On multi-graded Proj schemes - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2024

On multi-graded Proj schemes

Arnaud Mayeux
  • Fonction : Auteur
  • PersonId : 1370722
Simon Riche

Résumé

We review the construction (due to Brenner--Schröer) of the Proj scheme associated with a ring graded by a finitely generated abelian group. This construction generalizes the well-known Grothendieck Proj construction for $\mathbb{N}$-graded rings; we extend some classical results (in particular, regarding quasi-coherent sheaves on such schemes) from the $\mathbb{N}$-graded setting to this general setting, and prove new results that make sense only in the general setting of Brenner--Schröer. Finally, we show that flag varieties of reductive groups, as well as some vector bundles over such varieties attached to representations of a Borel subgroup, can be naturally interpreted in this formalism.
Fichier principal
Vignette du fichier
On_MG_Proj_Schemes.pdf (796.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04669439 , version 1 (08-08-2024)

Identifiants

Citer

Arnaud Mayeux, Simon Riche. On multi-graded Proj schemes. 2024. ⟨hal-04669439⟩
34 Consultations
26 Téléchargements

Altmetric

Partager

More