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Abstract

The linear sampling method has been applied
to the detection of defects in an elastic plate by
the use of Lamb modes in a series of papers: [1],
Inverse Problems, 29:025017, 34:075006. How-
ever these papers are based on the X − Y for-
malism and on a conjecture which states that
some families of eigenfunctions form a Riesz ba-
sis. We propose to give a mathematical justi-
�cation of the method without any conjecture
and without the X−Y formalism and based on
the Kondratiev theory, [2].
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1 Introduction

The di�raction of elastic waves by a defect in a
plate can be modelled using Lamb modes. Lamb
modes are obtained by searching solutions to
the homogeneous time-harmonic elasticity equa-
tions in a plate assuming an invariance with re-
spect to the direction in the plate orthogonal to
the direction of wave propagation, and then the
problem in the plate is reduced to a problem in
a strip.

2 Elementary solutions and direct prob-

lem

Let Ω = {x = (x1, x3), x1 ∈ S, x3 ∈ R} (S =
(−h, h), h > 0) be the strip (without defect).
Consider the homogeneous time-harmonic elas-
ticity equations in Ω:{

σij,j(u) + ω2ρui = 0 in Ω,
σi3(u) = 0 on ∂Ω.

(1)

The complex numbers ν ∈ C such that (1) has
an elementary solution of the form u(x1, x3) =
φ(x1)e

νx3 , φ ̸= 0 give Lamb modes if φ2 = 0 and
SH modes if φ1 = φ3 = 0 and are eigenvalues
of a polynomial operator pencil L (ν): H1(S)
→ (H1(S))∗. In the sequel it is assumed that
all the eigenvalues of L (ν) are algebraic simple
and that 0 is not an eigenvalue of L (ν).

The spectral problem relative to the Lamb
modes is non-selfadjoint with compact resolvent,

so that there is no Hilbert basis of eigenfunc-
tions. A solution to the problem of non-orthogo-
nality is given by the X − Y formalism. De-

�ne the mixed variables X =

(
σ31
u3

)
, Y =(

u1
−σ33

)
, and set

(
X(x1, x3)
Y (x1, x3)

)
=

(
X (x1)
Y(x1)

)
eνx3 . There exists a sequence of guided modes(

Xn

Yn

)
, n ∈ N satisfying a biorthogonality re-

lation: (Xn|Ym)S = δnmJn where (X|Y)S =∫ h
−h(X

1Y1+X 2Y2)ds. The study of [1] is based
on the conjecture that the families of Xn and
Yn form a Riesz basis in their respective spaces.
Roughly speaking the main di�erence between
the method of [1] and the method proposed here
is that instead of having a development of the
outgoing Green matrix as an in�nite series due
to the aforementioned conjecture, we get a rig-
orous development of the outgoing Green ma-
trix as the sum of a linear combination of terms
related to outgoing elementary solutions and a
rest which is exponentialy decreasing at in�n-
ity. It is su�cient to justify the linear sampling
method.

Set ΣR = S × {R} (R ∈ R). Then if u and
v are solutions of (1), qΩ(u, v) =

∫
ΣR

σi3(v)ui −
σi3(u)vi does not depend on R ∈ R. Let u be an
elementary solution of (1). Then u is outgoing
(resp. incoming) i� iqΩ(u, u) > 0 (resp. < 0)
for an imaginary eigenvalue or corresponds to
an eigenvalue with negative (resp. positive) real
part. If δ > 0, there exists a basis (Z+

i )i=1,...,p,
(Z−

i )i=1,...,p of elementary solutions correspond-
ing to eigenvalues in the strip −δ < Reν < δ
such that (Z+

i )i=1,...,p are outgoing and
(Z−

i )i=1,...,p are incoming.
Let D such that D ⊂ Ω be the defect, and

set ΩD = Ω \D. Consider the direct problem:


σij,j(u) + ω2ρui = 0 in ΩD,
σi3(u) = 0 on ∂Ω,

u|∂D = g ∈ H1/2(∂D).

(2)

Let δ > 0 be such that L (ν) has no eigenvalue
on the lines Re ν = ±δ and assume that there is
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no solution ∈ H1(ΩD) to (2) with g = 0. De�ne
W 1

δ (Ω) as the completion of C∞
0 (Ω) for ∥u∥δ,1,Ω

= ∥eδ|x3|(
∑

α,γ∈N,α+γ≤1 ∂
α
x1
∂γ
x3u)∥0,Ω. Then for

all g ∈ H1/2(∂D) there is a unique weak so-
lution to (2) which coincides for x3 ≷ 0 large
with the sum of a linear combination of outgo-
ing (resp. incoming) elementary solutions and
an element of W 1

δ (Ω).

3 Linear sampling method

It is possible to construct an outgoing Green
matrix Grout such that for all �xed x ∈ Ω, for
all φ ∈ C∞

0 (Ω),∫
Ω
(−∂jσij(φ)− ω2φi)Grout(x, .)ki +∫

∂Ω
σij(φ)njGrout(x, .)ki = φk(x),

and such that for y �xed, Grout(x, y) coincides
for x3 ≷ y3 large with the sum of∑p

k=1 Z
±
k (x)(Z∓

k (y))T and an element ofW 1
δ (Ω).

For all y ̸∈ ∂D let us(., y) be the solution of
the direct problem with g = −Grout(., y)|∂D.
Let 0 < t0 < R and de�ne F : L2(ΣR) →
L2(ΣR) by: ∀h ∈ L2(ΣR), (Fh)(x) =∫
ΣR

us(x, y)h(y)ds(y), x ∈ ΣR. Let z ∈ Ω be-

tween Σ−t0 and Σt0 be a sampling point, p ∈ R3,
p ̸= 0 and consider the problem: �nd h(., z, p) ∈
L2(ΣR) such that

Fh(., z, p) = Grout(., z)p on ΣR.

Then z ∈ Ω\D ⇔ ||h(., z, p)||L2(ΣR) "explodes".
This is the "linear sampling method".

4 Properties of the operators

Let H, S, F be the operators de�ned by:
H : L2(ΣR) → H1/2(∂D), ∀h ∈ L2(ΣR),

(Hh)(x) =

∫
ΣR

Grout(x, y)h(y)ds(y), x ∈ ∂D,

S: H−1/2(∂D) → H1/2(∂D), ∀φ ∈ H−1/2(∂D),

(Sφ)(x) =

∫
∂D

Grout(x, y)φ(y)ds(y), x ∈ ∂D.

F : H−1/2(∂D) → L2(ΣR), ∀φ ∈ H−1/2(∂D),

(Fφ)(x) =

∫
∂D

Grout(x, y)φ(y)ds(y), x ∈ ΣR.

Assume that ω2 is not an eigenvalue of the Dirich-
let problem in D (Hypothesis (H)). In that case

S is an isomorphism. We have the following
properties: H, F , F are compact operators,
H, F , F are one-to-one and with dense range
and F = −FS−1H. Then Theorem 3.6 of [1],
which justi�es the linear sampling method can
be proved without any conjecture. However from
the numerical point of view, there is a priori
no signi�cant progress since the error made by
truncating Grout is not estimated precisely.

5 An example of proof

Let us prove that H is one-to-one. Assume for
example that D is on the left of ΣR. Let h ∈
L2(ΣR) and for x3 ̸= R set vh(x) =∫
ΣR

Grout(x, y)h(y)ds(y), so that vh = 0 on ∂D.
vh is solution to the homogeneous equations with
radiation conditions for x3 < R and x3 > R.
The hypothesis (H) implies that vh = 0 on D
so that vh(x) = 0 if x3 < R (analyticity) and
vh(x) = 0 if x3 = R (single layer potential).
The uniqueness of an outgoing solution in an
elastic half-strip [3] implies that vh(x) = 0 if
x3 > R and vh ≡ 0. The form of Grout implies
that for all k = 1, . . . , p,∫

ΣR

(Z±
k (y))Th(y)ds(y) = 0

this being true for all δ > 0 so that h is or-
thogonal to all the Lamb and SH modes. The
completeness of Lamb modes [4] implies h = 0.
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