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Gray and black solitons of nonlocal Gross–Pitaevskii equations:
existence, monotonicity and nonlocal-to-local limit

André de Laire∗ and Salvador López-Martínez†

Abstract

This article investigates the qualitative aspects of dark solitons of one-dimensional Gross–
Pitaevskii equations with general nonlocal interactions, which correspond to traveling waves
with subsonic speeds. Under general conditions on the potential interaction term, we provide
uniform bounds, demonstrate the existence of symmetric solitons, and identify conditions
under which monotonicity is lost. Additionally, we present new properties of black solitons.
Moreover, we establish the nonlocal-to-local convergence, i.e. the convergence of the soliton
of the nonlocal model toward the explicit dark solitons of the local Gross–Pitaevskii equation.
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1 Introduction

1.1 The problem

In numerous physical models, nonlinear effects manifest with spatially nonlocal interactions. For
instance, this is the case in nonlinear optics, where the correction to the refractive index at a
specific spatial point depends on the light intensity around that point [23, 29]. Other examples
include weakly interacting Bose-Einstein condensates, as explained by Gross [22] and Pitaevskii
[36], and nematic liquid crystals [35]. Thus, we consider the following nonlocal Schrödinger
equation, usually called the nonlocal Gross–Pitaevskii equation, that describes the dynamics in
these physical settings [28], and takes the (dimensionless) form

i∂tΨ + ∂xxΨ + gΨ(W ∗ |Ψ|2) = 0, in R × R. (1.1)

Here, Ψ : R × R → C, W is a real-valued distribution that represents the nonlocal response of
the medium, and ∗ is the convolution in space, and g ∈ {±1}. For instance, W models the
interaction between bosons in Bose-Einstein condensates. We consider here the case g = −1,
which corresponds to a defocusing nonlinearity, since we are interested in studying localized
structures with a nontrivial background. Therefore, we suppose that Ψ satisfies the (normalized)
nonzero condition at infinity:

lim
|x|→∞

|Ψ(x, ·)| = 1, (1.2)

representing the fact that the density is constant far away.
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To provide a clear mathematical context to the problem, it is useful to perform the change
of variables Ψ → e−itΨ, which leads to the equation

i∂tΨ = ∂xxΨ + Ψ(W ∗ (1 − |Ψ|2)), in R × R, (1.3)

where we assumed that W ∗1 = 1. We will also assume from now on that W is an even tempered
distribution. In this manner, (1.3) is Hamiltonian and its energy

E(Ψ(t)) = 1
2

∫
R

|∂xΨ(t)|2 dx+ 1
4

∫
R

(W ∗ (1 − |Ψ(t)|2))(1 − |Ψ(t)|2) dx,

is formally conserved. The (renormalized) momentum and mass

p(Ψ(t)) =
∫
R

⟨i∂xΨ(t),Ψ(t)⟩
(

1 − 1
|Ψ(t)|2

)
dx, N(Ψ(t)) =

∫
R

(1 − |Ψ(t)|2)dx,

are formally conserved too whenever infx∈R |Ψ(x, t)| > 0, where we used the notation ⟨z1, z2⟩ =
Re(z1z̄2), for z1, z2 ∈ C (see [13]).

We will be interested in special solutions to (1.3) with boundary condition (1.2), and be-
longing to the energy space and nonvanishing energy space:

E(R) = {v ∈ H1
loc(R) : 1 − |v|2 ∈ L2(R), v′ ∈ L2(R)} and N E(R) = {v ∈ E(R) : inf

R
|v| > 0},

i.e. the so-called dark solitons. Roughly speaking, these are localized density notches that propa-
gate without spreading [25]. They have been observed for example in Bose–Einstein condensates
[6, 20]. More precisely, dark solitons in our context will be nontrivial finite energy solutions to
(1.3) of the form

Ψc(x, t) = u(x− ct),

which represents a traveling wave with profile u : R → C propagating at speed c ∈ R. Hence,
the soliton u satisfies

icu′ + u′′ + u(W ∗ (1 − |u|2)) = 0, in R. (S(W, c))

Notice that taking the complex conjugate of u in equation (S(W, c)), we are reduced to the case
c ≥ 0.

The study of the existence of finite energy solutions for this nonlocal problem was started
in [18], and improved [17] under the following general hypothesis that we will assume to hold
throughout this paper:

(H0) W ∈ M(R) is even, with xW(0) = 1.

Here M(R) denotes the space of real, signed and finite Borel measures. In addition, if W ∈
M(R), by the Jordan decomposition theorem, there are nonnegative measures W+ and W−

such that W = W+ − W−, and W+ ⊥ W−, i.e. they are mutually singular. Thus, the total
variation is equal to

∥W∥M(R) =
∫
R
dW+ +

∫
R
dW−. (1.4)

We will keep this notation for the rest of the paper. Moreover, the Fourier transform extends
from L1(R) to M(R) as

xW(ξ) =
∫
R
e−ixξdW(x). (1.5)

In particular, the Fourier transform is continuous everywhere, so the normalization condition
xW(0) = 1 is meaningful. In addition, we have the next properties, which we use repeatedly in
this paper, whose proofs can be found in Section 8.6 in [21]:
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(i) xW ∈ L∞(R) ∩ C(R) with
∥xW∥L∞(R) ≤ ∥W∥M(R). (1.6)

(ii) For all f ∈ Lp(R), with p ∈ [1,∞], the convolution W ∗ f is well-defined in Lp(R) as
(W ∗ f)(x) =

∫
R f(x− y)dW(y), and the Young inequality holds:

∥W ∗ f∥Lp(R) ≤ ∥W∥M(R)∥f∥Lp(R). (1.7)

(iii) By using that W is real-valued, even, and invoking Plancherel’s identity, we have, for all
f, g ∈ L2(R), ∫

R
f(W ∗ g) =

∫
R
g(W ∗ f) = 1

2π

∫
R

xW(ξ) pf(ξ)pg(ξ)dξ. (1.8)

The main existence result proved in [17], and recast using the remarks in [14], is as follows.

Theorem 1.1 ([14,17]). Assume that there is s ∈ (0, 1] such that

inf
R

(
xW(ξ) + ξ2/2

)
= s. (1.9)

Then, for almost every c ∈ (0,
√

2s), there exists a nontrivial solution u ∈ E(R) to (S(W, c)).

From a physical point of view, Theorem 1.1 provides the existence of solutions for almost all
c below the Landau speed cL(W), defined by

cL(W)= inf
R

ω(ξ)
|ξ|

, with ω(ξ) =
(
ξ4 + 2xW(ξ)ξ2

)1/2
.

Here ω is the dispersion relation associated with (1.3). Thus, if s given in (1.9) lies in (0, 1],
Theorem 1.1 provides the existence of solution for almost all c ∈ (0, cL(W)). Notice that, since
xW(0) = 1, the Landau speed cannot exceed the sonic speed

cs(W) = lim
ξ→0+

ω(ξ)/ξ =
√

2.

We refer the reader to [14] for more detailed interpretations, where there are also many numerical
simulations of solutions for several physically relevant potentials.

Finite energy solutions to (S(W, c)) have several properties, gathered in the following result.

Lemma 1.2. Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)). Then u ∈ C∞(R) ∩L∞(R).
Also, setting η = 1 − |u|2, we have η ∈ Hk(R) for all k ∈ N, and

|u|(±∞) = 1, Dju(±∞) = Djη(±∞) = 0, for all j ≥ 1, (1.10)

where Dj denotes the derivative of order j. In addition, η satisfies the equation

−η′′ + 2W ∗ η − c2η = 2|u′|2 + 2(W ∗ η)η, in R, (1.11)

which has the first integral

c2η2 + (η′)2 = 4|u′|2(1 − η), in R. (1.12)

In particular,

−η′′ + 2W ∗ η − c2η = c2η2

2(1 − η) + (η′)2

2(1 − η) + 2(W ∗ η)η, (1.13)

in the set {x ∈ R : η(x) ̸= 1}. Furthermore, depending on the value of c, we have:
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(i) If c = 0, then u is real-valued up to a multiplication by a complex number of modulus one.
In particular, u presents a vortex, i.e. there exists x0 ∈ R such that u(x0) = 0. Moreover,
the unique continuation principle holds in the sense that if η ≡ 0 in some open interval,
then η ≡ 0 in R.

(ii) If c > 0, then u belongs to N E(R) and there exists a smooth lifting of u, i.e. there is a
real-valued function θ ∈ C∞(R) such that u = |u|eiθ in R. Moreover, θ′ ∈ Hk(R) for every
k ∈ N, and Djθ(±∞) = 0, for every j ≥ 1.

Finally, assuming in addition xW ≥ 0 on R and η ∈ L1(R), it follows that either η ≡ 0 or

(2 − c2)
∫
R
η(x)dx > 0. (1.14)

Let us recall that black solitons are finite energy solutions vanishing at some point. In view
of Lemma 1.2, the only solutions having this property are the static ones, i.e. those with speed
c = 0, and can be taken as real-valued functions. In our previous works, we have avoided such
solutions since they require treatment. For this reason, we introduce equation (S(W, c)) for
c = 0 separately:

u′′ + u(W ∗ (1 − u2)) = 0, in R. (S(W, 0))

Since we are assuming that W ∗ 1 = 1, this equation is equivalent to −u′′ + u(W ∗ u2) = u,
which is sometimes called the (nonlocal) Ginzurg–Landau or Allen–Cahn equation. Recently,
Lewin and Nam [30] have shown the existence of infinite ground state solutions to this equation.
However, these solutions have infinite energy.

By Lemma 1.2, if c ̸= 0, we can write u =
√

1 − ηeiθ, and we will use this notation throughout
this paper. Furthermore, we also proved in [17] the exponential or algebraic decay at infinity of
η, depending on the properties of W.

In the case of a constant interaction given by a Dirac delta function W = δ0, so that
xW = 1, the finite energy solutions to (S(W, c)) are unique for c ∈ [0,

√
2), up to translations and

multiplications by complex constants of modulus one. These dark solitons are explicitly given
by

u(x; c) =

√
2 − c2

2 tanh
(√

2 − c2

2 x

)
− i

c√
2
, so η(x; c) =

(
1 − c2

2
)

sech2
(√

2 − c2

2 x

)
, (1.15)

for x ∈ R, where η = 1 − |u|2. For brevity, we shall sometimes indicate the dependence on c as
uc and ηc instead of u(· ; c) and η(· ; c), respectively. In view of (1.15), the solitons for c > 0
can be written in the polar form

u(x; c) =
√

1 − η(x; c)eiθ(x;c), with θ(x; c) = arctan
(√

2 − c2

c
tanh

(√
2 − c2

2 x

))
− π

2 . (1.16)

On the other hand, from (1.15), we see, in particular, that η is an even solution, strictly
decreasing on R+. In addition, if c ≥

√
2, the only solutions are the constants of modulus one

(see [9]).
To better understand the role of the nonlocal interactions in the behavior of solitons, we

provided in [14] numerical simulations for several kernels. For instance, consider the Gaussian
function proposed in [32],

Wλ(x) = 1
2|λ|

√
π
e− x2

4λ2 , x ∈ R, so that xWλ(ξ) = e−λ2ξ2
, ξ ∈ R, (1.17)

4



where λ ∈ R \ {0}. Thus, for small λ, this potential represents a smooth approximation of the
Dirac delta function. By invoking Theorem 1.1, for λ ∈ [0, 1/

√
2), we conclude existence of

solutions for almost every c ∈ (0,
√

2). Also, for λ ≥ 1/
√

2, we infer the existence of solutions
for almost every c ∈ (0, cL(λ)), where the Landau speed is cL(λ) = λ−1√1 + ln(2λ2).

However, the numerical simulations in [14] lead us to the conjecture of existence of solutions
for speeds above cL(λ). On the other hand, the shapes of the solitons are very similar to (1.15)
if λ is small, but oscillations appear when increasing λ. For instance, we depict in Figure 1
the profile η and the phase θ of the numerical solutions to (S(W, c)) obtained in [14] for the
Gaussian potential (1.17), for λ = 3. Another interesting potential is
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Figure 1: Numerically computed solitons for potential (1.17) with λ = 3.0, showing η (left panel)
and θk (right panel) as function of x.

Wλ(x) = β

β − 2λ
(
δ0 − λe−β|x|

)
, x ∈ R, i.e. xWλ(ξ) = β

β − 2λ
(
1 − 2λβ

ξ2 + β2

)
, ξ ∈ R, (1.18)

for β > 0 and λ ∈ (−∞, β/2), for the study of dark solitons in a self-defocusing nonlocal Kerr-like
medium. If λ > 0, the potential Wλ represents a strong repulsive interaction between particles
that coincide in space, while the interaction becomes attractive otherwise, being this attraction
more significant at short distances. In contrast, for λ < 0, the potential Wλ is purely repulsive.
As explained in [14], Theorem 1.1 provides the existence of solutions for a.e. c ∈ (0,

√
2), if

β ≥
√

2 and λ ∈ (−∞, β/2), or β ∈ (0,
√

2) and λ ∈
(

− β3

2(2−β2) ,
β
2

)
.

Despite the significance of nonlocality in influencing the stability and dynamics of dark
solitons in the physical literature, there are almost no mathematical results on the effect on the
interaction potential, and only very particular cases of W have been considered [23,28,34]. For
instance, it is conjectured that the nonlocal effects can suppress the transverse instability of dark
solitons [3, 15, 16]. A common approach, used for instance in [28, 29], is to study the so-called
weakly nonlocal case, that is when we can replace W by Wε(·) = W(·/ε)/ε, for a small positive ε.
Then, performing a formal Taylor expansion, equation (1.3) reduces to the quasilinear equation

i∂tΨ = ∂xxΨ + Ψ(1 − |Ψ|2) + λΨ∂xx(1 − |Ψ|2), in R × R, (1.19)

for some (small) real constant λ, depending on ε. This equation can be seen as a limit case of
(1.3), taking Vλ = δ0 +λ∂xx, so that pVλ(ξ) = 1−λξ2. Of course, in this case, pVλ is not bounded,
so does not satisfy (H0).

Only a few results deal with dark solitons for (1.19) when κ ̸= 0. A branch of explicit dark
solitons was found in [29] for κ ∈ [0, 1/2). Also, in the setting of Korteweg models, Benzoni-
Gavage, Danchin, Descombes and Jamin [7] obtained existence of smooth dark solitons by using
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Figure 2: Numerically computed solitons for potential (1.18) with β = 0.5 and c = 0.1 for several
values of λ, plotted for η = 1 − |u|2.

an ODE phase portrait analysis. Recently, a complete classification of localized solutions to
(1.19) has recently been done in [19], which leads to the existence of dark and antidark solitons,
as well as more exotic localized solutions like dark cuspons, compactons, and composite waves,
even for supersonic speeds.

This paper aims to provide rigorous results concerning the qualitative properties of dark
solitons under general conditions for W. In particular, to justify some behaviors detected nu-
merically in [14]. More precisely:
(i) we obtain new a priori bounds for the L∞-norm of the solutions;
(ii) we show the nonlocal-to-local convergence, i.e. the convergence of a solution uλ,c to (S(W, c))
with a potential Wλ, towards the explicit solution u(· ; c) in (1.15), as Wλ → δ0 in some sense;
(iii) we prove the existence of symmetric solitons;
(iv) we provide conditions on W to characterize the loss of monotonicity of η on R+;
(v) we establish existence and new properties of black solitons.

As an application of (i), we can give explicit conditions on W to fill the speed gaps in
Theorem 1.1, so that we have existence of solutions for all speed c below the Landau speed, i.e.
for all c ∈ (0,

√
2s). We also remark that the uniqueness, up to invariances, of nontrivial finite

energy solutions to (S(W, c)) for c ∈ [0,
√

2) is an open question.

1.2 Hypotheses and main results

1.2.1 L∞-estimates and existence results

Let us state the main hypotheses used in the following statements.

(H1) xW ∈ W 1,∞(R). In addition, either xW ∈ W 2,∞(R), or the map ξ 7→ ξ
(

xW
)′(ξ) is bounded

and continuous a.e. in R.

(H2) xW ∈ W 1,∞
loc (R), xW ≥ 0 in R, and there is m ∈ [0, 1) such that

(
xW
)′(ξ) ≥ −mξ for a.e.

ξ > 0.

(H3) W ∈ L1(R), W ≥ 0 in R, and there is τ > 0 such that σ := infx∈(−τ,τ) W(x) > 0.

(H4) There is µ ∈ M(R) such that W = Aµ(δ0 + µ), with ∥µ−∥M(R) < 1.
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Notice that in view of (1.4) and (1.5), the condition xW(0) = 1 in (H0) fixes the value of the
constant Aµ as

1
Aµ

= 1 + xµ+(0) − xµ−(0) = 1 + ∥µ+∥M(R) − ∥µ−∥M(R). (1.20)

On account of Theorem 1.1, the natural question is whether improving the almost all in the
speed interval is possible. In [14], we have already established a general theorem that allows us
to fill the gaps in the speeds, but it requires some a priori L∞-estimates on the solutions, which
are not easy to obtain for nonlocal equations. For the sake of convenience, we recall the result
now.

Theorem 1.3 (Theorem 4.1 in [17]). Consider W satisfying (H1) and (H2). Assume that there
exists a continuous function M : (0,

√
2) → (0,∞) such that for any u ∈ N E(R) solution to

(S(W, c̃)), with c̃ ∈ (0,
√

2), we have the estimate ∥u∥2
L∞(R) ≤ M(c̃). If c ∈ (0,

√
2) satisfies

mM(c) < 1, (1.21)

where m is given by (H2), then there exists a nontrivial solution u ∈ N E(R) to (S(W, c)).

This result is based on a refined study of the Palais–Smale sequences and the use of the
profile decomposition theorem for bounded functions in H1(R). Therefore, the problem of
existence reduces to obtaining L∞-estimates for solutions to (S(W, c)), with good control of the
constants, which is a difficult problem. Also, we showed in [14] that the necessary L∞-estimate
in Theorem 1.3 holds for a potential of the form given in (H4) with

M(c, µ) =
(
1 +

∥µ+∥M(R)
1 − ∥µ−∥M(R)

)(
1 + c2

4
)
. (1.22)

This yields the following result.

Corollary 1.4 ([17]). Let c ∈ (0,
√

2). Assume that W satisfy (H1), (H2) and (H4), with

mM(c, µ) < 1, (1.23)

where M(c, µ) is given by (1.22). Then there is a nontrivial solution u ∈ N V(R) to (S(W, c)).

Recall that we are assuming that (H0) holds, so that the measure µ is even, with bounded
Fourier transform. For instance, we can apply Corollary 1.4 to potential (1.18) for specific
choices of β and λ, as illustrated with Corollary 1.17 in subsection 1.3.

Our first result consists of establishing an L∞-bound for potentials satisfying (H3). In this
manner, we can then apply Theorem 1.3 to obtain the existence of solutions to (S(W, c)) in the
whole subsonic interval, as follows.

Theorem 1.5. Let c ∈ (0,
√

2). Assume that W fulfills (H1), (H2) and (H3), such that τ , σ
and m satisfy

τ <
π√

8 + 2c2
, m <

1
M(c, τ, σ) , where M(c, τ, σ) = 1

τσ

(
1 + c2

4
)

sec
(
τ

2
√

8 + 2c2

)
. (1.24)

Then there exists a nontrivial solution u ∈ N V(R) to (S(W, c)).

So far we have excluded the existence of black solitons since the framework for their study is
usually different. To be more specific, recall that, from Lemma 1.2, gray solitons do not present
vortices, so they can be lifted. This fact was the starting point of the work in [17], since we
could work in a simpler framework by considering the equation satisfied by the modulus of the
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solitons. In contrast, black solitons do present vortices (again by Lemma 1.2), so the approach
in [17] is no longer valid. Nevertheless, every black soliton is real-valued, modulo a change of
phase, so we are allowed to work in the energy subspace of odd real-valued functions, i.e. in the
space

Eodd(R) = {u ∈ E(R) : u is real-valued and odd}.

The minimization of the energy along Eodd(R) gives the existence result. Adopting this approach,
only the following condition on W is needed:

(H5) There exists κ ≥ 0 such that xW(ξ) ≥ (1 − κξ2)+ for a.e. ξ ∈ R.

The precise statement reads as follows.

Theorem 1.6. Let W satisfy (H5). Then there exists a real-valued solution u ∈ Eodd(R) to
(S(W, 0)) which satisfies

E(u) = min{E(v) : v ∈ Eodd(R)}. (1.25)

In the sequel, we will call odd minimizer a function u satisfying (1.25) and the condition
u(±∞) = ±1. In this manner, Theorem 1.6 provides the existence of an odd minimizer black
soliton solution.

1.2.2 Nonlocal-to-local limit

Once the existence of gray and black solitons is guaranteed, we will show that they satisfy the
so-called nonlocal-to-local limit. The study of this kind of limit is a very natural question from a
mathematical and physical point of view for several nonlocal problems [12, 33]. In our context,
the idea is to prove that if the potential W is somehow close to the contact interaction δ0, then
the solutions given by Corollary 1.4, Theorem 1.5 and Theorem 1.6 are also close in some sense
to the (unique) solution to the local Gross–Pitaevskii equation.

To make rigorous the idea of closeness to δ0, let us introduce the following hypotheses for a
family of potentials {Wλ}λ∈(0,λ∗) ⊂ M(R) satisfying (H0):

(H6) For some α ≥ 0, yW+
λ (ξ) → 1 + α, yW−

λ (ξ) → α, as λ → 0, for a.e. ξ ∈ R.

(H7) The family is bounded in M(R), i.e. supλ∈(0,λ∗) ∥Wλ∥M(R) = Mλ∗ , for some Mλ∗ > 0.

Notice that assumption (H6) implies that xWλ(ξ) → 1 for a.e. ξ ∈ R. This fact, combined with
(H7), implies in turn that Wλ → δ0 vaguely (see (7.1)). We remark that we do not use the
convergence of Wλ to δ0 in M(R), since it is, in general, too strong. Indeed, it does not hold
for some classical potentials studied in Subsection 1.3, as showed in Lemma 7.1.

The following result shows that the gray solitons obtained for the nonlocal equation (S(W, c))
approximate the corresponding ones for the local equation.

Theorem 1.7. Let λ∗ ∈ (0,∞) and c ∈ (0,
√

2). Consider a family of even potentials {Wλ}λ∈(0,λ∗) ⊂
M(R) satisfying (H1), (H2), (H6) and (H7), where the constant given by (H2) is denoted by mλ

instead of m. Suppose also that one of the following two cases holds:

(i) For every λ ∈ (0, λ∗), Wλ satisfies (H3), with constants τ = τλ and σ = σλ, such that

inf
λ∈(0,λ∗)

τλσλ > 0 and sup
λ∈(0,λ∗)

mλM(c, σλ, τλ) < 1. (1.26)

(ii) For every λ ∈ (0, λ∗), Wλ is of the form Wλ = Aµλ
(δ0 + µλ), satisfies (H4) and

sup
λ∈(0,λ∗)

∥µ+
λ ∥M(R)

1 − ∥µ−
λ ∥M(R)

< ∞ and sup
λ∈(0,λ∗)

mλM(c, µλ) < 1. (1.27)
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Here, M(c, τ, σ) and M(c, µ) are defined in (1.24) and in (1.22), respectively. Let uλ ∈ N V(R)
be the solution to (S(W, c)) with W = Wλ, given by either Theorem 1.3 in case (i), or by
Corollary 1.4 in case (ii). Then, there exists a sequence (xλ, θλ) ∈ R2 such that

uλ(· + xλ)eiθλ → u(· ; c), as λ → 0, in W k,∞
loc (R), (1.28)

for every k ≥ 0, where u is the explicit soliton in (1.15). Moreover, the convergence in (1.28)
also holds weakly-∗ in L∞(R), and weakly in the homogeneous Sobolev space Ḣ1(R).

Remark 1.8. We think that the convergence stated in Theorem 1.7 can be improved by refining
the decay of solutions at infinity given in [17]. In a slightly different framework, a stronger
convergence result will be given in Theorem 1.10 below, for solutions constructed via the implicit
function theorem.

The proof of the previous result uses several arguments from [17]. In particular, the fact
that the solutions are (limits of) mountain-pass critical points is essential to provide several key
estimates.

We can deal with the nonlocal-to-local limit also for black solitons. In this case, we take
advantage of the fact that the solutions given by Theorem 1.6 are minimizers, as stated in the
result.

Theorem 1.9. Let λ∗ ∈ (0,∞). Consider a family of even potentials {Wλ}λ∈(0,λ∗) ⊂ M(R)
satisfying (H5), (H6) and (H7), where the constant κ ≥ 0 is independent of λ. Let uλ ∈ Eodd(R)
be the solution to (S(W, 0)), with W = Wλ, given by Theorem 1.6. Then uλ → u(· ; 0) as λ → 0
in W k,∞

loc (R) for every k ≥ 0, where u is the explicit soliton in (1.15). Moreover, the convergence
in (1.28) also holds weakly-∗ in L∞(R), and weakly in the homogeneous Sobolev space Ḣ1(R).

1.2.3 Existence of symmetric solitons for small λ

We have seen that the obtained black solitons are odd functions. By performing a perturbative
argument, we can also establish the existence of gray solitons with even modulus working in the
Hilbert spaces of symmetric functions

H2
e (R) = {η ∈ H2(R) : η is even} and L2

e (R) = {η ∈ L2(R) : η is even}.

This is certainly a natural property and was suggested by the numerical results in [14]. Besides,
a symmetry result for the solitons obtained by minimization at fixed momentum was proved in
[17], but this result applies only to some very particular potentials.

The proof will be based on a quantitative version of the implicit function theorem (see
Theorem 4.1). In this manner, we can construct solitons bifurcating from u(· ; c) in (1.15). For
applying this implicit function theorem, we only need the following general condition on a family
{Wλ}λ∈(−λ∗,λ∗) in M(R) for some λ∗ > 0:

(H8) xW0 ≡ 1 and, for a.e. ξ ∈ R, the map λ ∈ (−λ∗, λ∗) 7→ xWλ(ξ) ∈ R, is of class C1, there
exists C > 0 such that, for all λ ∈ (−λ∗, λ∗), ∂λ

xWλ(·) is measurable in R and it satisfies

|∂λ
xWλ(ξ)| ≤ C(1 + ξ2), for a.e. ξ ∈ R. (1.29)

Our result is as follows.

Theorem 1.10. Let us consider the open set of H2(R)

Ωe = {η ∈ H2
e (R) : η < 1 in R}.
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Assume that the family {Wλ}λ∈(−λ∗,λ∗) in M(R) satisfies (H8), and fix a ∈ (0,
√

2). There
exist λa ∈ (0, λ∗) and an open set Ωa

e ⊂ Ωe such that, for every c ∈
[
a,

√
2 − a2

]
and for every

λ ∈ (−λa, λa), there is uλ ∈ N E(R) such that ηλ = 1 − |uλ|2 ∈ Ωa
e and uλ is a solution to

(S(W, c)) with W = Wλ. Moreover, the map λ ∈ (−λa, λa) 7→ ηλ ∈ Ωa
e is of class C1, and for

every λ ∈ (−λa, λa), uλ is the unique solution to (S(W, c)), with W = Wλ, that belongs to Ωa
e .

Furthermore,

uλ → u(· ; c) in C1(R) and ηλ → η(· ; c) in H2(R), as λ → 0. (1.30)

Finally, if the family satisfies (H7), we have the stronger convergences uλ → u(· ; c) in Ck(R),
and ηλ → η(· ; c) in Hk(R), for all k ≥ 0, as λ → 0.

Let us remark that the classical implicit function theorem would require fixing first the
speed c, to provide the existence of a number λc > 0 and the existence of a family of solutions
{uλ}λ∈(−λc,λc). The difference in Theorem 1.10 is that given a (small) number a, we can obtain
a family of solutions for all c ∈

[
a,

√
2 − a2].

We stress that Theorem 1.10 establishes the existence of symmetric solutions to (S(W, c)),
with W = Wλ, satisfying the nonlocal-to-local limit with a strong convergence. However, notice
that Theorem 1.10 does not provide solutions with speeds close to 0 or

√
2, nor with large λ,

contrary to Theorem 1.3. Since the uniqueness is an open problem, it is not possible to guarantee
whether the solutions in both results are the same or not.

Finally, let us recall that we are implicitly assuming that each Wλ satisfies (H0). Never-
theless, the implicit function argument in Theorem 1.10 can be done assuming only that xWλ is
even and that also satisfies |xWλ(ξ)| ≤ C(1 + ξ2), for λ ∈ (−λ∗, λ∗). Therefore, Theorem 1.10
could also be used to show the existence of symmetric dark soliton solutions to some quasilinear
equations, like (1.19), for small λ, constructed as a branch of solutions emanating from η.

1.2.4 Monotonicity results

Our last results concern the study of properties related to the monotonicity of solitons. As
explained above, the numerical simulations in [14] show that oscillations in the solitons appear
when W “is far” from a Dirac delta function. Thus, we aim to show that, under some conditions
on W, η = 1 − |u|2 must have at least one oscillation on R+. To motivate the conditions on the
potential, we perform a linearization of (1.13) around the trivial solution η = 0, which yields:

v′′ − 2W ∗ v + c2v = 0, in R. (1.31)

If W is given by an integrable function, we can seek solutions of the form v(x) = esx, with s ∈ R,
to get the characteristic equation

s2 − 2
∫
R

W(y)e−sydy + c2 = 0. (1.32)

Notice that, since W is even, we may take s ≥ 0, without loss of generality. In (1.32) we recognize
the Laplace transform (also called bilateral or the two-sided Laplace transform), defined by

|W(s) =
∫
R

W(y)e−sydy, (1.33)

whenever the integral is meaningful. Since this integral could diverge, we will consider it in a
suitable generalized sense. To be precise, if W ∈ L1(R) and W ≥ 0 in R, we define |W : [0,∞) →
R ∪ {∞} by

|W(s) = lim
R→∞

|W(s,R), where |W(s,R) =
∫ ∞

−R
W(s)e−syds. (1.34)
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For instance, if Wλ(x) = 1
2|λ|e

−|x|/|λ|, with λ ̸= 0, its (generalized) Laplace transform is

|Wλ(s) = 1
1 − λ2s2 , if s ∈ [0, 1/|λ|), and |Wλ(s) = ∞, if s ∈ [1/|λ|,∞). (1.35)

Observe that evaluating the left-hand side of (1.32) at s = 0 leads to −2 + c2, which is
negative in the subsonic regime c ∈ [0,

√
2). Thus, from (1.32) we infer that the following

condition
s2 − 2|W(s) + c2 < 0, for all s ≥ 0, (1.36)

is sufficient to exclude the existence of exponential solutions to (1.31). If the function in (1.36)
is a polynomial (or a rational function) , it would be tempting to expect that it plays the role
of the characteristic polynomial in linear second-order ODEs with constant coefficients, i.e. that
the solutions to (1.31) present oscillations. We will show that this can be proved rigorously
for certain potentials such as the one in (1.35). We refer to Theorem 5.6 for more details. In
the general case, we will rigorously establish the presence of oscillations under a slightly more
restrictive condition, as follows.

Theorem 1.11. Let c ∈ [0,
√

2). Assume that W satisfies (H3) and also the condition:

s2 − 2|W(s) + c2 < −2cs, for all s ≥ 0. (1.37)

Consider u ∈ E(R) a nontrivial solution to (S(W, c)). Then, for every x0 ∈ R, neither of the
following two conditions can hold:

η ≥ 0 in R, with η′ ≥ 0 in (−∞, x0), (1.38)
η ≤ 0 in R, with η′ ≤ 0 in (−∞, x0), (1.39)

where η = 1 − |u|2. In particular, η has an oscillation in the sense that there exist x1 < x2 < x3
such that either η′(x1) > 0, η′(x2) < 0, η′(x3) > 0, or η′(x1) < 0, η′(x2) > 0, η′(x3) < 0.

Theorem 1.11 establishes that η has at least one oscillation. In addition, if, for instance, η
is positive, Theorem 1.11 implies that η must have an infinite number of oscillations.

In the case c = 0, the solutions are real-valued, by Lemma 1.2. Thus, we can deduce that u
cannot be monotone.

Corollary 1.12. Assume that W satisfies (H3) and also the condition in (1.36) with c = 0.
Consider u ∈ E(R) a nonconstant solution to (S(W, 0)) with u(±∞) = ±1. Then, u cannot be
nondecreasing in R.

Proof. Assume by contradiction that u′ ≥ 0 in R, so that u(x) ∈ [−1, 1], for all x ∈ R. By
Lemma 5.3, we deduce that u(x) ∈ (−1, 1) for all x ∈ R, which gives η > 0 in R. Also, we
deduce that there is x0 < 0 such that u(x) ∈ (−1, 0), for x < x0. Finally, since η′ = −2uu′, it
follows that η′ ≥ 0 in (−∞, x0). This contradicts Theorem 1.11.

We conclude the analysis of the monotonicity by showing that, for a class of nontrivial
potentials, increasing black solitons do exist. These potentials are of mixed attractive-repulsive
nature, contrary to the purely repulsive ones satisfying (1.36). The result reads as follows.

Theorem 1.13. Let W be of the form (H4) with µ ∈ L1(R) even and nonpositive. Then every
real-valued solution u ∈ C2(R) to (S(W, 0)) such that u(±∞) = ±1 satisfies

−1 < u < 1, in R. (1.40)

Assuming in addition that µ is radially nondecreasing, there exists an odd minimizer solution to
(S(W, 0)), which is increasing on R.
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1.3 Examples and applications

We end this introduction by showing how the results stated above can be used to establish
properties of dark solutions in models considering long-range effects. We mainly consider phys-
ically relevant potentials studied in [14], so our results can be compared with their numerical
simulations.

We start with the Gaussian potential introduced in (1.17).

Corollary 1.14. Consider Wλ the Gaussian potential given in (1.17), for some λ > 0.

(i) Let c ∈ (0,
√

2) and set

λc = sup
{
λ ∈

(
0, π√

8 + 2c2

)
: 4e1/4√

π
(
1 + c2

4
)
λ2 sec

(λ
2
√

8 + 2c2) < 1
}
. (1.41)

If λ > λc, then there exists a nontrivial solution uλ ∈ N V(R) to (S(Wλ, c)). Furthermore,
there exist θ0, x0 ∈ R such that (1.28) holds.

(ii) If c = 0, there exists an odd minimizer solution uλ ∈ Eodd(R) to (S(Wλ, 0)) for every λ ≥ 0.
Furthermore, (1.28) holds with θ0 = x0 = 0.

(iii) Let c ∈ [0,
√

2) and consider a nontrivial solution uλ ∈ E(R) to (S(Wλ, c)), with λ > λ̃c,
where

λ̃c = max
s≥

√
2−c

s−1( ln((s+ c)2/2)
)1/2

. (1.42)

Then ηλ = 1 − |uλ|2 presents at least one oscillation (in the sense of Theorem 1.13).
Moreover, if c = 0 and uλ(±∞) = ±1, then uλ cannot be nondecreasing.

Equation (1.3) also appears in the study of the propagation of a polarized beam of light
inside a planar cell filled with nematic liquid crystals, with the nematic potential [4]:

Wλ(x) = 1
2|λ|

e
− |x|

|λ| , x ∈ R, so that xWλ(ξ) = 1
1 + λ2ξ2 , ξ ∈ R, (1.43)

for λ ̸= 0. In this context, dark solitons are called dark nematicons.

Corollary 1.15. Consider Wλ given in (1.43) for λ > 0. For c ∈ [0,
√

2), we set

λc = sup
{
λ ∈

(
0, π√

8 + 2c2

)
: 4e

(
1 + c2

4
)
λ2 sec

(λ
2
√

8 + 2c2
)
< 1

}
, (1.44)

λ̃c = c−2
√

4 − c2 −
√

8(2 − c2), if c ̸= 0, and λ̃0 = 1/
√

8. (1.45)

Then conclusions in (i), (ii) and (iii) of Corollary 1.14 hold.

Remark 1.16. To have an estimation of λc, it is sufficient to put c =
√

2 in the inequality in
its definition. In the case of (1.41), this leads to equation 6λ2e1/4 sec(λ

√
3) = 1, whose first

positive solution is λ⋆ ≈ 0.275. Thus, for the Gaussian potential, we have the estimate λc ≥ λ⋆,
for all c ∈ (0,

√
2). Similarly, for the nematic potential, we deduce that λc in (1.44) satisfies

λc ≥ 0.237, for all c ∈ (0,
√

2). In addition, it is immediate to check that (1.42), for c = 0, yields
λ̃0 = 1/

√
2e.

Also, for the specific choice of Wλ in Corollary 1.15, it can be checked that condition λ > λ̃c

is equivalent to (1.36) (see Section 7). This shows that (1.37) is not sharp, in general.

In the two examples above, the sign of λ has no effect, so that we considered λ > 0 for
the sake of simplicity. To also illustrate Theorem 1.13, we now consider the potential in (1.18),
where the sign of λ plays an important role in the behavior of solitons.
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Corollary 1.17. Consider Wλ given in (1.18), with β > 0 and λ ∈ (−∞, β/2).

(i) Let c ∈ (0,
√

2) and set

λc,β = inf{λ < 0 : |λ|(2 − β2) < β3/2, and |λ| < β3/(4 + c2)}. (1.46)

If λ ∈ (λc,β, β/2), then there exists a nontrivial solution uλ ∈ N V(R) to (S(Wλ, c)).
Furthermore, there exist θ0, x0 ∈ R such that (1.28) holds.

(ii) If c = 0, there exists an odd minimizer solution uλ ∈ Eodd(R) to (S(Wλ, 0)), for every
λ ∈ (−∞, β/2). Also, (1.28) holds with θλ = xλ = 0. Furthermore, if λ > 0, then uλ is
increasing.

(iii) Let c ∈ [0,
√

2) and λ < 0. Assume that uλ ∈ E(R) is a nontrivial solution to (S(Wλ, c)).
If the number:

β2 + 2Aλ − c2 −
(
(β2 + 2Aλ − c2)2 − 4β2(2Aλ − c2) − 16βAλλ

)1/2 (1.47)

is either negative or has nonzero imaginary part, where Aλ = β/(β−2λ), then ηλ = 1−|uλ|2
presents at least presents at least one oscillation. Moreover, if c = 0 and uλ(±∞) = ±1,
then uλ cannot be nondecreasing.

Notice that, for c = 0, Corollary 1.17 rigorously captures the behavior obtained numerically
in [14] and shown in Figure 2, i.e. that the black solitons uλ are monotone for λ > 0. In addition,
by using the number in (1.47), with β = 1/2 and c = 0, it provides the existence of a strict
negative minimum of ηλ, for all λ < −1/4.

Finally, for λ ̸= 0, let us consider the rectangular potential, used to study supersolids and
nonlocal effects in optical media [1, 27]:

Wλ(x) = 1
2|λ|

1(x)[−|λ|,|λ|] so that xWλ(ξ) = sin(λξ)
λξ

, ξ ∈ R, (1.48)

where 1 is the indicator function. Let us also consider, for λ ̸= 0, the three Deltas potential,
modeling a competition between repulsive and attractive interactions:

Wλ = 2δ0 − 1
2(δ−λ + δλ), so that xWλ(ξ) = 2 − cos(λξ), ξ ∈ R. (1.49)

proposed in [38] as a model for interactions in a Bose–Einstein condensate. We showed in
[14, 17] that Theorem 1.1 applies to (1.48) and (1.49). However, these potentials do not satisfy
the hypotheses in Theorem 1.7 to complete the gaps in the speed interval. On the other hand,
they fulfill (H8), so we can apply Theorem 1.10 to deduce the existence of symmetric solutions
as follows.

Corollary 1.18. Fix a > 0 small. Let Wλ be given by either (1.17), (1.18), (1.43), (1.48) or
(1.49). There exists λa > 0 such that for all c ∈ [a,

√
2 − a2] and for all λ ∈ (−λa, λa), there

exists a nontrivial solution uλ ∈ N V(R) to (S(Wλ, c)). In addition, ηλ = 1 − |uλ|2 is even and
the convergences in (1.30) hold, as well as the stronger convergences for {uλ} in Ck(R), and for
{ηλ} in Hk(R), for all k ≥ 0.

Organization of the paper

In Section 2 we prove the a priori bounds for the L∞-norm of the solutions to (S(W, c)). We
establish the nonlocal-to-local convergence in Section 3, and the existence of symmetric solitons
by the implicit function argument in Section 4. In Section 5, we study the loss of monotonicity
of the solutions, while in Section 6 we analyze the existence and properties of black solitons.
Finally, in Section 7, we provide the proofs of the corollaries given in Subsection 1.3.
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2 A priori estimates
We begin by providing properties for general smooth solutions to (S(W, c)), under our minimal
assumption (H0).

Lemma 2.1. Let c ≥ 0 and let u ∈ C2(R) ∩ L∞(R) be a solution to (S(W, c)). Denote M =
∥u∥2

L∞(R). Then there exists u∞ ∈ C2(R) ∩ L∞(R) solution to (S(W, c)) such that v = |u∞|2
satisfies

−v′′ ≤ (2W ∗ (1 − v) + c2/2)v, in R, (2.1)
M = ∥v∥L∞(R) = v(0), (2.2)(
W ∗ v

)
(0) ≤ 1 + c2/4. (2.3)

Proof. We start with a simple inequality satisfied by any bounded solution to (S(W, c)), in the
spirit of [10]. Indeed, computing the derivatives of |u|2 and applying Cauchy–Schwarz inequality,
we obtain

(|u|2)′′ = 2|u′|2 + 2⟨u, u′′⟩ = 2|u′|2 − 2⟨u, icu′ + u
(
W ∗ (1 − |u|2)

)
⟩

= 2|u′|2 − 2|u|2
(
W ∗ (1 − |u|2)

)
− 2⟨cu, iu′⟩

≥ −2|u|2
(
W ∗ (1 − |u|2)

)
− c2|u|2/2.

This is precisely (2.1) for v = |u|2.
Let xn ∈ R be such that |u(xn)|2 → M as n → ∞. Let un(x) = u(x + xn). Clearly,

|un(0)|2 → M as n → ∞ and |un(x)|2 ≤ M , for all x ∈ R. In addition, since u ∈ L∞(R),
arguing as in Proposition 4.5 in [17], it follows that Dku ∈ L∞(R) for all k ≥ 1. Hence,
{un} is bounded in W k,∞(R), for every k ≥ 0. Thus, passing to a subsequence, there exists
u∞ ∈ C∞(R) such that un → u∞ as n → ∞ in W k,∞

loc (R), for all k ≥ 0, which further satisfies
∥u∞∥2

L∞(R) = |u∞(0)|2 = M . In other words, (2.2) holds for v = |u∞|2. Moreover, since un

satisfies (S(W, c)), by using Lemma 4.19 in [17], we can pass to the limit to deduce that u∞
also satisfies (S(W, c)). In particular, (2.1) still holds for v = |u∞|2.

Furthermore, since M is a maximum, v′′(0) ≤ 0. Thus, evaluating (2.1) at zero yields

0 ≤ (2 − 2(W ∗ v)(0) + c2/2)M.

This implies directly (2.3).

Remark 2.2. Using the notation in Lemma 2.1, in the case of the explicit soliton u(· ; c) in
(1.15), we see that M = 1, and taking for instance xn = n, we deduce that u∞ is a constant
function, so that v ≡ 1.

From the previous lemma, we easily recover the estimates in Proposition 4.5 of [17], but now
being also valid for c = 0 and for bounded solutions with infinite energy.

Proposition 2.3. Let W be of the form (H4), let c ≥ 0 and let u ∈ C2(R)∩L∞(R) be a solution
to (S(W, c)). Then

∥u∥2
L∞(R) ≤

(
1 +

∥µ+∥M(R)
1 − ∥µ−∥M(R)

)(
1 + c2

4

)
. (2.4)

Proof. Thanks to Lemma 2.1, we may assume without loss of generality that v = |u|2 satisfies
(2.2) and (2.3). Thus, from (2.3) we get

1 + c2/4 ≥ Aµ(M + (µ ∗ v)(0)) ≥ AµM(1 − ∥µ−∥M(R)).

Taking into account (1.20), this inequality leads directly to (2.4).
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The next result is new in the context of the nonlocal Gross–Pitaevskii equation. It provides
uniform estimates for a class of potentials different from (H4), namely for those satisfying (H3).
It is based on ideas in [24].

Proposition 2.4. Let W satisfy (H3), let c ≥ 0 and let u ∈ C2(R) ∩ L∞(R) be a solution to
(S(W, c)). If τ < π/

√
8 + 2c2, then

∥u∥2
L∞(R) ≤ 1

τσ

(
1 + c2/4

)
sec

(
τ
√

2 + c2/2
)
, (2.5)

where τ, σ depend only on W and are given in (H3).

Proof. From (2.3) we derive

1 + c2

4 ≥
∫ 0

−τ
W(y)v(y)dy +

∫ τ

0
W(y)v(y)dy ≥ σ

(∫ 0

−τ
v(y)dy +

∫ τ

0
v(y)dy

)
.

The mean value theorem yields the existence of y− ∈ (−τ, 0) and y+ ∈ (0, τ) such that

1
τ

∫ 0

−τ
v(y)dy = v(y−), 1

τ

∫ τ

0
v(y)dy = v(y+).

Therefore,

v(y±) ≤ 1
τσ

(
1 + c2

4
)
.

On the other hand, from (2.1) we deduce

−v′′ −
(
2 + c2/2

)
v ≤ 0, in R.

In sum, we have shown that v is a subsolution to the elliptic problem

−Lϕ = 0, x ∈ (y−, y+), ϕ(y−) = ϕ(y+) = 1
τσ

(
1 + c2

4
)
, (2.6)

where
Lϕ = ϕ′′ +

(
2 + c2/4

)
ϕ.

We will compare with a suitable supersolution later, but let us first check that L satisfies
the maximum principle in (y−, y+), so that the comparison can be performed. Indeed, let us
consider the eigenvalue problem

−Lϕ = λϕ, x ∈ (−τ, τ), ϕ(−τ) = ϕ(τ) = 0. (2.7)

It is immediate to verify that

λ1(L) = π2

4τ2 − 2 − c2

4 , ϕ1(L) = cos
(
π

2τ x
)
,

where λ1(L) and ϕ1(L) are the principal eigenvalue and eigenfunction, respectively, associated
with (2.7). The choice τ < π/

√
8 + 2c2 assures that λ1(L) > 0, so that L satisfies the maximum

principle in (−τ, τ). Actually, since (y−, y+) ⊂ (−τ, τ), one has that the principal eigenvalue
associated with the problem

−Lϕ = λϕ, x ∈ (y−, y+), ϕ(y−) = ϕ(y+) = 0,

is also positive, that is, L satisfies the maximum principle in (y−, y+) too.
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We are now in a position to compare v with a supersolution to (2.6). To do so, let us consider
the function

w(x) = 1 + c2/4
τσ cos

(
τ
√

2 + c2/2
) cos

(
x
√

2 + c2/2
)
.

It is straightforward to check that w satisfies

−Lw = 0, x ∈ (−τ, τ), w(−τ) = w(τ) = 1
τσ

(
1 + c2

4
)
.

Furthermore, since w is even and radially decreasing for x ∈ (−τ, τ), one has

w(y±) ≥ 1
τσ

(
1 + c2

4
)
.

That is to say, w is a supersolution to (2.6). Therefore, v ≤ w in (y−, y+). Evaluating at zero
leads exactly to (2.5).

Proof of Theorem 1.5. It amounts to applying Proposition 2.4 and Theorem 1.3.

2.1 Decay and analyticity of finite energy solutions

We briefly recall that the authors proved in [17] that several interesting properties can be
established for finite energy solution to (S(W, c)), under general conditions for W. In particular,
these properties apply to the solution given by Theorem 1.5. The starting point is that equation
(1.11) can be recast as:

pη(ξ) = Lc(ξ)zF (η)(ξ), so that η = Lc ∗ F (η), (2.8)

F (η) = c2η2

2(1 − η) + (η′)2

2(1 − η) + 2η(W ∗ η), and Lc(ξ) = pLc(ξ) = 1
ξ2 + 2xW(ξ) − ξ2

.

Indeed, as seen in the proof Theorem 2 in [14], under condition (1.9) with s ∈ (0, 1], for any
c ∈ (0,

√
2s) there exists κ ∈ (0, 1/2) such that

xW(ξ) ≥ s̃ − κξ2, for all ξ ∈ R, where s̃ = (c2/2 + s)/2.

Therefore, ∫
R

|Lc(ξ)|dξ ≤
∫
R

dξ

(1 − 2κ)ξ2 + 2s̃ − c2 < ∞, (2.9)

and we conclude that Lc ∈ L1(R), so that Lc is a bounded continuous function on R. Moreover,
if the derivatives of W are bounded, (2.8) allows deducing the algebraic decay and analyticity
of the solutions, as follows.

Lemma 2.5 (Corollary 5.9 and Theorem 5.12 in [17]). Assume that W satisfies (1.9) with
s ∈ (0, 1] and that xW ∈ W k,∞(R) for all k ∈ N. Let c ∈ [0,

√
2s). Then, Lc ∈ L∞(R) and

| · |ℓLc ∈ L2(R) for all ℓ ∈ N. Moreover, for every k, ℓ ∈ N and every u ∈ E(R) solution to
(S(W, c)), it follows that

| · |ℓDkη ∈ L2(R) ∩ L∞(R), lim
x→±∞

|x|ℓDkη(x) = 0,

where η = 1 − |u|2. In addition, if∣∣(xW
)′(ξ)∣∣ ≤ C(|ξ| + 1) a.e. ξ ∈ R, (2.10)

for some C > 0, then u (i.e. Re(u) and Im(u)) and η are real analytic on R.

As explained in [17], (2.8) can also be used to establish the exponential decay of the solution.
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3 Nonlocal-to-local limit for gray solitons
In this section, we prove Theorem 1.7. The proof will be a consequence of several lemmas. The
first one provides sufficient conditions for a family of measures in M(R) to satisfy the property
(3.3), which is reminiscent of the well-known concept of tight family of measures.
Lemma 3.1. Let λ∗ ∈ (0,∞). Consider a family of nonnegative measures {Vλ}λ∈(0,λ∗) ⊂ M(R).
Assume that there is α ≥ 0 such that

pVλ(ξ) → α, for a.e. ξ ∈ R, as λ → 0, (3.1)
∥Vλ∥M(R) → α, as λ → 0. (3.2)

For every φ ∈ C∞
c (R) with φ ≥ 0 in R, and for every compact set K ⊂ R such that supp(φ) ⊂ K,

one has
∥Vλ ∗ φ∥L1(R\K) → 0, as λ → 0. (3.3)

In particular, if there is a function V ∈ L1(R), with ∥V∥L1(R) = α > 0, V ≥ 0 in R, then the
family {Vε}ε>0 given by

Vε(x) := ε−1V(x/ε), ε > 0, (3.4)
satisfies (3.3).
Proof. First, we use Proposition 8.50 in [21] to deduce that (3.1) implies that Vλ converges
vaguely to αδ0, that is ∫

R
ψdVλ → αψ(0), as λ → 0,

for every ψ ∈ C∞
c (R). In particular, fixing x ∈ R and taking ψ = φ(x− ·) for some nonnegative

φ ∈ C∞
c (R), we deduce the pointwise convergence for the smooth function Vλ ∗ φ, i.e.

(Vλ ∗ φ)(x) → αφ(x), as λ → 0. (3.5)

Let K ⊂ R be a compact set. Since Vλ is nonnegative, we have

∥Vλ ∗ φ∥L1(R\K) = ∥Vλ ∗ φ∥L1(R) − ∥Vλ ∗ φ∥L1(K). (3.6)

On the one hand, the properties of the convolution and (3.2) yield

∥Vλ ∗ φ∥L1(R) = ∥Vλ∥M(R)∥φ∥L1(R) → α∥φ∥L1(R), as λ → 0.

On the other hand, we aim to apply the dominated convergence theorem to

∥Vλ ∗ φ∥L1(K) =
∫

K
(Vλ ∗ φ)(x)dx. (3.7)

Since (3.5) holds, we only need to check the domination. Indeed, by Young’s inequality (1.7),

(Vλ ∗ φ)(x) ≤ ∥φ∥L∞(R) sup
λ∈(0,λ∗)

∥Vλ∥M(R) := h, for all x ∈ K,

where the constant h is trivially in L1(K). Thus, we conclude that Vλ ∗ φ converges to αφ in
L1(K). Therefore, using (3.6), we infer

∥Vλ ∗ φ∥L1(R\K) → α∥φ∥L1(R) − α∥φ∥L1(K) = α∥φ∥L1(R\K), as λ → 0.

If we choose K such that supp(φ) ⊂ K, then ∥φ∥L1(R\K) = 0, so

∥Vλ ∗ φ∥L1(R\K) → 0, as λ → 0,

which proves that (3.3) holds.
Finally, considering the family defined in (3.4), we have ∥Vε∥M(R) = ∥Vε∥L1(R) = α, and

pVε(ξ) = pV(εξ) → ∥V∥L1(R) = α, as ε → 0, for all ξ ∈ R. Therefore, (3.1) and (3.2) hold, and Vε

satisfies the convergence in (3.3).
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The next result enables us to pass to the limit, as λ → 0, in the nonlocal term of the weak
formulation of (S(W, c)).

Lemma 3.2. Consider a family of potentials {Wλ}λ∈(0,λ∗) ⊂ M(R) satisfying (H6) and (H7),
and a sequence {uλ}λ∈(0,λ∗), with supλ∈(0,λ∗) ∥uλ∥L∞(R) < ∞, such that

uλ → u, as λ → 0, in L∞
loc(R),

for some u ∈ L∞(R). Then, uλ(Wλ ∗ ηλ) converges to uη in D′(R), where ηλ = 1 − |uλ|2 and
η = 1 − |u|2.

Proof. Let us fix φ ∈ C∞
c (R). We need to prove that∫

R
φuλ

(
Wλ ∗ ηλ

)
→
∫
R
φuη, as λ → 0.

For this purpose, we write∫
R
φuλ

(
Wλ ∗ ηλ

)
=
∫
R
ηλ

(
Wλ ∗ (φuλ)

)
=
∫

K
ηλ

(
Wλ ∗ (φuλ)

)
+
∫
R\K

ηλ

(
Wλ ∗ (φuλ)

)
=
∫

K

(
ηλ − η

)(
Wλ ∗ (φuλ)

)
+
∫

K
η
(
Wλ ∗ (φuλ)

)
+
∫
R\K

ηλ

(
Wλ ∗ (φuλ)

)
,

where K is a compact set such that supp(φ) ⊂ K. We aim to analyze these last three integral
terms. For the first one, we use the uniform convergence in compact sets of ηλ, the uniform
bound on uλ, and condition (H7), to derive∣∣∣∣∫

K

(
ηλ − η

)(
Wλ ∗ (φuλ)

)∣∣∣∣ ≤ ∥ηλ − η∥L∞(K)∥φ∥L∞(R) sup
λ∈(0,λ∗)

(
∥uλ∥L∞(R)∥Wλ∥M(R)

)
|K| → 0,

as λ → 0. On the other hand, concerning the third term, we split it as∫
R\K

ηλ

(
Wλ ∗ (φuλ)

)
=
∫
R\K

ηλ

(
W+

λ ∗ (φuλ)
)

−
∫
R\K

ηλ

(
W−

λ ∗ (φuλ)
)
.

Now we apply Lemma 3.1 with Vλ = W+
λ , and again the uniform estimate on uλ, to obtain∣∣∣∣∣

∫
R\K

ηλ

(
Vλ ∗ (φuλ)

)∣∣∣∣∣ ≤ ∥ηλ∥L∞(R)∥uλ∥L∞(R)∥Vλ ∗ |φ|∥L1(R\K) → 0,

as λ → 0. The same can be argued for Vλ = W−
λ . Therefore, the third term vanishes as λ → 0.

It remains to consider the second term. Let us denote f = ηχK , gλ = φuλ and g = φu. We
claim that ∫

R
f
(
Wλ ∗ gλ

)
→
∫
R
fg, as λ → 0, (3.8)

which will conclude the proof of the lemma. To prove the claim, notice first that f ∈ L2(R)
since it is a bounded function with compact support. Moreover, gλ → g in L2(R) since

∥gλ − g∥L2(R) ≤ ∥uλ − u∥L∞(supp(φ))∥φ∥L2(R).

Now, since the Fourier transform is a continuous operator from L2(R) to L2(R), we also deduce
that pgλ → pg in L2(R). Thus, by the partial converse of dominated convergence theorem, there
exist a sequence {λn} ⊂ (0, λ∗) converging to zero, and a function h ∈ L2(R), such that

pgλn(ξ) → pg(ξ), and |pgλn(ξ)| ≤ h(ξ), for a.e. ξ ∈ R.
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This implies, using (H6), that

pf(ξ)xWλn(ξ)pgλn(ξ) → pf(ξ)pg(ξ), for a.e. ξ ∈ R,

and, furthermore,

| pf(ξ)xWλn(ξ)pgλn(ξ)| ≤ M | pf(ξ)||h(ξ)|, for a.e. ξ ∈ R, for all n,

where M = supλ∈(0,λ∗) ∥xWλ∥L∞(R) is finite by (H7). Since pfh ∈ L1(R), the dominated conver-
gence theorem and (1.8) yield∫

R
f
(
Wλn ∗ gλn

)
= 1

2π

∫
R

pf(ξ)xWλn(ξ)pgλn
(ξ)dξ → 1

2π

∫
R

pf(ξ)pg(ξ)dξ =
∫
R
fg.

Finally, by the uniqueness of the limit, the last limit is valid for any sequence {λn} ⊂ (0, λ∗)
tending to zero, which proves the convergence in (3.8).

We can now establish the nonlocal-to-local limit, provided that the solution of the nonlocal
equation satisfies some a priori estimates.

Proposition 3.3. Let c ∈ (0,
√

2). Consider a family {Wλ}λ∈(0,λ∗) ⊂ M(R) satisfying (H1),
(H2), (H6) and (H7). For every λ ∈ (0, λ∗), let uλ ∈ N V(R) be a nontrivial solution to (S(W, c))
with W = Wλ. Assume that supλ∈(0,λ∗) ∥uλ∥L∞(R) < ∞. Then there is a sequence {(θλ, xλ)} ⊂
R2, such that, for every k ≥ 0, up to a subsequence,

uλ(· + xλ)eiθλ → u∞, as λ → 0, in W k,∞
loc (R), and weakly-∗ in L∞(R), (3.9)

where u∞ ∈ L∞(R) ∩ C∞(R), is a nonconstant solution to

icu′ + u′′ + u((1 − |u|2)) = 0, in R. (3.10)

Moreover, infR |u∞| > 0 and the lifting u∞ = ρ∞e
iθ∞ satisfies ρ′

∞(0) = 0 and θ∞(0) = −π/2.
Finally, if we additionally suppose that u∞ ∈ E(R), then u∞ = u(· ; c), where u is the

explicit soliton in (1.15), and the convergence in (3.9) holds for the whole sequence.

Proof. By Lemma 1.2, we may consider the lifting uλ = ρ̃λe
iθ̃λ . For every λ ∈ (0, λ∗), since

ρ̃λ → 1 as |x| → ∞, we can choose (xλ, θλ) ∈ R2 such that |1 − ρ̃2
λ(xλ)| = maxR |1 − ρ̃2

λ|
and θ̃λ(xλ) + θλ = −π/2. Now we consider the translated and phase-shifted solution vλ =
uλ(· + xλ)eiθλ . Clearly, denoting ρλ = ρ̃λ(· + xλ), ζλ = θ̃λ(· + xλ) + θλ, and ηλ = 1 − ρ2

λ, one has

vλ = ρλe
iζλ , with ρ′

λ(0) = 0, ∥ηλ∥L∞(R) = |ηλ(0)|, ζλ(0) = −π/2, for all λ ∈ (0, λ∗). (3.11)

As explained in the proof of Proposition 4.5 in [17], if ∥vλ∥L∞(R) ≤ C0, then ∥Dkvλ∥L∞(R) ≤
Ck, for some constant Ck, for every k ≥ 1. Indeed, by setting wλ(x) = vλ(x)e

ic
2 x, for x ∈ R, we

have
−w′′

λ =
(c2

4 + Wλ ∗ (1 − |wλ|2)
)
wλ in R. (3.12)

Then, by Young’s inequality (1.7), the fact that {Wλ} is bounded in M(R) implies that {w′′
λ} is

bounded in L∞(R), and so is {w′
λ} by the Landau–Kolmogorov interpolation inequality. Hence,

we can deduce that {vλ} is bounded in W 2,∞(R). The estimates for the higher order derivatives
follow similarly, differentiating (3.12). Therefore, for every k ≥ 0, there exist a subsequence
{vλn} and u∞ ∈ W k,∞(R) such that for all 0 ≤ j ≤ k, Djvλn

∗
⇀ Dju∞ in L∞(R), as n → ∞.
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Moreover, by invoking the Ascoli–Arzela’s theorem, the convergence also holds in L∞
loc(R). Hence,

by multiplying the equation

icv′
λ + v′′

λ + vλ

(
Wλ ∗ (1 − |vλ|2)

)
= 0, in R, (3.13)

by a function in C∞
c (R), and using Lemma 3.2, we can pass to the limit and deduce that u∞ is

a solution to (S(W, c)) with W = δ0.
In addition, hypotheses (H1) and (H2) allow us to apply Proposition 4.4 of [17], so that,

using also (1.7) and (H7), we get

(2 − c2)/4 ≤ ∥Wλ ∗ ηλ∥L∞(R) ≤ Mλ∗∥ηλ∥L∞(R).

In view of (3.11), we conclude that

|ηλ(0)| ≥ (2 − c2)/(4Mλ∗).

Thus, thanks to the convergence in L∞
loc, we deduce that u∞(0) ̸= 1 so u∞ is a nontrivial solution.

In addition, since ∥Dkvλ∥L∞(R) ≤ C1, Proposition 4.7 of [17] implies that, for all λ ∈ (0, λ∗),

ρλ(x) = |vλ(x)| ≥ δ =
√

1 + 4c2/C1 − 1√
1 + 4c2/C1 + 1

∈ (0, 1). (3.14)

Thus, by the convergence in L∞
loc, we deduce that infR |u∞| ≥ δ, so that u∞ does not vanish,

ad we have the lifting u∞ = ρ∞e
iθ∞ . Furthermore, from (3.14), we also deduce that {ρλ} is

bounded in W k,∞(R), so that {ρλ} must converge to ρ∞ in W k,∞
loc (R), Also, by Proposition 2.4

in [17], we can write, in view of (5.20),

ζλ(x) = c

2

∫ x

0

( 1
ρλ(y)2 − 1

)
dy − π

2 .

Thus, by the dominated convergence theorem, we deduce that vλ converges pointwise to ρeiζ ,
with ζ(x) = c

2
∫ x

0 (ρ∞(y)−2 − 1)dy − π
2 . Thus, we must have θ∞ = ζ + 2ℓπ, for some ℓ ∈ N, and

we can take ℓ = 0.
In conclusion, using (3.11), u∞ = ρ∞e

iθ∞ is a nontrivial solution satisfying ρ′
∞(0) = 0 and

θ∞(0) = −π/2. If we suppose additionally that E(u∞) is finite, u∞ = u(· ; c), since it is the
only nontrivial finite-energy solution to (S(W, c)) (with W = δ0), whose modulus has a critical
point at zero and whose phase at zero is −π/2. In this case, the identification of the limit yields
that the entire family {vλ} converges to u(· ; c).

The final ingredient to show Theorem 1.7 is to establish that the limit function u∞ has finite
energy. This is the purpose of the following result.

Lemma 3.4. Let c ∈ (0,
√

2). Consider a family of potentials {Wλ}λ∈(0,λ∗) ⊂ M(R) satisfying
(H1), (H2), (H6) and (H7). For every λ ∈ (0, λ∗), let uλ ∈ N V(R) be a nontrivial solution to
(S(W, c)) with W = Wλ. Assume that supλ∈(0,λ∗)(∥uλ∥L∞(R) + ∥ρ′

λ∥L2(R)) < ∞, and that there
exists C > 0 such that ∫

R

(
1 − c2

2ρ2
λ

)
η2

λ ≤ C, for all λ ∈ (0, λ∗), (3.15)

where ρλ = |uλ| and ηλ = 1−ρ2
λ. Then, the conclusion in Proposition 3.3 holds, and the function

u∞ belongs to E(R).
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Proof. We start by performing the translation and phase-shift as in the proof of Proposition 3.3
to define vλ as in (3.11), and we keep the notation ρλ = |vλ|, for simplicity, so that vλ converges,
up to a subsequence, to u∞, for instance, in W 1,∞

loc (R). Bearing in mind (3.14), we have

δ ≤ ρλ(x) ≤ C0, for all x ∈ R, λ ∈ (0, λ∗), (3.16)

with δ ∈ (0,
√

2). Also, setting ηλ = 1 − |vλ|2, and using (1.12), we have

|v′
λ|2 = c2η2

λ/(4ρ2
λ) + (ρ′

λ)2. (3.17)

Since we are supposing that ∥ρ′
λ∥L2(R) ≤ C1, for some C1 > 0, it is enough to establish that

there is C2 > 0 such that ∥ηλ∥L2(R) ≤ C2 to conclude that u∞ ∈ E(R). Indeed, in this case, by
(3.16) and (3.17), we deduce that {v′

λ} is bounded in L2(R), so that using also the convergence
in W 1,∞

loc (R), we infer, up to a subsequence, the weak convergences:

ηλ ⇀ η∞ = 1 − |u∞|2 and v′
λ ⇀ u′

∞ in L2(R),

and thus,

∥η∞∥L2(R) ≤ lim inf
λ→0

∥ηλ∥L2(R) ≤ C2 and ∥u′
∞∥2

L2(R) ≤ lim inf
λ→0

∥v′
λ∥2

L2(R) ≤ c2C2
2

4δ2 + C2
1 ,

i.e. u∞ has finite energy.
To show that {ηλ} is bounded in L2(R), we consider the set

Sr
λ = {x ∈ R : ρλ(x) < r}, for r > 0.

Then, arguing as in the proof of Theorem 4.1 of [17], but invoking Lemma 3.2 to pass to the
limit in the nonlocal term of the equation, we can show that there exists r̃ ∈ (c/

√
2, 1) such that

the sequence {|S r̃
λ|}λ∈(0,λ∗) is bounded. Hence, from (3.15) and (3.16), we obtain

C ≥
∫
R\Sr̃

λ

(
1 − c2

2ρ2
λ

)
η2

λ +
∫

Sr̃
λ

(
1 − c2

2ρ2
λ

)
η2

λ ≥
(

1 − c2

2r̃2

)∫
R\Sr̃

λ

η2
λ − c2(1 − δ2)2

2δ2 |S r̃
λ|.

As a consequence, using also the upper bound in (3.16),

∥ηλ∥2
L2(R) ≤ K1(1 + |S r̃

λ|), for all λ ∈ (0, λ∗),

for some constant K1 > 0 independent of λ, which completes the proof.

Proof of Theorem 1.7. First, let us denote Mλ = M(c, τλ, σλ) in case (i) holds, while we denote
Mλ = M(c, µλ) in case (ii) holds. In any of the cases (i) and (ii) we deduce, from (2.5) and
(2.4) respectively, that {uλ}λ∈(0,λ∗) is bounded in L∞(R). Moreover, going through the proof of
Corollary 4.16 of [17], one deduces (after taking limits cn → c, see the proof for more details)
that (

1 −mλMλ

)
∥ρ′

λ∥2
L2(R) ≤ γλ,c(b), (3.18)

for any b ∈ (c,
√

2) and any c ∈ (0, c), where γλ,c(b) is the mountain pass level of the functional

Jλ,b(1 − ρ) = 1
2

∫
R

(ρ′)2 + 1
4

∫
R

(
Wλ ∗ (1 − ρ2)

)
(1 − ρ2) − b2

8

∫
R

(1 − ρ2)2

ρ2 , ρ ∈ 1 +H1(R).

More precisely,
γλ,c(b) = inf

g∈Γλ(c)
max
t∈[0,1]

Jλ,b(g(t)) > 0,
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where
Γλ(c) = {g ∈ C([0, 1],N V(R)) : g(0) = 0, g(1) = 1 − ϕλ,c},

and ϕλ,c ∈ 1 +H1(R) is such that Jb,λ(1 − ϕλ,c) ∈ (−∞, 0).
Recall that supλ∈(0,λ∗) ∥xWλ∥L∞(R) ∈ (0,∞). Hence, going through the proof of Lemma 3.6

of [17] one can easily check that ϕλ,c = ϕc can actually be chosen to be independent of λ. Thus,
Γλ(c) = Γ(c) is independent of λ as well. Moreover, for every ρ ∈ 1 +H1(R) one has

Jλ,b(1 − ρ) = J0,b(1 − ρ) + 1
4

∫
R

(
(Wλ − δ0) ∗ (1 − ρ2)

)
(1 − ρ2)

≤ J0,b(1 − ρ) + ∥xWλ − 1∥L∞(R)∥1 − ρ2∥2
L2(R).

Taking maxima and infima in the previous inequality, we get

γλ,c(b) ≤ γ0,c(b) + ∥xWλ − 1∥L∞(R) inf
g∈Γ(c)

max
t∈[0,1]

∥g(t)(2 − g(t))∥2
L2(R) ≤ C,

for some C > 0 independent of λ.
In sum, from (3.18) we deduce that {ρ′

λ}λ∈(0,λ∗) is bounded in L2(R). Finally, Lemma 4.15
in [17] gives (3.15). We can now apply Lemma 3.4 and conclude the proof.

4 Existence of symmetric solitons for small λ

This section is devoted to the proof of Theorem 1.10, which establishes the existence of solutions
to the nonlocal problem (S(W, c)) bifurcating from the solutions to the local one. In order to
have control over the bifurcation parameter independent of the velocity c, we will apply the
following quantitative version of the implicit function theorem, as stated in [5].

Theorem 4.1 ([5]). Consider A,B Banach spaces, Ω ⊂ B an open set, the interval Λ =
(−λ∗, λ∗) for some λ∗ > 0, and G : Ω × Λ → A a C1 function. Assume that there exists x0 ∈ Ω
such that G(x0, 0) = 0, ∂xG(x0, 0) is invertible and

sup
(x,λ)∈Vδ

∥I − [∂xG(x0, 0)]−1∂xG(x, λ)∥L(B) ≤ 1
2 ,

sup
(x,λ)∈Vδ

∥[∂xG(x0, 0)]−1∂λG(x, λ)∥L(R,B) ≤ M,

for some δ,M > 0, where I is the identity operator in B and

Vδ = {(x, λ) ∈ Ω × Λ : ∥x− x0∥B ≤ δ, |λ| ≤ δ}.

Then, denoting Λδ,M = (−δ/2M, δ/2M), there exists a C1 function g : Λδ,M → Ω such that all
the solutions to the equation G(x, λ) = 0 in the set K = {(x, λ) ∈ Ω × Λδ,M : ∥x − x0∥B ≤ δ}
are given by {(λ, g(λ)) : λ ∈ Λδ,M }.

In view of equation (1.13) in Lemma 1.2, we introduce the open sets of H2(R)

Ω = {η ∈ H2(R) : η < 1 in R}, Ωe = {η ∈ H2
e (R) : η < 1 in R},

the interval Λ = (−λ∗, λ∗) for some λ∗ > 0, and the functional Gc : Ω × Λ → L2(R), given by

Gc(η, λ) = η′′ −2Wλ ∗η+ c2η+ c2η2

2(1 − η) + (η′)2

2(1 − η) +2η(Wλ ∗η), for all (η, λ) ∈ Ω×Λ, (4.1)
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for some c ∈ (0,
√

2) and {Wλ}λ∈Λ ⊂ M(R). Notice that Gc(ηc, 0) = 0, where ηc is given by
(1.15). Furthermore, by Proposition 2.4 in [17], we can recover a solution uλ to (S(W, c)), with
W = Wλ, by determining a zero ηλ of Gc(·, λ). In such a case, uλ is given by

uλ(x) =
√

1 − ηλ(x)eiθλ(x), where θλ(x) = c

2

∫ x

0

ηλ(s)
1 − ηλ(s)ds− π

2 . (4.2)

The next lemma establishes some properties to control Gc quantitatively.

Lemma 4.2. The functional Gc is C1(Ω×Λ, L2(R)) for every c ∈ (0,
√

2), with partial derivatives

∂λGc(η, λ) = 2(η − 1) ((∂λWλ) ∗ η) , (4.3)

and

∂ηGc(η, λ)(σ) = σ′′ − 2Wλ ∗ σ + c2σ

+ c2η(2 − η) + (η′)2

2(1 − η)2 σ + η′

1 − η
σ′ + 2(Wλ ∗ η)σ + 2η(Wλ ∗ σ), σ ∈ H2(R).

(4.4)
In addition, there is C > 0, independent of c and λ, such that

∥∂λGc(η, λ)∥L(R,L2(R)) ≤ C(1 + ∥η∥2
H2(R)). (4.5)

Moreover, for fixed a ∈ (0,
√

2), α > 0, ε > 0, β ∈ (0, 1), there is δ > 0 such that if η, η̄ ∈ Ω
and λ, λ̄ ∈ Λ satisfy

|η̄′| ≤ α, −α ≤ η̄ ≤ 1 − β in R, and ∥η − η̄∥H2(R) + |λ− λ̄| < δ, (4.6)

then, for all c ∈ [a,
√

2),

∥∂ηGc(η, λ) − ∂ηGc(η̄, λ̄)∥L(H2(R),L2(R)) < ε. (4.7)

Remark 4.3. For our arguments, we do not need to verify the differentiability of the function
λ ∈ Λ 7→ Wλ ∈ M(R). We only need to perform computations in the Fourier variable. For this
reason, we only need to interpret the expression ∂λWλ in (4.3) as a tempered distribution in the
following sense. By (H8), ∂λ

xWλ is defined by

lim
t→0

xWλ+t(ξ) − xWλ(ξ)
t

= ∂λ
xWλ(ξ), for a.e. ξ ∈ R, (4.8)

and the growth condition implies that ∂λ
xWλ is in S ′(R), so that we can define ∂λWλ in S ′(R)

as
∂λWλ = F−1(∂λ

xWλ),

where F denotes the Fourier transform in the space variable. In this manner,

F ((∂λWλ) ∗ η) = ∂λ
xWλ · pη, for all η ∈ S(R), (4.9)

and this equality still holds for any η ∈ H2(R), because of the growth hypothesis in (H8).

Proof of Lemma 4.2. Let us check first that, for all (η, λ) ∈ Ω × Λ, we have (4.3). Indeed, by
(4.9) and Plancherel’s identity, we have the following estimate, for every t ∈ (−λ−λ∗,−λ+λ∗),∥∥∥(η − 1)((Wλ+t − Wλ) ∗ η)

t
− (η − 1)(∂λWλ) ∗ η

∥∥∥
L2(R)

≤ (4.10)

∥η − 1∥L∞(R)

∥∥∥(Wλ+t − Wλ

t
− ∂λWλ

)
∗ η
∥∥∥

L2(R)
=

∥η − 1∥L∞(R)
2π

∥∥∥(xWλ+t − xWλ

t
− ∂λ

xWλ

)
pη
∥∥∥

L2(R)
.
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To apply the dominated convergence theorem in L2(R), we see that, in view of hypothesis
(H8) and the mean value theorem, there is C > 0, independent of λ, such that∣∣∣∣∣xWλ+t(ξ) − xWλ(ξ)

t
− ∂λ

xWλ(ξ)
∣∣∣∣∣ ≤ C(1 + ξ2), for a.e. ξ ∈ R,

then ∣∣∣xWλ+t − xWλ

t
− ∂λ

xWλ

∣∣∣ · |pη| ≤ C(|pη| + | pη′′|) ∈ L2(R).

Bearing in mind (4.8), we may apply the dominated convergence theorem in (4.10), so that (4.3)
is proved. The continuity of ∂λGc : Ω × Λ → L2(R) and the estimate in (4.5) follow using the
same arguments.

On the other hand, standard computations show that ∂ηGc : Ω × Λ → L(H2(R), L2(R)) has
the expression in (4.4). Finally, it remains to show (4.7), which in particular gives the continuity
of ∂ηGc. Indeed, let η, η̄ ∈ Ω and λ, λ̄ ∈ Λ satisfy (4.6) for some δ > 0 to be chosen small enough,
and let σ ∈ H2(R) with ∥σ∥H2(R) = 1. We start analyzing the second term on the right-hand
side of (4.4). From Plancherel’s identity, the mean value theorem and (H8), it follows that for
a.e. ξ ∈ R there is some λ̃ ∈ Λ such that

∥Wλ ∗ σ − Wλ̄ ∗ σ∥2
L2(R) = 1

2π

∫
R

(
xWλ(ξ) − xWλ̄(ξ)

)2
|pσ(ξ)|2dξ

≤ |λ− λ̄|2

2π

∫
R

|∂λ
xWλ̃(ξ)|2|pσ(ξ)|2dξ ≤ C|λ− λ̄|2

2π

∫
R

(1 + ξ4)|pσ(ξ)|2dξ

= C|λ− λ̄|2
∫
R

(|σ|2 + |σ′′|2) ≤ C|λ− λ̄|2 < ε,

for δ2 < ε/C. We may also use the previous inequality to estimate the last term in (4.4), namely,

∥η(Wλ ∗ σ) − η̄(Wλ̄ ∗ σ)∥L2(R) ≤ ∥η((Wλ − Wλ̄) ∗ σ)∥L2(R) + ∥(η − η̄)(Wλ̄ ∗ σ)∥L2(R)

≤ ∥η∥L∞(R)∥(Wλ − Wλ̄) ∗ σ∥L2(R) + ∥η − η̄∥L∞(R)∥Wλ̄ ∗ σ∥L2(R) < ε,

where we used that ∥η∥L∞(R) ≤ δ + max{α, 1 − β} and considered a smaller δ. For the sixth
term in (4.4), we analogously get

∥(Wλ ∗ η)σ − (Wλ̄ ∗ η̄)σ∥L2(R) < ε.

For the fourth term, we fix γ ∈ (0, β) and consider the compact set

Kγ = {(x, y) ∈ R2 : −α− γ ≤ x ≤ 1 − β + γ, |y| ≤ α+ γ}.

Observe that the functions (x, y) 7→ x(2−x)
2(1−x)2 and (x, y) 7→ y2

2(1−x)2 are uniformly continuous in
Kγ . Therefore, for any S > 0, we may take δ > 0 even smaller (depending only on a, α, β, γ, S)
in such a way that, if (x, y), (x0, y0) ∈ Kγ and |x− x0| + |y − y0| < Sδ, then∣∣∣∣∣c2x(2 − x) + y2

2(1 − x)2 − c2x0(2 − x0) + y2
0

2(1 − x0)2

∣∣∣∣∣ ≤ ε.

In conclusion, bearing in mind (4.6) and the Sobolev embedding H2(R) ↪→ L∞(R), one may
take δ > 0 small enough, depending only on a, α, β, γ, such that∥∥∥∥∥c2η(2 − η) + (η′)2

2(1 − η)2 σ − c2η̄(2 − η̄) + (η̄′)2

2(1 − η̄)2 σ

∥∥∥∥∥
L2(R)

< ε.

The bounds for the fifth term on the right-hand side of (4.4) follow similarly, which finishes
the proof.
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With the purpose of applying Theorem 4.1, we establish now that ∂ηGc(ηc, 0) is invert-
ible, when restricted to the even functions. For the sake of simplicity, let us denote Tc =
∂ηGc(η(· ; c), 0) : H2(R) → L2(R), whose expression is

Tc(σ) = σ′′ − (2 − c2)σ + c2ηc(2 − ηc) + (η′
c)2

2(1 − ηc)2 σ + η′
c

1 − ηc
σ′ + 4ηcσ, σ ∈ H2(R). (4.11)

Lemma 4.4. Let c ∈ (0,
√

2). We have ker(Tc) = {η′
c}.

Proof. It is immediate to check that Tc(η′
c) = 0, so that 0 is an eigenvalue. We use the following

ODE argument to show that 0 is simple in H2(R). Let σ1 = η′
c and σ2 ∈ ker(Tc), and set the

Wronskian W = σ1σ
′
2 − σ′

1σ2. Since σ1, σ2 ∈ H2(R), we get W (∞) = 0. On the other hand, by
(4.11) and the Abel identity,

W (x) = W (0)e−
∫ x

0 p(t)dt, with p(t) = η′
c(t)/(1 − ηc(t)).

Since p ∈ L1(R) due to the exponential decay of the soliton, this implies that W (0) = 0, and
then W ≡ 0. Therefore, σ1, σ2 are linearly dependent and ker(Tc) = {η′

c}.

Proposition 4.5. Let c ∈ (0,
√

2). The (restricted) linear operator Tc,e : H2
e (R) → L2

e (R) is
invertible. Moreover, the map c ∈ (0,

√
2) 7→ T −1

c,e ∈ L(L2
e (R), H2

e (R)) is continuous.

Proof. Since η′
c is odd, it follows from Lemma 4.4 that ker(Tc,e) = {0}. To show the bijectivity,

we will use the Fredholm alternative in H2
e (R). For this purpose, we remark that the problem

of finding σ ∈ H2
e (R) solution to Tc(σ) = f , for a given f ∈ L2

e (R), can be written as

L(σ) + B(σ) = f, with L(σ) = σ′′ − (2 − c2)σ and B : H2
e (R) → L2

e (R).

Noticing that L : H2
e (R) → L2

e (R) is a bijection, since F(L(σ))(ξ) = −(ξ2 + (2 − c2))pσ(ξ), this
can be recast as

σ + K(σ) = L−1(f), with K = L−1 ◦ B : H2
e (R) → H2

e (R). (4.12)

Because of the exponential decay of ηc, we infer that B is a compact operator (see e.g. Lemma 3.12
in [37]) and then so is K. By the Fredholm alternative in H2

e (R), (4.12) has a unique solution
if and only if ker(I + K) = {0}, which is equivalent to the fact that ker(Tc,e) = {0}. Therefore,
there exists T −1

c,e , and belongs to L(L2
e (R), H2

e (R)) by the Banach Isomorphism theorem.
To prove that c ∈ (0,

√
2) 7→ T −1

c,e ∈ L(L2
e (R), H2

e (R)) is continuous, we will apply Theo-
rem 1.16 in [26]. For notational simplicity, we will omit the subscripts in the operator norms in
the sequel. Let us fix c0 ∈ (0,

√
2) and take ε > 0 arbitrary, but smaller than 1/∥T −1

c0,e∥. It is
straightforward to check that c ∈ (0,

√
2) 7→ Tc,e ∈ L(H2

e (R), L2
e (R)) is continuous, so that there

is δ > 0 such that, if |c− c0| < δ, then

∥Tc,e − Tc0,e∥ < ε. (4.13)

Using the notation in Theorem 1.16 in [26], we take T = Tc0,e, S = Tc,e, A = S − T . In view
of (4.13), A is trivially T -bounded in the sense that ∥Aσ∥L2(R) ≤ ε∥σ∥H2(R), for all σ ∈ H2

e (R).
Therefore, we deduce that

∥S−1 − T−1∥ ≤ ε∥T−1∥2

1 − ε∥T−1∥
,

which is the desired continuity of T −1
c,e at c0.

We are now in a position to complete the proof of the existence of solutions constructed via
the quantitative implicit function theorem.
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Proof of Theorem 1.10. Let a ∈ (0,
√

2). For every δ > 0, let us define the set

Vδ,c = {(η, λ) ∈ Ωe × Λ : ∥η − ηc∥H2(R) ≤ δ, |λ| ≤ δ}.

One may choose δ > 0 independent of c such that Vδ,c ⊂ Ω × Λ. Indeed, let (η, λ) ∈ Vδ,c. Then,
by the Sobolev embedding H2(R) ↪→ L∞(R), there is S > 0 such that,

η ≤ ∥η − ηc∥L∞(R) + ∥ηc∥L∞(R) ≤ S∥η − ηc∥H2(R) + 2 − c2

2 ≤ Sδ + 2 − a2

2 , in R.

Thus, for δ < a2/(2S), we have η < 1, so it belongs to Ω.
On the other hand, by Proposition 4.5, we deduce that c ∈ [a,

√
2 − a2] 7→ ∥T −1

c,e ∥L(L2
e(R),H2

e (R)) ∈
R is uniformly continuous, so that there is a constant γa > 0 such that,

∥T −1
c,e (f)∥H2(R) ≤ γa∥f∥L2(R), for all f ∈ L2

e (R), for all c ∈ [a,
√

2 − a2]. (4.14)

Let us fix now (η, λ) ∈ Vδ,c. Taking

α = max
c∈[a,

√
2−a2]

∥η′
c∥L∞(R) and β = min

c∈[a,
√

2−a2]
∥1 − ηc∥L∞(R)

in (4.6), we conclude from the estimates in (4.7) and (4.14) that

∥I − T −1
c,e (∂ηGc(η, λ)) ∥L(H2

e (R),H2
e (R))

≤ ∥T −1
c,e ∥L(L2

e(R),H2
e (R))∥∂ηGc(η, 0) − ∂ηGc(η, λ)∥L(H2

e (R),L2
e(R)) ≤ γaε,

where I is the identity in H2
e (R). Finally, invoking (4.5) in Lemma 4.2, we deduce the existence

of a constant Bδ,a, such that, for all (η, λ) ∈ Vδ,c, for all c ∈ [a,
√

2 − a2],

∥∂λGc(η, λ)∥L(R,L2
e(R)) ≤ C(1 + (δ + ∥ηc∥H2(R))2) ≤ Bδ,a,

so that, for all (η, λ) ∈ Vδ,c,

∥T −1
c,e ◦ ∂λG(η, λ)∥L(H2

e (R)) ≤ γaBδ,a.

Invoking Theorem 4.1 with B = H2
e (R), Ω = Ωe, ε = 1/(2γa) and M = γaBδ,a, and setting

λa = δ/(2M) and Ωa
e the intersection of Ωe with the open ball (in H2

e (R)) of center ηc and radius
δ, we deduce the existence of the C1-function g : (−λa, λa) → Ωa

e , where λa = δ/(2M). Therefore,
the conclusions in Theorem 4.1 follow setting ηλ = g(λ), and defining uλ =

√
1 − ηλ exp(iθλ)

according to (4.2). In addition, since g is differentiable, g(λ) = g(0) + o(1) in H2(R). Therefore,
since g(0) = ηc, we conclude that ηλ → ηc in H2(R). Notice in particular that ∥ηλ∥L∞(R) =
ηλ(0), since ηλ is even and ηλ → ηc in L∞(R), by the Sobolev embedding. Moreover, there is
δ > 0 such that 1 − ηλ(0) ≥ δ, for all λ small.

The convergence in Hk(R), for k ≥ 3, follows by a bootstrap argument. Indeed, since ηλ

satisfies (1.13), we can differentiate this equation to obtain an expression for η′′′
λ in terms of lower

order derivatives. Using (H7) and arguing as in the proof of Lemma 3.2, we deduce that for any
sequence of functions fλ → f ∈ L2(R), we have, for a subsequence {λn}, Wλn ∗fλn → f ∈ L2(R),
as n → ∞. Thus, it is simple to verify that we can pass to the limit in all the lower order terms,
to conclude that η′′′

λn
converges to η′′′

c in L2(R). The convergence of the whole sequence follows
from the uniqueness of the limit. The same argument establishes the convergence in Hk(R) for
k ≥ 4.

Concerning uλ, it is easy to see that θλ converges pointwise to θc in (1.16). Let us show that
this convergence is uniform in L∞(R). Since

|θλ(x) − θc(x)| ≤ 1
(1 − ηλ(0))(1 − ηc(0))∥ηλ − ηc∥L1(R), for all x ∈ R, (4.15)
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it is enough to show that ηλ → ηc in L1(R). Indeed, by the convolution equation in (2.8) and
the decay of Lc in Lemma 2.5, we have in particular that Lc ∈ L1(R), and thus

∥ηλ − ηc∥L1(R) ≤ ∥Lc∥L1(R)∥F (ηλ) − F (ηc)∥L1(R). (4.16)

In addition, it is easy to check that the convergence of ηλ in H2(R) implies that F (ηλ) converges
to F (ηc) in L1(R). Therefore, (4.15) gives that θλ → θc in L∞(R). Finally, using that |1−eix| ≤
|x|, for all x ∈ R, we conclude that

|eiθλ(x) − eiθc(x)| = |e−iθc(x)||ei(θλ(x)−θc(x)) − 1| ≤ |θλ(x) − θc(x))|,

for all x ∈ R. Finally, using (1.16), it is straightforward to conclude that uλ converges to uc in
Ck(R), provided that ηλ converges to ηc in Hk+1(R).

5 Solitons with oscillations
In this section will prove Theorem 1.11 concerning the non-monotonicity of the profile function
η = 1 − |u|2. Our arguments use some ideas introduced by Berestycki, Nadin, Perthame and
Ryzhik [8] for the study of the nonlocal KPP-Fisher equation. We start by establishing some a
priori estimates on the linearized problem.

Lemma 5.1. Assume that W satisfies (H3), for some constants σ, τ > 0. Let R > 1. Consider
g ∈ L∞((−∞, R)) and h ∈ W 1,∞((−∞, R)) satisfying

∥g∥L∞((−∞,R)) + ∥h∥W 1,∞((−∞,R)) ≤ L,

for some L ≥ 1. Assume that w ∈ C2(R) is a solution to

−w′′ + 2W ∗ w = gw + hw′, in (−∞, R), (5.1)

with w ≥ 0 in R, w ≤ 1 in (−∞, 0), w(0) = 1, and w′ ≥ 0 in (−∞, R). Then, there are
constants K,N , depending only on σ and τ , such that,

w(t+ 1) ≤ (LK)Nw(t), for all t ∈ (−∞, R− 2). (5.2)

Moreover, for any a, b, b̃ ∈ R, with a < b < b̃ < R, there is a constant C, depending only on
a, b, b̃, such that

∥w′∥L2((a,b)) + ∥W ∗ w∥L1((a,b)) ≤ CLw(b̃). (5.3)

In particular, there is a constant C̃, depending only on a, b, b̃, such that

∥w∥W 2,1((a,b)) ≤ C̃Lw(b̃). (5.4)

Proof. To show (5.2), we consider a, b, ε > 0 such that

0 < a < b < b+ ε < τ, and − ∞ < t < R− ε. (5.5)

Let φ ∈ C2
c (R) be a cut-off function such that φ > 0 in (−b,−a), and φ = 0 in R \ (−b,−a), so

that φt(x) = φ(x − t) is localized in (t − b, t − a). Multiplying (5.1) by φt and integrating by
parts, we get∫ t−a

t−b
(W ∗ w)φt = 1

2

∫ t−a

t−b
(gφt − (hφt)′ + φ′′

t )w ≤ 3L+ 1
2 ∥φ∥W 2,∞(R)

∫ t−a

t−b
w.
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Since w is nondecreasing in (−∞, R), and since L ≥ 1, we conclude that∫ t−a

t−b
(W ∗ w)φt ≤ 2L∥φ∥W 2,∞(R)(b− a)w(t− a). (5.6)

To estimate the left-hand side of (5.6), using again that w is nonnegative and nondecreasing in
(−∞, R), we see that∫ t−a

t−b
φt(x)

∫ ∞

−∞
W(x− y)w(y)dydx ≥

∫ t−a

t−b
φt(x)

∫ t+ε

t
W(x− y)w(y)dydx

≥ w(t)
∫ t−a

t−b
φt(x)

∫ t+ε

t
W(x− y)dydx = w(t)

∫ t−a

t−b
φt(x)

∫ x−t

x−t−ε
W(y)dydx.

Since, by (5.5), for any x ∈ [t − b, t − a], we have x − t − ε > −τ and x − t ≤ −a, we deduce
that we can bound W(y) from below by σ in the integral, so that∫ t−a

t−b
(W ∗ w)φt ≥ εσ

∫ t−a

t−b
φt(x)dx = εσ∥φ∥L1(R).

Therefore, combining with (5.6), we conclude that

w(t) ≤ KLw(t− a), for all t ∈ (−∞, R− ε), (5.7)

with K = 2∥φ∥W 2,∞(R)(b − a)/(εσ∥φ∥L1(R)). For instance, we can take ε = b = min{τ/4, 1/4}
and a = b/2. From (5.7) we immediately deduce

w(t+ 1) ≤ KLw(t+ 1 − a), for all t ∈ (−∞, R− 2). (5.8)

Then, for t < R− 2, writing 1 = Na+ δ for some N ∈ N and δ ∈ (0, a), we conclude by iterating
(5.8) and by the monotonicity of w, that

w(t+ 1) ≤ (KL)Nw(t+ 1 −Na) = (KL)Nw(t− δ) ≤ (KL)Nw(t).

This finishes the proof of (5.2).
Let us now establish the local estimates in (5.3). Take φ ∈ C1(R) a cut-off function such

that φ ≥ 0 in R, φ = 1 in (a, b), and φ = 0 in R \ (ã, b̃), with ã = a − 1. By multiplying (5.1)
by wφ2, dropping the (positive) nonlocal term and integrating by parts, we deduce∫

R
(w′)2φ2 + 2

∫
R
w′wφ′φ ≤

∫
R
gw2φ2 +

∫
R
hw′wφ2. (5.9)

On the one hand, Cauchy’s inequality implies∫
R
w′wφ(hφ− 2φ′) ≤ 1

2

∫
R

(w′)2φ2 + 1
2

∫
R
w2(|h|φ+ 2|φ′|)2.

On the other hand, we see that∫
R
gw2φ2 + 1

2

∫
R
w2(|h|φ+ 2|φ′|)2 ≤ CφL

2∥w∥2
L∞(ã,b̃),

where Cφ is a constant depending only on the norms of φ in (ã, b̃). Plugging the last two
inequalities in (5.9), we infer

1
2

∫ b

a
(w′)2 ≤ 1

2

∫
R

(w′)2φ2 ≤ CφL
2∥w∥2

L∞(ã,b̃),

which shows the bound for the first term in (5.3), since ∥w∥L∞(ã,b̃) = w(b̃). To treat the nonlocal
term, we multiply (5.1) by the cut-off function φ and integrate by parts, so that

2
∫ b

a
W ∗ w ≤ 2

∫
R

(W ∗ w)φ =
∫
R
w(φ′′ + gφ− (hφ)′) ≤ C̃φLw(b̃), (5.10)

where the constant C̃φ depends only on the norms of φ. This completes the proof of (5.3).
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The following lemma assures that, if a function satisfies a sort of Harnack inequality, then
it can be uniformly bounded from below by an exponential function.
Lemma 5.2. Assume that w ∈ C1((−∞, 0]) satisfies w(0) = 1, and w′ ≥ 0 in (−∞, 0], and

w(x) ≤ βw(x− 1), for all x ≤ 0, (5.11)

for some β > 1. Then there exist A, γ > 0, depending on β, but not on w, such that w(x) ≥ Aeγx,
for all x ≤ 0.
Proof. Take γ = log(β) and A < 1/β, and let w ∈ C1((−∞, 0]). If x ∈ [−1, 0], we deduce from
(5.11) that

w(x) ≥ w(−1) ≥ w(0)/β ≥ A ≥ Aeγx.

If x ∈ [−2,−1], we can apply this equality with x+ 1 ∈ [−1, 0] to obtain

w(x) ≥ 1
β
w(x+ 1) ≥ A

β
eγ(x+1) = Aeγx.

The conclusion follows by an iterative argument.

We recall that the analyticity of solutions is established in Lemma 2.5, but only for solitons
with speed less than the Landau speed. To avoid this technical problem, we now prove a unique
continuation result adapted to our setting.
Lemma 5.3. Let c ∈ [0,

√
2). Assume that W satisfies (H3). Consider u ∈ E(R) a solution to

(S(W, c)). Assume that η ≥ 0 in R, or that η ≤ 0 in R, where η = 1 − |u|2. If there is an open
nonempty interval I ⊂ R such that η = 0 in I, then η = 0 in R.
Proof. We give the proof in the case η ≥ 0 in R. Arguing by contradiction, assume η is nontrivial,
so that either sup I or inf I is finite. Let us assume that b := sup I is finite, with the other case
being analogous. Moreover, without loss of generality, we may consider that b is in the closure
of I, with η(b) = 0 and η > 0 in (b, b+ ε) for some ε ∈ (0, τ).

On the one hand, using that η satisfies (1.13) in I, one deduces that W ∗ η = 0 in I, so that
(W ∗ η)(b) = 0. On the other hand, using (H3), we derive

(W ∗ η)(b) =
∫
R

W(y)η(b− y)dy ≥
∫ 0

−τ
W(y)η(b− y)dy

≥ σ

∫ 0

−τ
η(b− y)dy = σ

∫ b+τ

b
η(y)dy ≥ σ

∫ b+ε

b
η(y)dy > 0.

This is a contradiction.

To clarify the proof of Theorem 1.11, we first prepare the setting that allows us to obtain
rigorously the limit equation. For this purpose, let us consider u a solution to (S(W, c)), with
η = 1 − |u|2 satisfying η(−∞) = 0 and η′(−∞) = 0. To get a contradiction, let us also
assume that there exists x0 ∈ R such that (1.38) holds. By translation invariance, we may
assume without loss of generality that x0 = 0. Therefore, to obtain a contradiction, we can
invoke Lemma 5.3 to define a sequence {xn} of positive real numbers such that xn → ∞, with
η(xn) > 0, and define the functions

ηn(x) = η(x−xn), wn(x) = ηn(x)
ηn(0) , gn = c2 + W ∗ ηn + c2ηn

2(1 − ηn) , hn = η′
n

2(1 − ηn) . (5.12)

One easily checks that wn satisfies

−w′′
n + 2W ∗ wn = gnwn + hnw

′
n, x ∈ (−∞, xn). (5.13)

In this manner, ηn and η′
n converge pointwise to 0 as n → ∞, and so does W ∗ ηn, by the

dominated convergence theorem. Furthermore, the following properties are easily verified:
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(i) {gn} and {hn} are bounded in W k,∞((−∞, R)) for every k ∈ N and every R > 0, with
gn → c2 and hn → 0 pointwise as n → ∞,

(ii) wn ≥ 0 in R, wn ≤ 1 in (−∞, 0), wn(0) = 1 and w′
n ≥ 0 in (−∞, xn).

If η satisfies (1.39), we proceed in the same way. Noticing that in this case ηn is negative,
we have that wn is positive in R , with w′

n ≥ 0 in (−∞, xn). Moreover, the properties in (i) and
(ii) stated above are still satisfied, so it remains to study (5.13).

To simplify the analysis of (5.13), we absorb the linear term c2wn by defining the function
zn(x) = wn(x)ecx, so that

z′′
n = 2(W∗wn)ecx+2cw′

ne
cx+fn, in (−∞, xn), where fn = −((gn−c2)wn+hnw

′
n)ecx. (5.14)

By using the estimates in Lemma 5.1, we can pass to limit in (5.13) in a weak sense, to obtain
the following result.
Lemma 5.4. Let wn be as defined above, satisfying (5.13). Then there is w ∈ W 1,q

loc (R), for
all q ∈ [1,∞) such that, for a subsequence, wn → w in L∞

loc(R), and w′
n → w′ in Lq

loc(R) and
w′

n → w′ pointwise. In addition, w is nonnegative and increasing in R , w(0) = 1 and w ≤ 1 in
(−∞, 0], and there are A0, γ0 > 0, such that

w(x) ≥ A0e
γ0x, for all x ≤ 0. (5.15)

Moreover, w satisfies the differential inequality

(w(x)ecx)′(x) ≥ 2
∫ x

−∞
(W ∗ w(t))ectdt, for all x ∈ R. (5.16)

Proof. By using (i) and (ii), we can iterate inequality (5.2) in Lemma 5.1, to deduce that {wn}
is bounded in L∞

loc(R), in H1
loc(R) and also in W 2,1

loc (R), by invoking (5.3). For any bounded
interval I, we can thus invoke the compact Sobolev embeddings, W 2,1(I) ↪→ W 1,q(I), for all
q ∈ [1,∞), and H2(I) ↪→ C0(I), and the Helly selection theorem to conclude the existence of
w ∈ W 1,q

loc (R) and the stated convergences. Thanks to properties in (i) and (ii), it is immediate
that wn satisfies (5.2), so (5.11) holds for wn, for some constant β > 1 independent of n. Thus,
Lemma 5.2 provides the existence of A and γ such that wn(x) ≥ A0e

γ0x, for all x ≤ 0, and (5.15)
follows invoking the pointwise convergence.

To prove (5.16), we set z(t) = w(t)ect, for t ∈ R, fix x ∈ R and consider a sequence {φk} of
nondecreasing C2-functions, such that

φk : (−∞, x] → [0, 1], φk(t) = 1 for all t ∈ [x− k, x], φk(t) = 0 for all t ≤ x− 2k.

Taking into account that φ′
k(x) = 0, so that z′

n(x)φk(x) = (znφk)′(x), and using (5.14), we
compute

z′
n(x)φk(x) =

∫ x

−∞
(znφk)′′(t)dt =

∫ x

−∞
(2(W ∗ wn)φke

ct + 2cw′
nφke

ct + fnφk + 2z′
nφ

′
k + znφ

′′
k)dt

=
∫ x

−∞
(2(W ∗ wn)φke

ct + 2cw′
nφke

ct + fnφk + z′
nφ

′
k)dt, (5.17)

where the last equality follows by integration by parts.
Now we take inferior limits (with respect to n) in this equality, and we bound the last term

from below. In the first place, Fatou’s lemma (applied twice) implies

lim inf
n→∞

∫ x

−∞
(W ∗ wn)φke

ctdt ≥
∫ x

−∞
lim inf
n→∞

(W ∗ wn)φke
ctdt

=
∫ x

−∞
lim inf
n→∞

(∫
R

W(t− y)wn(y)dy
)
φk(t)ectdt

≥
∫ x

−∞

(∫
R

W(t− y)w(y)dy
)
φk(t)ectdt =

∫ x

−∞
(W ∗ w)φke

ctdt.

(5.18)
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In the second place, setting I = (x − 2k, x), the convergence of {w′
n} to w′ in L2(I) implies

that, for a subsequence, {w′
n} is dominated by some function in L2(I), while wn → w in L∞(I).

Using also that, fn → 0 pointwise as n → ∞ and the estimates in (i), the dominated convergence
theorem implies that∫ x

−∞
(2cw′

nφke
ct + fnφk + z′

nφ
′
k)dt →

∫ x

−∞
(2cw′φke

ct + z′φ′
k)dt, as n → ∞.

Combining with (5.17) and (5.18), we end up with

z′(x)φk(x) ≥
∫ x

−∞
(2(W ∗ w)φk + w′φ′

k + 2cw′φk + cwφ′
k)ectdt.

Since w′ ≥ 0 and φ′
k ≥ 0, we can apply Fatou lemma, this time in k, to conclude that

z′(x) ≥
∫ x

−∞
(2(W ∗ w)(t) + 2cw′(t))ectdt.

Dropping the last (positive) term on the right-hand side, we finish the proof (5.16).

Remark 5.5. In the case of the soliton η(· ; c) in (1.15), the function wn in (5.12) can be
computed explicitly, and we can check that wn converges pointwise to w(x) = exp(

√
2 − c2x).

Therefore, we expect, in general, the function w in Lemma 5.4 to be unbounded.

We can now complete the proof of our main theorem concerning the oscillating behavior of
solutions to (S(W, c)).

Proof of Theorem 1.11. Assume by contradiction that there exists x0 ∈ R such that (1.38) or
(1.39) holds. Inequality (5.15) in Lemma 5.4 enables us to define

γ̄ = inf{γ > 0 : there exists A > 0 such that w(x) ≥ Aeγx for all x ≤ 0}.

Indeed, by (5.15), the set where the infimum is taken is nonempty. Let γ ∈ (γ̄, γ̄ + δ/2), where
δ > 0 will be chosen later. Let A > 0 be such that (5.15) holds for γ0 = γ and A0 = A. Hence,
for any R > 0 and any x ≤ −R, it follows

(W ∗ w)(x) ≥
∫ ∞

−R
W(y)w(x− y)dy ≥ Aeγx

∫ ∞

−R
W(y)e−γydy = Aeγx

|W(γ,R).

Plugging this into (5.16) and integrating the resulting inequality, we derive

w(x)ecx ≥ 2A
(γ + c)2 e

(γ+c)x
|W(γ,R), for all x ≤ −R. (5.19)

By (1.37), we have

lim
R→∞

2|W(γ,R)
(γ + c)2 > 1,

so that there is Rγ > 0 such that

δ := 1
Rγ

log
(

2|W(γ,Rγ)
(γ + c)2

)
> 0.

It thus follows from (5.19) that

w(x) ≥ AeδRγ+γx, for all x ≤ −Rγ .
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Iterating the previous argument, we deduce

w(x) ≥ AeδNRγ+γx, for all N ∈ N ∪ {0}, x ≤ −NRγ . (5.20)

Now let y ≤ 0 and let Ny ∈ N be such that −(Ny + 1)Rγ < y ≤ −NyRγ . Using (5.20) with
N = Ny + 1, and the fact that w is nondecreasing, we get

w(y) ≥ w(−(Ny + 1)Rγ) ≥ Ae−(γ−δ)(Ny+1)Rγ ≥ Ae−Rγ(γ−δ)e(γ−δ)y.

Observe that the constant Ã = Ae−Rγ(γ−δ) does not depend on y, so the previous inequality is
valid for every y ≤ 0. Therefore, the fact that γ̄ is an infimum implies that γ − δ ≥ γ̄. This is a
contradiction with the choice of γ. We conclude that (1.38) cannot happen.

Finally, let us show that η has at least one oscillation. First, assume that η changes its
sign, i.e. there are points y1, y2 ∈ R, with y1 < y2, such that η(y1)η(y2) < 0. In the case that
η(y1) > 0, the boundary condition η(±∞) = 0 implies that there are x1 < y1 < x2 < y2 < x3
such that η′(x1) > 0, η′(x2) < 0 and η′(x3) > 0. The case η(y1) < 0 is analogous.

Assume now that η ≥ 0 in R. Since η is nontrivial and η(±∞) = 0, we deduce that η admits
a positive global maximum, that we suppose to be attained at the origin, for simplicity. Thus,
there is x3 < 0 such that η′(x3) > 0. In view of (1.38), there must exist x2 ∈ (−∞, x3) such
that η′(x2) < 0. This also implies that η(x2) > 0. Hence, the condition η(−∞) = 0 provides
the existence of x3 ∈ (−∞, x2) such that η′(x3) > 0. The case η ≤ 0 in R is analogous.

It is clear that Theorem 1.11 applies for instance to the potentials (1.17) and (1.48), since
the Laplace transform are given by |W(s) = sinh(|λ|s)/(|λ|s) and |W(s) = eλ2s2 , s ∈ R, respec-
tively. In addition, we remark that Theorem 1.11 can be generalized and improved by using
the properties of wn in (5.12) for some specific potentials. We end this section by detailing this
point for the potentials in (1.43) and (1.18).

Let Wλ be the nematic potential in (1.43), with λ > 0. Using its Laplace transform given in
(1.35), condition (1.36) reads:

Pλ,c(s)
λ2s2 − 1 < 0, for all s ∈ (0, 1/λ), where Pλ,c(s) = λ2s4 + (c2λ2 − 1)s2 + 2 − c2. (5.21)

Since Pλ,c ≥ 2 in [1/λ,∞), we conclude that the condition in (5.21) is equivalent to saying that
Pλ,c is positive in R. Thus, we need the discriminant to be negative (see Remark 5.7), i.e.

(c2λ2 − 1)2 − 4λ2(2 − c2) < 0. (5.22)

Finding the roots of this polynomial, we obtain the value λ̃c in (1.45), and (5.22) holds exactly
for all λ > λ̃c.

In the case of the potential in (1.18) with λ < 0, we need to use the definition of the Laplace
transform of a distribution to justify that qδ0 = 1, and argue as before to conclude that (1.36) is
equivalent to saying that the polynomial

Pλ,β,c(s) = s4 − (β2 + 2Aλ − c2)s2 + β2(2Aλ − c2) + 4βAλλ, with Aλ = β/(β − 2λ), (5.23)

is positive in R. This reduces again to the study of the discriminant, but the analysis in this
case is more involved, as seen in the proof of the next result.

Theorem 5.6. Let c ∈ [0,
√

2). Consider one of the following cases:

(i) Wλ is the potential in (1.43) and λ̃ is defined in (1.45), and λ > λ̃c.

(ii) Wλ is the potential in (1.18), with β > 0 and λ < 0 such that the number in (1.47) is
either negative or has nonzero imaginary part.
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If u ∈ E(R) is a nontrivial solution to (S(Wλ, c)), then it cannot exist x0 ∈ R such that either
(1.38) or (1.39) hold, where η = 1−|u|2. In particular, η presents at least one oscillation (in the
sense of Theorem 1.11). In addition, if c = 0 and u(±∞) = ±1, then u cannot be nondecreasing
in R.

Proof. Let Wλ = e−|·|/λ/(2λ). We start as in the proof of Theorem 1.11, arguing by contradiction
and defining ηn, wn, gn and fn as in (5.12). In addition, we set vn = Wλ ∗ wn. Invoking
Lemma 5.1, we deduce that for any R > 0, there is C > 0 such that

∥wn∥L∞(I) + ∥wn∥W 2,1(I) + ∥w′
n∥L2(I) + ∥vn∥L1(I) ≤ C, (5.24)

for all n large enough, where I is a compact interval of (−∞, R). In addition, the choice of the
potential allows us to recast (5.13) as the system

−w′′
n + 2vn = gnwn + hnw

′
n, vn − λ2v′′

n = wn, in (−∞, R). (5.25)

From the estimates in (5.24), we infer from the second equation in (5.25) that {v′′
n} is also

bounded in L1(I). Thus, by interpolating ∥v′
n∥L1(I), we conclude that vn is bounded in W 2,1(I).

As in Theorem 1.11, this enables us to deduce the existence of v, w ∈ W 1,2
loc (R) such that vn → v

and wn → w in L∞
loc(R), and v′

n → v′ and w′
n → w′ in L2

loc(R). Then we can pass to the limit in
the weak formulation of (5.25), which results in

−w′′ + 2v − c2w = 0, v − λ2v′′ − w = 0, in D′(R). (5.26)

By elliptic regularity, we infer that w, v ∈ H2
loc(R), which implies that (w, v) is a classical solution

to the linear system of ODEs in (5.26). Moreover, since wn is nondecreasing with wn(0) = 1, it
follows that w is a nonzero nondecreasing function.

On the other hand, we can check that the characteristic polynomial of the linear system in
(5.26) is given by Pλ,c in (5.21). Thus, Pλ,c has non-real roots for λ > λ̃c. However, this implies
that w cannot be monotone, which is a contradiction.

The proof for the potential Wλ in (1.18) is very similar, since Lemma 5.3 remains true in
this case, due to the fact that λ < 0. Indeed, setting Aλ = β/(β − 2λ), µλ = −λe−β|·|, we can
write (5.13) as

−w′′
n + 2Aλµλ ∗ wn = g̃nwn + hnw

′
n, with g̃n = −2Aλ + c2 + Wλ ∗ ηn + c2ηn

2(1 − ηn) , (5.27)

in (−∞, R), so that g̃n → c2 − 2Aλ pointwise. Since λ < 0, µλ satisfies (H3). Thus, we can
invoke Lemma 5.1 as before to obtain the estimates in (5.24), with vn = µλ ∗wn, and also recast
(5.27) as:

−w′′
n + 2Aλvn = g̃nwn + hnw

′
n, β2vn − v′′

n = −2βλwn, in (−∞, R).

Arguing as before, we conclude that there are nonzero functions v, w, with w nondecreasing,
solutions to the linear system

−w′′ + 2Aλv + (Aλ − c2)w = 0, β2v − v′′ − 2βλw = 0. (5.28)

The characteristic polynomial of the system is given by Pλ,β,c in (5.23), with discriminant

△ = (β2 + 2Aλ − c2)2 − 4β2(2Aλ − c2) − 16βAλλ.

Therefore, the number in (1.47) corresponds to the square of a root of Pλ,β,c. Thus, if this number
is negative or has a nonzero imaginary part, then Pλ,β,c has roots with nonzero imaginary parts,
which contradicts the monotonicity of w.
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Remark 5.7. The condition λ > λ̃c for the nematic potential cannot be improved as done
for the potential in (1.18). Indeed, some algebraic computations show that if the discriminant
of Pλ,c is positive, then Pλ,c cannot have complex solutions with nonzero imaginary part, for
c ∈ [0,

√
2). For this reason, we could expect the conditions in Theorem 5.6 to be sharp to detect

oscillations of dark solitons.

6 Analysis of black solitons
We start by proving that black solitons must be real-valued, as stated in Lemma 1.2.

Proof of Lemma 1.2. The proof of Lemma 1.2 was performed in [17] except for item (i) and
(1.14). Starting from this first point, let u ∈ E(R) be a solution to (S(W, 0)), and set u =
u1 + iu2, for real-valued functions u1, u2. Relation (2.6) in Proposition 2.2 of [17] establishes
that (η′)2 = 4|u′|2|u|2, so that |⟨u, u′⟩| = |u′||u|. Elementary algebra yields

u′ = α(x)u, whenever |u| ≠ 0,

where α(x) = ⟨u′, u⟩/|u|2. Hence,

u′
1 = α(x)u1, u′

2 = α(x)u2, whenever |u| ≠ 0. (6.1)

Let x0 ∈ R be such that u(x0) ̸= 0. Multiplying u by a constant of modulus one, we may
assume without loss of generality that u1(x0) is real and that u2(x0) = 0. Moreover, since u is
continuous, there exists δ > 0 such that u(x) ̸= 0 for every x ∈ (x0 − δ, x0 + δ). Therefore, α is
well-defined in this interval and by integrating the second equation in (6.1), we obtain

u2(x) = u2(x0)e
∫ x

x0
α(y)dy = 0, x ∈ (x0 − δ, x0 + δ). (6.2)

In particular u′
2(x0) = 0. On the other hand, u2 satisfies the second order ODE:

−u′′
2 = q(x)u2, x ∈ R,

where q = W ∗ (1 − |u|2) ∈ L∞(R) ∩ C(R). Since u2(0) = u′
2(0) = 0, we can invoke the Cauchy–

Lipshitz theorem to conclude that u2 ≡ 0 in R, and therefore u is a real-valued function.
It remains to establish (1.14). By integrating (1.11), and using (1.10), we get∫

R
(2W ∗ η − c2η) =

∫
R

(2|u′|2 + 2η(W ∗ η)).

Thus, if η ̸≡ 0, Plancherel’s identity yields∫
R

(2W ∗ η − c2η) =
∫
R

(2|u′|2 + 1
π

xW|pη|2) > 0.

On the other hand, observe that∫
R

(W ∗ η)(x)dx =
∫
R
dW(x)

∫
R
η(x)dx = xW(0)

∫
R
η(x)dx =

∫
R
η(x)dx.

Therefore, (1.14) holds.

We are ready to prove an existence result for black solitons.
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Proof of Theorem 1.6. Since xW ≥ 0, it follows from Plancherel’s identity in (1.8) that E(u) ≥ 0
for every u ∈ Eodd(R). Then, there exists a sequence {un} ⊂ Eodd(R) such that E(un) →
inf{E(v) : v ∈ Eodd(R)}, as n → ∞. In particular, {E(un)} is bounded. As a consequence,
{u′

n} is bounded in L2(R) and, by Lemma 2.1 of [18], {ηn} is bounded in L2(R) and in L∞(R).
Therefore, passing to a subsequence, there exists u ∈ Eodd(R) such that, as n → ∞,

un → u, in L∞
loc(R), u′

n ⇀ u′, in L2(R), ηn ⇀ η, in L2(R),

by the Rellich-Kondrakov theorem. Furthermore,

∥u′∥L2(R) ≤ lim inf
n→∞

∥u′
n∥L2(R). (6.3)

In addition, since xW ≥ 0 in R, the functional f 7→
∫
R(W ∗ f)f is convex in L2(R) and, in turn,∫

R

(
W ∗ η

)
η ≤ lim inf

n→∞

∫
R

(
W ∗ ηn

)
ηn. (6.4)

From (6.3) and (6.4), it is now clear that

E(u) ≤ lim inf
n→∞

E(un) = inf{E(v) : v ∈ Eodd(R)} ≤ E(u).

Therefore, E(u) = min{E(v) : v ∈ Eodd(R)}.
It remains to show that u is a solution to (S(W, 0)). Using the fact that u is a minimizer

among odd functions, and bearing in mind the commutative property in (1.8), it is standard to
show that ∫

R
u′φ′ =

∫
R

(W ∗ (1 − u2))uφ, for every odd function φ ∈ C1
c (R).

Furthermore, since W, 1 − u2 and u′ are even, it follows that∫
R
u′φ′ = 0 =

∫
R

(W ∗ (1 − u2))uφ, for every even function φ ∈ C1
c (R).

Hence, we conclude that u is a solution to (S(W, 0)) by recalling that every function φ ∈ C1
c (R)

can be decomposed as

φ(x) = φ(x) + φ(−x)
2 + φ(x) − φ(−x)

2
:= φeven(x) + φodd(x),

where both φeven and φodd obviously belong to C1
c (R).

We finally include the proof of the nonlocal-to-local limit theorem in the case c = 0.

Proof of Theorem 1.9. Since uλ is a minimizer, applying Plancherel’s identity, we derive

Eλ(uλ) ≤ Eλ(v) ≤ (M + 1)E0(v), where M = sup{∥xWλ∥L∞(R) : λ ∈ (0, λ∗)},

for any v ∈ Eodd(R). As a consequence, {u′
λ}λ∈(0,λ∗) is bounded in L2(R) and, by Lemma 2.1

of [18], {ηλ}λ∈(0,λ∗) is bounded in L2(R) and in L∞(R). Passing to a subsequence, there exists
u0 ∈ Eodd(R) such that, as λ → 0,

uλ → u0, in L∞
loc(R), u′

λ ⇀ u′
0, in L2(R), ηλ ⇀ η0, in L2(R).

Finally, we apply Lemma 3.2 to pass to the limit in the weak formulation of the equation

−u′′
λ = uλ

(
Wλ ∗ (1 − u2

λ)
)
, in R,

and conclude that u0 is a solution to (S(δ0, 0)). By uniqueness of nontrivial finite-energy solution
for equation (S(δ0, 0)), necessarily there exist t ∈ R and θ ∈ R such that (1.28) holds with c = 0.
Moreover, since u0 is real-valued, θ = 0, and since it is odd, x0 = 0, so u0 = u(· ; 0).
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6.1 Monotone black solitons

This subsection is devoted to the proof of Theorem 1.13. It is based on elementary theory on
symmetric decreasing rearrangements. In order to be self-contained, let us define them and state
some basic properties that we will use. More details can be found, for instance, in the classical
book [31] or in the notes [11].

Definition 6.1. On the one hand, given a measurable function v : R → R, we say that it
vanishes at infinity if |{|v| > t}| < ∞ for all t > 0. On the other hand, if v vanishes at infinity,
its symmetric decreasing rearrangement is defined as

v⋆(x) =
∫ ∞

0
χ{|v|>t}⋆(x)dt,

where {|v| > t}⋆ is the open interval centered at zero whose measure coincides with |{|v| > t}|.

One deduces straightaway from the definition that v⋆ is a nonnegative, even and lower semi-
continuous function which is also nonincreasing in (0,+∞). Furthermore, one of the fundamental
properties of the symmetric decreasing rearrangements is that, for every t > 0, the following
identity holds,

{v⋆ > t} = {|v| > t}⋆, (6.5)

which in turn implies
|{v⋆ > t}| = |{|v| > t}|.

As a consequence, one has the following relation.

Proposition 6.2. Let G : [0,+∞) → R be a function such that G = G1 − G2, where G1 and
G2 are both nondecreasing with G1(0) = G2(0) = 0 and, for at least one j ∈ {1, 2}, one has
that

∫
RGj(|v(x)|)dx is finite. Then, for every measurable function v : R → R that vanishes at

infinity, one has ∫
R
G(|v(x)|)dx =

∫
R
G(v⋆(x))dx. (6.6)

Let us state and prove a further property that is still elementary but not usually listed in
the classical references.

Proposition 6.3. Let v be an even function, nonincreasing in (0,+∞), vanishing at infinity.
Then v⋆ ≤ v in R.

Proof. The fact that v is even and nonincreasing in (0,+∞) implies that {v > t} is an interval
centered at zero. Therefore, {v > t}⋆ ⊂ {v > t} and thus

v⋆(x) ≤
∫ ∞

0
χ{v>t}(x)dt =

∫ v(x)

0
dt = v(x).

We will also need a generalization of the classical Riesz’s rearrangement inequality. The
statement and proof can be found in [2, Theorem 2.2]. We introduce here the statement adapted
to our setting.

Theorem 6.4. Let G : [0,+∞) → [0,+∞) be a function of class C1 such that

G(0) = 0, and G′(s) ≥ 0, for all s ≥ 0.

Let σ ∈ L1(R) with σ ≥ 0 in R. Then, for every measurable function v : R → R that vanishes
at infinity, one has∫

R

∫
R
G(|v(x)|)G(|v(y)|)σ(x− y)dydx ≤

∫
R

∫
R
G(v⋆(x))G(v⋆(y))σ⋆(x− y)dydx.
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We finally recall the well-known Pólya-Szegő inequality.
Theorem 6.5. If v ∈ W 1,p(R) for some p ∈ [1,∞), then v⋆ ∈ W 1,p(R) and∫

R
|(v⋆)′(x)|pdx ≤

∫
R

|v′(x)|pdx.

Proof of Theorem 1.13. Let u ∈ C2(R) be a solution to (S(W, 0)) such that u(±∞) = ±1. Since
µ+ = 0, it follows from (2.4) that ∥u∥L∞(R) ≤ 1, i.e. −1 ≤ u ≤ 1 in R. It remains to show the
strict inequality (1.40). In order to do so, assume by contradiction that there exists x0 ∈ R such
that u(x0) = −1 (the case u(x0) = 1 is analogous). Clearly, u(x0) = minx∈R u(x). Thus,

0 ≥ −u′′(x0) = u(x0)
(
W ∗ (1 − u2)

)
(x0) = −Aµ

(
µ ∗ (1 − u2)

)
(x0) ≥ 0.

As a result,
0 =

(
µ ∗ (1 − u2)

)
(x0) =

∫
R
µ(x− x0)(1 − u(x)2)dx.

Finally, since both µ and 1 − u2 have a sign, and µ is nontrivial, we conclude that u2 ≡ 1, i.e.
u ≡ −1, a contradiction with limx→∞ u(x) = 1.

We assume now that µ is nondecreasing in (0,+∞). We already know by Theorem 1.6 that
there exists ũ ∈ Eodd(R) such that E(ũ) = min{E(u) : u ∈ Eodd(R)}. Let us show that there
exists a possibly different minimizer which is increasing.

At this point, we introduce the auxiliary functional

J(v) = 1
2

∫
R

(v′)2 + 1
4

∫
R

(W ∗G(|v|))G(|v|), v ∈ H1(R),

where G : [0,+∞) → R is of the form G = G1 −G2, where

G1(s) = 2s, G2(x) = min{s2, 1}, s ∈ R.

It is easy to see that the function v = 1 − |ũ| satisfies v ∈ H1(R) and J(v) = E(ũ). Indeed, on
the one hand, we have

||ũ|′| = |ũ′| if ũ ̸= 0, |ũ|′ = 0 otherwise.
Therefore, v′ ∈ L2(R) and

∫
R(ũ′)2 =

∫
R(v′)2. On the other hand, the identity (1 − |ũ|)2 =

(1 − ũ2)2(1 + |ũ|)−2 implies that v ∈ L2(R). Hence we deduce that v ∈ H1(R). Finally, since
|ũ| < 1 in R, it follows that 0 < v < 1 in R, so G(|v|) = G(v) = v(2 − v) = 1 − ũ2. Thus the
identity E(ũ) = J(v) trivially holds.

Now, by virtue of Proposition 6.3, (−µ)⋆ ≤ −µ in R. Therefore, Theorem 6.4 can be applied
with σ = −µ ≥ 0 to deduce∫

R
(µ ∗G(v))G(v) ≥

∫
R

(µ ∗G(v⋆))G(v⋆). (6.7)

Next, Theorem 6.5 and Theorem 6.2, combined with (6.7), lead to the inequality J(v) ≥ J(v⋆).
Let us now define

u0(x) =
{

1 − v⋆(x) if x ≥ 0,
−1 + v⋆(x) if x < 0.

Let us check that u0 is continuous at zero. Indeed, on the one hand, we recall that ũ(0) = 0,
so that maxx∈R v(x) = v(0) = 1. On the other hand, it is clear that v⋆ achieves its maximum
at zero and, from (6.5), we derive maxx∈R v

⋆(x) = maxx∈R v(x). In sum, v⋆(0) = 1, so u0 is
continuous at zero.

It is clear now that u0 is a nondecreasing odd function that satisfies 1−u2
0 = G(v⋆). Moreover,

taking into account the continuity of u0 at zero and the fact that v⋆ ∈ H1(R), it is a simple
exercise to prove that u0 ∈ H1

loc(R) with u′
0 = |(v⋆)′|. Therefore, u0 ∈ Eodd(R) and

E(u0) = J(v⋆) ≤ J(v) = E(ũ).

In conclusion, E(u0) = E(ũ) = min{E(u) : u ∈ Eodd(R)}.
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7 Proofs of the examples
Let us start by studying the convergences of the potentials in the examples given in Subsec-
tion 1.3, in the strong and vague (or weak-∗) topology of M(R). The analysis is contained in
the following result.

Lemma 7.1. Let Wλ be given by either (1.17), (1.43), (1.18), (1.48) or (1.49). In all the cases,
we set λ∗ > 0 arbitrary, except for (1.18) where we fix λ∗ in the interval (0, β/2). Then, the
family {Wλ}λ∈(−λ∗,λ∗) satisfies (H0), (H1), (H6) and (H7). In particular, Wλ converges vaguely
to δ0, i.e. in the weak-∗ sense:∫

R
φdWλ → φ(0), for all φ ∈ C0(R), as λ → 0. (7.1)

Finally, in the case (1.18), Wλ converges to δ0 in M(R), as λ → 0. In all the other cases, Wλ

does not converge in M(R).

Proof. It is trivial that the potentials satisfy (H0) and (H1). We consider now the cases (1.17),
(1.43) and (1.48), where the potentials are given by nonnegative functions. Hence, the family
{Wλ}λ∈(−λ∗,λ∗) is bounded, since

∥Wλ∥M(R) = ∥Wλ∥L1(R) = 1,

for all λ. In view of the explicit Fourier transform of these potentials, it is clear that (H6) is
satisfied with α = 0. Thus, by invoking Proposition 8.50 in [21], we infer that Wλ converges
vaguely to δ0. Arguing by contradiction, let us assume that Wλ converges strongly in M(R),
which implies that it converges weakly-∗. Thus, we deduce that Wλ must converge to δ0 in
M(R), so that, by (1.6), xWλ must converge to 1 in L∞(R). This is a contradiction, since the
decay at infinity of the potential implies that ∥xWλ − 1∥L∞(R) = 1.

In the case (1.18), we use the triangle inequality to get

∥Wλ − δ0∥M(R) ≤ |λ|
β − 2λ(2 + ∥e−β|·|∥L1(R)) ≤ |λ|

β − 2λ∗
(2 + 2/β).

Thus, Wλ converges to δ0 strongly, and thus vaguely, as λ → 0.
Finally, consider Wλ given by the potential in (1.49). Its Jordan decomposition is W+

λ = 2δ0
and W−

λ = (δλ + δ−λ)/2. Indeed, taking B = R \ {0}, we have W−
λ (B) = W+

λ (Bc) = 0, so
that W+

λ and W−
λ are are mutually singular. Therefore, (H6) holds with α = 1 and the vague

convergence is deduced as before. To see that there is no strong convergence, we compute

∥Wλ − δ0∥M(R) = ∥δ0∥M(R) + 1
2∥δλ + δ−λ∥M(R) = 2.

We can now complete the proofs of the applications of our results for the potentials discussed
in the introduction.

Proof of Corollary 1.14. By Lemma 7.1, (H0), (H1), (H6) and (H7) are satisfied. It is immediate
to check that

(
xWλ

)′(ξ) ≥ −mλξ, for all ξ > 0, with mλ = 2λ2. In particular, integrating this
inequality, one derives

xWλ(ξ) ≥ 1 − λ2ξ2, for all ξ ∈ R, λ > 0, (7.2)

so (H5) is satisfied. In addition, if we consider the interval Λ = (0, 1/
√

2), then we take κ = 1/2
in (H5), for all λ ∈ Λ. Thus, the hypotheses in Theorems 1.6 and 1.9 are fulfilled, and the
conclusion of (ii) follows.
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To prove (i), we will apply Theorem 1.5. Remark that the computation above shows that
(H2) is fulfilled for all λ ∈ (0, 1/

√
2), and that (H3) holds for any fixed τ > 0, with

σ = σλ = Wλ(τ) = 1
2λ

√
π
e− τ2

4λ2 . (7.3)

Hence, to check the conditions in (1.24), we choose τ = τλ = λ in (7.3), so that

τλσλ = 1
2e1/4√

π
and mλ

τλσλ
= 4e1/4√

πλ2.

Thus (1.24) holds for every λ ∈ (0, λc), with λc defined in (1.41), and we deduce the existence
of uλ. In addition, since

lim
λ→0

mλM(c, τλ, σλ) = 0,

and π/
√

8 + 2c2 < 1/
√

2, we can invoke Theorem 1.7 to infer that the convergence in (1.28)
holds.

To establish (iii), bearing in mind that |Wλ(σ) = eλ2σ2 , it is easy to check that the condition
(1.37) is equivalent to λ > λ̃c, with λ̃c defined in (1.42). Hence, the conclusion follows by using
Theorem 1.11 and Corollary 1.12.

Proof of Corollary 1.15. The proof follows the same lines as in the previous corollary, except
for (iii), which was already proven in Theorem 5.6. Indeed, by differentiating xWλ, we obtain as
before mλ = 2λ2, so that (7.2) still holds. Since, for any fixed τ > 0, we have σλ = Wλ(τ) =
e− τ

λ /(2λ), we can choose τλ = λ so that

τλσλ = 1
2e,

mλ

τλσλ
= 4eλ2 and lim

λ→0
mλM(c, τλ, σλ) = 0.

The conclusion follows as in Corollary 1.14.

Proof of Corollary 1.17. Item (iii) was established in Theorem 5.6. As before, by Lemma 7.1,
(H0), (H1), (H6) and (H7) are satisfied, and by differentiating xWλ, we obtain

mλ = 4(−λ)+/(β2(β − 2λ)), and xWλ(ξ) ≥ 1 − κλξ
2, for all ξ ∈ R, (7.4)

where κλ = mλ/2. Therefore, (H5) is satisfied and Theorem 1.6 implies the existence of an
odd black soliton uλ. If λ ∈ (0, β/2), we invoke Theorem 1.9 to get the convergence in (1.28).
The limit as λ → 0− is proved analogously by considering the family {W−λ}λ∈(0,λ∗), for a fixed
λ∗ > 0. To conclude the proof of (ii), we invoke Theorem 1.13 to get the monotonicity of the
black soliton when λ > 0.

We will apply Corollary 1.4 to prove (i). Notice that (H4) holds with µλ = −λe−β|x|. Indeed,
µ−

λ = 0 if λ < 0, and ∥µ−
λ ∥M(R) = 2λ/β < 1, if λ > 0. In addition, in view of (7.4), we see that

mλ = 0 if λ > 0. Therefore, if λ > 0 then (H2) and the condition in (1.23) trivially hold, and
the conclusion follows.

For λ < 0, using (7.4), the condition mλ ∈ [0, 1) is equivalent to |λ|(2 − β2) < β3/2. Hence,
we assume in the sequel that λ satisfies this inequality, so that (H2) is satisfied. In conclusion,
we have

∥µ+
λ ∥M(R) = 2|λ|

β
, ∥µ−

λ ∥M(R) = 0, and M(c, µλ) = (β + 2|λ|)
β

(
1 + c2

4
)
, (7.5)

so that the condition mλM(c, µλ) < 1 is equivalent to |λ| < β3/(4+c2). Therefore, Corollary 1.4
also provides the existence of uλ for λ ∈ (λc,β, 0). Finally, in view of (7.4) and (7.5), we can
invoke Theorem 1.7-(ii) to conclude the nonlocal-to-local limit as λ → 0 (arguing for W−λ if
λ<0).
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Proof of Corollary 1.18. By Lemma 7.1, (H0) and (H7) are satisfied. For the potential (1.43),
we have, for all |λ| ≤ 1,

∂λ
xWλ = − 2λξ2

(1 + λ2ξ2)2 , so that |∂λ
xWλ| ≤ 2|ξ|2.

Thus (H8) holds. Notice that in this case ∥∂λ
xWλ∥L∞(R) = 1/(2|λ|), so we need to allow the

quadratic growth in (H8) to have a uniform bound for λ close to 0. It is straightforward to
verify that (H8) is also fulfilled for the other potentials. Therefore, the conclusion follows from
Theorem 1.10.
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