleted from the dataset to create
a more balanced dataset. We include the results with two different IoU threshold, i.e., 0.50 and 0.75. It is
worth noting that different thresholds can lead to some side effects. For example in case of high threshold, we
may filter or eliminate predicted boxes for overlapping objects, which is not a desirable behavior. There is no
ideal IoU threshold value, it varies between 0 and 1. In practice, the common IoU threshold is 0.5 and may
need adaptation in a particular context to obtain meaningful outcomes.
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IoU
Full dataset Sampled dataset

AF AFWO CL Avg AF AFWO CL Avg

Training
0.50 0.94 0.94 0.95 0.94 0.94 0.95 0.95 0.95
0.75 0.82 0.83 0.81 0.82 0.81 0.83 0.84 0.83

Validation
0.50 0.84 0.81 0.77 0.80 0.87 0.85 0.85 0.86
0.75 0.63 0.60 0.54 0.59 0.65 0.61 0.57 0.61

Testing
0.50 0.80 0.79 0.75 0.78 0.86 0.84 0.79 0.83
0.75 0.60 0.61 0.53 0.58 0.60 0.54 0.50 0.55

Table 2: The MaP score with different IoUs on training, validation, and testing set.

As a sanity check, we also trained the model without any data augmentation to ensure the robustness of our
model. The initial results of this experiment indicate a noticeable overfitting problem; as our model is able to
achieve MaP of 0.99 (IoU 0.50) on the training dataset However, these impressive results raise a concerns about
generalizability of the model, i.e., predictions quality on the unseen dataset. Taking into account this analysis,
we applied on-the-fly data augmentation techniques, which effectively improved the model’s generalizability on
the unseen dataset. Furthermore, to optimize the computational resources, we converted images into grey-scale.
Our results did not show any significant performance gains in the context of our dataset and model.

In table 3, we show comparison of YOLO and RetinaNet detectors with different backbone architectures.
When it comes to computing speed, YOLO outperforms RetinaNet by a wide margin. It requires roughly only
one hour to complete the training. RetinaNet with MobileNet as backbone surpassed YOLO on the testing
dataset with a MaP of 0.86. As compared to RetinaNet, the confidence threshold for predicted bounding boxes
was quite low. Additionally, YOLO achieved a MaP of 0.71 (IoU 0.50) on the remaining dataset (absent from
the training, testing and validation sets) while RetinaNet scored a MaP of 0.83 (IoU 0.50). We believe that the
RetinaNet is a suitable choice where computational time is not an issue and the top priority is MaP. However,
where we can tolerate slightly lower MaP for the sake of faster performing predictive algorithm, a YOLO model
is more suitable option.

Detector Backbone AF AFWO CL MaP

RetinaNet MobileNetV3 0.86 0.84 0.79 0.83
RetinaNet ResNetV1 0.81 0.77 0.76 0.78
RetinaNet EfficientNetV2 0.80 0.78 0.79 0.79
RetinaNet CSPDarkNet 0.79 0.77 0.76 0.77
YOLOv8 YOLOV8 0.79 0.73 0.73 0.75

Table 3: MaP score on testing dataset of RetinaNet with different backbone networks and YOLO
detector with YOLOV8 backbone architecture.

In figure 7, we show the results on the testing dataset. In blue are the original annotations and in yellow are
the predictions obtained through RetinaNet with MobileNetV3 as backbone. We are using the batch size of 8,
IoU threshold and confidence score of 0.75. We observe that our model failed to predict two objects in figure 7b
and one in figure 7c. Figure 7d displays an antral follicle lacking a nucleus, intentionally left unannotated by
the expert but correctly labeled by the detector. Despite being located within a distorted region, the follicle
was accurately detected. This distortion is attributed to artifacts arising from slide mounting. Although
the artifact affects the region, it does not significantly alter the structure’s shape, allowing for the follicle’s
identification through the predictions. Figure 7f shows an antral follicle that was forgotten by the annotator
but detected correctly by the trained model. These were considered as FPs in our evaluation criteria, which
means we penalized our model for detecting these follicles. These detections highlight the labeling errors. In
future research, we plan to enrich the dataset by correcting these errors which will help to further optimize
the training of our models and to create a more general model.
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Figure 7: The predictions on validation set of batch size of 8 with IoU of 0.75 and confidence threshold
of 0.75. Here blue boxes represent original annotations and yellow are the predictions with a confidence
score.

In figure 8, we show the counting by expert and predictions by our model on the testing dataset with IoU
threshold of 0.75 and 0.50. The blue color represents the follicle counting performed by the expert, orange
represents the predictions by the model, pink signifies the TPs, and green shows the FPs. We see that the TPs
rate increases and FPs rate decreases with the most common IoU threshold of 0.50. This figure highlights the
effects of IoU threshold which requires careful consideration for different applications.

Figure 8: Follicles counting by the expert and the model on the testing dataset.
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Furthermore, we analyzed images manually to understand logic behind the predictions of our models,
which is crucial for further studies to understand why errors occur and how to address them. This comparative
analysis of expert and model identification helps to elucidate the strengths and limitations of AI-driven image
classification in the context of ovarian tissue analysis. We examined 151 images manually from the testing
set to identify where the model misclassified, confused, or failed to label follicles correctly. What we found
particularly intriguing and promising was the agreement between the number of false positives predicted by
the model and those by the operator, especially for the antral follicle and the corpus luteum, the two main
important structures for us. Upon closer examination, we observed that not all discrepancies were genuine
errors made by the model (see figure 9).

Figure 9: Errors analysis of expert and model identification of ovarian structures. This figure presents
section of ovarian tissue with structures identified by both human expert (Blue bounding boxes) and
AI model (Yellow bounding boxes). The expert categorized discrepancies into three types of errors:
1) The geniune or real errors (Red boxes) : structures identified by experts but missed by the model.
These are clear structures that the model should have recognized but failed to do so, 2) Allowable erros
(Light red boxes) : structures recognized by the expert but not labeled by the model due to staining
inconsistencies, mounting issues, scanning artefacts, or other technical factors, and 3) Errors corrected
by the model (Green Boxes) : structures overlooked by the expert due to factors such as eye fatigue
or intentionally unlabelled (tears in the sections) but correctly identified by the AI model. These
instances higlight the model’s ability to detect structures that may have been missed or intentially
omitted by the human expert.

Some regions posed challenges for labeling due to staining inconsistencies, mounting issues, and scanning
artifacts, making them difficult even for the operator to label accurately. We categorized these instances as
allowable errors given the challenges in image acquisition and processing. Despite these challenges, the system
demonstrated an ability to detect and correctly classify some follicles that were missed by the experimenter.
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Thereby, after reclassification of these errors into those corrected by the model, those allowable by the system,
and genuine/real errors, we noted a reduction in the number of false positives (see figure 10). This is expected
to significantly enhance precision and consequently improve the accuracy of the model.

Figure 10: Comparative analysis of False positives (FP) detected by the model and manually by the
operator before and after analysis of 151 images from the testing set. The light green bars reprensent the
number of FP identified by the model with a precision of 0.75. The green bars with diagonal lines (OFP-
Before analysis) depict the number of FP manually counted by the operator upon initial comparaison
of the images. The green bars with vertical lines show the number of FP (OFP- After analysis) counted
by the operator after reclassifcation of erros between Geniune, allowable and corrected errors. The
decrease in the number of FP observed after manual examination and eror correction by the operator
demonstrates the potential of enhanced precision and accuracy of the model.

4 Discussion

In this paper, we present a valuable technique to count ovarian follicle from whole slide images (WSI) using
transfer learning, early stopping and data augmentation approaches. We annotated the WSI of 20 mice ovaries
in CVAT. From these annotations, a model trained; validated and tested itself to distinguish between three
different classes of follicles: the antral follicle, the antral follicle without nucleus, and the corpus luteum. We
used state-of-the-art one-stage object detection methods, i.e, YOLO and RetinaNet for follicles detection in
histology images. We achieved a MaP of 0.83 on the testing dataset with RetinaNet. Furthermore, we identified
cases where model was able to correct erros of the annotators.

Histological counting may be one of the most standardized approaches for assessing ovarian reserve and
follicle status, it does come with certain limitations: 1) Subjectivity of the operator : even with the presence
of skilled personnel, there is a potential inter-observer variability due to the manual nature of histological
counting. This variability may lead to inconsistencies in follicle counts, 2) Time-consuming and tedious work:
the histological process requires careful preparation, sectioning, staining and examination. Each step in the
preparation may affect the accuracy and quality of follicle counting. Studies show that we should take in
consideration the impacts of different fixatives (Bouin’s fixative versus formalin), embedding material and
section thickness [34]. They do not have the same effects on tissue structure. Despite the common use of
formalin, Bouin’s solution may preserve the cellular morphology better than formalin that may cause tissue
shrinkage and consequently changes in follicle dimensions. Results may not be fully representative of the
entire ovary if sections at a regular interval were analyzed. Correction factors were used in such cases [19]. In
our case, we used Bouin’s solution to fix the collected ovaries, a standardized hematoxylin and eosin staining
protocol that selectively highlight the different aspects of tissue. The entire ovary was cut and almost all
the slides were digitized. There was not any specific selection of the slides which reduce the introduction of
sample bias. The use of a scanner helped to digitize faster and with high resolution the Whole Slide Images.
The contrast quality of the images improved the ability to analyze. Despite the efforts, staining inconsistency,
mounting or scanning artefacts may continue to exist. Hence, some structures were intentionally unlabelled
by the experiment especially on slides with mounting or scanning artefact. This was not a problem for the
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model, we noticed that the model was able to predict correctly the follicles in some poorly prepared sections
with distorted aspect. Some experimenter labeling errors were found demonstrating that fatigue can contribute
to errors and were discovered when comparing results obtained through the automated method with manual
histological labeling. The scientists need to be always on a focused state for accurate results. One more reason
to have at least two experimenters to assess follicle counting. Using AI and mainly this model can indeed
reduce the need for multiple experimenters. The model labeled correctly almost all the structures but it only
missed some blur structures (mounting or scanning artefacts) that the experimenter was able to annotate when
checking the successive slide.

Taking in consideration these limitations is crucial for scientists when designing and interpreting results.
Integrating histological counting with additional methodologies like hormone dosage and embracing new tech-
nologies, such as artificial intelligence and deep learning can help as we can see to overcome some of the
challenges of ovarian follicle counting. Histological counting is often used as a benchmark for validating
automated techniques, including those involving artificial intelligence. Comparing results obtained through
automated methods with manual histological counting helps ensure the accuracy and reliability of the auto-
mated approach. Understanding the nature of errors and discrepancies is crucial for refinning AI algortithms
and optimizing their performance in biomedical imaging applications. The model shown in this paper, offers
solutions to enhance accuracy, efficiency, and reproducibility of follicle counting, when comparing the predicted
labelling and the annotated one.

There are some limitations of this study: 1) the experimental dataset is collected from the same laboratory
which means we may not have enough diverse images in our training dataset, 2) optimal threshold to count
the true or false positives remains dependent on the application, and 3) black-box nature of the deep learning
models which means the thought process behind a particular decision or prediction of DL models is humanly
non-interpretable due to complex non-linear internal structure and over parametrization.

In the near future, we want to create a larger and more diverse dataset by collaborating with other labs
to create a more general detection models and to futher improve the MaP score. By inspecting the results
manually, as discussed above, our model was able to produce predictions where annotator failed to label. In
the current model, we penalize it for detecting these structure. In future, we will correct these errors and based
on these intuitions, we will perform experiments to define the optimal threshold for each class separately to
count the true number of true or false positives.

In a biological context, it is useful to understand the internal workings of DL models and to identify the most
essential features or reasoning for the classification or regression tasks. Fortunately, many methods have been
developed in the last decade to tackle the problem of the explainability of DL models, such as feature relevance,
local or global explanations, and visualizations [for a review, see ( [35, 36])]. These approaches, however, are not
immediately translatable to the object identification tasks to elucidate decision-making processes. In the case of
classification tasks, our output is normally scalar; however, in the case of object detection, the output is multiple
bounding boxes per image, i.e., the bounding box coordinates of the detected objects and their category. The
task is further complicated because of non-max suppression which is applied to remove overlapping boxes and
to keep one box per object. It implies that we cannot translate the input to the output via the usual gradient,
which hinders our ability to technically apply methods such as DeepLift, ShAP, etc. Furthermore, we also need
explanation not just for the category but also for the location of the objects. Generally, there has been a limited
effort to tailor explanation methods for object detection models [37, 38, 39, 40]. These approaches cannot
systematically be applied to our models because these methods often depend on the specific characteristics of
the object detectors, such as one-stage or two-stage detectors, presence of anchor boxes [37] (our YOLO-based
model is anchor-free), absence of individual explanations for the object category and bounding box [40]. The
method proposed in [38] is the model agnostic to generate heatmaps for highlighting the important parts of
the image, however it is computationally slow and lacks evaluation of the explanation of bounding boxes. In
future, we will work on explainability of our object detectors to identify the causes of its predictions for model
validation and knowledge discovery. We believe that these insights will help to further improve the performance
and usability of our models. It will make them transparent by highlighting the important segments of the images
and help to compare between the expert’s and model’s intuitions.
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