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Abstract

In order to avoid ambiguity and be efficient, the context in which a query is made can help
to better target the relevant pieces of information from the knowledge base to be processed
by the inference system. In this paper, we are interested in the notion of dynamical com-
partmentalization where the knowledge base that will be used for reasoning is dynamically
extracted from the original base. Compartmentalization is a selection of a sub-base which is
done according to a function, called refiner, and depending on this function some properties
are satisfied.

We introduce a particular syntactic refiner that uses a similarity symbol-based distance
between a context (a multiset of variable symbols) and a formula of a knowledge base.

We prove that the inference operator based on this refiner, called contextual inference,
satisfies a series of desirable axioms

1 Introduction

With the advent of big data came the need to integrate more and more data sources to ensure that
no aspect of a question, or query, is missed. This however raises some important issues regarding
privacy and rights to access and process such data. A potential answer to this would be to tailor
databases for particular queries and/or users on a use-case basis, which would ensure the notion
of compartmentalization at the cost of being tedious and having a lot of data redundancy, and
its corollary: the expensive question of storage. Another way of managing this heterogeneous
knowledge is to compartmentalize it only when it is accessed, as proposed in this paper.

In this article, our main goal is both to handle inconsistency and non-monotonic reasoning
together with efficiency. More precisely, we consider that a rational agent attempts to answer
queries and evaluate arguments based on what it knows. The idea is that its knowledge results
from a blind integration of everything that has been heard, which can lead to inconsistencies. By
answering a query, we mean checking whether a formula is entailed by the knowledge base in a
given context. By assessing an argument we mean checking whether its set of premises entails its
claim in this context.

Even if the knowledge base is inconsistent it can still be exploited by selecting consistent
subbases that are contextually relevant, mimicking the human brain that activates pieces of in-
formation based on their relationship to a context (see e.g. chunks in cognitive theories such as
ACT-R [1]). We propose to create the compartmentalization on the fly when answering a query
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Intelligence (ECAI 2024), 19-24 OCTOBER 2024 Santiago de Compostela, Spain, 19/10/24-24/10/24, Ulle Endriss
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or assessing an argument: this involves the notion of dynamical subbase selection where the part
of the knowledge base that will be used to reason and answer a query is dynamically extracted
from the original base. This selection is done according to a generic function, called refiner, and
depending on this function some properties will be satisfied.

In particular, we are interested in the notion of syntactic refiner that will select the subbase
based on the symbols appearing in the query. Intuitively, such a selection is easier to do based on
syntactic criteria (compared with a full-blown semantic selection) but it may miss some relevant
formulas. Moreover, to the best of our knowledge, there are no studies that attempt to account
for the impact of the way a formula is written, while retaining the same semantics. Nevertheless,
the fact that particular symbols are repeated, or that seemingly irrelevant symbols appear, can
be considered significant, as is the case in marketing or politics for example, where the language
used is strategically chosen to have a greater impact. The question is: what conditions must the
refiner meet to ensure that the syntactic selection of the subbase allows for sound and complete
reasoning?

After stating the notations used in the paper, Section 2 recalls the basics of non-monotonic
reasoning. Our main contribution is presented in Section 3, where we define the notions of generic
refiner relative to a context, on which we base the definition of a new type of inference operator.
Next, we propose a specific refiner based on syntactic similarity, we prove that given a context,
this inference is rational but in order to better characterize the impact of context on reasoning,
we propose three desirable axioms related to these operators as well as two optional axioms about
the sensitivity to the syntax. We conclude by discussing future directions.

Notations

We consider a propositional language L containing formulas denoted by lower case Greek letters,
based on a vocabulary V of variable symbols denoted by Latin lower case letters and containing
the two constant symbols ⊥, ⊤ for denoting contradiction and tautology respectively. Negation,
conjunction, disjunction, material implication, equivalence and classical inference are denoted
respectively by ¬, ∧, ∨, →, ≡ and |=. Let K ⊆ L be a finite set, not necessarily consistent, of
consistent formulas of L representing the knowledge base of an agent. The formulas of K can be
ranked according to their importance by a complete pre-order on K denoted by ⪰, resulting in a
prioritized knowledge base denoted by P = (K,⪰). The pre-order ⪰ is supposed to be given (in
case no importance order has been given, all formulas of K are considered as equally important).
For any formulas α, β ∈ K, α ⪰ β is read α has priority over (is at least as plausible as) β. Since
K is finite, ⪰ can be translated into a ranking of the formulas of K based on the equivalence
classes of ≃ induced by ⪰ (with a ≃ b iff a ⪰ b and b ⪰ a). Given ⪰ and K there is a unique index
n corresponding to the set of formulas with the lowest priority (denoted by Kn), n is called the
lowest priority rank. Given ⪰, any subset E of K can be decomposed accordingly to the ranks of
its formulas, formulas of highest priority of E are denoted by E1 and more generally the subsets
of formulas of rank i are denoted by Ei, Ei = E ∩ Ki. With these conventions, a prioritized
knowledge base (K,⪰) is equivalently represented by the tuple (K1, . . . ,Kn). The strict order
induced by ⪰ is denoted by ≻ (with a ≻ b iff a ⪰ b and not b ⪰ a).

We associate each formula φ with the multi-set ms(φ) of variables symbols occurring in it: it is
a pair (Vφ,mφ) where Vφ ⊆ V and mφ : V → N is the multiplicity of the symbols in the multiset.
For sake of shortness, a multiset is also represented by the tuple of its symbols (possibly repeated)
in alphabetical order, the empty multiset is denoted by (). For instance, the formula φ = p∨(¬p∧f)
is associated with the multiset ms(φ) = ({p, f},mφ) with mφ such that mφ(x) = 0 for any symbol
x ∈ V \ {p, f} and mφ(p) = 2 and mφ(f) = 1. This multiset can also be denoted by (f, p, p). As
a multiset intersection, ⊓ gives the multi-set (A ∩ B,m) where m(x) = min(mA(x),mB(x)) for
all x ∈ V. When there is no ambiguity with the operation performed on it, we abuse notations
by writing the formula, e.g. φ, instead of its multiset : ms(φ). The symbol ⊔ denotes the union
between multi-sets, it is the multiset (A∪B,m) where m(x) = max(mA(x),mB(x)). The symbols
∈ and ⊆ are naturally extended to multi-sets. |M | denotes the cardinality of the multiset M : it
is the sum of the multiplicities of its symbols. The set of all multi-sets of symbols in V is denoted
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by MS.

2 Basics about non-monotonic reasoning

Inconsistency can arise from different situations: experts or sensors providing conflicting data
(differing opinions, incompatible measurements), rules applicable in a context with contradictory
conclusions, incompatible goals of several agents, etc. In the presence of inconsistency, classi-
cal logical deduction is unusable (it deduces any formula and its opposite). Many approaches
have been proposed to handle this significant problem. In this paper, we focus on “syntax-based
approaches”1 that inherit from [3] who first introduced the approaches based on maximum (for
set-inclusion) consistent subbases of the knowledge base. In this kind of approaches, each for-
mula of the knowledge base is considered as an independent piece of information. The solutions
proposed in this domain are introducing non-monotonic inference relations defined by selecting
“preferred”2 subbases of the knowledge base on which classical inference is applied. This prefer-
ence can be based on an existing ordering of the knowledge base as in [4]. In the following we
adopt the conventions used in [5] for recalling different classical non-monotonic inference relations.
In these definitions, B,B′,K are subsets of formulas of L and α, β, α′, β′, γ are formulas of L.
Definition 1. B ⊆ K is an inclusion maximal α-consistent subbase of K iff {α}∪B is consistent
and there is no B′ ⊆ K s.t. B′ ⊃ B and B′ ∪ α is consistent.

Note that inclusion maximal consistent subsets were later called maximal satisfiable subsets
(MSS) in [6]. The inference based on inclusion maximal consistent subsets is defined below.

Definition 2 (MSS inference). α |∼MSS
K β iff for all inclusion-maximal α-consistent subbase B of

K, B ∪ {α} |= β.

Hereafter, |∼MSS
K β is a shortcut for ⊤ |∼MSS

K β. We can notice that MSS inference is non-
monotonic, as illustrated on Example 1.

Example 1. Let us consider the following (typical) knowledge base (expressing that penguins are
birds that do not fly, birds fly and have wings): K1 = {φ1.p→ b, φ2.p→ ¬f, φ3.b→ f, φ4.b→ w},
the reader can check that f can be inferred from K1 ∪ {b}: |∼MSS

K1∪{b} f (since there is only one

subbase maximally consistent with {b}: K1 ∪ {b}). However, in the presence of b and p this no
longer holds since there are 3 subbases maximally consistent with {b, p}: K1∪{b}, {b, p, φ1, φ2, φ4}
and {b, p, φ1, φ3, φ4}, among them the bird may fly or not: hence, it holds that |̸∼MSS

K1∪{b,p} f .

2.1 System P

Non-monotonic inference relations have been particularly studied by Kraus, Lehmann and Magidor
[7], these authors have proposed a set of inference rules called System P for augmenting an existing
set of inferences with new inferences that should follow rationally from them.

Definition 3 (System P [7]). An operator |∼ satisfies System P if the following properties hold
∀α, β ∈ L:
α |∼α (Reflexivity)
If α ≡ α′ and α |∼β then α′ |∼β (Left Logic. Equivalence)
If β |= β′ and α |∼β then α |∼β′ (Right Weakening)
If α |∼ γ and β |∼ γ then α ∨ β |∼ γ (Or)
If α |∼β and α |∼ γ then α ∧ β |∼ γ (Cautious Monotony)
If α ∧ β |∼ γ and α |∼β then α |∼ γ (Cut)
1This expression comes from [2] who defined syntax-based revision procedures where two semantically equivalent

knowledge bases may result in non-semantically equivalent revisions. Note that the word syntax is used here in a very
restricted sense: it concerns rather the way formulas are separated from each other than the way they are precisely
written: e.g., in these approaches K = {a, b} is distinguished from K = {a ∧ b} but not from K = {a ∧ (c ∨⊤), b}.

2Here as in the related literature, the word “preferred” is abusively used to qualify the plausibility of the pieces
of information for the reasoning process (it is not related to a user’s taste, i.e. a user utility function as in decision
theory, otherwise there could be cases of wishful thinking).
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2.2 Prioritized inference

Apart from MSS inference, it is possible to build more refined non-monotonic inference relations
by taking into account some priorities between formulas. Given a prioritized knowledge base
P = (K,⪰): three orderings between subbases were introduced in [5], namely best-out, incl and
lex, they allow us to compare subbases of K according to different criteria. Best-out ordering
compares the priorities of the highest priority formulas which are out of the considered subbases,
Incl ordering compares the sets of formulas of the two subbases strata by strata starting from the
highest priority strata. Lex ordering is described below.

Such orderings on subbases enable us to select the best consistent subbases of a prioritized
knowledge base. More precisely, an ordering o allows us to compare subbases of a prioritized
knowledge base and to select the preferred ones according to o, called o-preferred subbases. The
most common approach called strong inference, which is chosen in this paper, is to define that α
non-monotonically infers β given the knowledge base K iff all the max α-consistent o-preferred
subbases of K, together with α, classically entail β. Note that other inference principles exist
[8], such as weak principle based on the existence of at least one max α-consistent o-preferred
subbase entailing β, or argumentative principle which is weak inference s.t. no max α-consistent
o-preferred subbase entails classically ¬β.

In the remainder of this work, we focus on Lex ordering [5, 9] defined below, which has the
benefit of being the most refined ordering. However, our definitions could be used with any
stratification-based selection function.

Definition 4 (Lex-preference). Given a prioritized knowledge base P = (K1, . . . ,Kn) with lowest
priority rank n, given A,B ⊆ K, A is Lex-equivalent to B given P , denoted by A ∼P B, iff
∀i, |Ai| = |Bi|. A is strictly Lex-preferred to B given P , denoted by A ≻P B, iff ∃k ∈ [1, n] s.t.{

|Ak| > |Bk| and
∀i < k, |Ai| = |Bi|

A is a Lex-preferred α-consistent subbase of P if it is an α-consistent subbase of K s.t. any
α-consistent subbase B ⊆ K is s.t. B ̸≻P A.

Notation Lex(P, α) = {B ⊆ K | B Lex-preferred α-consistent subbase of P}.

We are now in position to recall Lexicographic entailment:

Definition 5 (Lex-entailment). Given a belief base P = (K,⪰) and two formulas α and β,

α |∼lex
P β iff for any B ∈ Lex(P, α), B ∪ {α} |= β.

Note that [5] have shown that for any set K ⊂ L of formulas, |∼MSS
K satisfies System P and for

any prioritized base P = (K,⪰), |∼lex
P satisfies System P.

Example 1 (continued): Let us consider the following priorities among the formulas of K1:
φ1 ≃1 φ2 ≻1 φ3 ≃1 φ4, leading to a prioritized base P1 = (K1,⪰1).

There is only one Lex-preferred subbase consistent with penguins: Lex(P1, p) = {{φ1, φ2, φ4}},
hence p |∼lex

P1
¬f . The reader can also check that p ∧ b |∼lex

P1
¬f .

What has also been shown in [5] is that from a prioritized knowledge base P = (K,⪰), it is
possible to define a complete pre-order on interpretations (based on the Lex-preference on the
maximally consistent subbases they satisfy), and that Lex-entailment is a preferential entailment
[10], that also satisfies the rule of Rational Monotony described in [11]:

If α |̸∼¬β and α |∼ γ then α ∧ β |∼ γ (Rational Monotony)

To sum up, from prioritized knowledge bases it is possible to define a rational non-monotonic
inference relation but for this purpose a pre-ordering of the knowledge base is required: it may
come from experts, but this information is not necessarily easy to obtain or is not consensual;
it can be computed based on specificity notions (see next paragraph) but it is computationally
costly.
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2.3 Computing priorities: the System Z algorithm

In [12], Pearl defined an ordering, called “Z ordering”, induced from a set of default rules. Indeed,
in System Z, a default rule is a formula of the form α ; β where α and β are propositional
formulas of L, and ; is a new connective, the intended meaning of the rule is “α generally entails
β”. More formally its interpretation is: the most plausible, according to a set of default rules ∆,
models of the formula α satisfy β. The plausibility of interpretations given the set of defaults ∆ are
computed by considering each rule of ∆ as a constraint on the ranking of interpretations, namely
the rule α ; β imposes that the interpretations satisfying α ∧ β are more plausible than the one
satisfying α ∧ ¬β (the reader can refer to [13] for a reading of these rules in possibility theory).
The Z ordering method, described in [12], is based on the tolerance notion between rules. More
precisely, a rule r = α; β is tolerated by a set of n rules R ⊆ ∆ iff α∧β ∧

∧
αi;βi∈R(¬αi ∨βi) is

consistent. The process starts by selecting the rules that are tolerated by ∆, they are attributed
the level Z=0 and removed from ∆, then assign level Z=1 to the rules tolerated by all the remaining
ones and so on. This process requires to practice O(n2) satisfiability tests in the worse case where
n = |∆|.

Apart from the computational complexity for computing the Z ordering, there are two other
limitations of the use of System Z: first, it is possible that a set of default rules does not admit
a Z ordering, such defeasible set is called “inconsistent” in [14], second this ranking requires that
the knowledge base is written under the form of default rules.

In what follows we propose an approach that refines an existing ordering (or creates one when it
does not exist) without requiring extra information, this is done by filtering the formulas according
to their contextual relevance. This relevance is based on the syntax by considering the symbols
used in the formulas relatively to a given set of symbols representing the context. Using syntax
can be very efficient since no call to a SAT solver is required, however it should be restricted in
order to guarantee a rational behavior as we will see in Section 3.3. Moreover using only variable
symbols to qualify the relevance of formulas to a given context can seem simplistic, but it opens
the way to more realistic extensions based on additional knowledge of, for example, the lexical
fields of the symbols.

3 Contextual inference

Non-monotonic inferential mechanisms, as the ones recalled above, use selection functions that are
independent from the query to assess. In this paper, we are interested in defining a mechanism
that takes into account a context (a multiset of propositional variable symbols in V). For this
purpose, we propose to reduce and reorder the knowledge base according to its relevance to a
context, and then Lexicographic inference is used on this smaller prioritized knowledge base.

3.1 Generic definitions

In this section, we define a generic refiner λ which, given a knowledge base P = (K,⪰) and a
context C, returns a new prioritized belief base.

Definition 6 (Refiner). Given a belief base P = (K,⪰) and a context C ∈ MS, a refiner λ is a
function such that:

λ(P,C) = (KC ,⪰C)

where KC ⊆ K and ⪰C is a complete pre-order on KC built from C and ⪰.

This notion of refining wrt a context C will be used to answer the question of whether “one
can conclude about” a given formula in the context determined by C.

Definition 7 (Contextual inference, query). Given a belief base P = (K,⪰), two consistent
formulas α and β, a context C ∈ MS and a refiner λ, the contextual inference based on λ, P and
C is s.t.:

α |∼λ
P,C β iff for any B ∈ Lex(λ(P,C), α), B ∪ {α} |= β.

5



Moreover, when α = ⊤, this inference is called query about β in the context C, denoted by
|∼λ

P,C β.

In other words, α |∼λ
P,C β iff α |∼lex

λ(P,C) β. In this work, given a knowledge base P , what ulti-
mately motivates us are the cases where the context of the inference is determined by the query
itself, i.e. |∼λ

P,ms(β) β.

Proposition 1. Given a belief base P , a context C and a refiner λ, |∼λ
P,C is a rational inference

relation hence it satisfies Reflexivity, LLE, RW, CM, Cut and Rational monotony

Proof. By definition, |∼λ
P,C is a Lexicographic entailment which is a rational entailment [5].

Note that the previous proposition ensures that contextual inference satisfies System P and
Rational monotony axioms, but they hold when the context C is fixed, i.e., C remains the same
in the left and right parts of the if/then statements, for instance LLE becomes “For any C ∈ MS
and any prioritized knowledge base P , ∀α, α′, β ∈ L, if α ≡ α′ and α |∼λ

P,C β then α′ |∼λ
P,C β”.

Proposition 2 (One-way deduction theorem). Given a prioritized knowledge base P = (K,⪰), a

refiner λ and a context C ∈ MS, ∀α, β ∈ L, α |∼λ
P,C β implies ⊤ |∼λ

P,C ¬α ∨ β.

Proof. Theorem 3 of [15] establishes that any preferential entailment |∼ is such that from A∧B |∼C
we get A |∼B → C.

Thanks to this result, querying ¬α ∨ β (i.e. assessing |∼λ
P,ms(α)⊔ms(β) ¬α ∨ β) can be done by

checking whether α |∼λ
P,ms(α)⊔ms(β) β. Let us recall that if we were to accept the other way of the

deduction theorem, i.e., from A |∼B → C deduce A ∧ B |∼C then, due to Lemma 3 of [7], we
would get monotonicity (from |= A → B and B |∼C deduce A |∼C). Since monotonicity is not
desirable here, Prop. 2 is only a one-way deduction theorem.

Remark 1. Obviously refining P with a context C such that P is not modified amounts to using
the classical lexicographic inference on the whole base P :

if λ(P,C) = P then |∼λ
P,C = |∼lex

P .

When the refiner operates (i.e., λ(P,C) ̸= P ), let us notice that |∼λ
P,ms(β) β is neither a nec-

essary nor a sufficient condition for |∼lex
P β, as shown in the following example. However, for the

specific refiner defined in next section, we will provide conditions on the context (see Proposition
4) under which this contextual entailment conforms to lexicographic entailment.

Example 2. Let us consider the following knowledge base with no priority: P2 = (K2 = {b, c, c→
a, a → ¬b},K2 × K2). Let us take a refiner λ0 that selects formulas with at least one common
symbol with the context and that keeps the same pre-order. The refinement in the context (b) is
P2(b) = λ0(P2, (b)) = (K2(b) = {b, a → ¬b},K2(b) ×K2(b)). We get K2(b) |= b while there is one
maximal (in cardinality) consistent subset of K2, namely {c, c→ a, a→ ¬b}, that entails ¬b, i.e.,
|∼λ0

P2,(b)
b holds, but |̸∼lex

P2
b.

Let us now consider a knowledge base that allows us to deduce b while after refining it with
λ0, it is no more the case. Let P3 = (K3 = {c, c → a, a → b},K3 × K3), P3(b) = λ0(P3, (b)) =

(K3(b) = {a→ b},K3(b) ×K3(b)). We get that |̸∼λ0

P3,(b)
b, but |∼lex

P3
b holds.

Now that we know that contextual entailment is a rational inference relation given a fixed
context, these examples show that by considering a “bad” refinement in a precise context, some
crucial information may be lost allowing potentially undesirable inferences. This is why it is
important to define some rational properties for the refiners. In the following section we propose
a particular syntactic refiner before enunciating some desirable properties and checking whether
they hold for this operator.
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Figure 1: Paths between the six multisets of Example 3.

3.2 Syntactic similarity

In this section, we propose a new operator based on syntactic similarity: the idea is to obtain a
behavior close to a cognitive activation process, i.e., first very relevant concepts come to the mind,
then some others concepts that are related to the ones last activated, and so on. We choose to
enforce that the first element that came to mind based on the context is considered more relevant
than the one that came to the mind because of another element not directly related to the context.
For this purpose we are going to define first the distance between two multisets then we define
a distance path as a tuple of distances, where each edge relates multisets that have at least one
common symbol. The shorter the path between two multisets the more relevant they are. In
case of paths with the same number of edges the distance values along the paths are compared
lexicographically.

Definition 8 (Distance between multisets). The distance between two multisets C = (V,m) and
C ′ = (V ′,m′) of MS is:

d(C,C ′) =
∑

s∈V ∪V ′

|m(s)−m′(s)|.

Definition 9 (Distance path and multiset similarity). Given two distinct multisets C,C ′ ∈ MS,
a path from C to C ′ in a universe U ⊆ MS is a sequence of n + 1 multisets E1, . . . En+1 with
n ≥ 1 such that C = E1 and C ′ = En+1 and ∀i ∈ [2, n] Ei ∈ U and ∀i ∈ [2, n+1], Ei−1 ⊓Ei ̸= ().
When such a path exist the multisets are said syntactically connected (or s-connected) in U . The
distance path associated to this path is the n-tuple (d1, d2, · · · , dn) such that di = d(Ei−1, Ei).

Let d = (d1, . . . , dk) and d
′ = (d′1, . . . , d

′
l) be two distance paths where k, l ≥ 1, d is lex-shorter

than d′ iff k < l or k = l and ∃i0 ∈ [1, k] s.t. ∀i ∈ [1, i0], di = d′i and di0+1 < d′i0+1

Given three multisets C,C ′, C ′′ ∈ MS, C ′ is strictly syntactically more similar to C in the
universe U ⊂ MS than C ′′ is, denoted by C ′ >syn

U,C C ′′, iff (C ′ = C and C ′′ ̸= C) or there is a
distance path from C to C ′ in U lex-shorter than every distance path from C to C ′′ in U .

In the following when U is omitted, it means that we consider the universe made of all the
multisets of the formulas of the current knowledge base. The universe associated to a knowledge
base K is UK =

⋃
φ∈K{ms(φ)}

Example 3. Let us consider the universe U1 of multisets:
C1 = (a, a, b, c) C2 = (a, a, a, b) C3 = (a, b, c)
C4 = (a, a, a, b, c) C5 = (c, d) C6 = (d, d, f)

Figure 1 shows the graph associated to U1. There are several distance paths in U1 from C1 to
C6: for instance (4,3) corresponding to (C1, C5, C6) and (1,3,3) corresponding to (C1, C3, C5, C6).

The lex-shortest distance path from C1 to C6 in U1 is (4, 3). Let us compare the syntactic
similarity of C1 and C2 to C6, we have C1 >

syn
U1,C6

C2 since there is a two edges path from C1 to
C6 while all paths from C2 to C6 have at least 3 edges.
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Definition 10 (λsyn operator). The syntactic refiner, denoted by λsyn, is defined as follows: given
a prioritized knowledge base P = (K,⪰) of formulas and C a context

λsyn(P,C) = (KC ,⪰C)

with KC = {φ ∈ K s.t. φ is s-connected to C in UK} and ⪰C= {(α, β) | α, β ∈ KC and α >syn
C

β or (α ̸>syn
C β and β ̸>syn

C α and α ⪰ β)}.

In other words, the λsyn refiner selects first the most relevant formulas of the base K wrt a
context C (according to >syn

C ) and, in case of equal relevance, the initial ordering (⪰) of P is used.

In the following the non-monotonic inference |∼λsyn based on the refiner λsyn will be denoted by
|∼syn

.

Example 3 (continued): Let us consider the formulas:
φ11. a ∧ (a→ b ∨ c) φ12. a ∨ (¬a→ ¬a→ b)
φ13. (a ∧ (b→ c)) φ14. a ∨ (¬a→ ¬a→ b ∨ c)
φ15. c ∧ d φ16. d ∧ (d→ f)
Note that their respective associated multisets are the ones of Example 3. Let P4 = (K4 =

{φ11, . . . , φ16},⪰4= K4×K4). Let us consider the context C1 of Example 3, the respective distances
of φ11, φ12, φ13, φ14 and φ15 to C1 are: 0, 2, 1, 1 and 4 (see Figure 1). Note that d(φ16, C1)
is not defined since the intersection of symbols is empty. However, λsyn(P4, C1) = (K4C1

,⪰4C1
)

with K4C1 = K4: all the formulas are selected since the graph is connected. ⪰4C1 is s.t. φ11 ≻4C1

φ13 ≃4C1 φ14 ≻4C1 φ12 ≻4C1 φ15 ≻4C1 φ16.

Example 4. We consider a knowledge base K5 which results from the aggregation of another
famous example (Nixon Diamond) to the four formulas of Example 1:
φ5. r → ¬pa Republicans are not pacifists
φ6. q → pa Quakers are pacifists
φ7. q → a Quakers are Americans
φ8. a→ bb Americans love baseball
φ9. q → ¬bb Quakers do not love baseball
φ10. q ∧ r Nixon is a Quaker and republican

Let P5 = (K5 = {φ1, . . . φ10},⪰5= {(φx, φy) s.t. x ≤ y}) with C7 = (q, r), then the filtered base
with λsyn is K5C7 = {φ5, φ6, φ7, φ8, φ9, φ10} with the ordering φ10 ≻5C7 φ5 ≻5C7 φ6 ≻5C7 φ7 ≻5C7

φ9 ≻5C7
φ8 because the distance paths from (q, r) to φ5, φ6, φ7,φ8,φ9,φ10, are respectively (2),

(2), (2), (2,2), (2), (0). Then among the equivalently distant formulas the initial order applies.

3.3 Context-based desirable axioms

In Section 3.1, we have shown that when the context is fixed contextual inference is a rational non-
monotonic inference, in this section we study the impact of changing the context on the inference
relation. One benefit of taking into account the syntax relevance is the ability to impose that the
context and the inferred conclusion are related as shown in the following example.

Example 5. Let P6 = (K6 = {a, a→ b},⪰6= K6×K6) with a context c (a fresh symbol), it holds

that |̸∼λ0

P6,(c)
b and |̸∼syn

P6,(c)
b indeed there is no syntax relevance between the context c and b. It

would not be the case with lexicographic inference based on P6, namely, it holds that |∼lex
P6
b. Even

in classical logic, we would have P6 ∪ {c} |= b which might be deemed irrelevant (à la relevance
logic [16], but in a weaker form).

Moreover, syntactic inference imposes that the pieces of knowledge of K that are used should
be relevant with the context even indirectly as shown with P7 = ({a, a → b, d → a, d → c},⪰7=

K7 ×K7), we have |∼syn
P7,(c)

b which is conform to |∼lex
P7
b.

Concerning classical logic, the previous example highlights that in the case of a consistent
knowledge base, the contextual inference based on the refiner λsyn recovers the results of classical
inference for any query whose symbols are in the context.
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Proposition 3 (Classical logic recovery). Given a consistent knowledge base K ⊆ L, a formula
φ ∈ L and a context C ∈ MS such that ms(φ) ⊆ C,

K |= φ iff |∼syn
(K,K×K),C φ.

Proof. Since Lexicographic inference from a stratified consistent knowledge base K amounts to
take all the formulas from each stratum (thus to ignore the stratification) and reason with classical
inference from K, then it is enough to reason about the classical inferences from the compartment
of K selected in the context C, namely KC = {ψ ∈ K s.t. ψ is s-connected to C in UK}.

(⇒) Let us assume (1) that K |= φ but (2) that |̸∼syn
(K,K×K),C φ, i.e., KC ̸|= φ. Note that

φ ̸≡ ⊥ since K is consistent and (1), note also that φ ̸≡ ⊤ because of (2). Now due to the
deduction theorem of propositional logic, (1) translates into Cl(K) ∪ Cl({¬φ}) ⊢ ⊥ and (2) into
Cl(KC) ∪ Cl({¬φ}) ⊬ ⊥ where Cl(E) is the set of clauses (disjunction of literals) equivalent to
the set of propositional formulas E and “⊢⊥” means that the empty clause can be obtained by
resolution. Now the fact that (1) holds together with (2) means that there is a subset A ⊆ K
with A∩KC = ∅ such that Cl(KC)∪Cl(A)∪Cl({¬φ}) ⊢ ⊥. In order to obtain the empty clause
by resolution, A should contain at least a formula with a common symbol either with a clause of
Cl(KC) or with a clause of Cl({¬φ}), in both cases this formula is s-connected with C. Hence
this formula should have been in KC : contradiction.
(⇐) Assume now that KC |= φ it means that K |= φ since classical inference is monotonic.

We are now going to state conditions on the relation between the context and the conclusion
in order to recover plain lexicographic entailment. The next proposition follows from the result
established in [17] stating that lexicographic inference satisfies syntax splitting and in particular
the (Rel) axiom. The (Rel) axiom defined in [18] states that if the knowledge base can be divided
in two compartments with different vocabularies and α and β are on the same compartment then
the inference from α to β is equivalent whether or not the other compartment of the knowledge
base is taken into account. In our approach, this corresponds to the case where the knowledge
base is split into a compartment of formulas s-connected to the context C and another regrouping
the remainder of the knowledge base.

Proposition 4. Under the conditions that C s-connected to β and α s-connected to β in UK , it
holds that α |∼syn

P,C β iff α |∼lex
P β.

Proof. The proof is similar to the one of [17], by considering formulas that are connected to C as
belonging to the same sub-language. Using (Rel), α and β are both s-connected to C, hence the

entailment only needs formulas s-connected to C: α |∼lex
P β iff α |∼lex

λ(P,C) β. Due to the fact that

|∼syn
P,C = |∼lex

λ(P,C), we get the result.

In the following, we define three axioms relative to the context. The first definition imposes a
syntactic relevance between the context and the conclusion. Note that in [18] no context was taken
into account to compute syntactic relevance. However, as seen in Prop. 4’s proof, considering the
s-connected component associated with the context, allows us to compartmentalize the knowledge
base into two parts. With this in mind, our definition of context relevance is different from the
(Rel) axiom of [18] which is more related with our two other axioms.

Definition 11 (Context relevance). A contextual inference relation |∼λ
P based on a prioritized

knowledge base P = (K,⪰) and a refiner λ is context relevant iff for any context C ∈ MS, and
any consistent formulas α, β ∈ L s.t. α ̸|= β

if α |∼λ
P,C β then C is s-connected to β in UK .

Here is a variant of (Ind) defined in [18] where independence was used in order to extend a
premise while here it concerns a context to extend. More precisely, it expresses that when there
is no syntactic path from a conclusion β to a formula, then this conclusion is also obtained from
the same premise in a context extended with the symbols of this formula.
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Definition 12 (Context independence). A contextual inference relation |∼λ
P based on a prioritized

knowledge base P = (K,⪰) and a refiner λ satisfies context independence iff for any context
C ∈ MS and any formulas α, β, φ ∈ L such that α is connected to β in UK , if φ is not s-connected
to β in UK and α |∼λ

P,C β then α |∼λ
P,C⊔ms(φ) β.

Next definition considers that if the syntactic similarity induced from C is the same that the
one induced from C ′, then inference based on these two contexts should be the same.

Definition 13 (Context equivalence). A contextual inference relation |∼λ
P based on a prioritized

knowledge base P = (K,⪰) and a refiner λ satisfies context equivalence iff for any contexts

C,C ′ ∈ MS such that ∀φ,φ′ ∈ K, φ >syn
UK ,C φ′ iff φ >syn

UK ,C′ φ′, then α |∼λ
P,C β iff α |∼λ

P,C′ β

The following proposition shows that the syntactic entailment |∼syn
is well behaved wrt our

three axioms.

Proposition 5. Given a prioritized knowledge base P , |∼syn
P satisfies context relevance, context

independence and context equivalence.

Proof. (context relevance) Let α, β ∈ L be consistent formulas s.t. α ̸|= β and C ∈ MS, assume
that α |∼syn

P,C β then it means that every Lex-preferred α-consistent subbase B of λ(P,C) is s.t. (1)
B∪{α} |= β where PC = (KC ,≻C) and KC contains only formulas s-connected to C in UK . (1) is
equivalent to B ∪ {α} ∪ {¬β} is inconsistent. Since α ̸|= β it means that {α} ∪ {¬β} is consistent,
hence B should contain at least one formula that shares some variable with β, it means that β is
s-connected to a formula in B, since all formulas in B are s-connected with C.

(context independence) The proof is based on Proposition 4 by considering the knowledge base
KC⊔ms(φ) which can be split into KC and the rest since φ is not s-connected to β.

(context equivalence) If C and C ′ induce the same ranking on the formulas of K, then the
Lex-preferred α-consistent subbases based on ⪰C and ⪰C′ are the same.

3.4 Optional syntax-based axioms

Due to the fact that the context is a multiset of symbols, refiners are naturally designed to take
into account the syntax of the context. Hence, assuming that the context can be represented by
a formula, different semantically equivalent ways to write this formula may influence the result
since each can have a different associated multiset.

Definition 14 (Sensitivity to context syntax). A contextual inference relation |∼λ
P based on a

prioritized knowledge base P = (K,⪰) and a refiner λ is sensitive to context syntax iff there exist
two contexts expressed by the formulas φ,φ′ and two formulas α, β ∈ L such that φ ≡ φ′ and
α |∼λ

P,ms(φ) β but α |̸∼λ
P,ms(φ′) β.

Proposition 6. λ0 and λsyn are sensitive to context syntax.

Proof. See Example 2 (continued).

Example 2 (continued): Let us consider P2 of Example 2, we have seen that the context φ = b

leads to λ0(P2, (b)) = ({b, a → ¬b},K2(b) × K2(b)) so ⊤ |∼λ0

P,(b) b. Now considering the context

corresponding to φ′ = b∧(c∨¬c) whose multiset is ms(φ′) = (b, c, c), λ0(P2, (b, c, c)) = K2,K2×K2)

hence ⊤ |̸∼λ0

P,(b,c,c) b. The following table shows the distance paths from the contexts (b) and (b, c, c)
to each formula of K2.

Hence λsyn(P2, (b)) = ({b}, {a → ¬b}, {c → a}, {c}) and λsyn(P2, (b, c, c)) = ({b, c}, {a →
¬b, c→ a}) which results in ⊤ |∼syn

P2,(b)
b∧¬c and ⊤ |∼syn

P2,(b,c,c)
b∧c. In both cases φ ≡ φ′ but entail-

ment in the context of their respective multisets ms(φ) and ms(φ′) leads to different conclusions.

Obviously the void refiner λvoid (such that for any prioritized knowledge base and for any
context λvoid(P,C) = P ) is not sensitive to context syntax. Recall that a void refiner is equivalent
to the plain lexicographic entailment. Another interesting subject is to check whether the way
each formula of the knowledge base is written may influence inference.
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C

K2 (b) (b, c, c)

b (0) (2)
c (1, 2, 1) (2)
c→ a (1, 2) (3)
a→ ¬b (1) (3)

Definition 15 (Sensitivity to knowledge syntax). A contextual inference relation |∼λ
P based on a

prioritized knowledge base P = (K,⪰) and a refiner λ is sensitive to knowledge syntax iff there

exist a context C and four formulas φ,φ′, α, β ∈ L such that φ ∈ K, φ ≡ φ′ and α |∼λ
P,C β but

α |̸∼λ
P ′,C β where P ′ is P in which φ′ replaces φ.

Proposition 7. λ0 and λsyn are sensitive to knowledge syntax.

Proof. See Example 6.

Example 6. Let P8 = (K8 = {a → b, a ∧ c → ¬b},⪰8= K8 × K8) and let us define P ′
8 as

the variant of P8 where a → b is replaced with the equivalent formula a ∧ (c ∨ ¬c) → b, then

λ0(P8, (c)) = ({a∧c→ ¬b}) and λ0(P ′
8, (c)) = ({a∧(c∨¬c) → b, a∧c→ ¬b}). Thus, a∧c |∼λ0

P8,(c)
¬b

but a ∧ c |̸∼λ0

P ′
8,(c)

¬b. Let us now define P ′′
8 as the variant of P8 where a → b is replaced with the

equivalent formula a ∧ a → b. The path distances from (a) to the formulas a → b, a ∧ c → ¬b,
a ∧ a → b are respectively (1),(2),(2) leading to λsyn(P8, (a)) = ({a → b}, {a ∧ c → ¬b}) and
λsyn(P

′′
8 , (a)) = P ′′

8 which means that a |∼syn
P8,(a)

b while a |̸∼syn
P ′′

8 ,(a) b.

3.5 Complexity discussion

Let us end this section with a comment about complexity. Unfortunately, there is no theoretical
worse-case complexity gain with the contextual inference approach because in the worst case (when
the knowledge base is consistent and contains only formulas relevant to the query) the refiner will
return the entire initial knowledge base. However, in the particular case where the knowledge
base contains several distinct parts, a context could concern only some of these parts. In this case,
by definition, contextual inference will be less (or equally) costly than a classical lexicographic
inference since computations would involve a compartment of formulas smaller or equal to the
whole knowledge base.

Concerning the computation of the compartmentalization, it is not negligible but polynomial,
as shown below.

Proposition 8. Given a knowledge base K = {φ1, . . . , φn} with formulas of maximum size k
(∀i ∈ [1, n], |ms(φi)| ≤ k) where k ≪ n, and a context C ∈ MS s.t. |C| ≪ n, the complexity of
the extraction with λ0 is linear in n while the extraction with λsyn is polynomial in n.

Proof. Both operators need to work on the multisets of symbols associated to the formulas of the
knowledge base, building these multisets is done in linear time wrt k and can be done once and
for all.
• λ0 operator only requires to perform n multisets intersection between the formulas and the
context, each intersection being linear in max(k, |C|). Hence the worse case complexity of com-
partmentalizing K with the refiner λ0 is in Θ(n).
• λsyn operators require to compute n distances: from C to each formula of the knowledge base.
Theses distances are comparisons of multisets of maximum size max(k, |C|), hence the distance
computation is in linear time with max(k, |C|) ≪ n. Next, λsyn requires to find the shortest paths
from the context C to each formula of K (e.g. using Dijkstra’s algorithm, computing one shortest
path requires n log n operations). This leads to a complexity of the compartmentalization with
λsyn in Θ(n2 log n).
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While arguably reasonable, compartmentalization still has a cost, it should be noted that it
can be computed once and for all in the case where the context remains the same during several
queries, in which case we could benefit from low amortized complexity.

4 Conclusion

The present paper deals with how to assess arguments and answer queries given an inconsistent
or not, prioritized or not, knowledge base, using a kind of compartmentalization. This compart-
mentalization is based on the relevance with a context, which is performed by a selection function
called refiner. This proposal is a first step in the general goal of simulating a rational agent and
trying to explain how this agent can exploit a knowledge base built incrementally with no mod-
eration. This paper aims at introducing a new notion, which we think was not exploited enough
in the literature, namely to take into account the way formulas are written in order to select
more efficiently the accurate pieces of knowledge for answering queries. Indeed, in order to build
systems that can help human to reason, it is important to take into account the form, in addition
to the meaning. This “syntax-dependent by design” approach, where e.g. (a∧ a) can be managed
differently from a if wanted, is a proposal in that way.

One first benefit of the proposed approach is to determine, on the fly, specific preferences on
the formulas of the knowledge base. Compared to other approaches that do not take preferences
as input, contextual inference is able to make more decisions.

Coming back to the initial question: “what conditions must the refiner meet to ensure that
the syntactic selection of the subbase allows for sound and complete reasoning”, we stress that,
when the knowledge base is consistent, there is no risk of over-sensitivity (Prop. 3). Indeed,
the conclusion obtained on a filtered subbase will be the same as the one obtained by classical
inference on the whole base.

In addition, our approach allows for a form of relevance in a propositional setting (presented
in Section 3.3), by providing three desirable axioms to characterize relevant refiners. There is a
huge amount of work about relevance logic [16] were the idea is to redefine classical logic in a way
that relevance is obtained by design. Quoting [19]: “the variable sharing principle says that no
formula of the form A→ B can be proven in a relevance logic if A and B do not have at least one
propositional variable [...] in common and that no inference can be shown valid if the premises
and conclusion do not share at least one propositional variable.” In our work, A → B translates
into A |∼P,C B (where P is a possibly empty knowledge base) and |∼ is based on classical inference
|= from a subset of P according to C. An extension of this work would be to replace |= with an
inference operator from relevance logic.

A long term objective of the “syntax-dependent by design” approach is to be able to quantify
the effect of using some words for rhetoric and persuasion, for instance by comparing the conclu-
sions obtained with syntactic sensitivity to the one obtained without it. Similarly, a perspective
would be to quantify the redundancies and repetitions in a discourse. The proposed approach
would need to be extended since it does not yet take into account the connectors. Indeed, when a
variable appears twice, connectors seem necessary to know if there is indeed a redundancy: namely
a ∧ (a→ b) is not as redundant as (a ∧ a) → b. One way of quantifying redundancies would be to
compare the formula with one of its canonical form (as in e.g. [20]).

Moreover, it is worth noticing that the idea to take into account the variable symbols in order
to focus on the relevant pieces of information can be extended to not only check whether exactly
the same variable symbol is present, but also to check whether another symbol that belongs to
the same lexical field is present (given extra-knowledge about lexical fields or ontological relations
between symbols, or chunks). This would be particularly useful when considering formulas directly
translated from English sentences, as the notions behind the words are meaningful. For instance,
words such as scent, aroma, fragrance and smell are all related to the concept of odor, but their
connoted meanings are quite different and oftentimes specific to the person hearing them. The
ability to handle connoted meanings of symbols, e.g. by integrating positive or negative emotions
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associated with them, is a promising perspective for which the syntax-sensitive inference operator
could be adapted.

Acknowledgments

We deeply thank the reviewers, the paper greatly benefited from all the suggested improvements
and corrections.

References

[1] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin, “An integrated
theory of the mind.” Psychological review, vol. 111, no. 4, p. 1036, 2004.

[2] B. Nebel, “Belief revision and default reasoning: Syntax-based approaches.” KR, vol. 91, pp.
417–428, 1991.

[3] N. Rescher and R. Manor, “On inferences from inconsistent premises,” Theory and Decision,
vol. 1, no. 2, pp. 179–217, 1970.

[4] G. Brewka, “Preferred subtheories: An extended logical framework for default reasoning.” in
IJCAI, vol. 89. Citeseer, 1989, pp. 1043–1048.

[5] S. Benferhat, C. Cayrol, D. Dubois, J. Lang, and H. Prade, “Inconsistency management and
prioritized syntax-based entailment,” in IJCAI, vol. 93, 1993, pp. 640–645.

[6] M. H. Liffiton and K. A. Sakallah, “Algorithms for computing minimal unsatisfiable subsets
of constraints,” Journal of Automated Reasoning, vol. 40, no. 1, pp. 1–33, 2008.

[7] S. Kraus, D. Lehmann, and M. Magidor, “Nonmonotonic reasoning, preferential models and
cumulative logics,” Artificial intelligence, vol. 44, no. 1-2, pp. 167–207, 1990.

[8] G. Pinkas and R. P. Loui, “Reasoning from inconsistency: A taxonomy of principles for
resolving conflict,” in Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning, 1992, pp. 709–719.

[9] D. Lehmann, “Another perspective on default reasoning,” Annals of mathematics and artifi-
cial intelligence, vol. 15, pp. 61–82, 1995.

[10] D. Makinson, “General theory of cumulative inference,” in Non-Monotonic Reasoning: 2nd
International Workshop Grassau, FRG, June 13–15, 1988 Proceedings 2. Springer, 1989,
pp. 1–18.

[11] P. Gärdenfors and D. Makinson, “Nonmonotonic inference based on expectations,”
Artificial Intelligence, vol. 65, no. 2, pp. 197–245, 1994. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0004370294900175

[12] J. Pearl, “System Z: A natural ordering of defaults with tractable applications to nonmono-
tonic reasoning,” in Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning
about Knowledge, 1990, pp. 121–135.

[13] S. Benferhat, D. Dubois, and H. Prade, “Nonmonotonic reasoning, conditional objects and
possibility theory,” Artificial Intelligence, vol. 92, no. 1-2, pp. 259–276, 1997.

[14] M. Goldszmidt and J. Pearl, “On the consistency of defeasible databases,” Artificial Intelli-
gence, vol. 52, no. 2, pp. 121–149, 1991.

[15] Y. Shoham, “Nonmonotonic logics: Meaning and utility.” in IJCAI, vol. 10. Citeseer, 1987,
pp. 388–393.

13

https://www.sciencedirect.com/science/article/pii/0004370294900175
https://www.sciencedirect.com/science/article/pii/0004370294900175


[16] A. R. Anderson, N. D. Belnap Jr, and J. M. Dunn, Entailment, Vol. II: The logic of relevance
and necessity. Princeton University Press, 2017, vol. 5027.

[17] J. Heyninck, G. Kern-Isberner, and T. Meyer, “Lexicographic entailment, syntax splitting
and the drowning problem,” in 31st International Joint Conference on Artificial Intelligence,
IJCAI, 2022.

[18] G. Kern-Isberner, C. Beierle, and G. Brewka, “Syntax splitting= relevance+ independence:
New postulates for nonmonotonic reasoning from conditional belief bases,” in Proceedings
of the International Conference on Principles of Knowledge Representation and Reasoning,
vol. 17, no. 1, 2020, pp. 560–571.

[19] E. Mares, “Relevance logic,” The Stanford Encyclopedia of Philosophy (Fall 2022 Edition),
vol. online: https://plato.stanford.edu/archives/fall2022/entries/logic-relevance/, 2022.

[20] J. Lang, P. Liberatore, and P. Marquis, “Propositional independence: Formula-variable
independence and forgetting,” J. Artif. Intell. Res., vol. 18, pp. 391–443, 2003. [Online].
Available: https://doi.org/10.1613/jair.1113

14

https://plato.stanford.edu/archives/fall2022/entries/logic-relevance/
https://doi.org/10.1613/jair.1113

	Introduction
	Basics about non-monotonic reasoning
	System P
	Prioritized inference
	Computing priorities: the System Z algorithm

	Contextual inference
	Generic definitions
	Syntactic similarity
	Context-based desirable axioms
	Optional syntax-based axioms
	Complexity discussion

	Conclusion

