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REVIEW

Mechanisms of intestinal dysbiosis: new insights into tuft cell functions
Nathalie Coutry , Imène Gasmi, Fabien Herbert, and Philippe Jay

Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France

ABSTRACT
Symbiosis between the host and intestinal microbial communities is essential for human health. 
Disruption in this symbiosis is linked to gastrointestinal diseases, including inflammatory bowel 
diseases, as well as extra-gastrointestinal diseases. Unbalanced gut microbiome or gut dysbiosis 
contributes in multiple ways to disease frequency, severity and progression. Microbiome taxo-
nomic profiling and metabolomics approaches greatly improved our understanding of gut dys-
biosis features; however, the precise mechanisms involved in gut dysbiosis establishment still need 
to be clarified. The aim of this review is to present new actors and mechanisms underlying gut 
dysbiosis formation following parasitic infection or in a context of altered Paneth cells, revealing 
the existence of a critical crosstalk between Paneth and tuft cells to control microbiome 
composition.
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Introduction

The gut microbiome is increasingly recognized as 
a key player in both host physiology and disease 
development. Indeed, alterations in gut microbiome 
composition, or dysbiosis, by environmental factors, 
impairment of host-microbiome interfaces, or per-
turbation in immune responses lead to gastrointest-
inal diseases as well as extra-gastrointestinal 
pathologies. Although the involvement of host 
intrinsic factors or environmental changes in alter-
ing gut microbiome composition and function has 
been well described, the underlying cellular and 
molecular mechanisms remain to be better defined. 
In this review, we aim to give a background of gut 
microbiome features and functions, as well as char-
acteristics and mechanisms of gut dysbiosis, and 
discuss more specifically recent data on the control 
of bacterial homeostasis revealing a critical crosstalk 
between two intestinal epithelial cell types, the 
Paneth and the tuft cells.

Background of microbiome

Plasticity and functions of the gut microbiome

The human gut is the host of trillions of diverse 
microorganisms living in symbiosis with the 

organism, including bacteria, viruses, fungi and 
parasites, collectively termed the microbiome. The 
collective genome of microbes is 150 times larger 
than the human genome1. Recent advances in 
microbiome research revealed that the gut micro-
biome is not passive but is a powerful modifier of 
host biology, affecting nutritional responses,2 

metabolism and immunity2–4 as well as circadian 
rhythmicity.5–9 Moreover, the gut microbiome is 
highly dynamic and plastic; its composition varies 
cyclically with daily feeding/fasting periods.10 

Throughout life, environmental and physiological 
factors such as hormonal changes, life style and 
aging also influence its composition.11 The compo-
sition of the microbiome is complex; although 
most research to date has focused on bacteria, an 
increasing attention is given to non-bacterial 
microorganisms like viruses, fungi, and archaea 
within the gut microbiome. For example, altera-
tions in the enteric virome of colorectal cancer 
(CRC) patients have been revealed by shotgun 
metagenomics analyses, suggesting potential inter-
actions between viruses and bacteria that may con-
tribute to CRC development.12 Likewise, the 
mycobiome, though less studied, has shown dis-
tinct profiles in CRC patients, particularly eleva-
tions in Basidiomycota to Ascomycota ratios and 
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enrichment of Aspergillus species.13,14 Moreover, 
commensal protists are also important elements 
of the gut microbiome however their contribution 
in host-microbiome interactions is still poorly stu-
died. Nevertheless, they can profoundly affect the 
gut epithelium and immune responses, as demon-
strated after mice colonization with Tritrichomonas 
musculis that is able to induce strong epithelial 
remodeling and type 2 immunity.15,16

Microbial composition is relatively simple at 
birth, depending on the mode of delivery, and its 
complexity increases during the 2–3 y after birth in 
part due to nutrition changes.11,17,18 Early life is 
a crucial period for the maturation of the adult 
microbiome, and microbes participate to the edu-
cation of the host’s immune system that eventually 
leads to a functional symbiosis between the host 
and the microbiome. Indeed, a growing body of 
evidence indicates the existence of a”window of 
opportunity” in early life, during which both mice 
and humans need to be exposed to microbes to 
imprint their immune system and shape the host 
physiology.19–22 When the early crosstalk between 
the host and microbes is altered, the defects on 
development and education of specific immune 
subsets can be irreversible and lead to the develop-
ment of disease later in life. Hence, repeated expo-
sure of antibiotics in the first years of life is 
associated with an increased susceptibility to 
allergy and asthma,23,24 or an increased risk of 
developing inflammatory bowel disease (IBD).25 

Another example concerns malnourished children. 
Food is an important leads of microbiome compo-
sition, and malnourished Bangladeshi children dis-
play persistent gut microbiome immaturity, which 
can be partially improved by nutritional interven-
tion but still prevents normal growth of those 
children.26 Along the same line, the hygiene 
hypothesis proposes that modern life style has led 
to a loss of microbial diversity and a decreased 
exposure to microbes during early life. The reduced 
microbiome that colonize host’s mucosal surfaces, 
in turn, leads to hyperstimulation of the immune 
system and might play a role in the increased 
incidence of chronic diseases in developed coun-
tries such as obesity, allergies including food 
allergy, IBD, among many others.27 Given the com-
plexity and the important roles played by the 
microbiome, a classification based on 

compositional patterns would help to develop 
microbiota-based diagnosis, therapies and preven-
tion, opening opportunities for personalized thera-
pies via nutritional or microbial treatments. Yet, 
the identification and characterization of distinct 
patterns in human gut microbial community, 
termed “enterotypes”, is challenging and remains 
in debate.28 Three predominant ecosystems or 
enterotypes have been identified, with predomi-
nant abundance of Bacteroides, Prevotella and 
Ruminococcus genuses, respectively, yet the con-
cept of enterotypes is still under investigation. 
Enterotypes are not nation or continent specific, 
and host parameters such as ethnic origin, age, 
gender or health status do not govern the affiliation 
to a specific enterotype.29

Definition and characteristics of gut dysbiosis

Intestinal homeostasis requires a permanent cross-
talk between microbiome, intestinal epithelial cells 
and immune cells. When this balance is altered, by 
environmental perturbations, genetic defects or 
modifications in host-microbiome interfaces, gut 
dysbiosis develops. Dysbiosis was first commonly 
defined by any modification relative to the compo-
sition and function of resident microbial commu-
nity found in healthy individuals.30 Because 
microbiome composition between healthy indivi-
duals displays a high interindividual variability 
related to geography, age and diet, dysbiosis most 
often refers to changes in microbial communities 
that are associated with an altered physiological 
status such as inflammation or increased transe-
pithelial permeability, or with diseases in which it 
participates to the pathogenesis, diagnosis or 
treatment.31 Importantly, disease-associated dys-
biosis is usually able to reproduce diseases in mod-
els of fecal transplantation, as illustrated in axenic 
mice transplanted with microbiomes derived from 
obese, asthmatic or IBD patients which reproduce 
the respective pathologies.32–34 Gut dysbiosis can 
be linked to a reduction in beneficial microbial 
organisms which can in turn favor overgrowth of 
commensals potentially harmful (termed patho-
bionts), whose expansion can induce inflammation 
and pathology.35,36 Moreover, the diversity of 
microbial organisms is crucial to ensure maximum 
health benefits for the host since the various species 
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exert diverse and non-redundant functions.37,38 

Although not fully established, some studies sug-
gest that a loss in microbial diversity may partici-
pate to disease progression and severity.39–42 Of 
note, dysbiosis involves one or more of these non- 
mutually exclusive characteristics.

Mechanisms responsible for gut dysbiosis

The intestinal mucosa barrier is composed of sev-
eral elements including the outer mucus layer, 
which comprises the commensal gut microbiome, 
antimicrobial peptides (AMPs), and secretory 
immunoglobulin A, the single layer of epithelial 
cells, and the inner lamina propria where immune 
cells reside. Deregulation of these elements com-
promises intestinal barrier integrity and promotes 
gut dysbiosis.43,44 Impaired expression of junc-
tional complexes (adherent junctions, desmo-
somes, claudins) have been reported following 
exposition to several environmental factors. For 
example, a prolonged exposure to high fat diet 
(HFD) induces disruption in mucosal barrier 
integrity with a decrease in goblet cell differentia-
tion and a loss in the tight junction protein claudin 
1.45 Deregulated expression of claudins, tight junc-
tion and adherens junction proteins have also been 
reported in Crohn’s disease patients.46,47

Importantly, the mucus layer provides nutrients 
and attachment sites to some commensals and 
prevents most microbes to reach the epithelial sur-
face, and this interaction is necessary to maintain 
intestinal homeostasis.44 This mucosal barrier is 
altered in pediatric IBD biopsies with a reduction 
in goblet cells and mucin secretion.48 The essential 
role of mucus in epithelial protection has been 
revealed in Muc2-deficient mice which develop 
spontaneous colitis in young mice and display bac-
teria in the crypts in direct contact with the epithe-
lial cells.49,50 Recently, mucus layer composition 
alterations have been found in intestinal tissues 
from type 1 diabetes patients, associated with 
AMPs reduction, bacterial translocation, and dys-
biosis and inflammation.51 Similarly, a defect of the 
colonic mucus has been reported under a standard 
dietary regimen in pre-diabetic, genetically obese 
mice.52 Moreover, a recent study in IL10 deficient 
mice demonstrated that a fiber-deprived gut 
microbiota induces a deterioration of colonic 

mucus, leading to lethal colitis.53 This lethal colitis 
is caused by Th1 immune responses promoted by 
increased activities of mucin-degrading bacteria, 
with the inflammation starting first in regions 
with thinner mucus. Indeed, these changes in the 
mucosal barrier affect mucosal communities. 
Hence, an inverse correlation exists between the 
abundance of Akkermansia muciniphila and dis-
eases such as IBD, obesity and diabetes. 
A. muciniphila is a mucolytic commensal that 
reduces diabetes, obesity and IBD symptoms in 
mice and its use as a probiotic gives promising 
results in obese and diabetic patients.54 

Interestingly, dysbiosis in the mucus layer precedes 
the onset of colitis in a murine model of sponta-
neous ulcerative colitis and is associated with 
a depletion in mucus layer55 These studies show 
the importance of an intact mucosal barrier to 
maintain homeostasis. Loss of compartmentaliza-
tion of microbes and their presence nearby the 
epithelium leads in turn to immune responses 
initiation and inflammation.

Others mechanisms underlying gut dysbiosis 
have been reported such as oxidative stress, bacter-
iophages and secretion of bacterial toxins.56 

Intestinal inflammation is associated with mucosal 
leukocyte infiltration which produce reactive oxy-
gen and nitrogen species. The latter leads, in turn, 
to killing of anaerobic bacteria and therefore to an 
important decrease in microbe populations. The 
role of bacteriophages in maintaining gut micro-
biome homeostasis is an emerging area, and is 
challenging to investigate due to the difficulty to 
provide accurate identification and classification 
because of their high diversity and the absence of 
conserved regions within their genomes. Gut 
inflammation leads to an environmental stress 
that can induce the lytic cycle of bacteriophages 
and therefore a depletion in bacteria abundances 
and reduced diversity by unknown mechanisms, as 
well as activation of innate immunity via the libera-
tion of cellular toxins or nucleic acids which are 
recognized as pathogen-associated molecular 
patterns.57 In the colon, bacteriophages can inter-
act with the heavily O-glycosylated mucin Muc2 
through Ig-like domains and protect the host from 
mucus-penetrating bacteria.58 During inflamma-
tion, changes in mucus composition and glycosyla-
tion status can impact the interaction with 
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bacteriophages and profoundly affect this protec-
tive function and thus participate to dysbiosis 
establishment. Interestingly, oxidative stress and 
bacteriophages can act synergistically to increase 
dysbiosis.59

Finally, bacteriocins share common features 
with bacteriophages. Bacteriocins possess antimi-
crobial properties. They are synthesized by ribo-
somes in Gram-positive and Gram-negative 
bacteria belonging mainly to the Firmicutes phy-
lum, but others belong to Bacteroidetes and to 
Actinobacteria and Proteobacteria phyla.60 They 
are able to kill pathogens by forming pores in 
membranes and cleaving nucleic acids, and possess 
also anti-viral, spermicidal, and anti-cancer 
properties.56 Additionally, bacteriocins can impact 
the immune system, and regulate the niche compe-
tition among commensals and act as a probiotic by 
specifically reducing the abundance of 
pathogens.57,61–63 Notably, although bacteriocins 
display abilities to improve gut barrier function 
and host immune responses, oxidative stress can 
induce the expression of bacteriocins which parti-
cipates to microbial composition shifts in the con-
text of inflammation-induced oxidative stress.64

In addition to the roles played by these distinct 
actors, that can interact to potentialize gut dysbio-
sis severity, on the host side, Paneth cell dysfunc-
tions were shown to be major contributors in gut 
dysbiosis, and current knowledge will be presented 
in the next section.

Paneth cells/dysbiosis

Paneth cell functions

Paneth cells are located at the bottom of the small 
intestinal crypts in close vicinity with intestinal 
stem cells (ISCs), and have a longer life span 
(60 d) than other epithelial cells (3–5 ds). These 
highly specialized cells exhibit ultrastructural fea-
tures of secretory cells with an extensive endoplas-
mic reticulum (ER) and Golgi network and 
numerous secretory granules, and as we will dis-
cuss later on, they are susceptible to ER stress and 
altered autophagy flux. Paneth cells are now recog-
nized to play critical roles in the establishment of 
ISC niche65–70 and regulation of Wnt/β-catenin 
and Notch signaling pathways.71,72 They secrete 

growth factors such as EGF and Wnt ligands 
required for ISC stemness and proliferation.73–75 

Moreover, the importance of Paneth cell metabo-
lism on ISC fate regulation, especially via lactate 
secretion, was recently demonstrated.76

Another key role played by Paneth cells is the 
regulation of innate immunity. Indeed, secretory 
granules contain AMPs such as α-defensins, lyso-
zyme, secretory phospholipase A2, and RegIIIγ, 
which can be secreted into the crypt lumen by 
exocytosis to protect the host against 
pathogens77–82 and to shape gut microbiome 
composition.83 Paneth cells exert their sentinel 
role through Toll-like receptors such as TLR9,84,85 

and NOD2 which is required for α-defensin 
expression.79,86 Likewise, TLR receptors and 
MyD88 signaling are required for RegIIIγ 
expression.80,81 Recently, deletion of Lyz1 in 
epithelial cells further illustrated the major role 
played by Paneth cells in the control of gut micro-
biome integrity.87

Therefore, Paneth cells play major roles in host- 
microbiome interactions by controlling both 
homeostasis with commensals and innate immu-
nity to ensure the host defense against enteric 
pathogens.

Altered Paneth cells

Given the importance of Paneth cells and their 
multiple roles, alterations in their functions are 
associated with failure of gut homeostasis. For 
example, HFD treatment induced Paneth cell 
alterations with abnormalities in secretory gran-
ules, decreased expression of α-defensins 5 and 6, 
and increased expression of ER stress and autop-
hagy markers. These effects were induced by bile 
acids secreted in response to HFD treatment which 
promoted the upregulation of the G protein- 
coupled bile acid receptor TGR5 in Paneth cell 
membrane, and contributed to HFD-associated 
dysbiosis.88 Similarly, overweight and obese sub-
jects display Paneth cell defects,89,90 and consump-
tion of a western diet in mice impacted Paneth cell 
function via the secondary bile acid deoxycholic 
acid produced by Clostridium spp. and subsequent 
activation of farnesoid X receptor and type 
I interferon signaling pathways.90 Moreover, as 
mentioned above, deletion of Lyz1 in epithelial 
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cells also impacted Paneth cell function and pro-
moted remodeling in microbiome composition and 
intestinal inflammation.87

Importantly, Paneth cells are highly susceptible 
to deregulation in three interrelated signaling path-
ways involved in IBD pathogenesis: autophagy, ER 
stress and intracellular sensing.91 Hence, starvation 
for 48 h in mice induced strong decreases in Paneth 
cell AMP levels, and abnormalities in cell ultra-
structure elements with defects in secretory gran-
ules and late degenerative autophagolysosomes.92 

Additionally, alterations in autophagy pathways 
can trigger major Paneth cell defaults with critical 
consequences on their function. Mutations or defi-
ciency of Atg16L1 led to Paneth cell impairments 
similar to that observed in IBD patients and 
Crohn’s disease-like ileitis development.93–95 

Intestinal epithelial specific deletion of Atg7 also 
triggered secretory granules alterations and 
decreased AMP levels,95,96 and Irgmm1 was 
shown to regulate intestinal inflammation in gut 
murine intestine, potentially via autophagy 
modulation.97

In secretory cells, such as Paneth cells, secretory 
proteins undergo folding and maturation in the 
ER. In case the quantity of unfolded proteins 
exceeds the capacity of ER to process these pro-
teins, ER stress occurs and triggers the unfolded 
protein response (UPR) that in turn reduces the 
rate of protein synthesis and ER load. If home-
ostasis cannot be restored, cell apoptosis is trig-
gered to avoid secretion of altered proteins. 
Specific intestinal epithelial cells deletion of Xbp1, 
a transcription factor required for the UPR 
response, resulted in absence of Paneth cells and 
spontaneous enteritis in Xbp1-/- mice. In Xbp1-/+ 

mice, Paneth cells were altered with ER stress and 
reduced number of secretory granules, and XBP1 
was identified as a major risk gene in IBD 
patients.98 Moreover, Adolph et al. showed that 
severe spontaneous Crohn’s disease-like trans-
mural ileitis was established when both UPR and 
autophagy processes were disrupted.95

Altogether, these studies showed that deregu-
lated functions of Paneth cells, involving in parti-
cular alterations in autophagy process and UPR 
response, are associated with intestinal inflamma-
tion. Therefore, a link between Paneth cell-derived 
AMP, the microbiome and the inflammatory status 

was established, yet the underlying cellular and 
molecular mechanisms responsible for gut dysbio-
sis and inflammation still remained to be clarified.

Role in gut dysbiosis

Paneth cells play a crucial role in shaping gut 
microbiome composition via the secretion of 
AMPs; however as discussed above this epithelial 
cell type is highly vulnerable to genetic mutations 
or environmental perturbations. Impairment in 
Paneth cell function greatly impacts the equili-
brium of the crosstalk between microbiome, 
epithelial cells and the immune system, and com-
promises gut homeostasis. Furthermore, in several 
of the murine models reported above, Paneth cell 
disruption was associated with gut dysbiosis 
development.88,90,99 Along the same line, the anti-
microbial lectin RegIIIγ expressed in Paneth cells is 
required to maintain the mucus barrier and 
restrain microbe access to the epithelium, and 
thus prevent the activation of adaptative 
immunity.100

Hence, altered Paneth cells were considered for 
many years as the guards of microbiome integrity, 
and their defects as critical players in gut dysbiosis 
and inflammation.95,101 However, two recent stu-
dies further explored the underlying mechanisms 
and revealed that communication between Paneth 
cells and another important epithelial cell type, tuft 
cells, is required to promote dysbiosis and 
inflammation.102,103

Tuft cells

Functions

Tuft cells represent a rare intestinal epithelial cell 
type (0.4% of epithelial cells), which nevertheless 
plays a crucial role of sentinel by recognizing var-
ious luminal factors and participates to the regula-
tion of mucosal immunity.104–107 These cells can be 
activated by the presence of helminths or protozoa 
in the gut lumen and, via the secretion of 
Interleukin 25 (IL25), they trigger the activation 
and recruitment of type-2 T helper cells (Th2) 
and innate lymphoid cells 2 (ILC2). ILC2 then 
produce Interleukin 13 (IL13) and Interleukin 4 
(IL4) that, in turn, act on epithelial cells through 
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the IL4 and IL13 receptors to induce profound 
remodeling of the epithelium with goblet cell and 
tuft cell hyperplasia, thus facilitating parasites 
expulsion.15,108,109 The initiation of the type 2 
immune response requires the cation channel 
Trpm5, and the metabolite succinate derived from 
the protist Tritrichomonas muris (Tm) can activate 
tuft cells through the succinate receptor Sucnr1.16 

An important study recently revealed an unappre-
ciated diversity in commensal parabasalids from 
the genus Tritrichomonas and showed that two 
closely related species, Tm and T. casperi, differ in 
the excretion of the metabolite succinate and in 
their nutritional niches within the gut 
microbiota.110 These metabolic differences result 
in divergent immune responses in the small intes-
tine, and differential preference for mucus or fiber, 
leading in turn to distinct competition with com-
mensal bacteria. Interestingly, type 2 immunity 
induced by Tm can be modulated by dietary fiber 
composition. Of note, tuft cell activation by the 
helminth Nippostrongylus brasiliensis (Nb) does 
not involve succinate receptor signaling, suggesting 
the existence of alternative mechanisms. Taste 
receptors are also implicated in pathogen recogni-
tion, with Tas1r3 receptor involved in tuft cells 
activation following Tm colonization111 and mem-
bers of the Tas2r family are required to initiate IL25 
production in presence of the parasite Trichinella 
spiralis.112 Thus, pathogen recognition presumably 
relies on different receptor families expressed by 
tuft cells.

Tuft cells are also sensitive to other components 
of the microbiome such as viruses. Tuft cells spe-
cifically express the Cd300lf receptor for murine 
norovirus;113 nevertheless, the human CD300LF is 
not the receptor for human norovirus,114 suggest-
ing that the tropism of murine norovirus for tuft 
cells may exclusively concern rodents. Recently, 
another study showed that, unexpectedly, the 
enteric virus rotavirus is able to infect tuft cells, 
which respond by inducing interferon-related 
pathways.115 This suggests that tuft cells may be 
able to modulate immune responses differentially, 
depending on luminal triggers.

Finally, tuft cells were recently shown to play 
also an important role in bacterial eradication.116 

The authors showed that Shigella, a common bac-
terium involved in human diarrhea, induced 

a hyperplasia of the subtype tuft-2 cells, indepen-
dent from IL13 signaling. Tuft-2 cells sense the 
bacterial metabolite N-undecanoylglycine 
(N-C11-G) through vomeronasal receptor 
Vmn2r26. The activation of the receptor 
Vmn2r26 led to the production of prostaglandin 
D2 that in turn increased mucus secretion by gob-
let cells and initiated antibacterial immunity. Yet, 
opposite results regarding tuft cell-derived prosta-
glandin D2 have been reported in studies assessing 
the role of NAIP – NLRC4 inflammasome activa-
tion in tuft cells, and demonstrating that this path-
way induces a prostaglandin D2 – ILC3 signaling 
pathway that contributes to bacterial pathogen 
clearance in the small intestine.117,118 In addition, 
administration of N-C11-G to intestinal epithelial 
monolayers failed to induce a release of leuko-
trienes or ion influx showing that tuft cells were 
not activated by this ligand in this ex vivo 
context.117,118 Thus, further studies are required 
to explore the recognition of pathogenic bacteria 
specific extracellular ligands by tuft cells. 
Noteworthily, microbes and parasites coexist in 
the same environment, interact and influence 
each other, and several studies reported an impact 
of helminth infection on microbiome 
composition.119–122

Currently, tuft cells are recognized as key actors 
in the initiation of type 2 immune responses in 
a context of parasitic infection, yet other functions 
will be probably discovered in the future.

Signaling molecules associated with tuft cell 
activation

Besides the importance of IL25, other molecules 
can be secreted by tuft cells to initiate a type 2 
immune response following parasitic infection.

Eicosanoids are bioactive lipids derived from 
arachidonic acid that exhibit both pro- and anti- 
inflammatories properties. Although leukotriene 
synthesis occurs in hematopoietic cells, tuft cells 
also express genes required for leukotriene and 
prostaglandin synthesis, such as arachidonate 
5-lipoxygenase (Alox5), Ptgs1 and Ptgs2, leuko-
triene C4 synthase (Ltc4s), Pla2g4a and Hpgds.123 

A recent study showed that tuft cell cysteinyl leu-
kotrienes (cysLTs) act in synergy with IL25 to 
activate type 2 immunity in response to helminth 
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infection, while cysLTs are dispensable for immune 
responses induced by protist colonization.124 

Interestingly, on the opposite, prostaglandin D2 
and its receptor CRTH2 act on intestinal epithelial 
cells to restrain the effects of cytokines produced by 
ILC2 since mice deficient for CRTH2 show 
increased parasite expulsion following infection 
with Nb.117 This evidence suggests that tuft cells 
play dual effector roles, on one hand by their capa-
city to induce a type 2 immunity following parasitic 
infection, and on the other hand by exerting 
a negative feedback loop to avoid the consequences 
of an uncontrolled intestinal inflammation.

Another tuft cell factor, acetylcholine (ACh), has 
been shown to be implicated in response to hel-
minth infection. Indeed, tuft cells are the only 
intestinal epithelial cells expressing the major 
enzyme required for ACh biosynthesis, choline 
acetyltransferase (ChAT).125 The role of the ILC2 
ChAT-ACh pathway in promoting type 2 immu-
nity in response to helminth infection had already 
been identified, since specific ChAT deletion in 
ILC2 altered ILC2 responses and immunity against 
parasite infection.126 However, the role of non- 
neuronal ACh production by tuft cells has long 
remained unknown until two recent studies illumi-
nated critical functions of tuft cell-derived ACh in 
clearing helminth infections. Both studies reported 
delayed worm expulsion in mice with ChAT- 
deficient tuft cells, without a global impairment of 
the type 2 immune response, and identified distinct 
and complementary mechanisms. Following worm 
infections, one of the studies reported increased 
ACh concentrations not only in tuft cells, but also 
in the gut lumen, suggesting a direct action of ACh 
on parasites that purposely secrete in their neigh-
borhood acetylcholinesterase (AChE), the enzyme 
responsible of ACh breakdown.127 Using ex vivo 
worm culture, this study also demonstrated a direct 
effect of ACh on worm fecundity, through worm 
muscarinic ACh receptors.128 The other study 
found that, in infected mice, tuft cell-derived ACh 
stimulates neighboring enterocytes to rapidly 
increase fluid secretion in the lumen to contribute 
to the weep and sweep response that expulses 
worms out of the gut.129 Together, these two 
reports met the identical conclusion that the role 
of tuft cells cannot be limited to their sentinel 
function but also includes an effector function 

revealed by the multifaceted role of ACh secretion 
by tuft cells, following their dramatic amplification 
during type 2 responses.

Besides its role during worm infections, tuft 
cell-derived ACh might also be involved in neu-
roimmune crosstalk in type 2 immunity. The 
neuroimmune crosstalk is an emerging field that 
involves a complex cellular environment includ-
ing specific gut immune populations and specific 
neurons subsets, and how these two systems 
interact together in a coordinated manner is still 
not clear. Interestingly, recent studies highlight 
bidirectional interactions between immune cells, 
especially innate lymphoid cells, and the nervous 
system and provide a better understanding of the 
mechanisms underlying the communication 
between those two systems to regulate tissue 
homeostasis and host defense.130–132 Hence, 
a crosstalk between cholinergic neurons that 
express the neuropeptide U (NMU) and ILC2 
that selectively express the NMU receptor 1, par-
ticipates to the type 2 immune response induced 
by the infection with the helminth Nb to increase 
host defense and worm clearance. This crosstalk 
therefore constitutes one of the mechanisms 
through which the enteric nervous system and 
the immune system integrate signals to maintain 
gut homeostasis.133,134 Additionally, the mamma-
lian nervous system displays dual functions to 
rapidly activate or repress type 2 immunity to 
prevent deleterious effects of prolonged ILC2- 
dependent inflammation. Thereby, β2-adrenergic 
signaling exerts a negative feedback on activated 
ILC2 to restrain ILC2 proliferation and effector 
function against Nb infection,135 and the neuro-
peptide α-CGRP, mainly produced by ChAT+ 

enteric neurons, inhibits ILC2 proliferation in 
an IL-25-induced in vivo activation model.136 

Therefore, the neuroimmune field needs to be 
further explored, for example the role of tuft cell- 
derived ACh deserves attention. Hence, while 
many evidences support the communication 
between neurons and immune cells, how gut 
immune cells or epithelial cells signal to neurons 
to trigger defensive responses is a key remaining 
question.

Thus, tuft cells are key sentinels able to sense 
different luminal cues, including the metabolite 
succinate, and exert immunomodulatory effects 
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via the secretion of various mediators. The intest-
inal microbial ecosystem is highly complex, and 
whether tuft cells might be involved in the control 
of its composition remained unexplored.

A “Paneth cell-succinate-tuft cell-immune 
system” circuit shapes the microbiome 
landscape

Paneth cells were proposed to be the guardians of 
gut microbiome; however, two important studies 
recently converge to demonstrate, in two different 
contexts, that tuft cells are also key regulators of gut 
microbiome, at least in part in a crosstalk with 
Paneth cells.102,103

The metabolite succinate is a key activator of 
tuft cells,16,137,138 and is produced by host cells, 
commensal bacteria, parasitic worms and 
tritrichomonads, suggesting roles of tuft cell suc-
cinate sensing other than antiparasitic effects.-
16,138–140Fung et al. tackled this question and 
showed that microbial-derived succinate can acti-
vate tuft cells and induce a type 2 immune 
response that leads to a profound remodeling of 
intestinal epithelium with a hyperplasia of tuft 
cells, goblet cells as well as Paneth cells. Paneth 
cells displayed structural alterations with 
decreased secretory granules reminiscent to that 
observed in Crohn’s disease patients and 
Atg16L1-deficient murine models,93 leading to 
strong alterations in AMP production. Succinate 
alone was sufficient to induce AMP remodeling, 
but not in mice deficient for tuft cell signaling 
(Trpm5-/- mice) or succinate sensing (Sucnr1-/- 

mice). In addition, type 2 immunity without 
tuft cell activation can trigger AMP remodeling, 
via a direct effect of the type cytokine IL13 on 
intestinal epithelium to remodel AMP expression. 
In return, the microbiome composition is 
strongly impacted and the abundance of mucosa- 
associated microbes is reduced in the ileum.

Finally, the authors questioned tuft cell capacity 
to sense luminal succinate levels and to control in 
return bacterial homeostasis. Succinate is produced 
by commensals during carbohydrate fermentation 
and its level remains normally low due to rapid 
consumption by others bacteria. Evidence provided 
by colitis models suggested that succinate could 
have beneficial effects on the host. Tuft cell 

activation by the metabolite succinate reduced 
chronic intestinal inflammation in mice.141 Along 
the same line, lysozyme deficiency specifically in 
Paneth cells led to microbiota remodeling and 
increased succinate, and reduced inflammation in 
a colitis model.87 Increased succinate luminal levels 
are associated with antibiotics- or Polyethylene 
Glycol (PEG)-induced dysbiosis.137 In PEG- 
treated mice, the authors showed that altered 
AMP expression was present and this remodeling 
required the presence of tuft cells. These data sug-
gest that the metabolite succinate, in a context of 
parasitic infection as well as gut dysbiosis, exerts 
deleterious effects on the host. Importantly, these 
results demonstrate that tuft cells can sense dysbio-
sis through an elevation of luminal succinate and in 
turn modulate AMP expression to alter microbial 
composition.

In summary (Figure 1), this study highlighted 
a novel mechanism by which tuft cells can be 
activated by increased levels of the luminal meta-
bolite succinate, linked to Tm colonization or dys-
biosis, to trigger a type 2 immune response. The 
type 2 cytokine IL13 then induces epithelial remo-
deling and profoundly alters AMP expression in 
Paneth and goblet cells, thus reshaping micro-
biome composition. This study shows that tuft 
cells not only play a crucial role in type 2 immunity 
initiation and antiparasitic action but may have 
also evolved to sense succinate-associated dysbiosis 
and regulate gut microbial landscape via important 
shifts in AMP production.

Importantly, another study revealed the exis-
tence of a crosstalk between Paneth and tuft cells 
to modulate gut microbial homeostasis.102 As dis-
cussed previously, Paneth cells regulate gut micro-
biome and prevent host alteration by pathogen 
colonization. Altered Paneth cells are associated 
with obesity and IBD,89,142 and deficiency in 
defensins143 or lysozyme87 showed Paneth cell cri-
tical role in gut microbiome integrity since 
impaired Paneth cells are drivers of gut dysbiosis 
and inflammation. However, although gut dysbio-
sis and inflammation are associated with various 
pathologies, the mechanisms linking these pro-
cesses to altered Paneth cells are missing. 
Moreover, a potential cooperation between 
impaired Paneth and tuft cells has been suggested 
in IBD models in which an artificial increase in tuft 
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cell numbers improves their inflammatory 
status.141 The authors therefore investigated the 
hypothesis that a crosstalk between both epithelial 
cell types may play a role in gut dysbiosis formation 
and inflammation with the help of a murine model 
with dysfunctional Paneth cells. The transcription 
factor Sox9 is required for Paneth cell 
differentiation,144,145 and it was found that Sox9 
deletion in adult Paneth cells (Sox9LoxP/LoxP;Villin- 
CreERT2 mice leading to Sox9 deletion in intestinal 
epithelial cells) leads to profound alterations in 
their differentiation status with mixed features of 
Paneth and goblet cells, impaired secretory gran-
ules and altered AMP production. Therefore, the 
Sox9LoxP/LoxP;Villin-CreERT2 model constitutes 
a relevant model to address the consequences of 
dysfunctional Paneth cells on intestinal physiology.

Further kinetic investigation of the conse-
quences of altered Paneth cells on intestinal home-
ostasis, especially on gut microbiome composition, 
intestinal permeability, immune status, and intest-
inal epithelium composition, by using various 

murine models and intestinal organoid models 
over time led to the discovery of a multistep 
mechanism responsible for gut dysbiosis and 
inflammation (Figure 2). In a first step, initial 
Paneth defects characterized by a decreased expres-
sion of lysozyme, Mmp7 and defensins, and ectopic 
expression of Muc2 and Klf4 were rapidly induced 
by Sox9 loss. These impairments in Paneth cell 
function led to mild remodeling of gut microbes 
with an increased in succinate production poten-
tial, in the absence of physiological parameters 
alteration. In a second step, tuft cells were activated 
via a succinate-Sucnr1 signaling pathway and trig-
gered the activation of ILC2. Strikingly, the results 
showed that tuft cell-dependent type 2 immune 
response following Paneth cell alterations and 
reshaping of microbiome was independent from 
Trpm5, suggesting that distinct triggers potentially 
activate specific tuft cell signaling pathways, with 
putative different impacts on mucosal immunity. 
In a third step, epithelial cell remodeling was 
induced with tuft and goblet hyperplasia and 

Figure 1. Tuft cell-induced intestinal epithelium remodeling and AMP shifts leading to microbiota reshaping following tuft cell 
activation by microbial-derived succinate. The presence of Tm in the distal intestine or bacterial depletion induced by PEG 
administration (1) lead to enhanced levels of succinate in the lumen that activate tuft cells through Sucnr1 and opening of the ion 
channel Trpm5 (2). IL25, secreted by tuft cells, then activate ILC2 located in the lamina propria (3). Activated ILC2 liberate IL13 which 
can act on stem cells to force cellular differentiation toward tuft, Paneth and goblet cells, thus leading to hyperplasia of these three cell 
types (4). In addition, IL13 induces strong alterations in AMP expression in both Paneth and goblet cells, causing killing of commensals 
and thus promoting alterations in microbiota composition (5). Created with BioRender.com.
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ectopic expression in the small intestine of the 
antimicrobial molecule Resistin-like β (dependent 
from the presence of IL4rα in intestinal epithelial 
cells). This remodeling was associated with 
a concomitant reduction in RegIIIγ/β levels, 
induced by the type 2 cytokine IL13, which thus 
aggravated initial Paneth cell defects and eventually 
triggered dysbiosis. This study revealed a novel 
function of tuft cells as essential actors in gut 
microbiome regulation, via a crosstalk with altered 
Paneth cells. Furthermore, it also highlights an 
unrecognized role of Paneth cells in the mainte-
nance of a balanced microbiome, preventing the 

outgrowth of a succinate-producing altered micro-
biota that may inadequately activate the tuft cell 
anti-parasite response and inflammation, poten-
tially leading to chronic dysbiosis.

Together, these two studies brought major con-
ceptual advances in the understanding of the cel-
lular and molecular mechanisms involved in the 
host-microbiome communication. They revealed 
a major new mechanism by which tuft cells sense 
succinate and initiate a response that leads to 
altered production of Paneth cell-derived AMPs, 
which in turn drives intestinal dysbiosis and 
inflammation. Therefore, the crosstalk between 

Figure 2. Multi-step mechanism responsible for gut dysbiosis and inflammation establishment following a crosstalk between altered 
Paneth cells and tuft cells, involving a succinate-SuncR1 axis and type 2 cytokines. In absence of Sox9, Paneth cell function is altered 
with reduction of Lysozyme and defensins (1), which leads to mild remodeling of microbiota and increased succinate production 
potential (2). Tuft cells sense succinate through Sucnr1 and release Il25 (3). Type 2 cytokines liberated by IL-25-activated ILC2 then 
induce Il4rα-dependent remodeling of epithelial cells including goblet and Paneth cells (4). IL13 secretion also causes reduction of 
RegIII levels, which aggravates Paneth cell defaults (5), eventually leading to gut dysbiosis (6). Hence, tuft cells cooperate with altered 
Paneth cells to drive remodeling in microbiome landscape and intestinal inflammation. Created with BioRender.com.
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Paneth and tuft cells, and not Paneth cells alone, 
orchestrate the gut microbiome landscape and 
inflammation.

Conclusion

Recent advances in microbial metagenomics 
have provided compelling evidence that disrup-
tion in host-microbiota communication is cen-
tral to the frequency, severity, and progression 
of multiple diseases. Yet, the nature of gut dys-
biosis is highly variable and imbalance in micro-
bial communities exhibit a myriad of aspects. 
This suggests that a variety of mechanisms 
may underlie dysbiosis establishment. 
Moreover, several processes may cause the asso-
ciations between dysbiosis and disease develop-
ment: dysbiosis can originate directly from the 
disease itself and in turn contributes to disease 
severity/progression, or dysbiosis resulting from 
impaired communication between environment- 
host-microbiome could be a direct trigger of 
diseases. Future studies performed in humans 
or in preclinical animal models are thus 
required to unravel complex and multifactorial 
mechanisms responsible for gut dysbiosis 
establishment.

Importantly though, two recent studies per-
formed in distinct contexts converge to provide 
new insights into the mechanisms underlying the 
altered communication between the gut micro-
biome, the epithelium and the immune system. 
Tuft cells are able to sense succinate produced by 
an altered microbiome, and in turn impact 
microbiome composition via major reshaping in 
AMP production by Paneth cells, thus promoting 
a more severe reorganization in gut microbial 
landscape. Hence, a crosstalk between Paneth 
and tuft epithelial cells happens to be at the 
core of this communication, thus opening new 
opportunities to identify novel tools to target 
tuft cell-Paneth cell interactions with the ultimate 
goal to prevent and correct gut dysbiosis.

Of note, gut microbiome functions in physiology 
and pathology is a large research domain that we 
could not cover exhaustively. We therefore apologize 
to our colleagues, whose valuable work could not be 
included or cited in this review.
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