
HAL Id: hal-04669287
https://hal.science/hal-04669287v1

Submitted on 8 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SoK: federated learning based network intrusion
detection in 5G: context, state of the art and challenges

Sara Chennoufi, Gregory Blanc, Houda Jmila, Christophe Kiennert

To cite this version:
Sara Chennoufi, Gregory Blanc, Houda Jmila, Christophe Kiennert. SoK: federated learning based
network intrusion detection in 5G: context, state of the art and challenges. The 19th International
Conference on Availability, Reliability and Security (ARES), Jul 2024, Vienna, Austria. pp.1-13,
�10.1145/3664476.3664500�. �hal-04669287�

https://hal.science/hal-04669287v1
https://hal.archives-ouvertes.fr


SoK: Federated Learning based Network Intrusion Detection in
5G: Context, State of the Art and Challenges
Sara Chennoufi

sara.chennoufi@telecom-sudparis.eu
Télécom SudParis, Institut Polytechnique de Paris

Palaiseau, France

Gregory Blanc
gregory.blanc@telecom-sudparis.eu

Télécom SudParis, Institut Polytechnique de Paris
Palaiseau, France

Houda Jmila
houda.jmila@cea.fr

Institute LIST, CEA, Paris-Saclay University
Palaiseau, France

Christophe Kiennert
christophe.kiennert@telecom-sudparis.eu

Télécom SudParis, Institut Polytechnique de Paris
Palaiseau, France

ABSTRACT
5G brings significant advancement, offering lower latency, and im-
proved connectivity. Yet, its complexity, stemming from factors
such as integrating advanced technologies like Software Defined
Networking (SDN) and slicing, introduces challenges in implement-
ing strong security measures against emerging threats. Although
Intrusion Detection Systems (IDSs) can successfully detect attacks,
the novelty of 5G creates an expanded attack surface. Collaboration
is essential for detecting novel, distributed attacks, and ensuring
comprehensive observability in multiparty networks. However,
such collaboration raises privacy concerns due to the sensitivity
of shared data. Federated Learning (FL), a collaborative Machine
Learning (ML) approach, is a promising solution to preserve privacy
as the model is trained locally without exchanging raw data.

In this paper, we examine ongoing efforts on FL-based IDS solu-
tions in 5G. We set out to systematically review them in the light
of challenges raised by their practical deployment in 5G networks.
Out of the numerous papers we analyzed in FL, only 17 specifically
concentrate on 5G scenarios making them the focus of this study.
Towards systematizing knowledge, we first identify IDS challenges
in 5G. Second, we classify FL-based IDS according to (i) their 5G
application domain, (ii) 5G challenges they address, and (iii) their
FL approach in terms of architecture, parameters, detection method,
evaluation, etc. Through this examination, we find out that some
issues receive less attention, prompting us to explore potential solu-
tions. Additionally, we have identified other challenges, like the lack
of evaluation results applicability due to the difficulties in getting
high quality 5G datasets for evaluation.

CCS CONCEPTS
• Security and privacy→ Artificial immune systems.
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1 INTRODUCTION AND MOTIVATION
The dawn of 5G technologymarks a transformative era in connectiv-
ity, promising unprecedented speeds, minimal latency, and the abil-
ity to support various interconnected devices. A set of technologies
like Software-Defined Networking, Network Function Virtualization
(NFV), and network slicing enables this. Yet, with innovation comes
responsibility, and the security implications of 5G have become a
central focus for researchers [45, 62].

Intrusion Detection Systems, effective in detecting attacks, may
face new challenges with the expanded attack surface of 5G [1, 57].
Collaborative efforts become indispensable for ensuring knowledge
sharing, enhancing the detection capabilities of new attacks, and
reducing false positives.

However, integrating collaboration and distribution in intrusion
detection may introduce privacy concerns, particularly in sensitive
5G applications like medical use cases. Therefore, Federated Learn-
ing (FL) emerges as the most promising candidate for developing
collaborative, distributed, and privacy-preserving solutions for 5G
IDS, given its inherent properties [58]. It constructs a global model
from local client models trained on devices containing private data.
Only the training results, like the trained models, gradients, or
weights, are sent to the central server, reinforcing privacy. Besides,
FL allows devices to train on their own data, reducing the load on
the central server and minimizing network charges by transmitting
only models, not data.

While FL is increasingly adopted, its application in 5G networks
presents challenges and concerns. We outline five specific chal-
lenges. First, with the proliferation of connected devices and di-
verse applications, 5G networks generate large amounts of data, at
high transmission rates [41, 67], underscoring the importance of
scalability in deploying IDS. The high data rates of 5G networks
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present a challenge for real-time intrusion detection. Second, 5G
networks are heterogeneous [7]. Data structure heterogeneity in 5G
refers to the varied formats and characteristics of data like voice,
text, and IoT sensor data. IDS must employ adaptable algorithms to
analyze diverse traffic effectively. Behavior heterogeneity considers
the challenge of diverse behaviors exhibited by components in 5G
networks, causing difficulties in establishing a static baseline for
normalcy, requiring adapted intrusion detection methods to han-
dle the evolving network dynamics. In ML, this is also known as
concept drift. Third, certain 5G devices have limited resources, such
as IoT devices [53], which may be insufficient for training models.
Then, some IoT devices with limited batteries are event-driven,
so they are only on when an event occurs. This challenges IDS
development due to unpredictable event occurrences. Besides, het-
erogeneous device resource constraints affect collaborative IDS
design since they pose synchronization issues. Fourth, 5G networks
handle high mobility and support virtualization [41]. High mobility
challenges the deployment of IDS due to changing traffic patterns
and user dynamics, while virtualization limits IDS observability.
These challenges also make continuous threat detection difficult
for IDS. Finally, 5G should preserve privacy in multi-party networks
where different entities have varying access and control. Achiev-
ing comprehensive observability for IDS requires collaboration. In
such cases, IDS must follow data privacy regulations and leverage
privacy-preserving techniques, which could limit their intrusion
detection capabilities.

In this paper, we first study and classify state-of-the-art solutions
based on i) the targeted 5G application domain, ii) their alignment
with the above 5G characteristics, and iii) the used FL approach.
Then, we identify gaps in addressing these challenges. We delve
into potential solutions that researchers and industry professionals
can employ to tailor FL-based IDS to suit their 5G scenarios.

The use of FL in IDSs has been explored by several surveys.
Lavaur et al. [50] proposed a reference architecture and developed
a taxonomy to categorize FL IDS systems based on various fed-
eration settings. Another survey [5] investigated the challenges
and potential future directions of FL based IDS. In particular, the
utilization of blockchain-based network transactions to ensure se-
cure transaction records. Fedorchenko et al. [32] analyzed FL based
IDS architecture, examined them in various application domains,
and compared them. The utilization of FL based IDS for IoT was
investigated by several authors [8, 12, 14, 21]. However, none of
these studies have specifically addressed the unique requirements
and challenges of implementing IDSs in 5G networks. Issues such as
handling the massive volume of data, ensuring real-time detection,
and adapting to virtualization and dynamism in 5G environments
require specialized approaches. To our knowledge, this is the first
Systematization of Knowledge (SoK) paper in this field. It aims to
answer the following research questions: RQ1.What characteris-
tics of 5G pose challenges for IDS design? RQ2. How have these
challenges been addressed by 5G use cases, and which variants of
FL-based IDS have been used?RQ3.How can 5G-related challenges
for FL-based IDS be addressed, and what are the future directions
in this area?

The key contributions of this paper can be summarized as fol-
lows:
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Figure 1: Simplified 5G architecture

• we motivate collaborative approach for intrusion detection,
with a primary focus on FL-based IDS in the context of 5G
networks;

• we identify specific 5G network characteristics and elucidate
the requirements they impose on the design of IDS;

• we conduct an examination and classification of the cur-
rent FL-based IDS in 5G networks, analyzing their appli-
cation across various use cases. Additionally, we evaluate
their alignment with 5G characteristics, scrutinize the FL pa-
rameters, and analyze the detection method and evaluation
employed;

• we explore challenges associated with meeting the identi-
fied requirements, present potential solutions, and highlight
opportunities arising from addressing these challenges.

To perform this SoK, we collected papers from academic sites
such as Google Scholar. We focused on articles about 5G FL-based
intrusion detection. To refine the search results, we only included
the most relevant papers. We identified a sample of 17 papers that
held sufficient significance to perform our analysis.

This paper is organized as follows: Section 2 introduces the
necessary background on FL and 5G, including the FL framework,
and parameters as well as 5G use case classes, architecture, and
enabling technologies. Subsequently, Section 3 analyzes the retained
FL-based IDS and classifies them to outline the current state of the
art. Finally, Section 4 delves into the challenges that 5G poses for
FL-based IDS and provides potential solutions.

2 BACKGROUND
2.1 5G architecture, use cases, and enablers
5G architecture as shown in Fig. 1 includes the following compo-
nents: User Equipment (UE) for end-users; Core Network (CN), i.e.,
the main backbone providing various network functions; Radio
Access Network (RAN) which connects wireless devices to the core;
andManagement and Orchestration (MANO) which ensures efficient
network service deployment.

5G aims to include a variety of use cases classified by The Inter-
national Telecommunication Union Radiocommunication Sector
(ITU-R) [2] into three classes: Enhanced Mobile Broadband (eMBB)
which focuses on delivering high data rates and improved network
capacity to support applications like ultra-HD video streaming;
Ultra-Reliable Low Latency Communications (URLLC) which em-
phasizes real-time and mission-critical services like autonomous
vehicles; and Massive Machine Type Communications (mMTC) for
massive device connectivity like IoT.
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Figure 2: Federated Learning process

To enhance performance and facilitate connectivity for various
applications within a unified network, 5G uses enabling technolo-
gies like NFV, network slicing for customized networks, Multi-
Access Edge Computing (MEC) for localized computation, and SDN
for dynamic management.

2.2 Federated Learning
The FL architecture, as depicted in Figure 2, comprises 𝑁 clients
with private data and a central server managing and coordinating
training. Clients can be individuals, companies, hospitals, etc. De-
pending on the client type, FL can be classified into cross-silo, which
includes a small number of clients with powerful resources like ISPs
and companies, and cross-device, which involves a larger number
of participants with limited resources and computing power, like
IoT or other UE devices. Other variants of FL architecture exist,
like hierarchical – with multiple levels of aggregation – and de-
centralized. A decentralized FL does not rely on a central server,
and clients communicate directly with each other, often through
peer-to-peer communication. This approach can prevent the occur-
rence of a Single Point of Failure (SPoF). Clients are incentivized to
participate in the FL process to either benefit from the resultant
model enhancements or gain financial rewards. Management of
this participation can be facilitated through contractual agreements
or other methodologies, like the application of game theory [42].

The FL process is articulated around four phases. First, in the
client selection phase, a large number of devices announce their
availability to participate, and a limited number are selected by the
central server based on certain criteria, such as the optimal number
of clients [17]. Second, in the configuration phase, the server sends
the FL plan that contains information on the execution method and
initialization for the ML model to the selected devices. Third, in the
local training phase, the selected devices train a local ML model on
their data and send it to the server. Initially, they preprocess their
data by conducting tasks like feature extraction, feature selection,
and dimensionality reduction if needed. Then, they train a local
ML model on this local data. This model can be supervised if data
are labeled, unsupervised if data are unlabeled, or semi-supervised
when combining both. Local training location can be either on the
client’s device – when it bears sufficient resources – or at another

location such as a gateway or theMEC –when resources are limited,
e.g., IoT devices [50, 82]. Fourth, in the aggregation phase, the server
executes the aggregation algorithm that takes as input clients’ local
models and returns a global model. The basic aggregation algorithm
is Federated Averaging (FedAvg) proposed by Google [58], which
parallelizes Stochastic Gradient Descent (SGD) on a small portion of
clients, and the global model is the average of local model updates.
To enhance it or to solve particular issues, several variants were
proposed. The appropriate aggregation algorithm should be chosen
based on the specific needs. For example, if privacy is very critical,
Secure Multi-Party Computation averaging (SMC-Avg) [18] can be
used. The Federated Proximal (FedProx) [54] and SCAFFOLD [44]
are other examples of an aggregation algorithm that takes into
account the client’s heterogeneity. Finally, the server sends the
global model to participant clients. Communication between server
and clients can be in clear text or encrypted. Phases three and four
are repeated until convergence is achieved, i.e., the model reaches a
stable and optimal state, meaning it does not significantly change or
enhance performance. Finally, after convergence, the global model
can be used for detection.

There are three main FL types based on data distribution between
clients:Horizontal, where datasets have similar features but different
instances; Vertical, where datasets have the same instances but
different features; and Transfer where the data of different clients
differ both in the instances and the feature space, needed when
collaboration is between different domains.

To assess the FL model, evaluation can occur either locally or
at the server. The latter requires the utilization of public data to
prevent the transmission of private data to the server. Evaluation
metrics include model metrics like accuracy, precision, and recall
and system metrics like resource consumption and communication
overhead.

Many papers opt for a centralized architecture, implement su-
pervised training on devices, and employ FedAvg for aggregation,
chosen for their simplicity and compatibility with various appli-
cations. They generally do not use incentivizing or encryption
mechanisms. Additionally, Horizontal FL is preferred for its sim-
ilarity to distributed learning [50]. In the next section, we delve
into FL-based IDSs in 5G, exploring whether they propose different
parameters to address specific 5G challenges.

3 CURRENT STATE-OF-THE-ART OF FL
BASED IDS APPROACHES IN 5G

Several approaches have leveraged FL to carry out intrusion de-
tection for 5G. We examine them, and how they differ in their
application domain, the challenges they solve, and the selected FL
process. Figure 3 illustrates the taxonomywe propose for classifying
FL-based IDS for 5G. This taxonomy encompasses 5G applications
and characteristics, FL parameters outlined in the previous section,
as well as the datasets utilized; specifically, it indicates whether the
dataset was collected from a 5G network or for a specific use case,
or if it is more general. We categorize papers based on their appli-
cation use case to uncover challenges specific to each application
and proposed solutions. This approach enables industries focusing
on developing FL-based IDS for particular use cases to effectively
adapt them. For every use case, we highlight the necessity of using
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Figure 3: Taxonomy for FL based IDS for 5G networks.

5G technology. Subsequently, for each paper within this case, we
outline any challenges addressed. We then discuss the adapted FL
architecture and parameters, if they are different from the most
used parameters. Finally, we delve into the model, dataset, and the
results achieved by the researchers.

3.1 FL based IDS for URLLC use cases
In this use case, authors are interested in smart grids, vehicular
networks, and Cyber Physical Systems (CPS).

3.1.1 Smart grids. They require reliable, high-speed, secure inte-
gration of diverse domains, making 5G technology essential because
it provides reduced latency, improved connectivity, and slicing to
cater to specific domain requirements. In the studies that we will
discuss below [59, 70], the authors explore the development of a

security system designed specifically for the advanced metering
infrastructure (AMI) within 5G-enabled smart grids.

Sun et al. [70] describe a system using smart meters as intelli-
gent sensors to communicate with household appliances via Home
Area Networks (HANs). A hierarchical FL framework is proposed,
where smart meters are grouped into clusters by 5G base stations.
Each smart meter serves as an FL client. Updates are aggregated
at the base station’s edge server and then transmitted to the cloud
server for further aggregation. This reduces communication costs
compared to transmitting individual smart meter models directly.
A Transformer-IDM model is introduced, comprising feature pre-
processing and a detection model. Numerical features undergo con-
volutional and pooling operations for feature compression, while
categorical features are embedded into a reduced-dimensional space
and processed through transformer layers. They are concatenated
and fed into aMulti-Layer Perceptron (MLP) for detection, achieving
good performance, and outperforming competing models. The au-
thors have left as future work addressing resource heterogeneity in
FL and evaluating the model on datasets containing diverse attack
types.

Mirzaee et al. [59]describe an FL architecture consisting of two
layers: participants (households) training a Local IDS, and an FL
server. The detection method uses one-hot encoding and a five-
layered Deep Neural Network (DNN) classifier, achieving an accu-
racy of approximately 99.5% on the NSL-KDD dataset [71]. The
authors suggest enhancing security with lightweight cryptography
schemes and exploring the robustness of the federated IDS against
fake reports.

3.1.2 Vehicular networks. Boualouache et al. [20] propose a scheme
to detect passive mobile attackers in 5G vehicular edge computing.
Passive attackers exploit wireless beacons, compromising privacy.
These beacons, transmitted by vehicles, include crucial details such
as the vehicle’s identifier, position, and speed. Vehicular networks
benefit significantly from 5G due to its low latency and high band-
width. To automate the labeling process within the context of vast
data volumes from 5G networks, the authors suggest a self-labeling
mechanism. Here, labeled data are grouped into clusters, and un-
labeled data are assigned labels according to these clusters. It is
evaluated using synthetic data generated to emulate normal and
attacker behaviors. Feature extraction relies on an inter-distance-
based technique and various ML models are tested. Experimental
results demonstrate the effectiveness, achieving a notable 95% ac-
curacy with only twenty received beacons across 60 FL rounds.

In another effort by the same team [19], an FL approach is pro-
posed to detect inter-slice attacks in 5G vehicle-to-everything (V2X)
sliced networks by aggregating local models from each slice. To
tackle the issue of varying data distribution among clients and pre-
vent client non-participation due to this heterogeneity, the authors
propose a game theory based incentive mechanism. In the problem
formulation, the reward allocated to each vehicle is proportional
to the data they contribute, also taking into account factors such
as energy consumption and processing overhead. The FL approach
includes three processes: inter-slice V2X attack detection process
in the New Radio (NR) access technology, FL collaborative learning
process at the MEC nodes, and FL global model update process at
the 5G Core. For evaluation, they use the CSE-CIC-IDS-2018 dataset
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[69] and a DNN model. They showcase high accuracy with varying
numbers of clients.

Another study also addresses the detection of attacks in 5G Coop-
erative Autonomous Vehicles (CAVs) [48]. The FL server is situated in
the MEC platform and the clients are CAVs. To tackle labeling chal-
lenges within big data, they adopt unsupervised learning using an
autoencoder. Evaluation using realistic datasets [64] reveals promis-
ing detection performance with low false positive rates (FPR), even
with a small number of participants.

The study by Rani et al. [66] examines the use of FL for detecting
misbehavior in 5G-enabled Internet of Vehicles (IoVs). To reduce
communication overhead and address heterogeneity, a Federated Dis-
tillation (FD) approach is used. Instead of transmitting the entire
model, clients send only the average of predicted labels, minimizing
data transmission in the network. Clients train the model individu-
ally, compute the average logits (outputs produced by the last layer
of a neural network, before applying any activation function like
softmax or sigmoid), set the average to zero if the label is unknown,
and transmit these averages to the server that calculates a global
average. In the evaluation, the FD-Scheme is compared with the
FL-Scheme and previous works in the same field using a variety of
datasets.

3.1.3 Cyber Physical Systems (CPS). A deep FL based IDS for in-
dustrial CPSs is proposed by Li et al. [51]. To ensure security and
privacy, a secure communication protocol based on the Paillier
cryptosystem is used to encrypt local model parameters. The FL ar-
chitecture comprises a trust authority managing encryption, a cloud
server (FL server), and industrial agents (FL clients). The IDS model
incorporates a Convolutional Neural Network (CNN) and a Gated Re-
current Unit (GRU). Their system outperforms some state-of-the-art
schemes.

3.2 FL based IDS for mMTC use cases
In this use case, authors are interested in Internet of Things (IoT)
and Industrial IoT (IIoT) use cases.

3.2.1 IoT. In the realm of IoT, and to address heterogeneity between
clients, IotDefender [30] use Transfer Learning (TL) to personalize
clients’ models by keeping the lower layers fixed and adjusting the
parameters of the upper layers. To tackle the restricted resources
issue in IoT devices, the training location is moved to the edge.
Each IoT network sends its data to the corresponding MEC, which
acts as the FL client. The 5G security cloud platform represents
the FL server. IoTDefender is evaluated on five datasets and the
federated TL outperforms standard TL in terms of generalization
and identifying unknown threats with an 8.21% improvement. IoT-
Defender’s tailored models for each IoT network have lower FPR.
They highlight prospective extensions such as improving federation
algorithms for poor network speeds and reacting to developing
attack types via online incremental learning.

Similarly, the study by Man et al. [56] is designed for IoT net-
works. Their work improves upon FedAVG, drawing inspiration
from attentionmechanisms, by assigning differentweights to clients
depending on local data size. They also train their models on the
edge to reduce communication delay. The proposed CNN model is
evaluated on NSL-KDD and compared with centralized learning.

Finally, an IDS for 5G heterogeneous networks (HetNets) is pro-
posed by Wei et al. [74]. Their FL architecture consists of attack
detection nodes spread across three layers: end, edge, and cloud. In
the end layer, powerful end nodes use deep reinforcement learning
to identify attacks in their local access network. Due to restricted
resources, they convey their results to edge nodes for aggregation.
As an intermediate between the end and the cloud, the edge layer
has complete knowledge of the access network and only limited
awareness of the security of the core network. The cloud layer
has a global view of the network’s security and uses FL to aggre-
gate model parameters from matching edge nodes. This method
produces more accurate models for identifying various types of
attacks. The proposed Deep Q-Network (D-QN) model, evaluated
on the CICIDS2017 dataset [69], showcases superior performance
in convergence speed and detection accuracy compared to non-
cooperative, distributed ML, and traditional FL schemes.

3.2.2 IIoT. For IIoT heterogeneous Network, an IDS [4] is pro-
posed with a focus on the Routing Protocol for Low-power and
Lossy Networks (RPL). RPL serves as a routing protocol tailored
for wireless networks characterized by low power consumption,
typically vulnerable to packet loss. RPL uses a distance vector algo-
rithm, specifically a variation of the objective function that com-
putes paths based on certain metrics such as link quality, energy
consumption, and expected transmission count. RPL is typically
reactive or on-demand. It establishes routes in response to specific
communication needs rather than continuously updating routes
proactively. The Objective Function is a key concept in RPL. It de-
fines the criteria for selecting and optimizing routes based on the
specific requirements. To address the heterogeneity challenge, they
adopt a Federated Transfer Learning-based Customized Intrusion
Detection system called FTL-CID. The authors claimed that FTL-
CID is the first model to apply FTL to a heterogeneous RPL-IIoT
IDS security model. Evaluated on an RPL-IIoT dataset generated by
simulation, FT-CID outperforms baseline models, particularly in
small training sample sizes and federated environments, due to its
ability to leverage knowledge from multiple datasets.

Verma et al. [73] also propose to secure IIoT networks by de-
tecting unknown attacks. To do this, they train two models: one
on normal traffic and the other on attack traffic. The framework
utilizes a dual AE model to counter zero-day attacks, The model
is trained and evaluated on the X-IIoTID dataset [6] representing
real-world cybersecurity incidents. The results demonstrate that
the proposed approach outperforms other methods, achieving high
accuracy, detection rate, and F1 score.

3.3 FL based IDS for 5G enabling technologies
3.3.1 Zero touch architectures. To secure network and service man-
agement automation for 5G and beyond networks, an FL-based
anomaly detection mechanism is proposed by Javasinghe et al. [40].
The automation requirements are addressed through the Zero-touch
Network and Service Management (ZSM) framework, which inte-
grates AI and ML algorithms. The INSPIRE-5Gplus project archi-
tecture [15] is used as a reference for ZSM. The suggested anomaly
detection system is built in a hierarchical structure, to be easily
incorporated into the ZSM architecture. The detecting procedure
is divided into two steps. In the first stage, a basic ML model is
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deployed within the security management domain to detect anom-
alies in network data. The second stage model benefits from a larger
dataset and can tackle more complex problems, which improves
overall detection accuracy. The study claims to be the first to pro-
pose a hierarchical FL-based anomaly detection mechanism for the
ZSM architecture. Evaluation, done using the UNSW-NB15 dataset
[60], demonstrates a minimum accuracy of 93.6%. Identified future
work by authors aims to enhance accuracy further and integrate the
model into a security analytics framework within the ZSM security
architecture.

3.3.2 Softwarized networks. In the context of Softwarized Net-
works, an FL based IDS is presented by Aouedi et al. [11]. To over-
come limitations due to labeling costs in 5G big data, the paper
introduces a semi-supervised federated learning model for IDS. In
this setup, clients in the network (edge nodes) train unsupervised
models to learn representative features. The proposed autoencoder
model is evaluated on the UNSW-NB15 dataset, achieving accuracy
and detection rates of up to 84.32% and 83.10%, respectively, while
maintaining data privacy with limited communication overhead.

3.3.3 Network slicing. Djaidja et al. [27] propose an FL based IDS
where clients are 5G network slices. To address data heterogeneity
caused by non-independently and identically distributed (non-IID)
data between network slices, they investigate various aggregation
algorithms such as FedAvg, FedProx, FedPer, and SCAFFOLD to
evaluate their performance in both IID and non-IID scenarios. In
5G networks, data heterogeneity arises among different slices, as
each slice is specific to a distinct domain. In non-IID settings, Fe-
dAvg and FedProx exhibit convergence difficulties, but SCAFFOLD
outperforms FedProx and FedAvg. However, centralized models
frequently outperform FL approaches, indicating that FL processes
can be improved, particularly in non-IID settings. The NSL-KDD
dataset is used for evaluation and is split randomly for IID settings
and different percentages of attack types are attributed to different
slices for non-IID. An MLP architecture with six layers is employed
for model training, with hyperparameters set through testing.

Another paper, by Sedjelmaci et al. [68], also proposes a two-
layer FL-based IDS to secure network slices in 5G. A hierarchical FL
based IDS is presented. It consists of three systems structured into
two layers. The first layer consists of defense systems at gNodeB
nodes (base station) as FL clients and edge servers as FL servers.
The second layer involves edge servers (FL clients) and the AMF
as the FL server. To ensure robustness, a security model based on
mean field games is proposed for the detection of poisoning attacks.

3.4 Discussion
Table 1 classifies the reviewed papers according to their 5G appli-
cation domains, the challenges they address, as well as the corre-
sponding FL variants employed along with evaluation dataset and
metrics.

Among the surveyed articles, it appears that the mMTC class
(IoT and IIoT) represents the most studied of the 5G classes. Re-
searchers in the field of 5G are particularly interested in IoT due to
its ubiquitous impact, market demand, and diverse applications. IoT
represents a broad spectrum of interconnected devices and systems,
spanning from smart homes and cities to industrial systems. Their

scalability, and performance requirements make them compelling
areas of research in 5G. 5G researchers are also keenly interested
in vehicular networks and their security due to their transforma-
tive potential of connected vehicles. 5G security and reliability are
paramount in vehicular networks and autonomous cars due to the
critical nature of their operations and the potential risks associated.
Smart grids are also studied since they benefit from 5G slicing, low
latency, and speed. However, no application belonging to eMBB
like virtual or augmented reality has been studied. The commer-
cial deployment of VR and AR technologies has been progressing
steadily even before the widespread availability of 5G networks.
While 5G can certainly enhance the performance and capabilities
of VR and AR applications, it may not be perceived as a critical
enabler for their adoption compared to other use cases where 5G
offers more transformative potential. For enabling technologies,
there are two studies on slicing and one on softwarized networks
while other technologies are completely ignored. Future research
should explore the benefits of FL for these overlooked technologies.

The FL framework presented by McMahan et al. [58] is widely
adopted in research. It typically employs a centralized, horizontal
approach with cross-device capabilities, supervised learning for
local training, and FedAvg for aggregation with some variants in
weights as seen in Table 1. Nevertheless, the application of FL based
IDS to 5G use cases faces several challenges related to 5G charac-
teristics as explained earlier. The use of appropriate FL variants
helps in addressing these challenges. For URLLC, especially in ve-
hicular networks, challenges revolve around the substantial data
volumes generated by 5G networks, leading to labeling concerns
and heightened communication overhead. The former is tackled
through self-labeling mechanisms or unsupervised learning, while
the latter is mitigated via Federated Distillation, where only labels
are exchanged. Additionally, heterogeneity in data distribution is
managed by incentivizing parameters such as client participation.
In mMTC scenarios, heterogeneity is managed through TL or by
clustering similar clients. Moreover, due to the limited resources
of IoT devices, many proposals move training towards the edge,
thereby reducing communication delays. Enabling technologies
like slicing and SDN face heterogeneity arising from slice differ-
ences through specific aggregation algorithms. Labeling issues are
also tackled, and privacy concerns are reviewed, with techniques
proposed to enhance privacy. However, there are other challenges
to be considered. The dynamic nature of 5G networks makes it
difficult to establish and maintain collaboration between different
clients, as unstable clients may get replaced over time.

Vertical FL hasn’t been adopted in the reviewed papers, despite
its relevance in heterogeneous 5G environments. For example, im-
plementing an IDS across different parties managing distinct net-
work layers or architectural components in 5G (like CN and RAN)
would ideally employ vertical FL. However, its limited use is due
to challenges such as a lack of implementation tools and potential
interoperability issues.

To evaluate proposed solutions, metrics related to detection, to
FL process, and 5G characteristics are needed. While accuracy is
a commonly used detection metric across various papers, some
metrics like FPR are not consistently evaluated, despite their sig-
nificance in assessing false positives that may lead to false alarms.
System performance such as resource utilization and detection time,
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Table 1: Classification of state-of-the-art papers proposing FL based IDS for 5G networks
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[59] x x x x x x x x x x x x x
[70] x x x x x x x x x x x x x
[20] x x x x x x x x x x x x x x
[48] x x x x x x x x x x x x x
[19] x x x x x x x x x x x x x
[30] x x x x x x x x x x x x x x
[4] x x x x x x x x x x x x
[74] x x x x x x x x x x x
[40] x x x x x x x x x x x
[11] x x x x x x x x x x x x
[27] x x x x x x x x x x x x
[66] x x x x x x x x x x x x x x
[73] x x x x x x x x x x x x x
[65] x x x x x x x x x x x
[68] x x x x x x x x x x x x x
[56] x x x x x x x x x x x x
[51] x x x x x x x x x x x x

are less evaluated. As depicted in the table, the majority of papers
employ general datasets, lacking specificity to 5G characteristics of
the studied domain.

In the upcoming section, we will delve into each of IDS require-
ments in 5G, explore their implications in FL, and discuss potential
solutions to bridge the existing gaps.

4 FL-BASED IDS CHALLENGES AND
RESEARCH DIRECTIONS IN 5G

This section discusses 5G characteristics and the corresponding
IDS challenges presented in Section 1 aiming to analyze gaps in
the literature and propose solutions or alternative approaches. To
achieve fast detection in 5G complex environments, it is imperative
to streamline factors like optimizing communication costs, train-
ing durations, client selection methodologies, and hyperparameter
selection [3, 24]. FL should also be scalable to handle 5G’s massive
and dynamic data and subscribers.

4.1 5G complexity and big data
The advent of 5G technology brings significant complexity and mas-
sive data generation, impacting IDS design. FL offers a distributed
approach to model training without centralizing data, addressing
data privacy concerns and reducing the load on central servers.
However, it presents challenges for FL-based IDS in terms of pro-
cess time, communication overhead, and scalability.

4.1.1 Reducing FL process time.

Reducing communication overhead. FL reduces communication
overhead by eliminating the need to transmit data. However, the
timeliness of FL-based IDS in highly complex environments with
massive amounts of data remains a significant concern. Complex
networks require substantial models, increasing the transmitted
data volume. Additionally, the multitude of clients increases the
number of exchanges with the central server, thereby augmenting
communication overhead.

To guide research in this direction, some techniques proposed in
other FL papers can be adopted for FL based IDS in 5G. For example,
it is possible to reduce the total number of communication rounds
and the number of transmitted messages at each round to mitigate
this challenge and minimize communication overhead [54]. Sev-
eral techniques such as model compression, gradient sparsification,
local update aggregation, and adaptive communication frequency
have been proposed [37, 79]. To evaluate the effectiveness of these
techniques, they should be tested in a 5G application or simulation.
5G networks produce extensive data and integrate various charac-
teristics that may not be typical in their use cases and evaluations.

Additionally, new techniques may be proposed in the future to
further optimize the communication costs and enable real-time
FL-based IDS in 5G networks.

Reducing training time. To expedite the training process in FL,
several strategies can be employed. One approach involves restrict-
ing the number of local training epochs, thereby reducing the time
taken in each FL round. Additionally, leveraging hardware acceler-
ators such as GPUs or TPUs can significantly enhance the speed of
model training, capitalizing on their parallel processing capabilities.
Moreover, integrating machine learning optimization techniques
like model pruning, which involves removing unnecessary parame-
ters from the model, can further streamline the training process by
reducing computational overhead and enhancing model efficiency.

Accelerating convergence. To expedite the convergence, several
strategic approaches can be implemented. One such method in-
volves the utilization of selective aggregation algorithms, which
intelligently identify and prioritize the most pertinent updates from
participating devices. Additionally, leveraging pretrained models
during initialization can provide a valuable head start by initializing
the model parameters close to their optimal values.

Preventing time loss in labeling. 5G applications generate vast
amounts of data that require a non-negligible amount of time to be
labeled. Unsupervised FL offers real-time analysis and rapid updates
without the need for extensive labeling. Besides, unsupervised FL
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enables continuous learning by allowing models to adapt to new
data sources without requiring time-consuming manual annotation.

As mentioned earlier, Boualouache et al. [20] have proposed
a semi-supervised FL-based 5G IDS using a self-labeling method.
However, unsupervised FL IDS faces other 5G challenges, such as
heterogeneity. This heterogeneity extends to the data generated
by different network components, making clustering techniques,
used in unsupervised learning, less effective. In FL, since we do
not have access to training data and, in each iteration, clients train
on their data separately, it is harder to determine a common base-
line and clustering data to similar groups. Techniques to address
heterogeneity will be presented in the next subsection.

4.1.2 Improving FL scalability to handle 5G’s large and dynamic
data. The rapid increase in both the number of devices and the
amount of data generated in 5G networks presents a significant
challenge for IDS. These systems need to be capable of processing
a vast amount of traffic without sacrificing their ability to detect
intrusions accurately and without being overloaded. Decentralized
FL (DFL) eliminates the need for a central server. In DFL, the clients
communicate directly with each other to train a global model. This
can help improve the scalability of FL by reducing communication
overhead, avoiding the need to exchange models of all clients with
a central server, and eliminating the load on the server.

Other solutions can be considered. Proposing adaptive and dy-
namic client selection techniques is also essential for managing
the varying and high number of 5G clients. For example, Chen et
al. [25] treat scalability challenges in wireless networks based on
resource constraints and possible packet losses. Due to bandwidth
limits, the server in the base station must pick a subset of users for
FL execution. The problem is stated as an optimization job.

4.2 5G heterogeneity
5G networks are diverse and this heterogeneity may have a pro-
found impact on the performance of FL IDS across various dimen-
sions, including data behavior heterogeneity, system heterogeneity,
differences in confidentiality requirements and security policies,
and insufficient involvement of clients due to data distribution
heterogeneity between clients.

4.2.1 Addressing data and behavior heterogeneity using model per-
sonalizing techniques. Data and behavior heterogeneity is caused
by domain heterogeneity and non-IID data. It can manifest in vari-
ous ways, including non-identical distributions of characteristics
or labels, common labels with different characteristics or common
features with different labels, and unbalanced data sizes. Such het-
erogeneity can degrademodel performance and increase the FPR [5]:
within FL, all users employ a common global model that lacks speci-
ficity to their individual characteristics. This uniformity diminishes
the effectiveness of attack detection and elevates the FPR.

To address this challenge, some techniques have been proposed,
involving an initial collaborative training of the model followed
by a personalized adaptation based on individual user character-
istics [49]. For example, TL is used to personalize the FL model
per client [4, 30]. Multi-task Learning [22] aims to solve more than
one task at the same time. Meta-Learning [33] is a method that
involves learning a model on a variety of tasks to handle new tasks

with just few data [23]. Fallah et al. [29] use a model-agnostic meta-
learning (MAML) in global training to obtain a personalized model.
Finally, Knowledge Distillation [35] is a way to transfer knowl-
edge from a large, complex model (teacher model) to a smaller and
simpler model (student model). This allows the smaller model to
enhance performance while remaining lighter and more suitable
for deployment in resource-constrained areas.

However, some of these techniques have not been used in IDS FL,
and only TL is used in a 5G scenario [30]. Besides, in 5G, there is an
opportunity to experiment with these techniques to personalize the
global model either by device or by network slice, as it facilitates
grouping similar users or services.

4.2.2 Addressing differences in confidentiality requirements and se-
curity policies. In 5G, clients can be entities from different countries,
companies, ISPs, or domains, each with their own security policies
and confidentiality needs. This highlights the importance of con-
sidering the unique requirements of each entity when developing
an IDS model. For instance, multiple organizations from different
countries may work together to create an IDS model for 5G net-
works, and it is crucial to ensure that all requirements are met
without compromising system performance or introducing con-
flicting rules [38]. These disparities may manifest in diverse ways,
encompassing variations in confidentiality policies with differing
levels of data sensitivity, discrepancies in access control policies,
adherence to regulatory frameworks and data protection laws, dis-
tinctions in data sharing agreements, and divergent prioritization
strategies.

Techniques to enhance privacy and reliability (against poisoning)
in FL exist (Section 4.5), but careful selection is necessary to avoid
conflicts between them. To address conflicting requirements among
parties, clustering entities with similar needs can be effective. A
hierarchical FL architecture, aggregating within clusters first and
then across them, allows the selection of the most appropriate
privacy and reliability mechanism without affecting other clusters.

4.2.3 Incentivizing FL IDS to Tackle Data Imbalances. The hetero-
geneous nature of 5G technology presents a critical challenge in
encouraging client participation in FL. Typically, clients are moti-
vated by the prospect of financial compensation or the opportunity
to derive advantages from the converged global model. In cases
where the resulting model is the primary benefit, which is the case
in IDSs, it may not be fair. For instance, consider a group of ISPs col-
laborating to develop an IDS, where each ISP has a different number
of subscribers with varying amounts of data. An ISP providing more
data, logically, deserves more credit than other ISPs with less data.
However, adhering to the FL paradigm as it is presented means that
all ISPs will ultimately have the same model, which may be viewed
as unfair and discourage participation. Furthermore, clients may
be hesitant to participate in FL due to privacy concerns, resource
limitations, network latency, and trust issues.

Addressing these concerns and creating fair incentive mecha-
nisms is crucial for successful FL implementation in IDS. Techniques
such as data augmentation enable parties with limited datasets to
generate additional training instances. Furthermore, introducing
incentive mechanisms, beyond mere financial compensation, such
as access to advanced analytics, heightened security features, or
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privileged model updates, can motivate participation and foster a
more equitable FL ecosystem.

4.3 Resource constrained devices in 5G
networks

FL helps in diminishing the necessity for centralized data storage
and processing, thereby alleviating the demand for extensive com-
putational and storage resources across all clients within a central
entity. Nevertheless, the distributed nature of FL introduces a po-
tential challenge: clients must possess sufficient local resources to
conduct training for complex deep models. This reliance on local
capabilities can become problematic when clients face constraints
in terms of computational power and storage capacity. Limited
resources can result in increased processing time.

4.3.1 FL with limited resources. While FL offers advantages in scal-
ability and privacy, certain 5G devices, particularly IoT devices,
may face limitations in processing power, bandwidth, and stor-
age. FL encounters significant challenges in resource-constrained
IoT environments [30]. First, communication overhead can be a
major concern arising from large data sizes and non-optimized
communication between servers and devices with limited band-
width. Mobility, bandwidth constraints, and power limitations cause
participant loss. FL initially assumes constant connectivity, which
is impractical since participants may be disconnected and lost. A
proposed solution involves evaluating the resource consumption
of stragglers (nodes or devices that lag behind or take longer than
planned to fulfill the tasks given to them) and adjusting local compu-
tation accordingly [26]. Another technique, deemed asynchronous
training, updates the global model whenever a participant delivers
a model update. Additionally, limited memory and energy budgets
present obstacles to data storage. Besides, efficient training of DNNs
needs powerful resources. The presence of IoT devices with ineffi-
cient processing units complicates the efficient communication and
execution of ML algorithms. On-device training poses challenges
related to model size and computing needs that may exceed the de-
vice’s capability. Proposed solutions include tree-based algorithms
for prediction on resource-constrained IoT devices, and dynamic
computing technologies to regulate energy consumption during
training. Challenges persist in extending battery life and developing
aggregation algorithms suitable for low computational power and
storage on IoT nodes like the use of TinyML [47]. The discourse
also emphasizes hardware design advances, such as neuromorphic
computing, to enhance efficiency [39].

4.3.2 Addressing resource constraints differences. FL in 5G faces
system heterogeneity challenges due to the differences in storage,
computing, and communication capabilities of devices (such as
smartphones and IoT devices) involved in the training process.
These differences can cause issues in synchronization and hyperpa-
rameters tuning such as determining the number of local and global
epochs, training time, aggregation algorithm, and its parameters,
especially in a 5G environment where real-time requirements need
to be met and the environment is very dynamic. The conventional
aggregation strategy used in FL may not be efficient on hetero-
geneous devices as it waits for slower devices to catch up before
aggregating data.

Xu et al. [78] have identified several techniques used to improve
model performance on heterogeneous devices and classified them
into six categories. The first category is client selection, which
involves selecting the most ready devices to participate in the train-
ing process. The second category is weighted aggregation, which
involves assigning different weights to the updates received from
each device by giving more weight to the updates from devices with
higher computing power or better data quality. The third category
is gradient compression, which involves compressing the updates
sent by the devices to reduce communication costs. The fourth
category is semi-asynchronous FL, which allows the devices to per-
form local updates at different times and speeds. The fifth category
is cluster FL, which involves grouping the devices into clusters
based on their similarities. The sixth category is model split, which
involves splitting the ML model into smaller parts and distribut-
ing them among the devices. This technique helps to address the
challenges associated with device heterogeneity by allowing each
device to train the parts of the model that it is capable of handling
depending on its available resources.

These techniques are yet to be tested in real-world scenarios
by establishing scalable and flexible testbeds deployed on hetero-
geneous devices. Besides, dynamic resource allocation strategies
should be explored to maximize training data size and engage the
most interesting clients while respecting resource limits. Proposing
dynamic and adaptable techniques for asynchronous FL and how to
generalize them for real-world scenarios is still an open direction.

4.4 Dynamic 5G networks
FL allows for decentralized model training, making it suitable for
dynamic environments where devices are highly mobile and may
join or leave the network frequently. However, handling the dy-
namic joining and leaving of participants in FL poses challenges,
especially in scenarios with high mobility.

Another challenge in these dynamic networks is concept drift [9]
in FL which refers to the ML scenario where models are typically
trained under the assumption that the distribution of data does
not remain stationary. It means that the patterns and relationships
learned from historical data are not expected to hold in future data.
In 5G real-world applications, the data distribution may evolve due
to various factors such as changes in user behavior, external events,
or changes in virtual functions. The challenge of concept drift in FL
is reinforced by the distributed nature of the FL paradigm. Clients
may encounter concept drifts at varying times, and the characteris-
tics of the drift may differ among clients. Conventional solutions
assuming simultaneous or synchronized drifts are inadequate for
this scenario. FL has no centralized authority or server possessing
complete knowledge of the data across all clients. Consequently,
centralized methods for handling drift may not be directly appli-
cable. Adaptive aggregation algorithms are proposed to solve this
challenge. For example, in 5G MEC, an attention mechanism is
introduced by Estiri et al. [28] to dynamically adjust aggregation
weights during model updates. The attention is on creating a global
model that aligns with each local model in terms of weight distri-
bution, to get the highest possible accuracy across all local data.
Unlike conventional attention mechanisms, attention is applied to
the learned parameters of neural networks in a layer-wise fashion.
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In another approach, the process involves clustering to generate
a distinct model for each novel concept. This enables clients as-
sociated with the same concept to train collaboratively [43]. The
clustering may vary over time as concept drifts occur. Nonetheless,
their clustering algorithm involves sharing local models with others,
resulting in diminished privacy protection. Besides, the coexistence
of concept drift, anomalies, intrusions, and poisoning attacks poses
a challenge in adapting clustering algorithms appropriately. Addi-
tionally, future work should focus on collecting real IDS datasets in
5G that can capture the variations of 5G traffic over time.

4.5 Untrustworthy parties in 5G networks
Research in FL shows that it can be vulnerable to some integrity
and confidentiality attacks which need to be addressed to meet 5G
requirements. In this section, we explore these attacks, potential
solutions, and open directions.

4.5.1 Reinforcing FL IDS privacy in 5G by mitigating inference at-
tacks. The development of FL was driven by the need to enhance
user privacy by keeping private data on the device where it was
generated. However, transmitted local model updates can reveal
specific characteristics on the data. These attacks, referred to as in-
ference attacks, are classified into four types [34]: i) membership
inference, which determines if a sample belongs to a specific class,
ii) properties inference, which aims to obtain data properties, iii)
training inputs and labels inference, and iv) class representative’s
inference, which uses Generative Adversarial Networks (GANs) to
generate data similar to the original client’s data by only accessing
the model.

To address this issue in FL, several techniques have been pro-
posed such as Differential Privacy, Homomorphic Encryption (HE),
Multi-Party Computation (MPC) [81], and Trusted Execution Envi-
ronments (TEEs) [5]. DP involves adding noise to client updates,
which reduces an attacker’s ability to extract information from sent
updates. HE protects client data by performing calculations directly
on ciphertexts, and MPC allows multiple parties with private data
to compute a shared function without revealing their inputs. In
5G, a secure FL framework based on blockchain technology has
been proposed by Liu et al. [55]. Their framework relies on smart
contracts to prevent malicious or unreliable clients from partici-
pating in FL. Additionally, they use local DP techniques to prevent
membership inference attacks. A hash graph-based FL method to
defend against membership attacks through random sampling and
noise addition is proposed by Kholidy et al. [46]. However, these
approaches can impact the model’s performance or require more
processing power and a certain number of local participants to
contribute to model training. The privacy-enhancing technologies
(PET) can add computational and communication overhead and
can also impact model performance. A study calculated the im-
pact of different PET on the accuracy, training time, and network
traffic [61] using two FL frameworks. For secure aggregation with
Federated AI Technology Enabler (FATE), the values for accuracy,
training time, and network traffic were approximately the same as
those for FedAvg. However, with Paddle Federated Learning (PFL),
there was a significant increase in network traffic and training time
for certain settings. Specifically, for a batch size of 32, 10 rounds,
and four clients, the network traffic with secure aggregation in

PFL was 306 MB, compared to less than 30 MB with FedAvg. The
training time was about 43 minutes with FedAvg and 56 minutes
with PFL’s secure aggregation. However, for other configurations,
the differences were lower. For differential privacy in the PFL frame-
work, the accuracy was reduced by about 10% for a batch size of
32. This poses challenges in some 5G applications characterized by
limited resources or requiring rapid analysis. To ensure practical
effectiveness, researchers must strike a delicate balance between the
need for privacy, accuracy, security, and overall system performance.
It is conceivable to implement personalization and clustering, e.g.,
by slice, wherein security mechanisms are chosen based on the
specific requirements of each slice.

4.5.2 Mitigating poisoning attacks in an untrustworthy environment.
Reliability is crucial in 5G applications, especially in the URLLC
class. However, in FL, clients train local models, and data is not
exchanged with the server, exposing a vulnerability for malicious
clients to modify and poison data or local models without detection.
Poisoning attacks can be targeted or untargeted, depending on the
attacker’s objective. Targeted attacks misclassify specific data with-
out degrading model performance, making them more challenging
to execute. An example of a targeted attack is injecting a backdoor
against an FL-based IDS in a 5G IoT system, allowing the attacker
to launch future network attacks without being detected. Other
scenarios of poisoning attacks include distributed backdoor attacks
(DBAs) [76], label poisoning attacks, model replacement [13], and
adding noise or sign flipping [52].

In poisoning attacks, the attacker’s gradients or models are either
directly modified or trained on falsified data, resulting in updates
that differ from those of other users. One mitigation approach con-
sists then in eliminating updates that are far from others, which
is the basis of robust aggregation algorithms such as Krum and
multi-Krum [16], Trimmed Mean [80], Bulyan [36], Robust Aggre-
gation for Federated Learning (RFA) [63], and Median [77]. These
solutions calculate a score that measures the gradient distance, de-
termining whether to discard or include updates depending on this
score. Another approach involves evaluating the performance of a
global model that incorporates the updates from a suspicious user
against one that does not include these updates [31]. Additionally,
some defenses clip the gradients’ norm to reduce the impact of ma-
licious workers, but at the cost of degrading the quality of honest
updates [10]. Finally, methods that reverse the model updates using
GANs have been proposed to reconstruct training participants’ data
and detect the attack [83]. This approach identifies the participant
whose accuracy is lower than a predefined threshold as an attacker
and removes their model parameters from the training procedure
in that iteration. In 5G, to mitigate poisoning attacks, a blockchain
is used where the central aggregator automatically executes smart
contracts, which identify and isolate malicious and unreliable par-
ticipants [55]. Other papers propose reputation-based strategies for
reliable worker selection in the presence of low-quality or malicious
devices [72].

While there have been many proposed solutions to mitigate poi-
soning attacks, it remains a difficult challenge in a dynamic and
heterogeneous 5G environment. Solutions that are based on outliers
can face challenges in determining what is a normal or a poisoned
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update in a heterogeneous environment. Besides, this dynamic na-
ture makes it challenging to establish trust among participants so
solutions proposing giving a trust score will not be directly applica-
ble. As a result, finding robust methods to defend against poisoning
attacks is an open research problem. Additionally, some solutions
pose privacy risks, such as those using GANs. Future research efforts
will need to focus on developing solutions that can simultaneously
defend against poisoning attacks and preserve privacy [75].

4.6 Lack of 5G datasets to evaluate FL based IDS
The lack of 5G datasets for evaluating FL-based IDS presents signif-
icant challenges in the field. Researchers often use non-5G datasets,
which are general network traffic data collected in legacy IT net-
works as shown in Table 1, which lack 5G characteristics, and
technologies. Although datasets collected from 5G networks or
simulations do exist, they often lack the requisite attributes for
effective IDS evaluation. Many such datasets predominantly feature
legitimate network traffic without the inclusion of malicious or
anomalous activities. It is worth considering whether existing 5G
datasets can be repurposed and transformed into suitable datasets
for IDS evaluation. This endeavor holds promise, albeit requiring in-
tricate preprocessing and augmentation to include diverse instances
of malicious activities representative of real-world threats. To fa-
cilitate the adoption of FL in IDS for 5G networks, there is a need
to develop datasets conducive to distributed learning paradigms.
These datasets should represent 5G network traffic and be able to
partition and distribute across disparate client nodes in a realistic
way.

5 CONCLUSION
This paper provides a comprehensive examination of the utiliza-
tion of FL in IDSs for 5G networks. It emphasizes the importance
of collaborative IDS in 5G networks due to new types of attacks,
distributed attacks, and multi-party management. Yet, this collabo-
ration introduces privacy concerns. FL addresses this by allowing
local training on local devices, reducing communication overhead
and resource usage on the central server. This study provides an
overview of existing FL-based IDS classified by 5G application
domain. It also delves into the specific 5G characteristics and exam-
ines the solutions proposed for the challenges arising from these
characteristics. This includes the adjustment of FL processes and
parameters, as well as the techniques employed in detection. How-
ever, certain challenges were either given inadequate attention or
completely overlooked, underscoring the necessity for further re-
search. Additionally, alternative solutions can be envisioned for
those challenges that were addressed.

To boost FL IDS performance in complex 5G environments, chal-
lenges like communication overhead and scalability can be ad-
dressed using techniques such as model compression, gradient
sparsification, and Decentralized FL. Unsupervised FL IDS is es-
sential for real-time analysis, but it’s more complex due to no data
access and less efficiency in heterogeneous data. Heterogeneity
introduces challenges related to data and behavior diversity, sys-
tem differences, and confidentiality requirements. Techniques like
clustering and personalization, such as TL, can be used. System
heterogeneity, driven by resource constraints, can be tackled with

solutions like data distribution, memory management, and innova-
tive approaches for resource-constrained devices. Asynchronous FL
allows training across devices with varying capabilities. Designing
FL-based IDS for dynamic 5G networks faces challenges like partici-
pant changes and concept drift. Adaptive aggregation methods and
clustering solutions can be used. Collaboration of untrustworthy
parties in 5G raises privacy and security challenges, addressed by
techniques like differential privacy. Similarly, a lack of trust causes
poisoning attacks, that need effective mitigation.
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