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A B S T R A C T

We aim at computing time- and span-periodic flow fields in span-invariant configurations. The streamwise
and cross-stream derivatives are discretised with finite volumes while time and the span-direction are handled
with pseudo-spectral Fourier-collocation methods. Doing so, we extend the classical Time Spectral Method
(TSM) to a Space–Time Spectral Method (S-TSM), by considering non-linear interactions of a finite number
of time and span harmonics. For optimisation, we introduce an adjoint-based framework that allows efficient
computation of the gradient of any cost functional with respect to a large-dimensional control parameter. Both
theoretical and numerical aspects of the methodology are described: evaluation of matrix–vector products with
S-TSM Jacobian (or its transpose) by algorithmic differentiation, solution of fixed-points with quasi-Newton
method and de-aliasing in time and space, solution of direct and adjoint linear systems by iterative algorithms
with a block-circulant preconditioner, performance assessment in CPU time and memory. We illustrate the
methodology on the case of 3D instabilities (first Mack mode) triggered within a developing adiabatic boundary
layer at M = 4.5. A gradient-ascent method allows to identify a finite-amplitude 3D forcing that triggers a
non-linear response exhibiting the strongest time- and span-averaged drag on the flat-plate. In view of flow
control, a gradient-descent method finally determines a finite amplitude 2D wall-heat flux that minimises the
averaged drag of the plate in presence of the previously determined non-linear optimal forcing.
1. Introduction

The efficient computation and parametric optimisation of periodic
solutions (in time and/or in a homogeneous spanwise direction) is
relevant to many industrial fluid applications, such as in rotating
systems (turbomachinery, propeller and fan studies, etc.), in flows
undergoing bifurcations (cavity flows, bluff bodies, flutter and limit-
cycle oscillations in fluid–structure interactions) or in boundary layer
flows to study or control the laminar-to-turbulence transition path.

Time-periodic solutions may be obtained by time stepping the gov-
erning Navier–Stokes equations. Yet, this might be computationally
expensive due to the prescribed time period being usually very large
with respect to the time step of the simulation (which is severely
constrained by the CFL condition). Convergence of the time stepping
towards the exact periodic solution can nonetheless be accelerated with
a number of techniques [1,2]. Also, in some cases, the time stepping

∗ Corresponding author.
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will naturally move away from the periodic solution due to Floquet-
type instabilities. In such cases, stabilising techniques may be applied
to ensure convergence to the unstable periodic solution [3].

Another class of methods for calculating periodic flow solutions
involves the use of spectral methods to discretise the time derivative:
the use of Fourier modes to describe the time-periodic behaviour of the
flow may bypass the CFL constraint and allow accurate computation
of periodic solutions with a significantly reduced discretisation in time
(small number of harmonics). Yet, the price to pay is that spectral
methods are global in time, coupling all Fourier modes or time instants
together, yielding a coupled system that is computationally challenging
to solve. For this class of spectral methods, two approaches exist:
the Fourier–Galerkin method, also called Harmonic Balanced Method
(HBM), and the Time-Spectral Method (TSM).
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In the spectral Fourier–Galerkin formulation (HBM), the problem is
solved in the frequency domain by expressing the solution as a trun-
cated Fourier series. A benefit of this formulation is a direct harmonic
decomposition of the solution. Rigas et al. [4] used HBM to calculate
non-linear optimal disturbances in an incompressible boundary layer
while Sierra-Ausin et al. [5] extended its application to compressible
flows at low Mach numbers under the assumption of constant viscosity.
Both studies required the computation of all non-linear interactions,
which is time consuming and possible only if the non-linearity is poly-
nomial (quadratic in incompressible Navier–Stokes equations, cubic in
compressible conservative Navier–Stokes equations, the usage of the
Sutherland’s law being excluded therefore).

The TSM relies on solving the equations in the time domain with
a pseudo-spectral Fourier collocation method, which bypasses the two
above mentioned problems: since the method only relies on evaluating
the residual of the governing equations at the collocations points, it is
efficient and easy to implement, allows to deal with compressible con-
servative Navier–Stokes equations with the Sutherland’s law and can be
applied within a discrete framework in which the discretised residual
can involve complex numerical schemes such as shock-capturing meth-
ods. Therefore, the TSM has been preferred to HBM in turbomachinery,
for instance [6–8]. Yet, contrary to HBM, which allows to explicitly
remove the aliasing problem associated to the non-linearity of the
governing equations, the TSM requires de-aliasing techniques, which
multiplies by two the number of required collocation points or Fourier
modes in the case of cubic non-linearities [9].

Once formulated within TSM, the equations may be solved by
explicit or implicit techniques. The former, closer to the time-stepping
approaches, exhibits a large computational time cost due to a CFL
constraint inversely proportional to the frequency and the number
of harmonics considered. The latter is quicker, if Newton-type meth-
ods can be used; for this, the Jacobian of the TSM operator needs
to be inverted, which is possible with direct LU methods only for
systems with small number of degrees of freedom and small num-
ber of collocation points. If this is not the case, iterative techniques
may be implemented. Sicot et al. [10] was the first to introduce
a Block-Jacobi method (with a pseudo-time stepping approach) to
solve for the TSM large-scale linear system. Mader and Martins [11],
Kenway et al. [8] improved the method by considering a GMRES algo-
rithm preconditioned by a Block-Jacobi solver. For low Mach number
flows, Sierra-Ausin et al. [5] has compared the Block-Jacobi precon-
ditioned GMRES algorithm for TSM and HBM (also used in Rigas
et al. [4]) and showed much better convergence properties for HBM.
However, HBM being formulated in frequency domain and TSM in
time domain, the block-diagonal approximation involved in the Block-
Jacobi method is not equivalent in HBM and TSM. It actually appears
to be a much better approximation of the HBM linear operator than of
the TSM linear operator, so that the two methods cannot be directly
compared. Moulin [12] showed that the analog of the block-Jacobi
preconditioner in HBM is a block-circulant preconditioner in TSM,
which takes advantage of the block-circulant shape of the mean TSM
Jacobian operator, allowing a fairer comparison of the two methods.

The objective of the present paper is first to extend the TSM for-
mulation to a Space–Time Spectral Method (S-TSM), for which the
solution is both periodic in time and in a homogeneous space di-
rection. The starting point of the study will be a two-dimensional
discretised finite-volume code; we will show how to add the spanwise
and time derivatives with a spectral Fourier collocation method and
how the general optimisation problem is formulated. Then, the block-
circulant preconditioner [12] will be adapted to deal with both the
collocation points in time and in the spanwise direction. The resulting
preconditioner, that will be explicitly constructed thanks to algorithmic
differentiation, is then used by a GMRES algorithm to solve the implicit
Newton iterations. Following Kenway et al. [8], Rigas et al. [4], we
introduce also an adjoint linear system, that will be solved again
2

with an iterative GMRES solver based on the block-circulant conjugate
transpose mean TSM operator, to perform gradient-based optimisation
within a very large dimensional optimisation space. All steps will be
detailed and assessed in terms of computational cost.

The method will be illustrated in the context of finite-amplitude
transition in a three-dimensional compressible supersonic M = 4.5
developing boundary layer. We will optimise a finite amplitude volume
force triggering a maximal mean-drag response. Then, the predictions
of the S-TSM solution will be validated against a compressible direct
numerical simulation (DNS), in which many more degrees of freedom
can be used in the streamwise and homogeneous spanwise directions.
Eventually, we will optimise a finite-amplitude wall-heat flux minimis-
ing this mean-drag in presence of the previously computed optimal
finite-amplitude forcing. From a physical point of view, it can there-
fore be considered both as an extension of the incompressible study
of Rigas et al. [4] and as the deterministic counterpart of the optimi-
sation studies by Jahanbakhshi and Zaki [13,14] with ensemble-based
methods.

The outline of the paper is as follows. The S-TSM method and
gradient-based optimisation strategy are presented in Section 2, while
general algorithms to solve those large-scale problems are described in
Section 3. Application to the case of supersonic boundary layer flow
will follow in Section 4, including the optimisation of a worst-case 3D
volume force maximising the drag, the validation of the response given
by the S-TSM against a DNS and the drag minimisation by a 2D wall
heat-flux in presence of the instabilities triggered by the previous worst-
case forcing. Computational performance is then assessed in Section 5,
followed by conclusions and outlook.

2. Theory

2.1. Governing equations and formulation

We consider equations governing a state in a spanwise invariant
configuration, where (𝑥, 𝑦) are the streamwise and cross-stream co-
ordinates, while 𝑧 is the spanwise coordinate. Discretisation of the
three-dimensional compressible Navier–Stokes equations in the (𝑥, 𝑦)
directions yields the following semi-discrete equations governing the
state 𝐪(𝑧, 𝑡):

𝐌 𝜕𝐪
𝜕𝑡

+ 𝐑3𝐷(𝐪) = 𝐁𝐮, (1)

where 𝐮(𝑧, 𝑡) is a vector forcing term that acts on the residual through
he 𝐁 matrix. Note that 𝐮(𝑧, 𝑡) may describe either a volume source
erm 𝑓 (𝑥, 𝑦, 𝑧, 𝑡) or a wall-boundary condition term 𝜙(𝑠, 𝑧, 𝑡), where 𝑠
s a curvilinear abscissa along a wall. In the following, for simplicity,
e will assume that the operator 𝐁 does not involve any 𝑧-derivative.

n Eq. (1), 𝐌 designates the Hermitian mass matrix and 𝐑3𝐷(𝐪) the
iscrete residual of the governing equations.

We assume that the 3D residual 𝐑3𝐷 can be split as the sum of a 2D
iscretised residual 𝐑2D and its z-derivative components 𝐑𝑧 and 𝐑𝑧𝑧:

3𝐷(𝐪) = 𝐑2D(𝐪) + 𝐑𝑧

(

𝐪, 𝜕𝐪
𝜕𝑧

)

+ 𝐑𝑧𝑧

(

𝐪, 𝜕
2𝐪
𝜕𝑧2

)

. (2)

We assume that we have a code with 2D-discretised equations in 𝐑2D
(governing a 3-component spanwise invariant state), while the oper-
ators 𝐑𝑧 and 𝐑𝑧𝑧 are available for evaluation. All these residuals are
assumed to be local functions (in the span-direction), depending solely
on the value of the state or of its span-derivatives at the evaluation
point. The span-derivatives in the governing equations are the only
quantities which make the residual be explicitly non-local in the span-
direction. We will give more details about these operators in Section 4
when introducing the compressible Navier–Stokes equations.

Due to the time- and spanwise- homogeneity of the configuration,
we assume that the forcing 𝐮 and the state 𝐪 may be searched for as
periodic both in time and in the spanwise direction. We will denote 𝜔
and 𝛽 as the common fundamental angular frequency and fundamental
spanwise wavenumber. In the Fourier domain, the harmonic responses
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of 𝐮̌ and 𝐪̌ are described as Fourier series truncated at 𝑁 harmonics in
time and 𝑀 harmonics in 𝑧 direction:

𝐮(𝑧, 𝑡) =
𝑁
∑

𝑛=−𝑁

𝑀
∑

𝑚=−𝑀
𝐮̌𝑛,𝑚𝑒𝑖(𝑛𝜔𝑡+𝑚𝛽𝑧), 𝐪(𝑧, 𝑡) =

𝑁
∑

𝑛=−𝑁

𝑀
∑

𝑚=−𝑀
𝐪̌𝑛,𝑚𝑒𝑖(𝑛𝜔𝑡+𝑚𝛽𝑧).

(3)

The components (⋅)𝑛,𝑚 represent the 𝑛th harmonic in time and the
𝑚th harmonic in the spanwise direction associated to 𝑒𝑖(𝑛𝜔𝑡+𝑚𝛽𝑧) in
the Fourier decomposition. For the solution to be real, we have the
(−𝑛,−𝑚) component should be the complex conjugate of the (𝑛, 𝑚) one.
In particular, the averaged component over time and 𝑧-direction, (⋅)0,0,
is real. To determine the values 𝐪̌𝑛,𝑚, we inject the ansatz Eq. (3)
for the forcing 𝐮̌ and the response 𝐪̌ into Eq. (1). We then either
project this equation by a Galerkin method in spectral space or use a
collocation method in physical space (see diagram (4)). The Galerkin
projection method yields the HBM method used by Rigas et al. [4] for
incompressible equations and by Sierra-Ausin et al. [5] for compressible
equations. It enforces the governing equations in Fourier space for
𝑁 × 𝑀 harmonics. In the case of fully compressible Navier–Stokes
equations, this method becomes prohibitively expensive due to the
triple-sum involved in the cubic term and the Sutherland’s relation
which is not even polynomial. The collocation method bypasses this
problem by enforcing the governing equation Eq. (1) in physical space
at (2𝑁 + 1) × (2𝑀 + 1) discrete collocation points, which have the
same information according to Nyquist–Shannon criteria as the 𝑁 ×𝑀
equations in Fourier space. This method is either called TSM [6] or
High-Dimensional Harmonic Balance method (HDHB) [15]. As this
collocation method is applied here both for time and for space, we call
it Space–Time Spectral Method (S-TSM).

𝑧∖𝑡 −𝑁 ⋯ 𝑛 ⋯ 𝑁
−𝑀 ⋱ ⋯ ⋯ ⋯ ⋱
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
𝑚 ⋮ ⋱ 𝐪̌𝑛,𝑚𝑒𝑖(𝑛𝜔𝑡+𝑚𝛽𝑧) ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
𝑀 ⋱ ⋯ ⋯ ⋯ ⋱

⟹

𝑧∖𝑡 0 ⋯ 𝑘 ⋯ 2𝑁
0 ⋱ ⋯ ⋯ ⋯ ⋱
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
𝑗 ⋮ ⋱ 𝐪𝑘,𝑗 = 𝐪(𝑡𝑘, 𝑧𝑗 ) ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋮

2𝑀 ⋱ ⋯ ⋯ ⋯ ⋱

(4)

2.2. Space-Time Spectral Method (S-TSM)

Eq. (1) is enforced at all collocation points in time, 𝑡𝑘 = 𝑘𝛥𝑡
with 𝛥𝑡 = (2𝜋∕𝜔)∕(2𝑁 + 1), and span-direction, 𝑧𝑗 = 𝑗𝛥𝑧 with 𝛥𝑧 =
(2𝜋∕𝛽)∕(2𝑀 + 1):

𝐌
𝜕𝐪𝑘,𝑗
𝜕𝑡

+ 𝐑3𝐷(𝐪𝑘,𝑗 ) = 𝐁𝐮𝑘,𝑗 . (5)

n spectral collocation methods, although expression Eq. (3) holds, the
ariables 𝐪 and 𝐮 are not searched for in spectral space (as done in
BM methods) but in physical space, at the collocation points 𝐪𝑘,𝑗 and
𝑘,𝑗 . The derivatives 𝐃𝑡, 𝐃𝑧 and 𝐃𝑧𝑧 matrices can then be expressed in
hysical space following:

𝜕𝐪𝑘
𝜕𝑡

=
2𝑁
∑

𝑘′=0
(𝐃𝑡)𝑘𝑘′𝐪𝑘′ ,

𝜕𝐪𝑗
𝜕𝑧

=
2𝑀
∑

𝑗′=0
(𝐃𝑧)𝑗𝑗′𝐪𝑗′ ,

𝜕2𝐪𝑗
𝜕𝑧2

=
2𝑀
∑

𝑗′=0
(𝐃𝑧𝑧)𝑗𝑗′𝐪𝑗′ .

(6)

These derivatives exhibit exponential convergence properties as the
number of harmonics increases [16] and do not induce CFL-like con-
straints. Yet, the drawback is that the stencil couples all points together
3

in space and time, which makes it difficult to solve. The involved
coefficients are computed through successive application of the Discrete
Fourier Transform (DFT), the complex multiplicative derivative in fre-
quency domain and the Inverse Discrete Fourier Transform (IDFT). The
DFT (𝐄) and IDFT (𝐄−1) matrices relate spectral-domain 𝐪̌𝑛 and time-
domain 𝐪𝑘 variables through 𝐪𝑘 =

∑

𝑛(𝐄−1)𝑘𝑛𝐪̌𝑛 and 𝐪̌𝑛 =
∑

𝑘(𝐄)𝑛𝑘𝐪𝑘.
hese matrices read:

𝐄)𝑛𝑘 = 1
2𝑁 + 1

𝑒−(𝑖2𝜋𝑘𝑛)∕(2𝑁+1)𝐈, (𝐄−1)𝑘𝑛 = 𝑒(𝑖2𝜋𝑘𝑛)∕(2𝑁+1)𝐈, (7)

ith 𝑛 ∈ [−𝑁,𝑁] (or [−𝑀,𝑀]) and 𝑘 ∈ [0, 2𝑁] (or [0, 2𝑀]) and
𝐈 the identity matrix of the two-dimensional discretisation. Then, for
instance, the first-order time-derivative reads:

𝐃𝑡 = 𝐄−1
𝑡 (𝑖𝑛𝜔𝐈)𝐄𝑡, (8)

where (𝑖𝑛𝜔𝐈) designates a block diagonal matrix, each block being equal
to the identity matrix times a complex coefficient 𝑖𝑛𝜔. The coefficients
of the derivative matrices 𝐃(⋅) can be computed and stored beforehand
s they only depend on the truncation levels 𝑁 or 𝑀 . Therefore, not
very Discrete Fourier Transformation is required to be performed dur-
ng the computation of the residual. In the following, the full residual
ay be written as:

𝐃𝑡𝐪 + 𝐑2D(𝐪) + 𝐑𝑧
(

𝐪,𝐃𝑧𝐪
)

+ 𝐑𝑧𝑧
(

𝐪,𝐃𝑧𝑧𝐪
)

= 𝐁𝐮, (9)

where, with a small abuse of notations, all matrices 𝐌, 𝐁 and non-
linear functions 𝐑2D,𝐑𝑧,𝐑𝑧𝑧 now designate block diagonal versions
of the quantities. For example, for two vectors 𝐪 and 𝐪′, the (𝑘0𝑗0)𝑡ℎ

component of 𝐑𝑧

(

𝐪𝑘1𝑗1 ,𝐪
′
𝑘2𝑗2

)

is non-zero only if 𝑘0 = 𝑘1 = 𝑘2 and
𝑗0 = 𝑗1 = 𝑗2. Hence, only the derivative matrices 𝐃𝑡, 𝐃𝑧 and 𝐃𝑧𝑧
correspond to non-diagonal block-quantities and are the only terms
coupling the various collocation points together. This system can be
rewritten in compact form as:

𝐑(𝐪) = 𝐁𝐮. (10)

As it stands, spectral aliasing effects associated to interaction be-
tween the spectral method and the non-linearities of the governing
equations may corrupt the solution. These aliasing effects may be
mitigated by taking into account a large number of harmonics in time
and space. Here, we demonstrate de-aliasing in time only, without loss
of generality, and the same approach can be applied in space. The first
step in the de-aliasing procedure involves defining an operator 𝐏 that
prolongates a solution with 𝑁 harmonics to a solution with 𝑁 ′ > 𝑁
harmonics, such that 𝐪′ = 𝐏𝐪. This operator adds zero-amplitude
harmonics from 𝑁 + 1 to 𝑁 ′ to a solution with 𝑁 harmonics:

𝐏 = 𝐄−1
𝑁 ′

(

𝐈𝑁,𝑁
𝟎𝑁 ′−𝑁,𝑁

)

𝐄𝑁 , (11)

which ensures conservation of mean energy between the initial and
prolongated solution:

1
2𝑁 ′ + 1

2𝑁 ′
∑

𝑘=0
𝐪′∗𝑘𝐐𝐪′𝑘 = 1

2𝑁 + 1

2𝑁
∑

𝑘=0
𝐪∗𝑘𝐐𝐪𝑘, (12)

where 𝐐 is any chosen inner product. This prolongation operator
satisfies:

𝐏∗𝐏 = 𝐈𝑁,𝑁 , (13)

so that 𝐏∗ can be viewed as a restriction operator from 𝑁 ′ harmonics to
𝑁 harmonics by suppressing all frequencies between 𝑁 and 𝑁 ′. For the
general space–time problem, the de-aliased S-TSM governing equations
may be written as:

𝐏∗𝐑′(𝐏𝐪) = 𝐁𝐮, (14)

where 𝐑′ designates the residual obtained with 𝑁 ′ harmonics in time
and 𝑀 ′ harmonics in space, while 𝐪, 𝐁 and 𝐮 are quantities pertaining
nly to 𝑀 and 𝑁 harmonics. According to Orszag and Patterson [17],
𝑁 ′ = 3∕2𝑁,𝑀 ′ = 3∕2𝑀) for quadratic non-linearities, while (𝑁 ′ =

′
2𝑁,𝑀 = 2𝑀) for cubic ones [9].



Computers and Fluids 282 (2024) 106386A. Poulain et al.

h
b
t

𝐀

I
t
o
(
t
t

𝐀

2

i
t
E

𝐮

T
t



B
d
[

𝛿
r

𝛿

m

3

3

w
i
1

f

3

o
c
w
(
(

3

G
a
M
w
f
i

3

[
F
a
s

𝐀

T
[

𝐀

t
𝐀
r
f

f
c
t

Π

w

Π

i
t
e
c
a
b

The non-linear system Eq. (14) may be solved by an iterative
Newton method where a solution 𝐪 is improved as 𝐪 + 𝛿𝐪, with
[

𝐏∗𝐀′𝐏
]

𝛿𝐪 = −𝐏∗𝐑′(𝐏𝐪) + 𝐁𝐮, (15)

where 𝐀′ = 𝜕𝐑′∕𝜕𝐪′|
|𝐏𝐪 is the Jacobian of the residual with (𝑁 ′,𝑀 ′)

armonics. It can then be shown (in spectral space and the harmonic
alanced operator 𝐀̌′) that the linear operator 𝐏∗𝐀′𝐏, is exactly equal
o the Jacobian with (𝑁,𝑀) harmonics, 𝐀, so that:

𝛿𝐪 = −𝐏∗𝐑′(𝐏𝐪) + 𝐁𝐮. (16)

t is important to note that the de-aliasing technique only requires
he evaluation of the residual with (𝑁 ′,𝑀 ′) harmonics but the linear
perator to be solved that determines the solution is still an operator of
𝑁,𝑀) harmonics and not (𝑁 ′,𝑀 ′) harmonics. Hence, the de-aliasing
echnique only weakly increases the cost of the method due to the fact
hat the evaluation of the residual with (𝑁 ′,𝑀 ′) harmonics exhibits a

negligible increase of cost with respect to the evaluation of the residual
with (𝑁,𝑀) harmonics. The explicit expression of the Jacobian 𝐀 is:

𝐀 = 𝐌𝐃𝑡 + 𝐀2D(𝐪) + 𝐀0(𝐪) + 𝐀𝑧(𝐪)𝐃𝑧 + 𝐀𝑧𝑧(𝐪)𝐃𝑧𝑧, (17)

where

𝐀2D(𝐪) =
𝜕𝐑2D
𝜕𝐪

|

|

|

|𝐪
, 𝐀0(𝐪) =

𝜕𝐑𝑧
𝜕𝐪1

|

|

|

|𝐪,𝐃𝑧𝐪
+

𝜕𝐑𝑧𝑧
𝜕𝐪1

|

|

|

|𝐪,𝐃𝑧𝐪
,

𝑧(𝐪) =
𝜕𝐑𝑧
𝜕𝐪2

|

|

|

|𝐪,𝐃𝑧𝐪
, 𝐀𝑧𝑧(𝐪) =

𝜕𝐑𝑧𝑧
𝜕𝐪2

|

|

|

|𝐪,𝐃𝑧𝐪
.

(18)

.3. S-TSM constrained optimisation and adjoint-based gradient

Considering a general cost-functional 𝐽 (𝐪), we seek the optimal forc-
ng 𝐮, of given finite amplitude 𝐮∗𝐐𝑢𝐮 = 𝐴2, that maximises/minimises
he cost-functional 𝐽 (𝐪), under the constraint of the governing equation
q. (14). For example, for a maximisation problem, we seek:

argmax
∗𝐐𝑢𝐮=𝐴2

𝐽 (𝐪) subject to 𝐏∗𝐑′(𝐏𝐪) = 𝐁𝐮. (19)

he Lagrangian, which is a function of the forcing 𝐮, the state 𝐪 and
he Lagrangian multipliers 𝐪̃ and 𝜆, is

(𝐪, [𝐪̃, 𝜆],𝐮) = 𝐽 (𝐪) − 𝐪̃∗
(

𝐏∗𝐑′(𝐏𝐪) − 𝐁𝐮
)

− 𝜆(𝐮∗𝐐𝑢𝐮 − 𝐴2). (20)

y zeroing the variations of  with the state 𝐪, we obtain the equation
efining the adjoint state 𝐪̃:

𝐏∗𝐀′𝐏
]∗ 𝐪̃ = 𝑑𝐽

𝑑𝐪
, (21)

or, since 𝐏∗𝐀′𝐏 = 𝐀 (which can be justified in frequency space by
introducing the harmonic balanced operator)

𝐀∗𝐪̃ = 𝑑𝐽
𝑑𝐪

. (22)

The variation of the cost-functional 𝛿𝐽 associated to an increment
𝐮 is then obtained by the partial derivative of the Lagrangian  with
espect to the forcing:

𝐽 =
(𝑑𝐽
𝑑𝐮

)∗
𝐐𝑢𝛿𝐮,

𝑑𝐽
𝑑𝐮

= 𝐮̂ − 2𝜆𝐮, (23)

with 𝐮̂ = 𝐐−1
𝑢 𝐁∗𝐪̃ being linked to the Lagrange multiplier defined in

Eq. (22). At an extremum of the cost-functional, the gradient 𝑑𝐽∕𝑑𝐮
ust be zero, that is 𝐮̂ and 𝐮 should be aligned and 𝐮∗𝐐𝑢𝐮 = 𝐴2.

. Algorithms

.1. Solving the non-linear de-aliased S-TSM system

We follow the approach introduced in Crivellini and Bassi [18],
hich adds an adaptive relaxation time to the Newton algorithm to

ncrease robustness. The final Newton algorithm is given in algorithm
4

(see Section 3.4). t
3.2. Solving the constrained optimisation problem

In order to find the optimal forcing 𝐮, several algorithms exist [19].
Here, we choose the constrained adjoint-based one proposed by Rigas
et al. [4], the steps of which are described in algorithm 2 (see Sec-
tion 3.4). Here, we pick 𝑐 = 0.6 as a good trade-off between robustness
and rapid convergence. The convergence criterion 𝜃𝑐 is equal to 1◦, this
value being sufficient to obtain converged solutions for this configura-
tion. Slightly higher values of 𝜃𝑐 (1◦ < 𝜃𝑐 < 3◦) yield similar optimal
orcing shape but with minor oscillations.

.3. Solving the direct and adjoint linearised S-TSM systems

The linear operator 𝐀 exhibits a large dimension equal to the size
f the two-dimensional discretisation multiplied by the number of
ollocation points. Hence, a direct inversion strategy for 𝐀 is impossible
hen several harmonics (𝑀 ′, 𝑁 ′) are considered. An iterative solver

Section 3.3.1) is used with an appropriate preconditioning strategy
Section 3.3.2).

.3.1. Iterative GMRES solver
The linear systems involving 𝐀 and 𝐀∗ are solved iteratively by a

MRES algorithm, which requires matrix–vector products, 𝐀𝐱 or 𝐀∗𝐱,
nd preconditioners that approximate 𝐀 and 𝐀∗ that are easy to invert.
atrix–vector products are obtained by algorithmic differentiation,
hich avoids the explicit construction of the operator 𝐀 and 𝐀∗. In the

ollowing, we use right preconditioners, Π and Π∗, which are described
n the next section.

.3.2. Preconditioner
We consider the block-circulant preconditioner suggested by Moulin

12] for TSM and extend it to S-TSM. Introducing the discrete 𝑧 and 𝑡
ourier-decomposition of the Jacobian 𝐀 defined in Eq. (17) (viewed
s a function of time and space due to its dependence on the periodic
olution 𝐪(𝑡𝑘, 𝑧𝑗 )), we have:

= 𝐄−1
𝑡 𝐄−1

𝑧 𝐀̌𝐄𝑧𝐄𝑡. (24)

he matrix 𝐀̌ is the harmonic balanced operator used in Rigas et al.
4]:

̌ = (𝑖𝑛𝜔)𝐌 + 𝐀̌2𝐷 + 𝐀̌0 + 𝐀̌𝑧(𝑖𝑚𝛽) + 𝐀̌𝑧𝑧(−𝑚2𝛽2). (25)

The preconditioner is used to facilitate the solution of the sys-
em involving the harmonic balanced operator. The matrices 𝐀̌2𝐷, 𝐀̌0,
̌
𝑧 and 𝐀̌𝑧𝑧 are in general full-block matrices, their diagonal terms

epresenting the action of the time- and space-averaged Jacobian,
or example (2𝑁 + 1)−1(2𝑀 + 1)−1

∑2𝑁,2𝑀
𝑘=0,𝑗=0 𝐀2𝐷(𝐪(𝑡𝑘, 𝑧𝑗 )) and the off-

diagonal terms representing the harmonics in time and space of the
Jacobian. For the preconditioner, we will here consider a block-Jacobi
strategy and neglect these off-diagonal terms. Also, for minimising the
implementation cost, we will approximate the averaged Jacobian by
the Jacobian of the solution 𝐪̄ averaged in 𝑧 and 𝑡. In such a case,
or example, 𝐀̌𝑧(𝑖𝑚𝛽) = 𝐄𝑧𝐀𝑧(𝐪̄)𝐄−1

𝑧 (𝑖𝑚𝛽) = (𝑖𝑚𝛽)𝐀𝑧(𝐪̄) since a diagonal
onstant block matrix commutes with 𝐄−1

𝑧 and (𝑖𝑚𝛽). We finally obtain
he following preconditioner:

= 𝐄−1
𝑡 𝐄−1

𝑧 Π̌𝐄𝑧𝐄𝑡, (26)

here

̌ = (𝑖𝑛𝜔)𝐌 + 𝐀2𝐷(𝐪̄) + 𝐀0(𝐪̄) + (𝑖𝑚𝛽)𝐀𝑧(𝐪̄) + (−𝑚2𝛽2)𝐀𝑧𝑧(𝐪̄) (27)

s block diagonal and may be inverted with standard techniques. Note
hat these matrix inversions exactly correspond to those used by Rigas
t al. [4] in the HBM framework. In principle, a more general pre-
onditioner could be introduced by taking into account the exact
veraged Jacobian on the diagonal and the off-diagonal terms by a
lock Gauss–Seidel, which could potentially improve the efficiency of

he preconditioner.
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3.4. End-to-end algorithm

The set of algorithms required to perform the adjoint-based optimi-
sation with S-TSM is summarised and described below:

Algorithm 1 Iterative Newton method to solve S-TSM equations
1: Initialise state 𝐪0 with a guess solution.
2: 𝑖 ← 0
3: repeat ⊳ Newton loop for non-linear response.
4: 𝑖 ← 𝑖 + 1
5: Compute local 𝛥𝑡 based on a prescribed CFL number, that

evolves as a function of the residual norm
6: Solve the linear system

(

𝐌
𝛥𝑡 + 𝐀(𝐪𝑖−1)

)

𝛿𝐪𝑖 = −𝐏∗𝐑′(𝐏𝐪𝑖−1) + 𝐁𝐮
with algor. 3

7: 𝐪𝑖 ← 𝐪𝑖−1 + 𝛿𝐪𝑖
8: until ‖𝛿𝐪𝑖‖ < 10−5

Algorithm 2 Iterative method for finding optimal forcing
1: Set parameter 𝑐 ∈]0; 1]: if 𝑐 → 1 (resp. → 0) , the step-length is

largest (resp. smallest)
2: Set 𝜖 ← 1 (resp. ← −1) for maximisation (resp. minimisation)

problem
3: Initialise the forcing 𝐮0 with a guess whose amplitude

√

𝐮∗0𝐐𝑢𝐮0 is
close to 𝐴

4: Solve for initial state 𝐪0: 𝐏∗𝐑′(𝐏𝐪0) = 𝐁𝐮0 (see algor. 1)
5: Scale 𝐮0 to the prescribed amplitude 𝐴
6: 𝑖 ← 0
7: repeat ⊳ Adjoint loop for forcing optimisation.
8: 𝑖 ← 𝑖 + 1
9: Solve for updated state 𝐪𝑖: 𝐏∗𝐑′(𝐏𝐪𝑖) = 𝐁𝐮𝑖−1 (see algor. 1)
0: Solve for adjoint state 𝐪̃𝑖: [𝐀(𝐪𝑖)]∗𝐪̃𝑖 =

𝑑𝐽
𝑑𝐪 (𝐪𝐢) (see algor. 4)

11: Solve for reduced adjoint state: 𝐮̂𝑖 = 𝐐−1
𝑢 𝐁∗𝐪̃𝑖

12: Compute convergence angle: 𝜃𝑖 = arccos
𝐮∗𝑖−1𝐐𝑢𝐮̂𝑖

𝐴𝛾𝑖
where 𝛾2𝑖 =

𝐮̂∗𝑖 𝐐𝑢𝐮̂𝑖

13: Compute step-length: 𝜆𝑖 =
𝜖+𝑐 cos 𝜃𝑖−𝜖

√

1−𝑐2 sin2 𝜃𝑖
2𝐴𝛼𝑖

where 𝛼𝑖 = 𝑐∕𝛾𝑖
14: Update forcing: 𝐮𝑖 = 𝐮𝑖−1 + 𝜖𝐴𝛼𝑖(𝐮̂𝑖 − 2𝜆𝑖𝐮𝑖−1)
15: until 𝜃𝑖 < 𝜃𝑐

Algorithm 3 Iterative solution of linear S-TSM system: 𝐀(𝐪)𝐱 = 𝐛,
where 𝐀(𝐪) = 𝐌𝐃𝑡 + 𝐀2D(𝐪) + 𝐀0(𝐪) + 𝐀𝑧(𝐪)𝐃𝑧 + 𝐀𝑧𝑧(𝐪)𝐃𝑧𝑧

1: Compute time- and -space averaged solution 𝐪̄
2: Perform LU-decomposition of 𝚷̌ = (𝑖𝑛𝜔)𝐌 + 𝐀2𝐷(𝐪̄) + 𝐀0(𝐪̄) +

(𝑖𝑚𝛽)𝐀𝑧(𝐪̄) + (−𝑚2𝛽2)𝐀𝑧𝑧(𝐪̄): 𝚷̌ = 𝐋𝐔
3: Apply GMRES solver to preconditioned system: [𝐀(𝐪)]𝚷−1𝐲 = 𝐛,

where 𝚷−1 = 𝐄−1
𝑡 𝐄−1

𝑧 𝐔−1𝐋−1𝐄𝑧𝐄𝑡
4: Compute solution: 𝐱 = 𝚷−1𝐲

Algorithm 4 Iterative solution of adjoint linear S-TSM system:
[𝐀(𝐪)]∗𝐱 = 𝐛, where 𝐀(𝐪) = 𝐌𝐃𝑡 +𝐀2D(𝐪) +𝐀0(𝐪) +𝐀𝑧(𝐪)𝐃𝑧 +𝐀𝑧𝑧(𝐪)𝐃𝑧𝑧

1: Compute time- and -space averaged solution 𝐪̄
2: Load the LU-decomposition of 𝚷̌ = 𝐋𝐔 performed in algor. 3
3: Apply GMRES solver to preconditioned system: [𝐀(𝐪)]∗ (𝚷∗)−1 𝐲 = 𝐛,

where (𝚷∗)−1 = 𝐄−1
𝑡 𝐄−1

𝑧 (𝐋∗)−1 (𝐔∗)−1 𝐄𝑧𝐄𝑡
4: Compute solution: 𝐱 = (𝚷∗)−1 𝐲

4. Application: transition in supersonic boundary layer

4.1. Configuration

We consider the same adiabatic flat plate boundary layer con-
figuration as Rigas et al. [4] but at a higher Mach number. The
free-stream Mach number and free-stream temperature are respectively
5

p

𝑀∞ = 4.5 and 𝑇∞ = 288 K. All quantities are made non-dimensional
with the following density, velocity, length and temperature scales:
𝜌∞, 𝑈∞, 𝜈∞∕𝑈∞, 𝑇∞. The spatial coordinates (𝑥, 𝑦, 𝑧) then correspond
o (𝑅𝑒𝑥, 𝑅𝑒𝑦, 𝑅𝑒𝑧), where for example 𝑅𝑒𝑥 = 𝑈∞𝑥∕𝜈∞.

The flat plate geometry is studied in a rectangular computational
omain. The domain starts with a thin boundary layer profile at
𝑒𝑥,in = 0.3 × 105 and ends at 𝑅𝑒𝑥,out = 3.6 × 105. The height of the
omain is high enough in order not to affect the development of the
oundary-layer or the stability analysis. In practice, the domain height
s about 7 𝛿∗out with 𝛿∗out the compressible displacement thickness at the
utlet. This gives 𝑅𝑒𝑦,top = 35000. The Cartesian mesh is equi-spaced in
he 𝑥-direction and stretched in the wall-normal direction (𝑦-direction).
he mesh exhibits (𝑁𝑥, 𝑁𝑦) = (300, 150) points, which induces 225000
egrees of freedom in the state vector (due to the 5 conservative
ariables per grid point). This resolution, as well as the numerical
chemes (see Section 4.2) are validated in Section 5.2. The following
oundary conditions are applied around the rectangular domain: self-
imilar solution prescribed at the inlet (Dirichlet), adiabatic no-slip wall
t the bottom, non-reflecting condition [20] at the top and zeroth-order
xtrapolation at the outlet.

.2. BROADCAST code

The open-source BROADCAST code introduced in Poulain et al. [21]
iscretises the compressible Navier–Stokes equations with a Sutherland
aw (see Appendix A) within a finite-volume framework. The state cor-
esponds to the conservative variables 𝐪 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸), where we
ecognise the density, stream-wise. cross-stream, span-wise velocities
nd total energy.

The 𝐑2𝐷 residual for the inviscid flux follows a FE-MUSCL (Flux-
xtrapolated-MUSCL) scheme (see [21] for more implementation de-
ails) which is a high order accurate upwind scheme [22] resulting from
n upwind recursive correction to the leading truncation error term of a
entred second order scheme. The order of accuracy of this high-order
inite difference scheme applied in finite volume framework through
he flux reconstruction has been assessed in [23] (see Fig. 6.(a) in the
ited paper). This scheme has been also assessed in hypersonic flow
imulations by [24] showing excellent results in accuracy and shock
apturing features. In the present configuration, the FE-MUSCL scheme
s chosen of the seventh order to achieve convergence (see Section 5.2).
or the viscous fluxes, they are computed on a five-point compact
tencil which is fourth-order accurate [25].

The 𝐑𝑧 and 𝐑𝑧𝑧 components can be written as the sum of four
unctions whose expressions can be found in Appendix B:

𝐑𝑧(𝐪1,𝐪2) =
𝜕𝐂1

𝜕𝐪
|

|

|

|𝐪1
𝐪2 +

(

𝜕𝐂2

𝜕𝐪
|

|

|

|𝐪1
𝐪2
)

⊙
(

𝜕𝐂3

𝜕𝐪
|

|

|

|𝐪1
𝐪2
)

+
𝜕2𝐂4

𝜕𝐪2
|

|

|

|

|𝐪1

𝐪2𝐪2, (28)

𝐑𝑧𝑧(𝐪1,𝐪2) =
𝜕𝐂5

𝜕𝐪
|

|

|

|𝐪1
𝐪2. (29)

Notation ⊙ refers to the Hadamard product (element-wise product of
two matrices or vectors). A first order derivative, such as 𝜕𝐂1

𝜕𝐪
|

|

|𝐪1
, refers

to an operator that has properties similar to a Jacobian, and a second
order derivative, such as 𝜕2𝐂4

𝜕𝐪2
|

|

|

|𝐪1
to a Hessian (which explains the two

rguments).
The S-TSM implementation is based on the in-house python module

rom Moulin [12]. All linear systems involving sparse matrices are
hen solved using the PETSc software interface [26] which includes a
reconditioned flexible iterative GMRES solver and the direct sparse LU
olver from MUMPS [27].

The subroutines of BROADCAST code to compute the residuals and
xtract the derivative operators run sequentially. The linear systems
re then multi-threaded with OpenMP using PETSc [28]. Furthermore,
PI parallelism is used for the parallel implementation of the S-TSM
ith each MPI process handling one time or spanwise collocation
oint associated with a round-robin strategy to minimise the memory
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used and the number of parallel communications [29]. The current
implementation does not support the distribution of one collocation
point on multiple nodes through MPI communicators limiting then the
maximum number of degrees of freedom for one collocation point.

We use algorithmic differentiation, here the Tapenade software [30],
o access all derivatives of the discretised function 𝐑2𝐷,𝐑𝑧 and 𝐑𝑧𝑧. The
everse mode of this software also allows to compute adjoint matrix–
ector products. All matrix–vector products involving 𝐀2𝐷 and 𝐀∗

2𝐷 are
btained with matrix-free methods. Yet, in the present version of the
ode, the matrices 𝐀0,𝐀𝑧 and 𝐀𝑧𝑧 have been stored in sparse format
see next paragraph) to access the matrix–vector products involving
hese matrices (such as 𝐀0𝐱 or 𝐀∗

0𝐲). Thus, an improvement, mainly
n memory consumption, could be done by using matrix-free methods
or these matrix–vector products.

For the inversion of the preconditioner Π̌, the diagonal block matri-
es are first explicitly obtained in sparse format by successive matrix–
ector products, with a multi-colouring strategy that takes advantage
f the structured mesh topology [31]. In order to reduce the mem-
ry consumption when solving each block of the linear system of
he preconditioner, different strategies are considered: a direct LU
actorisation [27], a Block Low-Rank (BLR) approximated LU factori-
ation [32] (with a tolerance set at 10−4), as well as a GMRES solver
reconditioned by an incomplete LU (ILU). The LU-BLR factorisation is
sed in Section 4 and compared with the other strategies in Section 5.1
nd Appendix F.

In the present version of the code, we have written all quantities
ith (𝑁 ′ ≥ 𝑁,𝑀 ′ ≥ 𝑀) harmonics, keeping in mind that only the
𝑁,𝑀) first ones are meaningful for the solution 𝐪. Eq. (15) for the
ewton iteration then reads:

𝐏∗𝐀′𝐱′ = −𝐏𝐏∗𝐑′(𝐪) + 𝐁𝐮, (30)

ith the update 𝛿𝐪 = 𝐏𝐏∗𝐱′. The adjoint equation Eq. (21) is:

𝐏∗𝐀′∗𝐲′ = 𝑑𝐽
𝑑𝐪

, (31)

with 𝐪̃ = 𝐏𝐏∗𝐲′. It can be shown that the present implementation
rovides the same results as the one presented in Section 2, but with an
ncreased cost (all linear systems are solved with (𝑁 ′,𝑀 ′) harmonics
nstead of (𝑁,𝑀) harmonics). If the code was implemented in an
ptimised way, i.e. by writing all quantities with (𝑁,𝑀) harmonics and
nly evaluating the residual with (𝑁 ′,𝑀 ′) harmonics, we would gain

(𝑁 ′ − 𝑁 + 1) × (𝑀 ′ − 𝑀 + 1) collocation points out of the 𝑁 ′ × 𝑀 ′

oints considered in the present computations. Here, we have used
𝑁 ′ = 𝑁,𝑀 ′ = 2𝑀) since it was found that de-aliasing in time was not
ecessary here while it was mandatory for space (without de-aliasing
he Newton-method fails to converge as soon as the targeted solution
lightly departs from its mean). This indicates that the nonlinearity
nduces much stronger energy transfers towards high span-wavenumber
han towards high frequency harmonics.

In the Newton algorithm 1, if the guess-solution is good enough
which is usually the case since we use continuation methods), the
reconditioner may be kept fixed during the iterations, which saves
significant amount of CPU time. Hence, step 2 of algorithm 3 may

e moved just after step 1 of algorithm 1. Similarly, for the optimal
orcing algorithm 2, the preconditioner found in step 4 for 𝐪0 may be
ood enough for the rest of the algorithm (in steps 9 and 10, we keep
he initial preconditioner based on the average of 𝐪0). Note however
hat in steps 3 of algorithms 3 and 4, the true (updated) matrices
(𝐪) are used so that the exact solutions of the linear systems are

argeted (without additional cost since matrix-products are obtained
ith matrix-free methods).

.3. Finite amplitude optimal forcing

In the following, we perform non-linear optimisation (non-linear
nput–output analysis, algorithm 2) to identify the worst-case
6

f

disturbances that trigger laminar/turbulent transition. The optimisation
process consists in an iterative gradient-based method, which updates
the forcing at each step to increase the mean drag-plate, subject to the
constraints of the S-TSM equations and a specified forcing amplitude.
This procedure involves three main steps: first, the computation of
the base flow and the use of a resolvent analysis to initialise the
optimisation algorithm (at low forcing amplitude) (see Section 4.3.1);
second, the optimisation loop which iteratively computes the S-TSM
solution, the adjoint S-TSM solution and updates the forcing up to
convergence of the algorithm (see Section 4.3.2); then, progressive
increase of the forcing amplitude and following of the optimal forcing
solution by continuation. The initial condition of the optimisation
algorithm (i.e. here by the base-flow and the linear optimal forcing, see
Section 4.3.1) does not have any impact on the overall procedure since,
at low forcing amplitude (where the initialisation step is performed),
the non-linearities are weak and only one optimal solution therefore
exists. Yet, when progressively increasing the amplitude, bifurcations
can appear, and special care is, in principle, required in the vicinity of
such points.

The general vector forcing 𝐮 (Section 2, Section 3) is considered here
to be a volume force 𝐟 in the momentum equations (see Appendix A).
The cost function 𝐽 (𝐪) is chosen to be the mean drag-plate:

𝐽 (𝐪) =
(

∫𝑦=0

(

𝜇̄𝜕𝑦𝑢̄ − 𝜇𝑏𝜕𝑦𝑢𝑏
)

𝑑𝑥
)2

, (32)

where the overline notation denotes mean quantities (averaged over
time and spanwise-direction). In the present implementation, we have
picked a slightly simplified version of the cost-functional by neglecting
the second-order term (𝜇̄ − 𝜇𝑏)𝜕𝑦(𝑢̄ − 𝑢𝑏) with respect to the first order
term 𝜇𝑏𝜕𝑦(𝑢̄−𝑢𝑏)+(𝜇̄−𝜇𝑏)𝜕𝑦𝑢𝑏. This approximation holds when either the
relative change of the viscosity or of the friction remains weak, which
is the case here.

4.3.1. Initialisation of optimisation algorithm by linear input–output anal-
ysis

Linear input–output analysis, also called resolvent analysis [33,34],
around the base flow is performed to initialise the forcing in the non-
linear (finite amplitude) input–output analysis (see algorithm 2). A
two-dimensional steady base flow is computed by a pseudo-transient
continuation method. The self-similar solution is used to initialise
the calculation of the base flow. The algorithm converges in 7 it-
erations (high initial CFL as the self-similar solution is close to the
base-flow solution) and decreases the residual 𝐿2 norm by 12 orders
of magnitude.

The optimal forcing from (linear) resolvent analysis for a particular
frequency and spanwise wavenumber is the one which maximises the
ratio:

𝜇2 = sup
𝐟≠0

𝐪̌∗𝐐𝑞 𝐪̌

𝐟∗𝐐𝑓 𝐟
, (33)

hich is a common choice for supersonic boundary layer stability
tudies [21,35,36]. The measures 𝐐𝑞 and 𝐐𝑓 , respectively, correspond
o Chu’s energy (see Appendix C) and L2 norm, both being restricted
o 𝑅𝑒𝑦 ≤ 18000 to alleviate any effect from the top boundary con-
ition. The forcing 𝐟 is therefore only defined in this region. Since
he linearised operators have already been extracted for base-flow
omputation, the linear input–output analysis only requires to solve a
eneralised eigenvalue problem to find the largest eigenvalue and its as-
ociated eigenvector [21,35]. We, therefore, use the Arnoldi algorithm
f the SLEPc library [37] among the various Krylov-Schur methods [38]
mplemented therein. Direct LU-factorisation is used to compute the
esolvent operator.

The linear amplification gain map is shown in Fig. 1. Frequencies
re normalised as 𝐹 = 𝜔𝜈∞∕𝑈2

∞ and spanwise wavenumbers as 𝛽 =
𝜈∞∕𝑈∞. At Mach number 4.5, the strongest instability is the oblique

−5
irst Mack mode [39] at similar frequency 𝐹 = 8 × 10 and spanwise
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Fig. 1. Linear resolvent analysis at Mach number 4.5. White circle denotes the first
Mack mode (𝐹 = 8×10−5, 𝛽 = 30×10−5), grey triangle the streaks (𝐹 = 0, 𝛽 = 50×10−5)
and black square the second Mack mode (𝐹 = 52 × 10−5, 𝛽 = 0).

wavenumber 𝛽 = 30×10−5 as at Mach number 0.1 (see Appendix D). The
stationary streaks (i.e. 𝐹 = 0) are less dominant and maximal at 𝛽 = 50×
10−5, half of the spanwise wavenumber of the incompressible boundary
layer. Eventually, a planar mode (i.e. 𝛽 = 0) appears, only for Mach
number greater than 4 [39], at high frequency 𝐹 = 52×10−5: the second
Mack mode. Note that these results (e.g. the gain values associated to
each (𝐹 , 𝛽)), and also the non-linear optimisation results in Sections 4.4
and 4.3.2, depend on the extent of the domain. For example, the longer
the domain, the lower the most amplified frequencies 𝐹 of the first and
second Mack modes will be [36].

4.3.2. Optimisation results
The finite amplitude momentum forcing 𝐟 for the non-linear input–

output analysis is also applied with the same domain restriction as for
the resolvent analysis. Only oblique forcing at a fundamental frequency
1𝜔 and a fundamental spanwise wavenumber 1𝛽 is considered. Further-
more, symmetry in span is assumed so that we can prescribe 𝐟 = 𝐟 .
7

1,1 1,−1
Therefore, the forcing is searched as two identical oblique waves of
opposite angle in the 𝑥 − 𝑧 plane.

From the linear input–output analysis (see Fig. 1), we observe that
waves with frequencies close to the first Mack mode ones (𝐹 ∼ 10×10−5)
would need four levels of non-linear interactions to reach the frequency
where the second Mack mode is amplified (𝐹 ∼ 50 × 10−5). Rigas
et al. [4] noticed for the low Mach number boundary layer that the
non-linear interactions are stronger in the spanwise direction than in
the time direction, meaning that more harmonics are necessary for
𝑀 than 𝑁 (see Appendix D) to capture the energy spread. Based on
both observations above, it is expected that the second Mack mode
will not be triggered by low-frequency waves in the non-linear input–
output analysis for this specific configuration. We initially select 𝑁 = 2
time harmonics and 𝑀 = 4 spanwise harmonics from the conclusions
drawn from the low Mach number boundary layer and we search for
the optimal (𝐹 , 𝛽) values in the vicinity of the first Mack mode.

Starting at a low amplitude (𝐴 = 10−5) for which the frequency/
spanwise wavenumber of the drag peak is close to the one predicted
by linear input–output analysis, larger amplitudes induce a shift of
the peak value to higher frequency and spanwise wavenumber (see
Fig. 2(a)). The optimal values (𝐹 = 16 × 10−5, 𝛽 = 40 × 10−5) at the
largest amplitude computed (𝐴 = 26×10−5) are substantially larger than
the one from the resolvent analysis (𝐹 = 8 × 10−5, 𝛽 = 30 × 10−5). For
this optimal forcing, the mean-flow skin-friction coefficient evolution
along the streamwise direction is plotted in Fig. 2(b). At this forcing
amplitude, the skin-friction curve is between the laminar and turbulent
skin-friction curves of a zero pressure gradient flat plate. Keeping 𝐹 and
𝛽 constant, the forcing amplitude is then increased further to reach the
empirical turbulence levels. However, as we increase the forcing am-
plitude, the number of non-linear interactions is expected to increase.
Therefore, 𝑁 = 2 harmonics in time and 𝑀 = 4 harmonics in spanwise
direction are not sufficient to converge the non-linear response. Indeed,
the solution at 𝐴 = 32 × 10−5 yields different 𝐶𝑓 predictions according
to the level of truncation of 𝑁 and 𝑀 . By performing a number of
simulations up to 𝑁 = 6 and 𝑀 = 8, it was found that 𝑁 = 4 and
𝑀 = 6 harmonics yield a converged non-linear solution at this forcing
amplitude.

The spatial distribution of the optimal forcing and non-linear re-
sponse for (𝐹 = 16 × 10−5, 𝛽 = 40 × 10−5) are then analysed. The
Fig. 2. (a) Square root of the cost function
√

𝐽 with respect to the frequency 𝐹 and the spanwise wavenumber 𝛽 at Mach number 4.5 for 𝑁 = 2 and 𝑀 = 4 for a forcing
amplitude 𝐴 = 26 × 10−5. White circle denotes the maximum location of the linear optimal gain 𝜇 (first Mack mode at 𝐹 = 8 × 10−5 and 𝛽 = 30 × 10−5) while white square denotes
the maximum location of the cost function 𝐽 from the non-linear input–output analysis. Small black dots indicate the grid points where the non-linear input–output analysis has
been performed. (b) Mean-flow skin-friction coefficient 𝐶𝑓 at Mach number 4.5 along the streamwise direction for 𝐹 = 16 × 10−5 and 𝛽 = 40 × 10−5 at different forcing amplitudes
and levels of truncation in time and spanwise directions. Black dashed line indicates the laminar skin-friction coefficient curve and dash-dotted line the turbulent curve.
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Fig. 3. Amplitude of the forcing and the response from the oblique forcing at 𝐹 = 16 × 10−5, 𝛽 = 40 × 10−5, 𝐴 = 32 × 10−5, 𝑁 = 4 and 𝑀 = 6. (a) Amplitude of the optimal oblique
forcing 𝐴𝑓 (1, 1) given by the S-TSM (orange) compared with the linear forcing predicted by the resolvent analysis at the same (𝐹 , 𝛽) (blue). (b) Amplitude of the different harmonic
components of the response 𝐴𝑞 (𝑛, 𝑚) given by the S-TSM compared with the linear response predicted by the resolvent (dashed black line). Only the 12 harmonic components of
largest amplitude are shown for clarity, they represent 99.4% of the total energy.
harmonic amplitude 𝐴(𝑛, 𝑚) (see in Appendix C for complete details of
computation) of the forcing (Fig. 3(a)) and the response (Fig. 3(b)) are
obtained for the forcing amplitude 𝐴 = 32 × 10−5. In these plots, the
harmonic amplitudes 𝐴𝑞(𝑛, 𝑚) (resp. 𝐴𝑓 (𝑛, 𝑚)) are given by the square
root of the Chu’s energy (resp. 𝐿2 norm) in the wall-normal direction,
and so they maintain a dependence on 𝑥, unlike the overall amplitude
𝐴 = 32 × 10−5 which is defined as the integral of the 𝐿2 norm at x-y
directions.

Firstly, regarding the optimal forcing, both linear and finite am-
plitude are very similar, the largest difference being that the oblique
waves predicted by the S-TSM are more localised and slightly more
upstream in comparison to the waves from resolvent analysis. Non-
linear responses are therefore similar when resulting from an optimal
or a resolvent forcing (see Appendix E).

Secondly, about the non-linear response, the oblique first Mack
mode forcing waves initially produce a response through the linear
mechanism (1𝜔, 1𝛽). Then, from 𝑅𝑒𝑥 ∼ 100000, the non-linear interac-
tions of the pair of symmetric oblique waves generate streaks (1𝜔, 1𝛽)
+ (−1𝜔, 1𝛽) → (0𝜔, 2𝛽) while their self-interactions produce mean-flow
deviation (1𝜔, 1𝛽) + (−1𝜔, −1𝛽) → (0𝜔, 0𝛽). Notice that the harmonic
component (0𝜔, 0𝛽) in Fig. 3(b) represents the mean-flow deviation
𝐪̌0,0 − 𝐪𝐛. Higher harmonics in time (2𝜔, . . . ) are also produced and
slowly grow in the downstream direction. As the linear amplification of
the streaks is large, they grow faster than the higher harmonics in time.
At 𝑅𝑒𝑥 ∼ 150000, they interact with the fundamental oblique waves
(0𝜔, 2𝛽) + (1𝜔, 1𝛽) → (1𝜔, 3𝛽) creating harmonic oblique response and
at 𝑅𝑒𝑥 ∼ 200000, they interact with themselves (0𝜔, 2𝛽) + (0𝜔, 2𝛽) →
(0𝜔, 4𝛽) to generate streaks of higher harmonics. All these harmonics
transfer energy to the mean-flow resulting in a growing mean-flow
deviation and an increased mean-flow skin friction. The non-linear
interactions at low Mach number (Fig. 8b and Fig. 15b in Rigas et al.
[4]) are quite different than those observed here at Mach number 4.5.
For low Mach number, the linear amplification of the streaks are larger
than the oblique waves, therefore, once produced by the interaction
of the oblique waves, the streaks grow much faster yielding higher
harmonics in spanwise direction. They ultimately reach saturation and
spread their energy to other harmonic components. At Mach number
4.5, the streaks are less amplified reaching similar level of energy than
the oblique waves, producing therefore less spanwise harmonics.

Isosurfaces of the harmonic components and the full flow recon-
struction in real space are plotted in Fig. 4 at the forcing amplitude
8

𝐴 = 32 × 10−5 where the skin-friction overshoots above the turbulent
skin-friction. One may observe that the combination of oblique waves
(Fig. 4(a)) and streaks (Fig. 4(b)) dominate the shape of the instan-
taneous disturbance flow-field 𝐪 − 𝐪𝐛 (Fig. 4(c)). Furthermore, initial
stages of the laminar to turbulent transition are observed through stag-
gered 𝛬-shaped vortices (Fig. 4(c)). The staggered 𝛬-shaped vortices
are due to a path to transition called O-regime [40] initially discovered
by [41,42]. This regime requires only the interaction of obliques waves,
which generate streamwise vortices (nonlinear mechanism) and then
streamwise streaks (linear lift-up mechanism), that finally undergo
secondary instabilities to produce staggered 𝛬-vortices (contrary to the
Herbert regime which involves the interaction of an oblique wave and a
superharmonic planar Tollmien-Schlichting wave to produce staggered
structures [43]). Hence, the 𝛬-structures arise from a sub-harmonic
instability compared to streaks. The O-regime is a common path to
transition in case of oblique first Mack mode breakdown [44,45]. The
staggered maxima of the 𝛬–structures are connected by the legs and
indicate the constant phase lines of the oblique waves [44,46]. One
can see at the end of the domain the beginning of the split-up of the
staggered maxima and the base flow distortion. As the computational
domain is quite short (to reduce computational costs and facilitate
convergence), only this first stage of transition can be qualitatively seen
here with S-TSM. The next stages of transition are described in next
section where a DNS is performed to validate the non-linear response
from the S-TSM implementation.

4.3.3. Validation against DNS
The non-linear response obtained by the non-linear input–output

analysis of the supersonic boundary layer is validated through DNS in
this section. The DNS is performed with the in-house research solver
FastS [47], which has been used extensively for hypersonic transition
studies [48,49]. For the set-up of the three-dimensional DNS, boundary
conditions equivalent to those of the input–output analysis are applied.
The main DNS domain in the streamwise direction extends up to 𝑅𝑒𝑥 =
106, followed by a sponge region (stretching of the mesh) to avoid
reflections. The spanwise domain length is twice the wavelength of the
fundamental mode 𝛽 = 40 × 10−5 and spanwise periodic boundary con-
ditions are enforced. The mesh grid size is (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) = (1618, 160, 96)
with max(𝛥𝑥+, 𝛥𝑦+𝑤𝑎𝑙𝑙 , 𝛥𝑧

+) = (2, 0.3, 6) sufficient to obtain converged
results. The numerical scheme is a variant of a second-order upwind
AUSM+(P) [50] associated with a fifth-order MUSCL reconstruction to

limit the numerical dissipation. A similar shock-capture method [24] as
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Fig. 4. Isosurfaces of streamwise velocity fluctuations 𝑢′ = ±0.1 of the response downstream 𝑅𝑒𝑥 = 250000 resulting from the oblique forcing at 𝐹 = 16 × 10−5, 𝛽 = 40 × 10−5,
𝐴 = 32 × 10−5, 𝑁 = 4 and 𝑀 = 6. (a) Fundamental oblique harmonic 𝑢′1,1 (1𝜔, 1𝛽). (b) Streak harmonic 𝑢′0,2 (0𝜔, 2𝛽). (c) Instantaneous disturbance flow-field 𝑢 − 𝑢𝑏 (sum of all
harmonics).
for the two-dimensional discretisation (BROADCAST) is used (reduc-
tion of the reconstruction order based on the variables state for the
shock-capture in FastS).

DNS results are obtained by applying the same optimal fundamental
forcing calculated by the non-linear input–output analysis using S-TSM
(𝐹 = 16 × 10−5, 𝛽 = 40 × 10−5) (see Section 4.3.2) consisting of
symmetric oblique waves (1𝜔, ±1𝛽). The instantaneous flow field up
to 𝑅𝑒𝑥 = 106 is represented in Fig. 5. The streamwise velocity plot near
the wall (see Fig. 5(a)) illustrates that the flow presents a sub-harmonic
sinuous mode as the sinuous fluctuations of the low-speed streaks (in
black) are associated with staggered (in 𝑥) varicose oscillations of
the high-speed streaks (in white) [51]. Mutual and self-interactions
of the streamwise vortex/streaks and the oblique waves [40] result
in the staggered 𝛬-vortices (see Fig. 5(b)). Iso-surface of Q-criterion
(see Fig. 5(c)) illustrates qualitatively all the stages of transition to
turbulence. After the connection of their staggered maxima, the 𝛬-
structures lift-up due to the streamwise vortices, making the near wall
region vulnerable to instabilities [44]. Then, the formation of ring-
shaped vortices in the outer region is observed, before saturation and
the development of hairpin vortices implying the onset of turbulent
breakdown.

S-TSM and DNS results for mean-flow skin-friction and amplitude
of the different harmonics are compared in Fig. 6 up to the end of
the S-TSM computational domain. Good agreement is observed even
for the harmonics generated after two and three levels of non-linear
interactions corresponding to (1𝜔, 3𝛽) and (2𝜔, 4𝛽). Small discrepancies
close to the outlet at 𝑅𝑒𝑥 = 3.6 × 105 are due to the presence of the
boundary condition in the S-TSM.

In summary, the non-linear response from the S-TSM implemen-
tation has been validated for compressible flows. The validation of
the full non-linear input–output analysis, which also includes the op-
timisation of the forcing to get the worst-case disturbances, has been
performed on the same boundary layer configuration but at low Mach
number to compare with Rigas et al. [4] and is presented in Ap-
pendix D.
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4.4. Finite-amplitude optimal heat-flux control

In the previous sections, the worst-case disturbances have been
identified by solving the drag maximisation problem, the solution of
which is the finite-amplitude optimal forcing. Here, we seek the optimal
control to minimise the maximum drag. In principle, we would like to
target the coupled max–min problem that may be solved by alternate
maximisation/minimisation steps up to convergence as done in Zuccher
et al. [52]. Here, we restrict the procedure to the first maximisation step
(Section 4.3.2) and minimisation step (present section).

For the control to be close to realistic applications, we consider
heat-flux actuators positioned at the wall surface acting only on the
mean-flow. Hence, in this section, for the minimisation problem (resp.
min–max problem), the general forcing 𝐮 used through Sections 2 and
3 is a heat-flux at the wall acting on the mean-flow (resp. a volume
force in the momentum equations).

During the optimisation, we allow any heat-flux harmonic com-
ponents (0𝜔, 𝑚𝛽) to amplify. The spanwise homogeneous mean-flow
component (0𝜔, 0𝛽) is by far the strongest and a small contribution (0𝜔,
2𝛽) designed to damp the streaks arises. However, as the latter is small
and reduces only by further 3% the cost function

√

𝐽 , only the spanwise
homogeneous mean-flow heat-flux is retained here. Starting from a low
amplitude, the optimal control amplitude is increased and results are
given at the largest amplitude before the controlled mean flow deforms
too much the boundary layer. Heat-flux control amplitude is computed
through the energy coefficient 𝐶𝜃 based on the ratio of energy injected
at the wall over the free-stream energy deficit,

𝐶𝜃 =
∫𝑦=0 𝜆|

𝜕𝑇
𝜕𝑦 | 𝑑𝑥

∫𝑥=𝑥𝑜𝑢𝑡 (𝜌∞𝐸∞𝑈∞ − 𝜌𝐸𝑢) 𝑑𝑦
, (34)

with 𝜙𝑤 = 𝜆 𝜕𝑇
𝜕𝑦 the heat-flux injected (the uncontrolled case being

adiabatic) where 𝜆 = 𝜇𝑐𝑝∕𝑃𝑟 with 𝜇 the dynamic viscosity, 𝑃𝑟 the
Prandtl number and 𝑐𝑝 the isobaric heat capacity.

The optimal mean-flow heat-flux at 𝐶𝜃 = 1.65 × 10−2 is plotted in
Fig. 7(a) for the case excited by the optimal fundamental forcing at
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Fig. 5. Instantaneous streamwise velocity field 𝑢 at (a) 𝑅𝑒𝑦 = 1000 and (b) 𝑅𝑒𝑦 = 5000. (c) Iso-surface of Q-criterion at 2 × 10−9 coloured by streamwise velocity 𝑢.
𝐹 = 16 × 10−5, 𝛽 = 40 × 10−5, 𝐴 = 26 × 10−5, 𝑁 = 2 and 𝑀 = 4.
It is made of a strong heating peak close to the inlet, a weak cooling
region downstream before a weak heating zone until the end of the
domain. Spatial local stability analysis has been performed on the local
mode corresponding to the first Mack mode (fundamental forcing). It is
found that the location of the maximum of the amplification rate of the
local mode is close to the maximum of positive heat-flux and branch II
(downstream end of the unstable region of the local mode) corresponds
to the location of the change from a positive (heating) to a negative
(cooling) heat-flux. Note that branch I (upstream beginning of the un-
stable region) is located upstream of the inlet. Despite the short domain
studied here, the trend of the optimal heat-flux is relatively similar
to the optimal heat-flux from Jahanbakhshi and Zaki [14] computed
for a transition case induced by the non-linear interactions of first and
second Mack modes. They showed that alternation of almost spanwise
homogeneous heating and cooling upstream, and spanwise periodic
heat-flux patterns downstream, was optimal to delay transition.
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Finally, we compute the mean-flow skin-friction coefficient
(Fig. 7(b)) for two cases: the controlled flow with the frozen forcing
(minimisation problem) and the flow with the new non-linear optimal
forcing computed around the controlled mean-flow (minmax problem).
The heat-flux control reduces the skin-friction from 𝑅𝑒𝑥 ∼ 200000
to the end of the domain (little overshoot and oscillations due to
the outlet boundary condition). The new optimal forcing under a
controlled mean-flow leads to substantially smaller skin-friction levels
than without control.

5. Computational performance

The computational performance of the non-linear input–output
analysis through S-TSM are evaluated within the ONERA HPC environ-
ment: Intel Xeon (Cascade Lake - 6240R, 2.4 GHz) with multi-threading
on 6 cores. The case considered is the supersonic boundary layer
at Mach number 4.5 at the forcing amplitude where the laminar-to-
turbulent transition occurs i.e. 𝐹 = 16×10−5, 𝛽 = 40×10−5, 𝐴 = 32×10−5,
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Fig. 6. Comparison between S-TSM (solid lines) and DNS (dots) non-linear responses with the optimal forcing obtained for 𝐹 = 16 × 10−5, 𝛽 = 40 × 10−5, 𝐴 = 32 × 10−5, 𝑁 = 4 and
𝑀 = 6. (a) Mean-flow skin-friction coefficient 𝐶𝑓 along the streamwise direction. Black dashed line indicates the laminar skin-friction coefficient curve and dash-dotted line the
turbulent curve. (b) Amplitude of the different harmonic components of the response 𝐴𝑞 (𝑛, 𝑚). Only the 7 harmonics of largest amplitude are shown for clarity (although the DNS
contains many more).
Fig. 7. (a) Optimal mean-flow heat-flux 𝝓𝑤 at 𝐶𝜃 = 1.65×10−2 to delay the laminar to turbulent transition induced by the optimal fundamental forcing at 𝐹 = 16×10−5, 𝛽 = 40×10−5,
𝐴 = 26 × 10−5, 𝑁 = 2 and 𝑀 = 4. Locations of branch II and maximal amplification rate from a local stability analysis of the first Mack mode are also indicated. (b) Mean-flow
skin-friction coefficient 𝐶𝑓 along the streamwise direction. Comparison without control (dotted lines), with control at 𝐶𝜃 = 1.65 × 10−2 under frozen optimal forcing (dashed lines)
and under the new optimal forcing computed around the controlled mean-flow (solid lines). Black dashed line indicates the laminar skin-friction coefficient curve and dash-dotted
line the turbulent curve.
𝑁 = 4 and 𝑀 = 6. The performance of the preconditioning strategy
and the scalability with the two-dimensional number of degrees of
freedom of the S-TSM are studied. As the parallel implementation of
the S-TSM relies on one MPI process per collocation point, scalability
cannot be evaluated with respect to the number of MPI cores for a
given case. Moreover, the following results depend on the case explored
as, from Eq. (27), the preconditioner Π̌ explicitly depends on 𝜔, 𝛽
(high frequency and spanwise wavenumber reduce its sparsity) and the
mean-flow 𝐪̄ (high mean-flow deviation deteriorates the approximation
Π = 𝐀(𝐪̄) ≈ 𝐀(𝐪)).

5.1. Preconditioning strategy

First, the preconditioning strategy performances are evaluated on
the non-linear input–output for 𝑁𝑥 = 300 points (mesh used for
the present work). The LU factorisation of Π̌ is compared with the
Block Low-Rank approximated LU factorisation (LU-BLR) [32] of Π̌;
factorisations applied on approximated block-circulant preconditioner
11
Π̌ computed with lower order convective schemes (reducing then
the stencil and therefore the amount of off-diagonal components in
the operator) are also considered. Elapsed time, RAM consumed and
number of GMRES iterations to converge the GMRES algorithm are
displayed in Table 1.

The LU-BLR considerably decreases the total RAM (10.1 Gb against
15.7 Gb per collocation point) by reducing the RAM of the LU factori-
sation. Furthermore, this approximated LU does not degrade much the
preconditioner as the number of GMRES iterations to converge remains
similar (202 against 195). Thanks to the time saved during the LU
factorisation, it manages to reach a very similar elapsed time (409 s
against 404 s). Then, about the lower order approximation strategy
to build Π̌, the RAM decreases because of sparser preconditioner.
However, unexpectedly, the number of GMRES iterations decreases for
a preconditioner more approximated with respect to the linear system.
Both these factors strongly reduce the elapsed time. One possible clue
to justify it may be that Π̌ is computed from Π = 𝐀(𝐪̄) where the

̄
mean flow 𝐪 acts as a low-pass filter. Nonetheless, computations carried
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Table 1
Elapsed time (seconds) to perform one Newton iteration (including the preconditioning) and RAM
consumption per collocation point (Gigabytes) for different preconditioning strategies.
Preconditioning Elapsed Elapsed time Total RAM Number of
strategy time for LU RAM for LU GMRES iterations

LU on 𝚷̌ computed at order 7 404 103 15.7 14.1 195
LU on 𝚷̌ computed at order 5 320 81 12.2 10.9 168
LU on 𝚷̌ computed at order 3 253 57 7.3 6.1 153

LU-BLR on 𝚷̌ computed at order 7 409 86 10.1 8.5 202
LU-BLR on 𝚷̌ computed at order 5 311 79 8.6 7.2 173
LU-BLR on 𝚷̌ computed at order 3 255 58 6.2 5 154
T
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Table 2
Number of Newton iterations, averaged number of GMRES iterations per Newton
iteration to converge the non-linear solution, elapsed time (seconds) and total RAM
consumption (Gigabytes) for different forcing amplitudes 𝐴 with 𝑛𝑑𝑜𝑓 = 225000 degrees
of freedom for the case 𝐹 = 16 × 10−5, 𝛽 = 40 × 10−5, 𝑁 = 2 and 𝑀 = 4 (85 collocation
oints) running on 510 cores. The non-linear solution is computed from the base-flow
or the lowest forcing amplitude and from the previous lower amplitude case for higher
mplitudes. The optimal forcing is updated at each forcing amplitude. Starting from the
inear forcing, it converges in 6 optimisation iterations at 𝐴 = 1×10−5 and then requires

about two optimisation iterations to update between two different forcing amplitudes.
Forcing Number of Newton Number of GMRES Elapsed Total
amplitude 𝐴 iterations iterations per Newton ite. Time (s) RAM (Gb)

1 × 10−5 8 13 239 1301
5 × 10−5 8 17 264 1295
10 × 10−5 9 18 298 1299
15 × 10−5 9 22 335 1307
20 × 10−5 11 32 520 1312
26 × 10−5 11 82 1203 1343

out on a different case (including less non-linear interactions) yields
opposite results (see Appendix F) which confirms our conservative
approach using LU-BLR without low-order approximation.

5.2. Memory and time performance

Here, the memory and time scalability performance of the S-TSM
algorithm with respect to the number of degrees of freedom of the
two-dimensional discretisation are assessed.

For the case considered, the system solves (2𝑁 +1)× (4𝑀 +1) = 225
collocation points. For the mesh with 𝑁𝑥 = 300 i.e. 𝑛𝑑𝑜𝑓 = 225000
egrees of freedom, the elapsed time to compute one GMRES iteration
s around 1.6 s. With the GMRES relative tolerance set to 10−6 and BLR
pproximation for LU factorisation set to 10−4, less than 250 GMRES

iterations are required to converge the linear system and 14 Newton
iterations to converge the non-linear solution when 𝐴 = 32 × 10−5.

his represents a total elapsed time (without the optimisation of the
orcing) on 1350 cores of about 1 h and 35 min. Total RAM consumed
s 3.5 Tb. However, these figures are valid for a specific configuration.
s shown in Table 2 (realised with 85 collocation points), the number
f GMRES iterations, as well as Newton iterations, strongly increases
ith the forcing amplitude when stronger non-linear interactions arise,

ncreasing the total time and slightly the RAM consumption.
The elapsed time (Fig. 8(a)) and RAM usage (Fig. 8(b)) are eval-

ated with respect to the number of degrees of freedom for the con-
truction and LU factorisation of the operator. The block-circulant
reconditioner Π̌ scales similarly to the two-dimensional Jacobian
2D both for time and memory. The block-circulant preconditioner Π̌

equires larger memory and time for the construction of the operator
nd its LU-BLR factorisation because of the additional spanwise con-
ributions 𝐀𝑧 (Eq. (27)) which append non-zero components to the
wo-dimensional operator (see Table B.4 of the spanwise contributions).
o compute the total memory to perform the non-linear input–output
nalysis through S-TSM, the memory required for the preconditioner,
or the Krylov subspaces of the GMRES algorithm and for the con-
truction of 𝐀 for the adjoint product are summed. This yields a
12

𝑧 c
able 3
onvergence of the total amplitude 𝐴𝑞 defined in Eq. (C.5) for different levels of
efinement in the streamwise direction and numerical scheme orders. 𝑁𝑐∕𝜉 is the
umber of cells per fundamental (first Mack mode) wavelength in the streamwise
irection. RAM consumption per collocation point (Gigabytes) and elapsed time
seconds) to construct the matrix and perform the LU-BLR factorisation of the block-
irculant preconditioner are indicated as well as the elapsed time (seconds) per GMRES
teration.
𝑛𝑑𝑜𝑓 𝑁𝑐∕𝜉 Scheme Total RAM Elapsed Elapsed time per

order amplitude 𝐴𝑞 for LU time for LU GMRES iteration

150000 19 7 2648.2 6 59 1.4
225000 29 7 2651.5 8.5 86 1.6

150000 19 5 2627.9 5.2 43 1.0
225000 29 5 2645.0 7.4 66 1.5
337500 43 5 2651.6 9.4 101 2.3

225000 29 3 2490.0 4.5 33 1.2
450000 57 3 2614.9 7.8 62 2.6
675000 86 3 2628.3 10.7 85 4

similar scalability and the full algorithm consumes about three times
more memory per collocation point than the two-dimensional code
BROADCAST in this configuration.

Finally, a convergence analysis is performed with respect to the
order of the numerical convective scheme. To assess that all harmonics
are well resolved, the total amplitude 𝐴𝑞 of the fluctuations is computed
following Eq. (C.5) for different refinements in the streamwise direction
and scheme orders (see Table 3). With the seventh order scheme,
convergence is obtained for around 29 cells per wavelength of the
fundamental mode (harmonic (1𝜔, 1𝛽)). Decreasing to the fifth order,
9 cells is enough to obtain similar results but convergence is reached
t 43 cells per wavelength. For the third order scheme, it is necessary
o considerably increase the number of cells per wavelength to at least
6 to reach similar total amplitude. Therefore, for converged results,
t is beneficial to use a high order scheme (either 5th or 7th in this
ase) as even if the elapsed time for the LU-factorisation is similar
o a low order scheme, their RAM consumption per collocation point
s smaller (around 8 Gb against 10.7 Gb). Furthermore, the elapsed
ime per GMRES iteration, which is the predominant time constraint
s around 200 GMRES iterations may be performed to solve one linear
ystem at high forcing amplitudes, is much shorter (around 1.5 s against
s).

. Conclusion

In the present article, we have developed a methodology to com-
ute efficiently periodic solutions in both time and a span-direction.
he starting point is an existing two-dimensional solver, in which
e add spectral Fourier collocation discretisations for the time and

panwise directions. The solutions are obtained by use of a de-aliased
uasi-Newton method, the S-TSM linear system coupling all collocation
oints being solved with an iterative preconditioned GMRES solver.
he existence of an efficient preconditioner is a key ingredient for the
fficacy of the method. Here, we have extended the block-circulant
reconditioner introduced by [12] in the TSM case to the Space-TSM
ase. For gradient-based optimisation with many control parameters,
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Fig. 8. Elapsed time and RAM consumption per collocation point. (a) Elapsed time (seconds). (b) RAM consumption per collocation point (Gigabytes). Comparison between
the matrix construction and the LU-BLR factorisation of the two-dimensional Jacobian 𝐀2D and the block-circulant preconditioner Π̌. Total RAM used for S-TSM computation
(construction and LU-factorisation of Π̌ + construction of 𝐀𝑧 for adjoint + Krylov subspace for GMRES) is also displayed.
we have introduced an adjoint linear system (based on the conjugate-
transpose of the S-TSM operator) that may be solved with the same
tools.

These methods have been implemented in the BROADCAST solver,
which solves the 2D compressible Navier-Stakes equations within a
finite-volume approach. The direct and adjoint matrix–vector products
required in the GMRES solver are obtained, on the fly (without ex-
plicit construction of the matrices), by Automatic Differentiation of
the discretised equations. Only the sparse matrices involved in the
preconditioner are explicitly built since they are required by the Block
Low-Rank approximated LU solver.

Finally, we have considered the laminar/turbulent transition within
a supersonic flat-plate boundary layer at Mach number 4.5. The op-
timal finite-amplitude disturbance corresponding to an oblique break-
down scenario involving the first Mack mode have been determined
based on a gradient-ascent method. Injecting the optimal forcing into
a compressible DNS solver led to the same solution as the one pro-
vided by S-TSM, which validated the implementation. Also, a gradient-
descent technique allowed us to determine the associated optimal
finite-amplitude wall heat-flux distribution to delay transition as much
as possible.

We have finally assessed the memory and time performances of the
preconditioner and the S-TSM solver. The approach is very efficient
for small amplitude forcing; yet, as the amplitude increases, more
iterations are progressively needed for the solution of the large scale
linear systems, to handle the progressively more energetic harmonics in
the solution. This is obviously linked to the choice of the block-circulant
preconditioner, which overlooks the off-diagonal terms of the harmonic
balanced system, the latter precisely representing these harmonics. One
possible way to improve the preconditioner would be to take into
account these off-diagonal terms, for example with a block Gauss–
Seidel method instead of a block-Jacobi solver. Also, more advanced
iterative solvers, such as flexible inner-outer GMRES algorithms can be
used [53]. Also, the overall cost can still be significantly reduced by
implementing in a more efficient way the de-aliasing technique, since
the (𝑁 ′,𝑀 ′) harmonics are strictly only required when the nonlinear
residual is evaluated, while the large-scale direct and adjoint linear
systems can be solved with only (𝑁,𝑀) harmonics. This means that the
de-aliasing technique has a nearly negligible cost. Note also that, when
the forcing amplitude increases, de-aliasing is absolutely mandatory in
space (none of the problems could be solved when 𝑀 ′ = 𝑀), but can
be switched-off for time (𝑁 ′ = 𝑁). This is due to the fact that the non-
linearities and the energy transfers seem much stronger in space than
13

in time.
The method presented in this article, while a valuable tool for
optimisation and physical analysis, is not without its limitations. First,
the developed framework cannot handle (as it stands) multiple incom-
mensurable frequencies or wavenumbers, which somewhat restricts its
applicability to simple cases. Second, the memory cost of the method
is much higher than the cost involved in a DNS, inducing that the
number of harmonics studied is limited. The method is thus restricted
to the study of early stages of transition when the dimensionality of
the flow is still low. Third, the linear solvers involved in the Newton-
method and in the adjoint computation being based on preconditioners
assuming low-amplitude fluctuations (mean-flow preconditioner), the
convergence properties progressively degrade as the solution deviates
from its mean (large amplitude forcing). Finally, the presented method
is restricted (as it stands) to the case where the solution is fully
triggered by the imposed forcing (amplifier flow [54]) and not by an
intrinsic instability mechanism (oscillator flow [54]). Yet, all of these
limitations can in principle be improved or even fixed for some of
them: the first and fourth points can easily be handled. The third one
(preconditioner) is still an active research area.
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Appendix A. Compressible Navier–Stokes equations

In expanded form, if 𝐮 designates for example a volume force 𝐟 in
the momentum equations (so that 𝐁 = 𝐌𝐏𝐰𝐟 with 𝐌 the Hermitian
mass matrix and 𝐏𝐰𝐟 the prolongation/restriction matrix to prolon-
gate/restrict the forcing to specific components or flow regions), the
continuous Navier–Stokes equations read
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐯) = 0, (A.1)

𝜕(𝜌𝐯)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐯𝐯 + 𝑝𝐈 − 𝝉) = 𝐟 , (A.2)

𝜕(𝜌𝐸)
𝜕𝑡

+ ∇ ⋅ ((𝜌𝐸 + 𝑝)𝐯 − 𝝉 ⋅ 𝐯 − 𝜆∇𝑇 ) = 0, (A.3)

with 𝐸 = 𝑝∕(𝜌(𝛾−1))+ 1
2𝐯⋅𝐯, 𝝉 = 𝜇(∇𝐯+(∇𝐯)𝑇 )− 2

3𝜇(∇⋅𝐯)𝐈, 𝜇 the dynamic
viscosity, 𝐈 the identity matrix, 𝜆 = 𝜇𝑐𝑝∕𝑃𝑟, 𝑐𝑝 the isobaric heat capacity
and 𝑃𝑟 the Prandtl number (𝑃𝑟 = 0.72). To close the system, two more
equations are required. First, one assumes a homogeneous, thermally
and calorically perfect gas. The perfect gas law is

𝑝 = 𝜌𝑟𝑇 , (A.4)

with 𝑟 = 287.1 J kg−1 K−1 the specific gas constant.
Then, the Sutherland’s law is selected to link the viscosity 𝜇 to the

temperature [55].

𝜇(𝑇 ) = 𝜇𝑟𝑒𝑓

(

𝑇
𝑇𝑟𝑒𝑓

)3∕2 𝑇𝑟𝑒𝑓 + 𝑆
𝑇 + 𝑆

, (A.5)

with 𝑆 = 110.4 K the Sutherland’s temperature, 𝜇𝑟𝑒𝑓 = 1.716−5

g m−1 s−1 and 𝑇𝑟𝑒𝑓 = 273.15 K.

ppendix B. Spanwise contributions of the Cartesian Navier–
tokes equations

The spanwise contributions 𝐑𝑧 and 𝐑𝑧𝑧 gather all the 𝑧-derivative
omponents in the residual 𝐑3𝐷. The matrices for the 𝑧-derivatives are

derived as

𝜕𝐂1
𝜕𝐪

𝜕𝐪
𝜕𝑧

=

(

∑

𝑘
𝜶𝑘(𝐪)

𝜕𝐚𝑘(𝐪)
𝜕𝐪

)

𝜕𝐪
𝜕𝑧

, (B.1)

𝜕2𝐂4

𝜕𝐪2
𝜕𝐪
𝜕𝑧

𝜕𝐪
𝜕𝑧

=

(

∑

𝑙
𝝀𝑙(𝐪)

𝜕2𝐛𝑙(𝐪)
𝜕𝐪2

)

𝜕𝐪
𝜕𝑧

𝜕𝐪
𝜕𝑧

, (B.2)

𝜕𝐂2
𝜕𝐪

𝜕𝐪
𝜕𝑧

⊙
𝜕𝐂3
𝜕𝐪

𝜕𝐪
𝜕𝑧

=
∑

𝑚
𝜸𝑚(𝐪)

𝜕𝐜𝑚(𝐪)
𝜕𝐪

𝜕𝐪
𝜕𝑧

⊙
𝜕𝐝𝑚(𝐪)
𝜕𝐪

𝜕𝐪
𝜕𝑧

, (B.3)

𝜕𝐂5
𝜕𝐪

𝜕2𝐪
𝜕𝑧2

=

(

∑

𝑙
𝝀𝑙(𝐪)

𝜕𝐛𝑙(𝐪)
𝜕𝐪

)

𝜕2𝐪
𝜕𝑧2

, (B.4)

with the expressions of 𝜶𝑘, 𝐚𝑘,𝝀𝑙 ,𝐛𝑙 , 𝜸𝑚, 𝐜𝑚 and 𝐝𝑚 listed in the Ta-
ble B.4.

Appendix C. Amplitude of the harmonic components

The general solution writes

𝐪̌(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁
∑

𝑛=−𝑁

𝑀
∑

𝑚=−𝑀
𝐪̌𝑛,𝑚(𝑥, 𝑦)𝑒𝑖(𝑛𝜔𝑡+𝑚𝛽𝑧). (C.1)

In the case of a 𝑧-symmetrical solution, Eq. (C.1) expands as

𝐪̌ = 𝐪𝐛 + (𝐪̌0,0 − 𝐪𝐛) +
𝑁
∑

𝑛=1

(

𝐪̌𝑛,0𝑒𝑖𝑛𝜔𝑡 + 𝑐.𝑐.
)

+
𝑀
∑

𝑚=1

(

𝐪̌0,𝑚𝑒𝑖𝑚𝛽𝑧 + 𝑐.𝑐.
)

+
𝑁
∑

𝑀
∑

(

𝐪̌𝑛,𝑚𝑒𝑖(𝑛𝜔𝑡+𝑚𝛽𝑧) + 𝐪̌𝑛,−𝑚𝑒𝑖(𝑛𝜔𝑡−𝑚𝛽𝑧) + 𝑐.𝑐.
)

. (C.2)
14

𝑛=1 𝑚=1
Table B.4
Spanwise contributions of the Cartesian Navier–Stokes equations.

Continuity equation

𝑘 𝛼𝑘 𝑎𝑘 𝑙 𝜆𝑙 𝑏𝑙 𝑚 𝛾𝑚 𝑐𝑚 𝑑𝑚
1 1 𝜌𝑤

Momentum equation in 𝑥-direction

𝑘 𝛼𝑘 𝑎𝑘 𝑙 𝜆𝑙 𝑏𝑙 𝑚 𝛾𝑚 𝑐𝑚 𝑑𝑚
1 1 𝜌𝑢𝑤 − 𝜇 𝜕𝑤

𝜕𝑥
1 −𝜇 𝑢 1 −1 𝜇 𝑢

2 2
3

𝜕𝜇
𝜕𝑥

𝑤
3 2

3
𝜇 𝜕𝑤

𝜕𝑥

Momentum equation in 𝑦-direction

𝑘 𝛼𝑘 𝑎𝑘 𝑙 𝜆𝑙 𝑏𝑙 𝑚 𝛾𝑚 𝑐𝑚 𝑑𝑚
1 1 𝜌𝑣𝑤 − 𝜇 𝜕𝑤

𝜕𝑦
1 −𝜇 𝑣 1 −1 𝜇 𝑣

2 2
3

𝜕𝜇
𝜕𝑦

𝑤
3 2

3
𝜇 𝜕𝑤

𝜕𝑦

Momentum equation in 𝑧-direction

𝑘 𝛼𝑘 𝑎𝑘 𝑙 𝜆𝑙 𝑏𝑙 𝑚 𝛾𝑚 𝑐𝑚 𝑑𝑚

1 1 𝜌𝑤2 + 𝑝 + 2
3
𝜇
(

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

)

1 − 4
3
𝜇 𝑤 1 − 4

3
𝜇 𝑤

2 − 𝜕𝜇
𝜕𝑥

𝑢
3 − 𝜕𝜇

𝜕𝑦
𝑣

4 −𝜇 𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

Energy equation

𝑘 𝛼𝑘 𝑎𝑘 𝑙 𝜆𝑙 𝑏𝑙 𝑚 𝛾𝑚 𝑐𝑚 𝑑𝑚
1 1 (𝜌𝐸 + 𝑝)𝑤 1 −𝜆 𝑇 1 −1 𝜆 𝑇
2 2

3
𝜕(𝜇𝑢)
𝜕𝑥

𝑤 2 −𝜇𝑢 𝑢 2 −𝜇 𝑢 𝑢
3 2

3
𝜇𝑢 𝜕𝑤

𝜕𝑥
3 −𝜇𝑣 𝑣 3 −𝑢 𝜇 𝑢

4 − 𝜕(𝜇𝑤)
𝜕𝑥

𝑢 4 − 4
3
𝜇𝑤 𝑤 4 −𝜇 𝑣 𝑣

5 −𝜇𝑤 𝜕𝑢
𝜕𝑥

5 −𝑣 𝜇 𝑣
6 2

3
𝜕(𝜇𝑣)
𝜕𝑦

𝑤 6 − 4
3
𝜇 𝑤 𝑤

7 2
3
𝜇𝑣 𝜕𝑤

𝜕𝑦
7 − 4

3
𝑤 𝜇 𝑤

8 − 𝜕(𝜇𝑤)
𝜕𝑦

𝑣
9 −𝜇𝑤 𝜕𝑣

𝜕𝑦
10 −𝜇 𝜕𝑤

𝜕𝑥
𝑢

11 −𝑢 𝜇 𝜕𝑤
𝜕𝑥

12 −𝜇 𝜕𝑤
𝜕𝑦

𝑣
13 −𝑣 𝜇 𝜕𝑤

𝜕𝑦

14 2
3
𝜇
(

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

)

𝑤

15 2
3
𝑤
(

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

)

𝜇

16 2
3
𝜇𝑤 𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦

For compressible flow, a common choice for the energy of the
perturbations written 𝐐𝑞 is Chu’s energy [56] in order to take into
account the pressure (𝑝̌) and entropy (𝑠̌) disturbances:

𝐸Chu = 𝐪̌∗𝐐Chu𝐪̌ = 1
2 ∫𝛺

(

𝜌𝑏|𝐯̌|
2 + 1

𝛾𝑝𝑏
𝑝̌2 + 𝛾(𝛾 − 1)𝑀4 𝑝𝑏 𝑠̌

2
)

𝑑𝛺. (C.3)

Chu’s energy is the sum of the kinetic energy of the perturbation
and a thermodynamic component (potential energy from compression
and from heat exchange) with appropriate coefficients to exclude the
conservative compression work [57] in order to obtain a norm which
does not increase in time in the absence of sources of energy [56].
Matrix 𝐐𝑞 = 𝐐Chu for Chu’s energy norm is block-diagonal whose
writing form with conservative variables is detailed in Bugeat et al.
[35].

Therefore, the amplitude of each harmonic component of the re-
sponse is defined using Chu’s energy norm 𝐐𝑞 with the appropriate
coefficient given by Eq. (C.2):

𝐴𝑞(𝑛, 𝑚) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

(𝐪̌0,0 − 𝐪𝐛)∗𝐐𝑞(𝐪̌0,0 − 𝐪𝐛), if (𝑛, 𝑚) = (0, 0),
√

2𝐪̌∗𝑛,𝑚𝐐𝑞 𝐪̌𝑛,𝑚, if (𝑛, 𝑚) ∈ (1...𝑁, 0) ∪ (0, 1...𝑀)
√

4𝐪̌∗𝑛,𝑚𝐐𝑞 𝐪̌𝑛,𝑚, if (𝑛, 𝑚) ∈ (1...𝑁, 1...𝑀).

(C.4)
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Fig. D.9. Comparison of the drag increase and the mean-flow skin-friction coefficient at different forcing amplitude between the S-TSM at Mach number 0.1 (solid lines) and the
incompressible HBM from [4] (dots). (a) Drag increase 𝛥𝐶𝐷 with respect to the forcing amplitude 𝐴 for 𝑁 = 2 in time and two different levels of truncation in spanwise direction:
𝑀 = 2 (blue) and 𝑀 = 4 (red). (b) Mean-flow skin-friction coefficient 𝐶𝑓 along the streamwise direction for 𝑁 = 2 and 𝑀 = 4 at two different forcing amplitudes: 𝐴 = 7.07 × 10−5

(blue) and 𝐴 = 9.9 × 10−5 (red). Black dashed line indicates the laminar skin-friction coefficient curve and dash-dotted line the turbulent curve.
The total amplitude of the system is then defined as

𝐴𝑞 =
√

∑

𝑛≥0,𝑚≥0
𝐴𝑞(𝑛, 𝑚)2. (C.5)

Similarly, the amplitude of the harmonic components of the forcing
is defined as in Eq. (C.4) with the L2 norm 𝐐𝑢 and the total forcing
amplitude 𝐴 reads

𝐴 =
√

∑

𝑛>0,𝑚>0
𝐴𝑓 (𝑛, 𝑚)2. (C.6)

Appendix D. Low Mach number boundary layer

For comparison with Rigas et al. [4], the same adiabatic flat plate
configuration is considered (same domain as for the supersonic bound-
ary layer, see Section 4.1). The free-stream Mach number is set to
0.1 and the subsonic version of the inlet (Blasius solution with non-
reflecting subsonic inlet) and outlet (non-reflecting condition with the
free-stream pressure taken as reference as zero pressure gradient is
assumed) boundary conditions are used. The base-flow is converged in
7 Newton iterations and the resolvent analysis is again performed for
the initialisation of the non-linear input–output analysis.

Rigas et al. [4] showed that the most dangerous symmetrical fun-
damental forcing in the non-linear framework was a pair of oblique
TS waves whose frequency 𝐹 = 11.7 × 10−5 and spanwise wavenumber
𝛽 = 33.4 × 10−5 were close to the linear ones. Starting from the forcing
predicted by the resolvent analysis at a small amplitude 𝐴 = 10−5 and
the level of truncation of 𝑁 = 2 in time and 𝑀 = 2 in spanwise
direction, the non-linear input–output analysis is then repeated with an
increasing amplitude 𝐴 by initialising the optimal forcing and the non-
linear solution from the one obtained at the previous lower amplitude.
Evolution of the drag increase 𝛥𝐶𝐷 with the forcing amplitude 𝐴 is
plotted in Fig. D.9(a). It is noticed that above 𝐴 = 3 × 10−5, the
non-linear interactions are not fully captured with 𝑀 = 2 harmonics.
Increasing the spanwise level of truncation up to 𝑀 = 4 allows to
take into account the higher harmonics generated by the (0𝜔, 2𝛽)
streaks. In Fig. D.9(b), the skin-friction of the mean-flow is plotted for
both methods at two different forcing amplitudes departing from the
laminar flow. Except for the values close to the outlet, both methods
converge to the same skin-friction coefficient. The discrepancies are ex-
plained by the different outlet boundary conditions applied between the
present finite volume compressible framework and the finite element
15
incompressible framework from Rigas et al. [4]. Except these small
discrepancies, the S-TSM compares well with the incompressible HBM
from Rigas et al. [4] and the full non-linear input–output developed in
this work is validated.

Appendix E. Non-linear response for optimal and resolvent forc-
ings

The non-linear response from non-linear input–output analysis is
similar with the one obtained without adjoint optimisation of the
forcing i.e. with the initial linear resolvent forcing plotted in Fig. E.10.
Because of the upstream location of the optimal fundamental forc-
ing (see Fig. 3), the harmonics are generated slightly upstream (see
Fig. E.10(a)) and follow a similar amplification to eventually result
in larger mean-flow deviation. Furthermore, one may notice that the
harmonics spread energy back to the fundamental mode from 𝑅𝑒𝑥 =
260000 by comparing the linear and non-linear responses of the re-
solvent forcing. In comparison with the resolvent forcing, the optimal
forcing has increased the integral of the skin-friction of the mean-flow
deviation by 32% and the transition onset 𝑅𝑒𝑥,𝑡 based on the location
of the minimum of the mean-flow skin-friction coefficient by 6% (see
Fig. E.10(b)).

Appendix F. Preconditioner approximated at lower order

To evaluate the approximation of Π̌ built with a lower order
convective scheme, the case studied in this work is compared to a case
with 2 harmonics in time for the TSM (no spectral derivatives in the
spanwise direction) at low forcing amplitude. The comparison of the
computational performance between both cases highlights two opposite
behaviours (see Table F.5). The large system case converges quicker
with the low order preconditioner while the small system converges
slower, both requiring less memory. A third preconditioning strategy is
also studied with an inner GMRES (nested GMRES at relative tolerance
10−4) preconditioned by an ILU(2). Parametric studies on the level
of sparsity for the ILU and the tolerance of the inner GMRES were
performed and only the best result in term of RAM consumption is
shown. However, the nested GMRES strategy is not optimal for this
case as for the same RAM used as the low order preconditioner, it is

slower by almost a factor five.
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Fig. E.10. Comparison of the non-linear responses obtained with the optimal forcing from non-linear S-TSM (solid lines) and from linear resolvent analysis (dashed lines) for
𝐹 = 16 × 10−5, 𝛽 = 40 × 10−5, 𝐴 = 32 × 10−5, 𝑁 = 4 and 𝑀 = 6. (a) Amplitude of the different harmonic components of the response 𝐴𝑞 (𝑛, 𝑚). The linear response predicted by the
resolvent analysis is indicated in dotted black line. (b) Mean-flow skin-friction coefficient 𝐶𝑓 along the streamwise direction. Black dashed line indicates the laminar skin-friction
coefficient curve and dash-dotted line the turbulent curve.
Table F.5
Elapsed time (seconds) to perform a Newton iteration (including the preconditioning) and RAM consumption per collocation point (Gigabytes)
for different preconditioning strategies. The case studied in this work (225000 degrees of freedom multiplied by 225 collocation points) i.e. the
case where laminar-turbulent transition occurs is compared with a case with a coarser mesh and only 5 collocation points at a lower forcing
amplitude including less non-linear interactions.
Case Preconditioning Elapsed Total GMRES

strategy time RAM iterations

225000 dof LU on 𝚷̌ computed at order 7 404 15.7 195
× 225 collocation points LU on 𝚷̌ computed at order 5 320 12.2 168

150000 dof LU on 𝚷̌ computed at order 7 187 8.5 4
× 5 collocation points LU on 𝚷̌ computed at order 5 201 5.9 70

inner GMRES on 𝚷̌ preconditioned with ILU(2) 920 5.9 6
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