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NETWORKED COMPETITIVE BIVIRUS SIS SPREAD WITH
HIGHER ORDER INTERACTIONS∗

SEBIN GRACY† , BRIAN D.O. ANDERSON ‡ , MENGBIN YE§ , AND CÉSAR A URIBE¶

Abstract. The paper studies the simultaneous spread of two competing viruses over a network
of population nodes by also accounting for the possibility of higher-order interactions (HOI). To this
end, we consider a continuous-time time-invariant competitive bivirus networked susceptible-infected-
susceptible (SIS) HOI system. First, we show that, under the assumption that the hypergraph
associated with the system is strongly connected, the model is strongly monotone. Subsequently,
using the Parametric Transversality Theorem of differential topology, we show that, for generic
parameter choices, the system admits only a finite number of equilibria, and that the Jacobian,
evaluated at any equilibrium, is a nonsingular matrix. The aforementioned two findings together
guarantee that the typical behavior of the model is convergence to some stable equilibrium point. The
equilibria of this system are i) the disease-free equilibrium (DFE), ii) single-virus endemic equilibria,
and iii) coexistence equilibria (where both viruses are present in separate fractions of a population
node). We identify a parameter regime that admits the possibility of three equilibria (namely,
the DFE, and two single-virus endemic equilibria) being simultaneously stable. We then provide
sufficient conditions for the existence of a coexistence equilibrium, both for the same parameter
regime as mentioned above, and for a different one. Thereafter, we identify a necessary condition for
the existence of a coexistence equilibrium. Finally, we illustrate our results using several numerical
examples.

Key words. Epidemic processes, competing viruses, finiteness of equilibria, coexistence equi-
librium.

MSC codes. 34D05, 37C75, 92D30

1. Introduction. Epidemics have massively influenced the trajectories of civi-
lizations and societies. Disease outbreaks may accelerate certain changes in society,
such as the large-scale adoption of digital technologies in daily lives, as witnessed dur-
ing the COVID-19 pandemic [25]; permanent shutting down of many small businesses
[26]; exacerbation of social unrest, and the possible weakening and eventual collapse
of existing governments [35]. Given the consequential effects of disease outbreaks,
it has increasingly drawn the attention of several scientific communities besides the
medical community, such as physics [42], mathematics [6], computer science [36], and
economics [5]. The basic quest behind all these efforts is to understand when a disease
spreads in a community and leverage this understanding for the effective design of
disease mitigation/eradication strategies.

Fundamental to such a pursuit has been the development of compartmental mod-
els; some of the most popular models include susceptible-infected-recovered (SIR) [27];
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susceptible-exposed-infected-recovered (SEIR) [31]; susceptible-infected (SI) [23]; and
susceptible-infected-susceptible (SIS) [29, 42]. The reasons why mathematical mod-
els have gained traction across multiple scientific communities are threefold: First,
they provide strict guarantees regarding (some of) the various outcomes associated
with disease outbreaks (in the model framework, of course). Second, the conditions
involved in providing said guarantees can be checked. Lastly, because of the low cost
of simulations, they can generate insightful observations relevant to a real rather than
model epidemic. The present paper deals with a networked SIS model, with each node
in the network being a proxy for a large population, and the interconnection among
the nodes indicating the pathways for the virus to spread. The interest in networked
SIS models is not new; these have been studied since the classical paper [29].

Classic epidemic models pertain to the scenario where there is a single virus
circulating in a metapopulation (i.e., a network of population nodes). It is, however,
not unusual for settings where multiple viruses are simultaneously circulating in a
metapopulation. In such settings, the viruses to be competitive [32] or cooperative
[15]. In the competitive case, infection with one virus rules out the possibility of
simultaneous infection with another virus. Examples of such competitive viruses
include simultaneous circulation of a) multiple strains of influenza A virus [34]; b)
gonorrhea and a strain of partially drug-resistant gonorrhea [7]; and c) influenza A
virus and human respiratory syncytial virus [8]. Other than disease outbreaks, the
notion of competitive viruses also finds resonance in, among other scenarios, product
adoption in a marketplace [2], and the spread of opinions in social networks [33].

The dynamics of competitive networked multi-virus SIS models are more involved
than their single-virus counterparts; see, for instance, [32, 45, 13]. Specifically, the
complexity stems from the fact that competitive networked multi-virus SIS models,
in sharp contrast to single-virus SIS models, exhibit phenomena such as coexistence
(i.e., multiple viruses infecting separate fractions of a population node) and com-
petitive exclusion (i.e., one (or more) virus(es) pushing out the remaining virus(es)).
Motivated by these challenges, these models have received a lot of attention lately; see
[44, 16, 1]. Nonetheless, classical multi-virus SIS models suffer from the following limi-
tation: they do not account for the possibility that an individual might simultaneously
interact with more than one other individual, thus possibly giving rise to behavior that
would not be observed in classical multi-virus SIS models. Consequently, to model
such higher-order interactions (HOI), as has been correctly pointed out in [4], there is
a need to use hypergraphs, 1, i.e., graphs where an edge can connect more than two
nodes. The present paper focuses on the spread of two competing SIS viruses over a
(possibly) directed hypergraph.

Indeed, the topic being studied in this paper is not without precedent. Specifically,
an SIS model on a hypergraph, albeit with certain restrictions imposed on the network
structure, has been studied in [12]; this model relies on the approach proposed in [22],
which is a scalar model. The findings in [22] have been extended to the network case
(i.e., vector case) in [9]; for global convergence to the DFE, a sufficient condition,
simpler than the one in [9, Theorem 5.1, statement ii)], has been provided in [11,
Corollary 3]. Note that the papers [22, 12, 9, 11] do not account for the possibility of
simultaneous circulation of multiple viruses. This limitation has been partly overcome
with a bivirus competitive networked SIS model that admits the possibility of HOI
in [10]. Observe that [10, 9] account for the case when HOIs involve simultaneous
interactions with at most two other individuals (so groups of three individuals), since,

1Simplicial networks (see [18]) have also been used for studying HOI, see [4].
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as noted in [9, Section VI], the analysis for the case where there are more than three
individuals in a group is analogous. Therefore, the present paper will also obey the
same restriction as in the setups of [9, 10].

Paper Contributions. The present paper analyzes a competitive networked
bivirus SIS HOI model. Our analysis significantly extends the existing literature on
such models, by establishing general properties of its equilibria and convergence, as
well as specific conditions for various equilibria to exist (or not). Our main contribu-
tions are as follows:

i) We show that, under the assumption that the aforementioned hypergraph is
strongly connected, the model is strongly monotone; see Theorem 3.1.

ii) We show, by means of the Parametric Transversality Theorem from differ-
ential topology, that for generic parameter choices, the system has a finite
number of equilibria, and that the associated vector field zero is nondegener-
ate; see Theorem 3.2. Leveraging Theorems 3.1 and 3.2, it turns out that, for
generic parameter choices, the system converges to some stable equilibrium
point; see Theorem 3.3.

iii) We identify a parameter regime that admits three equilibria (a single-virus
endemic equilibrium corresponding to each of the two viruses, and the DFE)
that are simultaneously locally exponentially stable; see Proposition 4.1.

iv) A parameter regime that admits at least one coexistence equilibrium, when
the single-virus endemic equilibria corresponding to each of the two viruses
are unstable, has been identified in [10, Theorem 5.4]. We provide a novel
proof for a special case of [10, Theorem 5.4]; see proof of Proposition 5.1. For
the same parameter regime, we show that there exists an unstable coexistence
equilibrium even when the single-virus endemic equilibria corresponding to
each of the two viruses are stable; see Theorem 5.2. Further, we show that
for the same parameter regime as covered by Proposition 4.1, there exists an
unstable coexistence equilibrium; see Proposition 5.3.

v) We identify a necessary condition for the existence of a coexistence equilib-
rium; see Proposition 5.4.

As a byproduct, we also make the following auxiliary contributions. For the
directed hypergraph associated with our system, we provide two algebraic character-
izations for strong connectivity; see Proposition 2.2 and Corollary 2.4. We identify
a sufficient condition for two single-virus endemic equilibrium (corresponding to each
of the two viruses) to be simultaneously unstable; see Proposition 4.3. For the special
case where there is only one virus circulating in the population, we secure a condition
for local asymptotic stability; see Theorem 4.4.

Some of the results in this paper have appeared in the Proceedings of the 2024
American Control Conference [14]. Note that Proposition 2.2, Corollary 2.4, Corol-
lary 2.5, Lemma 2.9, Theorem 3.1 (and hence Lemma 2.11), Theorem 3.2 (and hence
Lemma 2.6), Theorems 3.3 and 4.4, and Propositions 4.1, 5.3 and 5.4 were not in-
cluded in [14].

Structure of the Paper. The paper is organized as follows. We gather all the
notations used in the sequel, and recall certain graph-theoretic notions of pertinence
in the rest of this section. We introduce the competitive networked bivirus SIS model
with HOI, and formally state the problems of interest in Section 2. Our main results
are split across Section 3, 4 and 5. Simulations to illustrate our theoretical findings
are provided in Section 6. Finally, we summarize our paper, and list a few problems
of interest to the wider community in Section 7.
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1.1. Notations. We denote the set of real numbers by R, and the set of non-
negative real numbers by R+. For any positive integer n, we use [n] to denote the
set {1, 2, ..., n}. The ith entry of a vector x is denoted by xi. The element in the ith

row and jth column of a matrix M is denoted by Mij . We use 0 and 1 to denote the
vectors whose entries all equal 0 and 1, respectively, and use I to denote the identity
matrix, while the sizes of the vectors and matrices are to be understood from the con-
text. For a vector x we denote the diagonal square matrix with x along the diagonal
by diag(x). For any two real vectors a, b ∈ Rn we write a ≥ b if ai ≥ bi for all i ∈ [n],
a > b if a ≥ b and a ̸= b, and a ≫ b if ai > bi for all i ∈ [n]. Likewise, for any two
real matrices A,B ∈ Rn×m, we write A ≥ B if Aij ≥ Bij for all i ∈ [n], j ∈ [m], and
A > B if A ≥ B and A ̸= B. For a square matrix M , we use σ(M) to denote the
spectrum of M , ρ(M) to denote the spectral radius of M , and s(M) to denote the
largest real part among the eigenvalues of M , i.e., s(M) = max{Re(λ) : λ ∈ σ(M)}.
We denote a subset by P ⊆ Q, a proper subset by P ⊂ Q, and a set difference by
P \Q.
A real square matrix A is called Metzler if all its off-diagonal entries are nonnegative.
If A(= [aij ]n×n) is a nonnegative matrix, then ρ(A) decreases monotonically with a
decrease in aij for any i, j ∈ [n]. The matrix A is reducible if, and only if, there is
a permutation matrix P such that P⊤AP is block upper triangular; otherwise, A is
said to be irreducible. If a nonnegative A is irreducible, and Ax = y for x > 0, then
y > 0, and y cannot have a zero in every position where x has a zero.

1.2. Graph theoretical notions. The notion of hypergraphs will play a crucial
role in our analysis. Here, we recall certain concepts related to hypergraphs that will
be needed in the sequel.

Note that the hypergraphs of interest in this paper have two important character-
istics: they are directed, and the head vertex set of any hyperedge is always a single
vertex; the latter is a consequence of the restriction imposed in this paper that an
individual in node i can simultaneously interact with individuals belonging to at most
two different nodes, say node j and node ℓ. For such a hypergraph H = (V, E), where
V is the vertex set, and E is the set of hyperedges, each hyperedge e ∈ E is defined
by an ordered pair e = (S, v) where S is a set of tail vertices and v ∈ V is a head
vertex. In fact, each hyperedge consists of either a simple edge joining two vertices or
a pair of edges leaving from two possibly different vertices but terminating in a single
vertex. For the special case where all tail vertex sets have one element, the notions of
directed hypergraph and directed graph coincide.

Following the nomenclature in [3], we say that a hyperpath from a set of vertices
V1 to a single vertex t is an alternating sequence of vertices and hyperedges P =
{S, e1, v2, e2, v3, . . . , ek, t} such that

i) For each j = 1, 2, . . . , ℓ, there holds ej = (Sj , vj+1) for some Sj satisfying
Sj ⊆ S ∪ {v2, v3, . . . , vj−1}, and

ii) For each j = 1, 2, . . . , ℓ+ 1, there holds vj ∈ ∪ℓ
j=2Sj

Thus, each hyperedge used in the hyperpath must be a hyperedge of H, all the tail
vertices of a given hyperedge must have been reached previously in the hyperpath,
and the head vertex is in a tail vertex of another hyperedge. A directed hypergraph
is strongly connected when, between any two vertices, there is a hyperpath.
It is clear that this is an equivalence relation for the vertices, and paralleling the situ-
ation applicable for a directed graph, the vertices of a hypergraph can be partitioned
into subsets, with each subset constituting vertices that are maximally strongly con-
nected. Further, from such a partition, a condensation graph can be constructed, with
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each vertex corresponding to one maximal strongly connected set of vertices of the
original hypergraph, and with an edge directed from one vertex of the condensation
graph, call it a, to another, call it b, when the corresponding vertex sets Sa and Sb of
the original hypergraph have the property that there is a hyperedge from Sa to any
vertex in Sb. The condensation graph is an acyclic directed graph.

As such, and assuming the original hypergraph is not strongly connected, the
condensation graph has more than one node, and the condensation graph has at least
one leaf node. Consequently, in the hypergraph, there is one maximally strongly
connected set of vertices from which no other vertex, outside that set, is reachable.
If the vertex set is denoted by S0, there is no vertex v outside S0 such that for H0 a
subset of S0, (H0, v) is an edge of the hypergraph.

2. Problem Formulation.

2.1. Model. Consider a network of n nodes. A node represents a well-mixed2

population of individuals; the size of the population is fixed. We suppose that there
are two viruses, say virus 1 and virus 2, spreading over such a network. Throughout
this paper, we will assume that the two aforementioned viruses are competing with
each other, which implies that no individual can be simultaneously infected with
virus 1 and with virus 2. Through pairwise or higher-order interactions (HOI) (which
we describe in more detail below), a healthy individual in node i gets infected with
virus 1 (resp. virus 2) due to contact with either other individuals who are infected
with virus 1 (resp. virus 2). When, at a given time instant, a single interaction is
involved (i.e., between two individuals in node i or between an individual in node i
and an individual in node j), we say that the infection is due to pairwise interactions.
An individual in node i might also be infected with virus 1 (resp. virus 2) due to
simultaneous interactions with infected individuals in nodes j and ℓ, where, with j
being possibly equal to ℓ either a) j = i, and/or ℓ = i, or b) j, ℓ are neighbors of i.
Such interactions are referred to as higher-order interactions (HOI).

We assume that the pairwise infection (resp. HOI) rate with respect to virus k
is the same for all nodes, i.e., βk

1 (resp. βk
2 ) for all i ∈ [n] and k ∈ [2]. An individual

infected with virus k, depending on its healing rate δki , recovers from said infection and
becomes susceptible to again being infected by virus 1 or by virus 2. For a given node,
all individuals in it have the same healing rate with respect to virus k; individuals
in different nodes possibly have different healing rates. Node i is said to be healthy
if all individuals in node i are healthy; otherwise, we say it is infected. Note that,
within the same node, it is possible for there to exist simultaneously i) a fraction that
is infected with virus 1, and ii) a different fraction that is infected with virus 2.

The spread of the two competing viruses, with the possibility of HOI factored in,
can be modeled using a 2-layer hypergraph, say G. The vertices of G represent the
population nodes. The kth layer denotes the contact hypergraph for the spread of
virus k, where k = 1, 2. More specifically, for each layer of G, there exists a hyperedge
corresponding to i) each pairwise interaction between individuals in nodes j and i,
and ii) each HOI jointly between individuals in node j and individuals in node ℓ,
and individuals in node i. Let Ek denote the hyperedge set corresponding to the kth

layer of G. Let Ak (where akij ≥ 0) denote the matrix, the entries of which capture
the strength of pairwise interactions with respect to virus k. For each node i, let
Bk

i = [bkijℓ] denote the matrix whose entries capture the strength of HOI with respect

2Well-mixed means that the probability of any two individuals in a node interacting with each
other is the same.



6 S. GRACY, BDO ANDERSON, M. YE, AND CA URIBE

to virus k. The rows and columns of Bk
i are indexed by j and ℓ, which are the tail

vertices of the hyperedge linking those vertices to vertex i. Clearly, the matrix must
be symmetric. It is, however, easier when j ̸= ℓ, to take each of (Bk

i )jℓ and (Bk
i )ℓj

to be one-half the total strength of the interaction attributable to the hyperedge. To
summarize, for the kth layer of the hypergraph G, there exists a directed hyperedge
from node j to node i or from nodes j, ℓ to node i if, and only if, akij > 0 or bkijℓ > 0.

Note that βk
i can be considered the base infection rate for virus k for pairwise

(i = 1) and HOI (i = 2) interactions, while akij and bkijℓ are parameters that scale this
base rate. We choose this notation for convenience and to be consistent with past
literature concerning HOI models ([9, 10, 11]), but point out that our formulation
allows complete heterogeneity in infection rates for each node, in line with classical
SIS bivirus literature [44].

We use xk
i (t) to denote the fraction of individuals infected with virus k in agent i

at time instant t. The evolution of this fraction can, therefore, be represented by the
following scalar differential equation [10, Section 5]. Specifically, for i = 1, 2, . . . , n,
we have

ẋ1
i =− δ1i x

1
i + β1

1(1− x1
i − x2

i )
∑n

j=1 a
1
ijx

1
j + β1

2(1− x1
i − x2

i )
∑n

j,ℓ=1 b
1
ijℓx

1
jx

1
ℓ

ẋ2
i =− δ2i x

2
i + β2

1(1− x1
i − x2

i )
∑n

j=1 a
2
ijx

2
j + β2

2(1− x1
i − x2

i )
∑n

j,ℓ=1 b
2
ijℓx

2
jx

2
ℓ(2.1)

Define D1 = diag(δ1i ), where i = 1, 2, . . . , n, and define D2 analogously. Define
X1 = diag(x1

i ), where i = 1, 2, . . . , n, and define X2 analogously. The matrices
Ak and Bk

i for each i ∈ [n] and k ∈ [2] are as defined previously. Let xk =[
xk
1 xk

2 . . . xk
n

]⊤
for k = 1, 2.

Therefore, in vector form, equation (2.1) can be written as:

ẋ1 =−D1x1 + β1
1(I −X1 −X2)A1x1+

β1
2(I −X1 −X2)((x1)⊤B1

1x
1, (x1)⊤B1

2x
1, . . . , (x1)⊤B1

nx
1)⊤

ẋ2 =−D2x2 + β2
1(I −X1 −X2)A2x2+

β2
2(I −X1 −X2)((x2)⊤B2

1x
2, (x2)⊤B2

2x
2, . . . , (x2)⊤B2

nx
2)⊤(2.2)

Note that (x⊤B1x, x
⊤B2x, . . . , x

⊤Bnx)
⊤ =


x⊤B1x
x⊤B2x

...
x⊤Bnx

. We will need the Jacobian of

the right side of (2.2), and we note for this purpose, using the symmetric nature of
Bi, that

∂

∂xj
(x⊤Bix) = 2x⊤Biej

and so

(2.3) ∇


x⊤B1x

x⊤B2x

.

.

.

x⊤Bnx

 = 2


x⊤B1

x⊤B2

.

.

.

x⊤Bn

 .

We note that system (2.2) is a special case of [10, system 5.5] in the following
sense: System (2.2) only accounts for the case where virus 1 (resp. virus 2) spread
only due to contact with the infected individuals. In contrast, the model in [10] (see
[10, system 5.5]) allows for the possibility of the viruses to spread through additional
mediums such as a water distribution network, a public transit network, etc.



NETWORKED COMPETITIVE BIVIRUS SIS SPREAD WITH HOI 7

Remark 2.1. Note that setting βk
2 = 0 for k = 1, 2 results in system (2.2) coin-

ciding with the classic networked bivirus SIS model, see [44] and references therein.
Setting, for all t ∈ R≥0, x

1(t) = 0 (resp. x2(t) = 0) results in system (2.2) coinciding
with the model used for studying the spread of a single virus over hypergraphs in [9].

The Jacobian of system (2.2) evaluated at an arbitrary point, (x1, x2), in the state
space is as given in (2.4).

(2.4) J(x1, x2) =

[
J11 J12
J21 J22

]
,

where

J11 =−D1 + β1
1(I −X1 −X2)A1 − diag(β1

1A
1x1)+

β1
2(I −X1 −X2)O1(x

1)− β1
2 diag((x

1)⊤B1
i x

1)i=1,2,...,n(2.5)

J12 =− diag(β1
1A

1x1)− β1
2 diag((x

1)⊤B1
i x

1)i=1,2,...,n(2.6)

J21 =− diag(β2
1A

2x2)− β2
2 diag((x

2)⊤B2
i x

2)i=1,2,...,n(2.7)

J22 =−D2 + β2
1(I −X1 −X2)A2 − diag(β2

1A
2x2)+

β2
2(I −X1 −X2)O2(x

2)− β2
2 diag((x

2)⊤B2
i x

2)i=1,2,...,n(2.8)

The terms O1(x
1) and O2(x

2) are as given in (2.9), being obtained from (2.3):

(2.9) O1(x
1) = 2


(x1)⊤B1

1
(x1)⊤B1

2
...

(x1)⊤B1
n

 O2(x
2) = 2


(x2)⊤B2

1
(x2)⊤B2

2
...

(x2)⊤B2
n


We need the following assumption so as to ensure that the model is well-defined.

Assumption 1. The matrix Dk, for k = 1, 2, is a positive diagonal matrix. The
matrix Ak, for k = 1, 2, and Bk

i for i ∈ [n] and k ∈ [2] is nonnegative.

We define the set D as follows:

(2.10) D := {(x1, x2) | xk ≥ 0, k = 1, 2,
∑2

k=1 x
k ≤ 1}.

It is known that the origin is always an equilibrium for system (2.2), and, under
Assumption 1, the set D is positively invariant; see [10, Lemma 5.1]. The fact that
D is positively invariant guarantees that the state values xk

i , k ∈ [2], i ∈ [n], stay in
the [0, 1] interval for all time instants. Given that the states represent fractions of a
population node that is infected, values outside the [0, 1] interval do not correspond
to physical reality.

The model in System (2.2) has three kinds of equilibria, viz. healthy state or
disease-free equilibrium (DFE), (0,0); single-virus endemic equilibria corresponding
to virus k of the form (x̄k,0), where 0 ≪ x̄k ≪ 1 for k = 1, 2; and coexisting equilibria,
(x̄1, x̄2), where, as we will show in Lemma 2.6, 0 ≪ x̄1, x̄2 ≪ 1, and x̄1 + x̄2 ≪ 1.
We will use the terms “single-virus endemic equilibria” and “boundary equilibria”
interchangeably. Note that it is not known if the single-virus endemic equilibria
corresponding to virus k are necessarily unique; the papers [9, 10] identify conditions
for the existence of a single-virus endemic equilibria corresponding to virus k, but
remain silent on the question of uniqueness.
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2.2. Strong connectivity for hypergraphs. Recall that a directed hyper-
graph is strongly connected when, between any two vertices, there is a hyperpath. In
this subsection, we will provide an algebraic characterization of the notion of strong
connectedness in hypergraphs, and state and prove several properties of the matrices
associated with a hypergraph that would be useful in proving some of the main results
of this paper. For ease of exposition, we recall the single-virus networked SIS HOI
model, which, as noted previously, is a special case of the model in (2.2).

ẋ(t) =−Dx(t) + β1(I −X)Ax(t)+

β2(I −X)(x(t)⊤B1x(t), x(t)
⊤B2x(t), . . . , x(t)

⊤Bnx(t))(2.11)

Let G denote the hypergraph associated with system (2.11), and note that the hyper-
graph G is the same as the 2-layer hypergraph of system (2.2) if the latter consists of
a single layer.

With the graph G defined, the following proposition gives an algebraic character-
ization of the notion of strong connectedness in hypergraphs.

Proposition 2.2. Consider system (2.11). The following two conditions are
equivalent:

i) The hypergraph G is not strongly connected.
ii) There exists a strict subset S0 of the vertex set V, assumed to have |S0| =

n0 < n, such that if the vertices are ordered so that all vertices in S0 appear
before the remaining n1 = n − n0 vertices, then the matrices A and Bi have
the following structural properties:

(2.12) A =

[
A00 A01

0 A11

]

and for all i /∈ S0, i.e., for all i ∈ {n0 + 1, . . . , n},

(2.13) Bi =

[
0 (Bi)01

(Bi)10 (Bi)11

]

Proof. Suppose that the hypergraph G is not strongly connected. Construct S0

as described in subsection 1.2. If the A10 (i.e., 2-1) block of A had a nonzero element,
this would indicate the existence of a simple edge from one vertex in S0 to a vertex
in V \ S0, which would contradict the defining property of S0 that there is no join
of a single vertex in S0 to a vertex outside S0. Similarly, if the (Bi)00 or 1-1 block
of Bi had a single nonzero entry for some i /∈ S0, this would indicate the existence
of a vertex pair of S0 with a hyperedge to a vertex i outside S0. Hence the zero
entries of A and Bi are a necessary consequence of the lack of strong connectedness
of the hypergraph. The argument is very straightforward to reverse, to complete the
demonstration of the equivalence of the two conditions

Proposition 2.2 is a generalization to hypergraphs of the well-known connection
between the notion of irreducibility of the adjacency matrix and strong connectivity of
a directed graph. There is an additional property of nonnegative irreducible matrices
that is useful to generalize to the hypergraph context. Recall first that a nonnegative
matrix A is irreducible if and only if for any nonnegative and nonzero vector x, the
vector Ax has at least one nonzero entry in the same position as where x has a zero
entry (see Section 1.1). The following is a generalization of this idea.

Lemma 2.3. Consider system (2.11). Let x be an arbitrary nonnegative but non-
zero n-vector and suppose that j1, j2, . . . , jn1

denote the indices of the zero entries of
x. Then under the condition that the entries (Ax)jk of Ax and the scalars x⊤Bjkx for
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all k = 1, 2, . . . , n1 are all zero, the hypergraph is not strongly connected. Conversely,
if the hypergraph is not strongly connected, there exists such a nonnegative x such that
the nominated quantities are zero.

Proof. Suppose there exists a nonnegative but nonzero x for which the condition
of the Lemma statement is fulfilled. Reorder the entries of x and correspondingly the
rows and columns of A and the Bi, including the indexing of this matrix set, so that
the nonzero entries of x occur before all the zero entries. If the last n1 entries of Ax are
all zero, it follows that A has the form of (2.12). Next, notice that x⊤Bix is nonzero
precisely if the subblock matrix of Bi formed from its first n0 rows and columns is
nonzero. So if x⊤Bjx is zero for all j = n0+1, n0+2, . . . , n, equation (2.13) holds for
all such Bj , i.e., the lack of strong connectivity is established. Conversely, suppose
there is a lack of strong connectivity. With the structure defined in Proposition 2.2,
any x with the last n1 entries zero will satisfy the conditions of the lemma.

The following corollary is almost immediate by negation of Lemma 2.3.

Corollary 2.4. Consider system (2.11). The hypergraph G is strongly con-
nected if, and only if, for any nonnegative, nonzero x for which entries j1, . . . jn1

constitute the set of zero entries, either the corresponding entries of Ax must contain
one that is nonzero and/or one of the x⊤Bjkx must be nonzero

Next, we turn our attention to showing that the irreducibility of a matrix including
A and the Bi (defined as in system (2.11)) is a consequence of the strong connectivity
of the hypergraph. Indeed, we have the following corollary:

Corollary 2.5. Consider system (2.11) and suppose that the hypergraph G is
strongly connected. Let each wi, for i = 1, 2, . . . , n, be a strictly positive vector. Then

for any positive β1, β2, the matrix β1A+ β2


w⊤

1 B1

w⊤
2 B2

...
w⊤

nBn

 is irreducible

Proof. We shall prove the negation of the claim, by showing that if irreducibility
fails, then the hypergraph is not strongly connected. Accordingly, suppose there
exists a nonzero x > 0 such that if the zero entries of x are in positions j1, j2, . . . , jn1

,
then the corresponding entries (Ax)jk of Ax are zero as are all w⊤

jk
Bjkx. Without

loss of generality, reorder the vertex numbering so that vertices j1, j2, . . . , jn1
become

vertices n0+1, n0+2, . . . , n. This implies that the matrix A satisfies (2.12), while, for
i = n0+1, n0+2, . . . , n, the matrix Bi satisfies (2.13). Therefore, by Proposition 2.2,
it follows that the hypergraph is not strongly connected.

Notice that if either or both of the two matrices appearing in the statement of Corol-
lary 2.5 are multiplied on the left by a diagonal matrix with positive diagonal entries,
the conclusion of Corollary 2.5 remains true.

In light of the above, we adopt the following assumption in the present paper.

Assumption 2. The hypergraph Gk for each k ∈ [2] is strongly connected.

2.3. Problem Statements. With respect to system (2.2), we aim to answer
the following questions in this paper:

i) What is the typical behavior that the trajectories exhibit as time goes to
infinity? (For example, can chaos or limit cycles occur, or is there always
convergence to an equilibrium?)
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ii) Can a parameter regime be identified such that multiple (three, to be precise)
equilibria are simultaneously (locally) stable?

iii) Supposing that x2(t) = 0 for all t (resp. x1(t) = 0 for all t), provide a
sufficient condition for local exponential convergence to a single-virus endemic
equilibrium of virus 1 (resp. virus 2).

iv) Supposing that the reproduction number of each virus is greater than one,
identify sufficient conditions for the existence of a coexistence equilibrium.
Furthermore, establish stability properties of such an equilibrium based on
knowledge of the stability properties of the boundary equilibria.

v) Identify a sufficient condition which guarantees that no coexistence equilib-
rium can exist.

2.4. Preliminary Lemmas. In this subsection, we secure certain preliminary
results on the nature of equilibria of system (2.1), and recall certain known results
on irreducible matrices. These results will play a crucial role in establishing the main
findings of this paper.

The following lemma restricts the kinds of equilibria that system (2.2) may pos-
sess. The proof is partly inspired from [45, Lemma 3.1].

Lemma 2.6. Consider system (2.2) under Assumptions 1 and 2. If x̄ = (x̄1, x̄2) ∈
D is an equilibrium of (2.2), then, for each k ∈ [2], either x̄k = 0, or 0 ≪ x̄k ≪ 1.

Moreover,
∑2

k=1 x̄
k ≪ 1.

Proof. It is clear that (0,0) is an equilibrium of (2.2). Therefore, in the rest
of the proof, we will show that any non-zero equilibrium x̄ = (x̄1, x̄2) of (2.2) must

satisfy, for each k ∈ [2], 0 ≪ x̄k ≪ 1 and
∑2

k=1 x̄
k ≪ 1.

We start off by showing that x̄1 + x̄2 ≪ 1. For any i ∈ [n], observe that the following
is satisfied:

˙̄x1
i + ˙̄x2

i =− δ1i x̄
1
i − δ2i x̄

2
i + β1

1(1− x̄1
i − x̄2

i )
∑n

j=1 a
1
ij x̄

1
j

+ β1
2(1− x̄1

i − x̄2
i )

∑n
j,ℓ=1 b

1
ijℓx̄

1
j x̄

1
ℓ

+ β2
1(1− x̄1

i − x̄2
i )

∑n
j=1 a

2
ij x̄

2
j

+ β2
2(1− x̄1

i − x̄2
i )

∑n
j,ℓ=1 b

2
ijℓx̄

2
j x̄

2
ℓ(2.14)

Suppose that, for some i ∈ [n], x̄1
i + x̄2

i = 1. Therefore, since, by Assumption 1, δki > 0
for k = 1, 2, and since x̄k

i ∈ D, from (2.14), it is clear that ˙̄x1
i + ˙̄x2

i < 0. However,
since by assumption x̄ = (x̄1, x̄2) is an equilibrium, it must be that ˙̄x1

i + ˙̄x2
i = 0,

which is a contradiction. Therefore, for all i ∈ [n], x̄1
i + x̄2

i < 1, which implies that∑2
k=1 x

k ≪ 1; thus guaranteeing that x̄k ≪ 1 for k = 1, 2.
We are left to show that x̄k ≫ 0 for k = 1, 2. To this end, suppose that x̄1 > 0 is
an equilibrium point for which there exists at least one (but possibly more) i ∈ [n]
such that x̄1

i = 0. Note that the equilibrium version of the first line of equation (2.2)
yields the following:

˙̄x1 =−D1x̄1 + β1
1(I − X̄1 − X̄2)A1x̄1+

β1
2(I − X̄1 − X̄2)((x̄1)⊤B1

1 x̄
1, (x̄1)⊤B1

2 x̄
1, . . . , (x̄1)⊤B1

nx̄
1)⊤(2.15)

By noting that x̄1 is an equilibrium point, and by a suitable rearrangement of terms,
we obtain:

x̄1 =Sx̄1,(2.16)
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where

S =(D1)−1β1
1(I − X̄1 − X̄2)A1 + (D1)−1β1

2(I − X̄1 − X̄2)((x̄1)⊤B1
1 , . . . , (x̄

1)⊤B1
n)

⊤.(2.17)

By Assumption 2, we know that the hypergraph is strongly connected. Therefore,
since, by assumption, x̄1 > 0, from Corollary 2.4, it follows that there exists i ∈ [n]
such that if x̄1

i = 0, then either a) (A1x̄1)i > 0 and/or b) (x̄1)⊤B1
i x̄

1 > 0. Therefore,
since S is a nonnegative matrix (which follows from Assumption 1 and the fact that
I − X̄1 − X̄2 is a positive diagonal matrix), there exists i ∈ [n] such that x̄1

i = 0 yet
(Sx̄1)i > 0. Note that this contradicts (2.16). Hence, if x̄1 > 0 is an equilibrium
point, then it must be that x̄1 ≫ 0. By an analogous argument, it can be shown that
if x̄2 > 0 is an equilibrium point, then it must be that x̄2 ≫ 0, thus completing the
proof.

The following lemmas will be needed for establishing (in)stability of different
kinds of equilibria of system (2.2).

Lemma 2.7. [43, Lemma 2.3] Suppose that M is an irreducible Metzler matrix.
Then r = s(M) is a simple eigenvalue of M , with an eigenvector ζ ≫ 0.

Lemma 2.8. [43, Theorem 2.7] Suppose that N is an irreducible nonnegative ma-
trix. Then,

(i) r = ρ(N) is a simple eigenvalue of N .
(ii) There is an eigenvector ζ ≫ 0 corresponding to the eigenvalue r.
(iii) x > 0 is an eigenvector only if Nx = rx and x ≫ 0.
(iv) If A is a nonnegative matrix such that A < N , then ρ(A) < ρ(N).

Lemma 2.9. Suppose that Λ is a negative diagonal matrix and N is a nonnegative
matrix. Let M be the Metzler matrix such that M = Λ +N . Then, s(M) < 0 if and
only if ρ(−Λ−1N) < 1, and s(M) > 0 if and only if, ρ(−Λ−1N) > 1.

Proof. Let Q be a matrix of all 1’s, and set Nϵ = N + ϵQ. Suppose that
ρ(−Λ−1N) < 1. Then for small enough ϵ > 0, ρ(−Λ−1Nϵ) < 1, due to continuity
of the spectral radius with respect to the entries of the matrix. Since Nϵ is irreduc-
ible, then [32, Proposition 1] implies that s(Mϵ) < 0, where Mϵ = Λ + Nϵ. The
spectral abscissa is a monotone function of ϵ and, since M ≤ Mϵ, it must be that
s(M) ≤ s(Mϵ) and hence s(M) < 0. For the other direction, suppose that s(M) < 0.
Since M < Mϵ, we have that s(M) ≤ s(Mϵ). By choosing ϵ small enough, we obtain
s(Mϵ) ≤ 0. We separately consider the case where s(Mϵ) < 0 and the case where
s(Mϵ) = 0. Suppose that s(Mϵ) < 0, which, given that Mϵ is irreducible Metzler,
from [32, Proposition 1] implies that ρ(−Λ−1Nϵ) < 1. This, from Lemma 2.8, further
implies that ρ(−Λ−1N) < 1. Suppose that s(Mϵ) = 0. Therefore, from [32, Proposi-
tion 1], it must be that ρ(−Λ−1Nϵ) = 1, which, from Lemma 2.8, further implies that
ρ(−Λ−1N) < 1.

Suppose that ρ(−Λ−1N) > 1. By noting that −Λ−1Nϵ > −Λ−1N , and by ap-
plying Lemma 2.8 statement iv), it is clear that ρ(−Λ−1Nϵ) > 1. Since −Λ−1Nϵ is
nonnegative irreducible, from [32, Proposition 1] it must be that s(Mϵ) > 0. Then
for small enough ϵ, s(M) > 0. By reversing the arguments, it can be shown that
s(M) > 0 implies ρ(−Λ−1N) > 1.

Lemma 2.9 generalizes [32, Proposition 1], in that it does not insist that the
matrix N be irreducible.

Lemma 2.10. [37, Proposition 2] Let A ∈ Rn×n be Metzler. Then, A is Hurwitz
if, and only if, there exists an x ∈ Rn such that x ≫ 0 and Ax ≪ 0.
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In classical SIS bivirus systems, there are certain limitations on the trajectories;
those starting on the boundary of D are always inward pointing, see [45, Lemma 3.2].
Hence, it is natural to ask if there are similar restrictions on the trajectories of sys-
tem (2.2). We will address this question in the rest of this subsection. Moreover, we
will be doing so without insisting on the matrices Ak, for k = 1, 2, being irreducible
- this is a sharp contrast from the approach adopted in [45, Lemma 3.2]. We do,
however, invoke an assumption that the hypergraphs Gk are strongly connected.

Lemma 2.11. Consider system (2.2) under Assumptions 1 and 2. Suppose that
the matrices Bk

i for i ∈ [n] and k ∈ [2] are nonnegative. Suppose that the initial
conditions satisfy i) xk(0) > 0 for k ∈ [2], and ii) (x1(0), x2(0)) ∈ D. Then for all
finite t > 0, 0 ≪ xk(t) ≪ 1 for k ∈ [2], and x1(t) + x2(t) ≪ 1.

Proof. Define z := 1 − x1 − x2 (and Z = diag(I − X1 − X2)), and B̂i :=
diag(βi

1A
ixi). Therefore, (2.2) can be rewritten as:

ẋi(t) = −Dixi(t) + B̂iz(t)+

βi
2Z((xi)⊤Bi

1x
i, (xi)⊤Bi

2x
i, . . . , (xi)⊤Bi

nx
i)⊤, i = 1, 2

ż(t) = D1x1(t) +D2x2(t)− [B̂1 + B̂2]z(t)

− β1
2Z((x1)⊤B1

1x
1, (x1)⊤B1

2x
1, . . . , (x1)⊤B1

nx
1)⊤

− β2
2Z((x2)⊤B2

1x
2, (x2)⊤B2

2x
2, . . . , (x2)⊤B2

nx
2)⊤(2.18)

Suppose that for some τ ∈ R≥0, and for some i ∈ [n], zi(τ) = 0. Since zi(τ) =
1−x1

i (τ)−x2
i (τ), it is immediate that either x1

i (τ) ̸= 0 and/or x2
i (τ) ̸= 0. Therefore, a)

sinceD1and D2 are positive diagonal matrices, and b) since, by assumption, zi(τ) = 0,
from the second line in equation (2.18), we have that żi(τ) > 0. This implies that, for
t > τ and t − τ sufficiently small, zi(t) > 0. Note that in the above calculation, the
choice of node i is arbitrary; hence, the argument above applies for all i ∈ [n]. Hence,
we have that zi(t) > 0 for all t and i ∈ [n]. As a result, we obtain z(t) ≫ 0, which
implies that x1(t) + x2(t) ≪ 1. Hence, we have xk(t) ≪ 1 for k ∈ [2].

We now turn to establishing that 0 ≪ xk(t) for all finite t > 0. Suppose that
for some t ∈ R≥0, ℓ entries in the vector x1(t) equal zero. We label these entries as
i1, i2, . . . , iℓ. By Assumption 2, we know that the hypergraph is strongly connected.
Therefore from Corollary 2.4, since x1(t) ≥ 0 for all t ∈ R≥0 (see [10, Lemma 5.1]), it
follows that there exists i ∈ [n] such that [x1(t)]i = 0 yet either [A1x1(t)]i > 0 and/or
(x1)⊤Bix > 0. We assume that this happens for the ith1 entry in x1, i.e., [x1(t)]i1 = 0
yet [A1x1(t)]i1 > 0 and/or ((x1(t))⊤B1

i1
x1(t) > 0. The evolution of the infection level

for virus 1 in node i1 is as follows:

ẋ1
i1(t) = [−D1x1(t)]i1 + [β1

1(I −X1 −X2)A1x1(t)]i1

+ β1
2(1− x1(t)i1 − x2(t)i1)x

1(t)⊤B1
i1x

1(t)

> 0,(2.19)

where the inequality in (2.19) follows by noting that xi1(t) = 0 by assumption, and
either [β1

1A
1x1(t)]i1 > 0 and/or x1(t)⊤B1

i1
x1(t) > 0 as discussed above. This means

that there must exist some time instant t′, with t′ − t not too large, such that x1(t′)
has fewer than ℓ zero entries. Repeating the argument for all the other zero entries in
the vector x1(t′) (indeed, this can be done since the choice of node i1 was arbitrary),
we have that x1(t) ≫ 0. Analogously, we can prove that x2(t) ≫ 0, thus concluding
the proof.
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3. Monotone dynamical systems and competitive bivirus networked
SIS models with HOI. In this section, we establish that the bivirus SIS HOI system
is strongly monotone, and provide a general conclusion on the limiting dynamical
behavior of the same.

Monotone dynamical systems (MDS) are a class of non-linear systems that are
highly appealing in the context of mathematical epidemiology; for an overview of
MDS, see [40, 20]. This is mainly because of the fact that MDS, assuming generic
parameter values,3 have a finite number of equilibria, and converge to a (stable)
equilibrium point for all initial conditions except those lying on a measure-zero set.
The definition of MDS is as follows. Suppose that (x1

A(0), x
2
A(0)) and (x1

B(0), x
2
B(0))

are two initial conditions in int(D) satisfying i) x1
A(0) > x1

B(0) and ii) x2
A(0) <

x2
B(0). Then, if for all t ∈ R≥0 (resp. t ∈ R>0), i) x1

A(t) ≥ x1
B(t) (resp. x1

A(t) ≫
x1
B(t)) and ii) x2

A(t) ≤ x2
B(t) (resp. x2

A(t) ≪ x2
B(t)), then system (2.2) is monotone

(resp. strongly monotone) [20]. In simpler terms, MDS are endowed with a trajectory
ordering property.

3.1. The bivirus HOI system is strongly monotone. The following is the
first main result of this paper.

Theorem 3.1. Consider system (2.2) under Assumptions 1 and 2. Then, sys-
tem (2.2) is strongly monotone.

Proof. First, recall that a system is monotone (resp. strongly monotone) if the
associated Jacobian (or a suitably transformed version of it) is Metzler (resp. irreduc-
ible Metzler); see [19, p. 424]. Consider the permutation matrix P := diag(In,−In),
and observe that PJ(x1, x2)P = [ J11 −J12

−J21 J22
]. By Assumption 1 and Lemma 2.11,

matrices −J12 and −J21, and the off-diagonal terms in J11 and J22 are nonnegative;
thus, implying that PJ(x1, x2)P is Metzler. We are left to show that PJ(x1, x2)P is
irreducible in the interior of the region of interest.

As a connectivity argument reveals, it is intuitively reasonable, and was argued
in [45], that the required irreducibility property will hold provided that J11 and J22
are separately irreducible, and J12 and J21 are both nonzero. Note that the Jacobian
is as given in (2.4). By disregarding certain diagonal summands in the expression for

J11, it is evident that the irreducibility of J11 is equivalent to the irreducibility of Ĵ11,
with

(3.1) Ĵ11 = β1
1(I −X1 −X2)A1 + 2β1

2(I −X1 −X2)


(x1)⊤B1

1
(x1)⊤B1

2
...

(x1)⊤B1
n

 .

In the interior of D, the matrix I − X1 − X2 is nonsingular with positive diagonal
elements. Hence the irreducibility follows using Corollary 2.5, The irreducibility of
J22 follows in the same way.

To see that J12 (and by the same argument J21) is nonzero, suppose that to the
contrary, J12 = 0. This would imply that for some x1 ≫ 0, there holds A1x1 = 0 and
(x1)⊤B1

i x
1 = 0 for all i. Together with Lemma 2.3, this implies that all entries of A1

and all entries of all B1
i are zero, which contradicts Assumption 2.

It is known that under Assumptions 1 and the assumption that the pairwise interaction
matrices Ak are irreducible (see Assumption 3 in Section 4 for a formal statement),
system (2.2) is strongly monotone; see [10, Theorem 5.5]. Indeed, if there are no

3The term “generic” means the following: for all but a set of parameter values that has measure
zero. An algebraic or semi-algebraic set defines this set of exceptional values.
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HOI (i.e., βk
2 = 0 for k = 1, 2), the assumption that Ak is irreducible plays a central

role in establishing that classical bi-virus systems are strongly monotone; see [45,
Theorem 3.6]. Theorem 3.1 shows that for bivirus systems with HOI the irreducibility
of Ak is not required for establishing that the system is strongly monotone.

3.2. Finiteness of the number of equilibria for generic parameter
choices. In this section, we establish that, for generic parameter choices, system (2.2)
has a finite number of equilibria, and furthermore that the associated Jacobian is non-
singular. Note that generic finiteness of the number of equilibria has already been
established, by means of an algebraic geometry approach, in [10, Theorem 5.5], but
[10, Theorem 5.5] does not establish that, for generic parameter choices, the associ-
ated Jacobian is nonsingular. The gap is filled here by use of a different and efficient
approach for proving finiteness of equilibria; the tool is the Parametric Transversality
Theorem from differential topology, see [30, see p. 145] and [17, see p.68]. We use
arguments very much like those in [1]. Essentially because the healthy equilibrium
and the single-virus boundary equilibria can be conveniently studied using single-virus
techniques, it is easily established that there are no continua of equilibria confined
to any boundary, i.e., any continuum of equilibria necessarily includes a continuum
of coexistence equilibria. We focus, therefore, on showing that for generic parameter
values, such equilibria cannot exist. The main result is as follows:

Theorem 3.2. Consider system (2.2) under Assumptions 1 and 2. With any fixed
matrices Ak and nonnegative Bk

i , and the exclusion of a set of values for the entries
of D1, D2 of measure zero, the number of coexistence equilibrium points is finite,
and the associated vector field zero is nondegenerate, i.e., the associated Jacobian is
nonsingular. Similarly, with any fixed D1, D2, and the exclusion of a set of values for
the entries of Ak, Bk of measure zero, the same properties of equilibrium points hold.

Proof: See Appendix.

3.3. Generic convergence. Theorems 3.1 and 3.2 together guarantee that all
the assumptions of Hirsch’s generic convergence theorem [19] are fulfilled. This allows
us to draw conclusions regarding the limiting behavior of system (2.2); we have the
following result.

Theorem 3.3. Consider system (2.2) under Assumptions 1 and 2. For all initial
conditions (x1(0), x2(0)) ∈ D except possibly for a set of measure zero, the system (2.2)
will converge to an equilibrium. If the system does not converge to an equilibrium,
then it is on a nonattractive limit cycle.

In words, Theorem 3.3 establishes that the typical behavior of system (2.2) is con-
vergence to some equilibrium; this could be healthy, or (one of the possibly many)
single-virus boundary equilibria, or a coexistence equilibrium. It further says that
limit cycles, if any, are nonattractive. Note that no further complicated behavior is
allowed; in particular, chaos can be ruled out, see [41]. Thus, Theorem 3.3 answers
question i) raised in Section 2.3. Theorem 3.3 (resp. Theorem 3.2) is more general
than [14, Theorem 2] (resp. [14, Theorem 1]), since [14, Theorem 2] (resp. [14,
Theorem 1]) require the pairwise interaction matrices Ak to be irreducible.

4. Existence and local stability of boundary equilibria. In this section, we
identify a parameter regime that permits three equilibria of system (2.2) to be simul-
taneously locally exponentially stable. Thereafter, for a different parameter regime,
we identify a condition for the existence and instability of a boundary equilibrium. Fi-
nally, for the case when there is only one virus circulating in the network, we identify
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a condition for the existence and local exponential stability of an endemic equilibrium.
As we will see in Remark 4.2, the results in this section offer significantly more insight
into the spread of viruses over hypergraphs than has hitherto been available.

Proposition 4.1. Consider system (2.2) under Assumption 1, and Bk
i ≥ 0 for

all i ∈ [n] and k ∈ [2]. Define, for k = 1, 2, 1Bk ∈ {0, 1}n by (1Bk)i = 1 if Bk
i ̸= 0;

otherwise (1Bk)i = 0. Suppose that the following conditions are fulfilled for k = 1, 2:
a) ρ(βk

1 (D
k)−1Ak) < 1, and

b) min
i∈[n] s.t. Bk

i ̸=0

(βk
1

δki
(Ak1Bk)i +

βk
2

2δki
1⊤
BkB

k
i 1Bk

)
> 2.

Then, the following statements are true:
i) The DFE is locally exponentially stable.
ii) Under Assumption 2, there exist equilibria (x̄1,0) and (0, x̄2) where for k =

1, 2, there holds x̄k ≫ 0, with also x̄k
i > 1

2 for k = 1, 2, for any i such that
Bk

i ̸= 0.
iii) Under Assumption 2, any such equilibrium point (x̄10) is locally exponentially

stable.
iv) Under Assumption 2, any such equilibrium point (0, x̄2) is locally exponen-

tially stable.

Proof. Proof of statement i): Note that the Jacobian evaluated at the DFE is as
follows:

J(0,0) =

[
−D1 + β1

1A
1 0

0 −D2 + β2
1A

2

]
.(4.1)

By assumption, βk
1ρ((D

k)−1Ak) < 1, for k = 1, 2. Therefore, from Lemma 2.9, it
must be that s(−Dk+βk

1A
k) < 0 for k = 1, 2, which, since J(0,0) is a block diagonal

matrix, and since the matrices −D1 + β1
1A

1 and −D2 + β2
1A

2 are the only blocks
along the main diagonal, implies that s(J(0,0)) < 0. Local exponential stability of
the DFE, then, follows from [28, Theorem 4.15 and Corollary 4.3].

Proof of statement ii): Observe that the point (x̄1,0), with x̄1 ≫ 0, is an equilib-
rium of (2.2) (in fact, a single-virus endemic equilibrium of virus 1) if and only if x̄1 is
an endemic equilibrium of (2.11). The same is true when we consider (0, x̄2). Thus,
we focus on (2.11), and drop the superscript k from x̄, A, Bi, D, and 1B for clarity.
Our approach is the same as that in the proof of [9, Theorem 5.1, statement iv)];
the crucial difference is that we establish the claim using Assumption 2, whereas [9,
Theorem 5.1, statement iv)] requires a more restrictive assumption, namely that the
matrix A be irreducible. First, we introduce the following functions: a) h+(z) =

z
1+z

for any z ∈ R≥0; and b) H+(y) = (h+(y1), h+(y2), . . . h+(yn))
⊤ for y ≥ 0. Define

the map H(x) := H+(Āx+(x⊤B̄1x, x
⊤B̄2x, . . . , x

⊤B̄nx)), where Ā := β1D
−1A, and,

for each i ∈ [n], B̄i := β2

δi
Bi. Clearly, a fixed point of map H(·) is an equilibrium

of (2.11). Consider the vector 1⊤
B , as given in the statement of the proposition but

particularized for the single-virus case. Define Y := {y ∈ [0, 1]n | 1
21B ≤ y ≤ 1}. It

turns out that H(y) > 1
21B . To see this, consider the following: For any y ∈ Y ,

H(y) = H+(Āy + (y⊤B̄1y, y
⊤B̄2y, . . . , y

⊤B̄ny)
⊤)

≥ H+(Ā
1

2
1B +

1

4
((1B)

⊤B̄1 . . . , (1B)
⊤B̄n)

⊤1B),(4.2)

where inequality (4.2) comes from the fact that a) y ≥ 1
21B , and b) the function h+(.)
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is monotonic in its argument. Observe that

1

2
(Ā1B)i +

1

4
(1B)

⊤B̄i1B =
1

2

β1

δi

n∑
j=1

aij(1B)j +
1

4

β2

δi
(1B)

⊤Bi1B

=
1

4
αi,(4.3)

where αi := 2β1

δi

∑n
j=1 aij(1B)j + β2

δi
(1B)

⊤Bi1B . Notice that (4.3) holds for ev-
ery i ∈ [n], and that the left hand side of (4.3) is bounded from below by zero.
By statement b) of the proposition hypothesis, it is clear that, for any i such that
Bi ̸= 0, αi > 4. This implies that h+(

1
4αi) > 1

2 . Consequently, we have that
H(y) ≥ H+(

1
4 diag(αi)i=1,2,...,n1B) >

1
21B .

Thanks to Assumption 1, we can be assured that (Āy)i + y⊤B̄iy ≥ 0, which implies
that h+((Āy)i+y⊤B̄iy) ≤ 1. This, in turn, implies that H(y) ≤ 1. This, coupled with
the fact that H(y) > 1

21B as established above, means that H : Y → Y . Therefore,
using Brouwer’s fixed-point theorem [38, Theorem 4.5], we conclude that there exists
a fixed point ȳ ∈ Y such that H(ȳ) = ȳ.

Next, we show that ȳ ≫ 0. To this end, note that any fixed point of H, say ȳ, must
satisfy the following

(4.4)
(Āȳ)i + ȳ⊤B̄iȳ

1 + (Āȳ)i + ȳ⊤B̄iȳ
= ȳi, i = 1, 2, . . . , n

Suppose, to obtain a contradiction, that ȳj1 , ȳj2 , . . . , ȳjk are the zero entries of ȳ.
Then the left side of (4.4) is zero for i = j1, j2, . . . , jk and there must then hold

ȳ⊤B̄j1 ȳ = ȳ⊤B̄j2 ȳ = · · · = ȳ⊤B̄jk ȳ = 0

and also
(Āȳ)j1 = (Āȳ)j2 = · · · = (Āȳ)jk = 0

By Corollary 2.4, it then follows that the hypergraph is not strongly connected, which
contradicts the proposition hypothesis (namely, that Assumption 2 holds). This im-
plies that ȳ ≫ 0.

We will now show that ȳi >
1
2 for i such that Bi ̸= 0. To this end, recall that by

statement b) of the proposition hypothesis, we have the following:

(4.5) min
i∈[n] s.t. Bi ̸=0

(β1

δi
(A1B)i +

β2

2δi
1⊤
BBi1B

)
> 2

Now the mapping y → H(y) maps any y ∈ Y with 1
21B ≤ y ≤ 1n into Y , and the

equilibrium point ȳ is contained in Y . Invoking the lower limit, we observe that for
such a point,

(4.6) (Āȳ)i + ȳ⊤B̄iȳ ≥ (Ā
1

2
1B)i +

1

4
1⊤
BB̄i1B

But in view of (4.5), the inequality in (4.6) means that (Āȳ)i + ȳ⊤B̄iȳ > 1; this, in
combination with (4.4), ensures that ȳi >

1
2 .

Proof of statement iii): Our approach is similar to that in the proof of [9, Theorem 5.1,
statement v)]. Consider the equilibrium point (x̄1,0), and observe that the Jacobian
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evaluated at this equilibrium is as follows:

(4.7) J(x̄1,0) =

[
J̄11 J̄12
0 J̄22

]
,

where

J̄11 = −D1 + β1
1(I − X̄1)A1 − diag(β1

1A
1x̄1)+

β1
2(I − X̄1)O1(x̄

1)− β1
2 diag((x̄

1)⊤B1
i x̄

1)i=1,2,...,n

J̄12 = −diag(β1
1A

1x̄1)− β1
2 diag((x̄

1)⊤B1
i x̄

1)i=1,...,n

J̄22 = −D2 + β2
1(I − X̄1)A2.

The term O1(x̄
1) is as defined in (2.9). We will establish the exponential stability of

the 11 and 22 blocks (i.e., J̄11 and J̄22) separately. Observe that

J̄11 =−D1 + β1
1(I − X̄1)A1 − diag(β1

1A
1x̄1) + β1

2(I − X̄1)O1(x̄
1)− β1

2


(x̄1)⊤B1

1 x̄
1

. . .

(x̄1)⊤B1
nx̄

1

 .

Define the summands

Q1 :=−D1 + β1
1(I − X̄1)A1 + β1

2(I − X̄1)


(x̄1)⊤B1

1
...

(x̄1)⊤B1
n

 , and

Q2 :=β1
2(I − X̄1)


(x̄1)⊤(B1

1)
⊤

.

..
(x̄1)⊤(B1

n)
⊤

− diag(β1
1A

1x̄1)− β1
2


(x̄1)⊤B1

1 x̄
1

. . .

(x̄1)⊤B1
nx̄

1

 .

It is immediate that J̄11 = Q1 +Q2, which implies that J̄11x̄
1 = Q1x̄

1 +Q2x̄
1. Since

x̄1 is a single-virus endemic equilibrium corresponding to virus 1, by taking recourse
to the equilibrium version of the first line of equation (2.2), it is clear that Q1x̄

1 = 0.
Hence, J̄11x̄

1 = Q2x̄
1.

Note that

Q2x̄
1 = β1

2(I − X̄1)


(x̄1)⊤(B1

1)
⊤x̄1

...
(x̄1)⊤(B1

n)
⊤x̄1

− diag(β1
1A

1x̄1)x̄1 − β1
2


(x̄1)⊤B1

1 x̄
1

. . .

(x̄1)⊤B1
nx̄

1

 x̄1.

(4.8)

Denote by (Q2x̄
1)i the ith entry of the vector Q2x̄

1. Therefore, in view of (4.8), we
have the following:

(4.9) (Q2x̄
1)i = −β1

1

(∑n
j=1 a

1
ij x̄

1
j

)
x̄1
i + β1

2(1− 2x̄1
i )((x̄

1)⊤B1
i x̄

1)

We consider its sign, under two circumstances.
Case 1: Suppose that B1

i = 0. Note that by Assumption 2 the hypergraph G is
strongly connected, which, from Corollary 2.5 coupled with Lemma 2.11, implies that

the matrix β1
1A

1+


(x1)

⊤
B1

1

(x1)
⊤
B1

2

.

.

.

(x1)
⊤
B1

n

 is irreducible. Consequently, the hypothesis that B1
i = 0

implies that the ith row of matrix A1 has a positive sum. This, since x̄1
i > 0, implies
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that β1
1

(∑n
j=1 a

1
ij x̄

1
j

)
x̄1
i > 0. Thus, (Q2x̄

1)i < 0.

Case 2: Suppose secondly that B1
i ̸= 0. Therefore, from statement ii), it follows that

x̄1
i > 1

2 . Consequently, 1− 2x̄1
i < 0; thus implying that (Q2x̄

1)i < 0.
Note that, for the analysis above, the choice of index i was arbitrary; therefore,

again, we have (Q2x̄
1)i < 0 for all i ∈ [n]. Hence, since J̄11x̄

1 = Q2x̄
1, it follows

that (J̄11x̄
1)i < 0 for all i ∈ [n]. Note that Assumptions 1 and 2, together with

Corollary 2.5 and Lemma 2.11 guarantee that the matrix J̄11 is an irreducible Met-
zler matrix; the reasons are as detailed in the proof of Theorem 3.1. Therefore, from
Lemma 2.10, it must be that the matrix J̄11 is Hurwitz.
Turning to the 22 block of the Jacobian (i.e., matrix J̄22), consider the matrices
β2
1(D

2)−1A2 and β2
1(D

2)−1(I − X̄1)A2. From Assumption 1, it is clear that
β2
1(D

2)−1A2 is a nonnegative matrix. Since, from statement ii), x̄1 satisfies 0 ≪
x̄1 ≪ 1, it is also clear that β2

1(D
2)−1(I − X̄1)A2 is a nonnegative matrix. Fur-

thermore, we immediately obtain β2
1(D

2)−1(I − X̄1)A2 < β2
1(D

2)−1A2. Therefore,
since the spectral radius of a nonnegative matrix decreases monotonically with a de-
crease in any entry of said matrix (see Section 1.1), it follows that ρ(β2

1(D
2)−1(I −

X̄1)A2) ≤ ρ(β2
1(D

2)−1A2). By assumption, ρ(β2
1(D

2)−1A2) < 1, which implies that
ρ(β2

1(D
2)−1(I − X̄1)A2) < 1, and consequently, from Lemma 2.9, we have that

s(−D2 + (I − X̄1)A2) < 0. Therefore, since J(x̄1,0) is block upper triangular, and
since we have already established that J̄11 is Hurwitz, it follows that s(J(x̄1,0)) < 0.
Local exponential stability of (x̄1,0), then, follows from [28, Theorem 4.15 and Corol-
lary 4.3].

Proof of statement iv): The proof is same as that of statement iii), up to a suitable
adjustment of notation.

Proposition 4.1 answers question ii) raised in Section 2.3. We have the following
remark.

Remark 4.2. Proposition 4.1 highlights an interesting phenomenon that one ob-
serves in bivirus spread over hypergraph but not in classical competitive bivirus set-
tings: identification of a parameter regime that permits three equilibria, namely the
DFE, a single-virus endemic equilibrium corresponding to virus 1, and a single-virus
endemic equilibrium corresponding to virus 2, to be simultaneously locally exponen-
tially stable. In the classical bivirus system, it is impossible for the DFE and an
endemic equilibrium to be simultaneously stable; see [44, Section E].

Observe that Proposition 4.1 guarantees existence of boundary equilibria for the case
when ρ(βk

1 (D
k)−1Ak) < 1. It is quite natural to ask if one is assured of existence

even if the spectral radius inequality was flipped. In order to answer this, we require
a stronger assumption, which is as follows:

Assumption 3. The matrix Ak, for k = 1, 2, is irreducible.

Notice that, due to Proposition 2.2, it is clear Assumption 3 implies Assumption 2;
the converse, however, is not necessarily true. With Assumption 3 in place, we have
the following proposition.

Proposition 4.3. Consider system (2.2) under Assumptions 1 and 3. Suppose
that, for all k ∈ [2], ρ(βk

1 (D
k)−1Ak) > 1. Then system (2.2) has at least three

equilibria, namely the DFE, which is unstable; a single-virus endemic equilibrium
corresponding to virus 1 (x̄1,0); and a single-virus endemic equilibrium corresponding
to virus 2 (0, x̄2). Furthermore, if s(−Di+βi

1(I − X̄k)Ai) > 0 for each i, k ∈ [2] such



NETWORKED COMPETITIVE BIVIRUS SIS SPREAD WITH HOI 19

that i ̸= k, then the equilibrium points (x̄1,0) and (0, x̄2) are unstable.

Proof. Observe that the DFE is always an equilibrium of system (2.2). Sup-
pose that for some k ∈ [2], ρ(βk

1 (D
k)−1Ak) > 1, then from (4.1) it is clear that

s(J(0,0)) > 0. This, in view of [28, Theorem 4.7, statement ii)], guarantees that
the DFE is unstable. Further, from [9, Theorem 5.1, statement vii)] we know that
there exists an endemic equilibrium, x̄k, where 0 ≪ x̄k ≪ 1. Since, by assumption,
ρ(βk

1 (D
k)−1Ak) > 1 for all k ∈ [2], it is also immediate that there exist equilibria,

(x̄1,0) and (0, x̄2), where 0 ≪ x̄k ≪ 1, for k = 1, 2.
Observe that the Jacobian evaluated at the point (x̄1,0) is as given in (4.7). Further,
note that J(x̄1,0) is block upper triangular. By assumption, s(−D1+β1

1(I−X̄2)A1) >
0, which implies that s(J(x̄1,0)) > 0. Consequently, instability of (x̄1,0) follows from
[28, Theorem 4.7, statement ii)]. The instability of (0, x̄2) can be shown analogously,
thus completing the proof.

Note that Proposition 4.3 does not say anything about the situation when one of
the spectral radii is greater than one, and the other is less than one. We discuss this
here. Suppose that s(−D2 + β2

1(I − X̄1)A2) > 0 and s(−D1 + β1
1(I − X̄2)A1) < 0.

Then, since by assumption s(−D2 + β2
1(I − X̄1)A2) > 0, from Proposition 4.3 it is

clear that (x̄1,0) is unstable. By assumption, s(−D1 +β1
1(I − X̄2)A1) < 0. However,

whether or not s(−D1 + β1
1(I − X̄2)A1) < 0 guarantees (local exponential) stability

of (0, x̄2) is an open question. So no conclusions can be drawn regarding the stability
of (0, x̄2).

While Proposition 4.3 assures existence of single-virus endemic equilibria given
satisfaction of a spectral radius condition, without further information it remains silent
on two aspects of said equilibria. First, it is not clear if there is a unique single-virus
endemic equilibrium for a given virus k (for the classic bivirus network SIS model, it
is known that the single-virus endemic equilibrium is unique). Second, the stability
of said equilibria, even in a local sense, is not known. For the single-virus case, a
sufficient condition for global stability of the endemic equilibrium has been identified
in [9, Theorem 5.1, statement viii)]. Regardless, the following caveat with respect to
said result should be noted: [9, Theorem 5.1, statement viii] is reliant on that fact that
for a given β1, there exists a small enough β2 such that for the resulting single-virus
system the endemic equilibrium is globally exponentially stable. This is clearly not
the case if one were to seek a sufficient condition where both the parameters β1 and
β2 are arbitrary. It turns out, however, that one can identify a sufficient condition
for local exponential attractivity of the endemic equilibrium in the single-virus case,
even when the parameters β1 and β2 are arbitrary. We have the following theorem.

Theorem 4.4. Consider system (2.11) under Assumptions 1 and 3. Suppose that
the parameters associated with system (2.11) are generic. If β1ρ(D

−1A) > 1, then
there exists an equilibrium point x̄ such that x̄ ≫ 0. Furthermore, the point x̄ is
asymptotically stable.

Proof. First, observe that [10, Theorem 4.7] implies that system (2.11) is an
irreducible monotone system, and that, for generic parameter choices, for almost all
initial conditions, the dynamics converge to a stable equilibrium point. Note that
for system (2.11) the origin is an equilibrium, and there are no other equilibria on
the boundary of the set [0, 1]n; see [9, Lemma 5.1, statement iii)]. By assumption,
β1ρ(D

−1A) > 1, which, from Lemma 2.9 implies that s(−D+β1A) > 0. Consequently,
from the analysis in the proof of Proposition 4.1, it is clear that the origin is unstable.
Since β1ρ(D

−1A) > 1, it follows from [9, Theorem 5.1, statement vii)] that there exists
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an equilibrium x̄ such that x̄ ≫ 0. Thus, all the hypotheses of [40, Theorem 2.8] are
satisfied, and consequently we conclude that s(J(x̄)) ≤ 0.

Theorem 3.2 implies that, for generic parameter matrices, the Jacobian of
system (2.11), at any equilibrium point, is nonsingular. This means that J(x̄) can-
not have an eigenvalue with zero real part and zero imaginary part. It can be easily
verified that J(x̄) is an irreducible Metzler matrix. Therefore, from Lemma 2.7, it
follows that the eigenvalue with the largest real part does not have any imaginary
parts. Consequently, the possibility that, for generic parameter choices, s(J(x̄)) = 0
can be ruled out. It follows that [40, Theorem 2.8, statement iv)], coupled with the
fact that the set D is positively invariant (see [10, Lemma 5.1]), guarantees that the
equilibrium point x̄ attracts at least all initial conditions x such that 0 ≤ x ≪ x̄.
Therefore, it is clear that x̄ is locally asymptotically stable.

5. (Non)existence of Coexistence equilibria. This section deals with the
establishment of sufficient conditions for the existence (resp. nonexistence) of coex-
istence equilibria. To this end, we consider two parameter regimes, viz. for k = 1, 2,
i) s(−Dk + βk

i A
k) > 0, and ii) s(−Dk + βk

i A
k) < 0, and show that for each of these,

there exists at least one coexistence equilibrium.

Proposition 5.1. Consider system (2.2) under Assumptions 1 and 3. Let (x̄1,0)
and (0, x̄2) denote a single-virus endemic equilibrium corresponding to virus 1 and
virus 2, respectively. Suppose that the following conditions are satisfied:

i) s(−D1 + β1
1A

1) > 0;
ii) s(−D2 + β2

1A
2) > 0;

iii) s(−D1 + β1
1(I − X̄2)A1) > 0; and

iv) s(−D2 + β2
1(I − X̄1)A2) > 0.

Then, there exists at least one equilibrium of the form (x̂1, x̂2) such that 0 ≪ x̂1, x̂2 ≪
1 and x̂1 + x̂2 ≪ 1.

Prior to proving the claim in Proposition 5.1, we need the following background
material. In line with the terminology of [21], given an equilibrium point of sys-
tem (2.2), it is classified as saturated or unsaturated. An equilibrium is saturated
(resp. strictly saturated) if the diagonal block of the Jacobian corresponding to the
zero entries of said equilibrium has no eigenvalues with positive real part (resp. has
every eigenvalue to be strictly less than zero) and unsaturated otherwise [21]. A
boundary equilibrium of (2.2) is saturated if and only if said boundary equilibrium is
locally exponentially stable; this follows immediately by noting the structure of the
Jacobian matrix, evaluated at a boundary equilibrium, see (4.7). The definition also
implies that every fixed point in the interior of D, irrespective of its stability prop-
erties, is saturated [21]; therefore, from Lemma 2.6, we have that every coexistence
equilibrium of system (2.2) is saturated.

Proof. Assumptions i) and ii) of Proposition 5.1 guarantee existence of boundary
equilibria, (x̄1,0) and (0, x̄2); see Proposition 4.3. Observe that [10, Lemma 5.1]
guarantees that, for each k ∈ [2], xk(0) ≥ 0 implies that xk(t) ≥ 0 for all t ∈ R≥0,
and that the set D (which is compact) is forward invariant. Therefore, from [21,
Theorem 2], it follows that system (2.2) has at least one saturated fixed point. There
are two cases to consider.

Case 1: Suppose that the aforementioned saturated fixed point is in the interior
of D. Note that any fixed point in the interior of D is of the form (x̂1, x̂2), where
0 ≪ (x̂1, x̂2) ≪ 1, thus implying that (x̂1, x̂2) is a coexistence equilibrium. From
Lemma 2.6, it must necessarily satisfy 0 ≪ (x̂1, x̂2) ≪ 1, and x̂1 + x̂2 ≪ 1.



NETWORKED COMPETITIVE BIVIRUS SIS SPREAD WITH HOI 21

Case 2: Suppose, but we will demonstrate a contradiction, that there are no fixed
points in the interior of D. This implies that there must be a saturated fixed point on
the boundary of D [21]. Therefore, at least one of the single-virus boundary equilibria
is saturated.

However, from Proposition 4.3, it is clear that assumptions iii) and iv) guarantee
that the boundary equilibria are unstable; thus implying that they are unsaturated,
and the contradiction is obtained.

Proposition 5.1 is implied by [10, Theorem 5.4], which, assuming βk
2 = 0 for k =

1, 2, is the same as [24, Theorem 5], [13, Theorem 5.4]. The proof of [10, Theorem 5.4]
is lengthy, since it primarily relies on fixed point mapping, Perron-Frobenius theory,
etc. Our proof is significantly shorter, since we exploit the advantages that the notion
of MDS endows our system with.

Note further that Proposition 5.1 makes no comment on the number of coexis-
tence equilibria. This gap may be partially addressed as follows. Thanks to Theo-
rem 3.2, one could perhaps leverage [21, Theorem 2] so as to obtain a lower bound
on the number of coexistence equilibria; this is very much the situation for classic
bivirus networked SIS models; see [1, Corollary 3.10, statement 1]. Thereafter, since
system (2.2) is monotone, the properties of MDS can be exploited to possibly con-
clude that there must exist a locally exponentially stable coexistence equilibrium. A
detailed treatment of this issue is beyond the scope of the present paper.

For the same parameter regime as in Proposition 5.1, we now present a differ-
ent condition that ensures the existence of a coexistence equilibrium point (x̂1, x̂2),
but, differently from the situation in Proposition 5.1, we assume that both boundary
equilibria are stable.

Theorem 5.2. Consider system (2.2) under Assumptions 1 and 3. Suppose that
the parameters associated with system (2.2) are generic. Let (x̄1,0) and (0, x̄2) denote
a single-virus endemic equilibrium corresponding to virus 1 and virus 2, respectively.
Suppose that the following conditions are satisfied:

i) s(−D1 + β1
1A

1) > 0;
ii) s(−D2 + β2

1A
2) > 0;

Suppose that both (x̄1,0) and (0, x̄2) are locally exponentially stable. Then there exists
at least one equilibrium of the form (x̂1, x̂2) such that 0 ≪ x̂1, x̂2 ≪ 1 and x̂1+x̂2 ≪ 1,
such that (x̂1, x̂2) is unstable.

Proof. By assumption, s(−Dk+βk
1A

k) > 0 for k = 1, 2. Therefore, from Proposi-
tion 4.3, it follows that there exists a single-virus endemic equilibrium corresponding
to virus 1, x̄1 ≫ 0, and a single-virus endemic equilibrium corresponding to virus 2,
x̄2 ≫ 0. By assumption, both (x̄1,0) and (0, x̄2) are locally exponentially stable.
The condition s(−D1 + β1

1A
1) > 0 implies that the origin is unstable; this can be

observed from the proof of statement i) in Proposition 4.1. We are left to show that
the stable manifold of the origin does not lie in the interior of D. We will do so by
relying on the proof technique of [1, Lemma 3.8]. It suffices to show that for the
(linear) system

(5.1)

[
ẋ1

ẋ2

]
=

[
−D1 + β1

1A
1 0

0 −D2 + β2
1A

2

] [
x1

x2

]
no trajectory starting in the interior of D converges to the origin. First, consider
x1(t). Let w⊤ be the positive left eigenvector associated with s(−D1 + β1

1A
1) such

that all its entries sum to one. Define z := w⊤x1, and observe that ż = w⊤ẋ1,
which, from (5.1), further implies that ż = s(−D1 + β1

1A
1)z. Since, by assumption,

s(−D1 + β1
1A

1) > 0, it is clear that the projection onto w (which is a positive vector)
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of the points of (5.1) in the interior of D is away from x1 = 0. An analogous argument
can be made for x2(t), since, by assumption, s(−D2+β2

1A
2) > 0. Therefore, the stable

manifold of the origin does not lie in the interior of D. Consequently, since we know
that system (2.2) is monotone and the monotone condition x̄1 ≫ 0, x̄2 ≫ 0 relates
the two exponentially stable equilibrium points, from [40, Proposition 2.9] it follows
that there exists an equilibrium point of the form (x̂1, x̂2) such that 0 ≪ x̂1, x̂2 ≪ 1
and x̂1 + x̂2 ≪ 1. Furthermore, the point (x̂1, x̂2) satisfies s(J(x̂1, x̂2)) ≥ 0. From
Theorem 3.2, we know that the Jacobian, at any equilibrium point, is nonsingular.
This means that J(x̂1, x̂2) cannot have an eigenvalue with zero real part and zero
imaginary part. Observe that J(x̂1, x̂2) is an irreducible Metzler matrix. Therefore,
from Lemma 2.7, it follows that the eigenvalue with the largest real part does not
have any imaginary parts. Consequently, s(J(x̂1, x̂2)) > 0, which implies that the
equilibrium point (x̂1, x̂2) is unstable.

Proposition 5.1 and Theorem 5.2 partially answer question iv) raised in Sec-
tion 2.3.

We now turn our attention to a different parameter regime, namely s(−Dk +
βk
1A

k) < 0 for k ∈ [2], and provide a sufficient condition which guarantees the exis-
tence of an unstable coexistence equilibrium. We have the following result.

Proposition 5.3. Consider system (2.2) with generic parameter matrices, under
Assumptions 1 and 2. Suppose further that for each k ∈ [2] there exists some i ∈ [n]
such that Bk

i ̸= 0. Define, for k = 1, 2, 1Bk ∈ {0, 1}n by (1Bk)i = 1 if Bk
i ̸= 0;

otherwise (1Bk)i = 0. Suppose that the following conditions are fulfilled for k = 1, 2:
a) ρ(βk

1 (D
k)−1Ak) < 1, and

b) min
i∈[n] s.t. Bk

i ̸=0

(βk
1

δki
(Ak1Bk)i +

βk
2

2δki
1⊤
BkBi1Bk

)
> 2.

Then there exists at least one equilibrium of the form (x̂1, x̂2) such that 0 ≪ x̂1, x̂2 ≪ 1
and x̂1 + x̂2 ≪ 1 that is unstable.

Proof. Suppose that the conditions in Proposition 5.3 are fulfilled. Then, it fol-
lows that there exists boundary equilibria (x̄1,0) and (0, x̄2), and that both are locally
exponentially stable; see statements iii) and iv) in Proposition 4.1. Therefore, since
we know that system (2.2) is monotone, from [40, Proposition 2.9] it follows that there
exists (at least) one equilibrium point of the form (x̂1, x̂2) such that 0 ≪ x̂1, x̂2 ≪ 1
and x̂1 + x̂2 ≪ 1. The rest of the proof (i.e., showing that (x̂1, x̂2) is unstable) is
similar to the approach in the proof of Theorem 5.2.

Proposition 5.3 assures us of the existence of at least one coexistence equilibrium.
Recall that system (2.2) is monotone. Therefore, since Theorem 3.2 says that, for
generic parameter matrices, for each of the equilibrium points the associated Jaco-
bian is nonsingular, the conditions in Proposition 5.3 can be shown to guarantee the
existence of an odd number of coexistence equilibria, each of which must be unstable.
The proof follows from a Brouwer degree argument; see proof of [39, Proposition 3.7].
In fact, for classical bivirus SIS systems, for the same stability configuration as in The-
orem 5.2 and Proposition 5.3, a lower bound on the number of coexistence equilibria
has been obtained in [1, Corollary 3.10, statement 2].

We now present a necessary condition for the existence of a coexistence equi-
librium that involves a comparison (in the sense of matrix inequalities) between the
spread parameters of the two viruses. We define for k = 1, 2 the following matrices:
Rk := [Bk

11 Bk
21 ... Bk

n1 ]
⊤ We have the following proposition.

Proposition 5.4. Consider system (2.2) under Assumptions 1 and 2. Suppose
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that, for all k ∈ [2], ρ(βk
1 (D

k)−1Ak) > 1. Suppose that Dk = I for k = 1, 2. If
β1
1A

1 + β1
2R

1 < β2
1A

2, then there exists no coexistence equilibrium.

Proof. Suppose that β1
1A

1 + β1
2R

1 < β2
1A

2. Assume by way of contradiction
that there exists a coexisting equilibrium, (x̂1, x̂2) such that 0 ≪ (x̂1, x̂2) ≪ 1, and
x̂1 + x̂2 ≪ 1. Hence, since by assumption Dk = I for k = 1, 2, by considering the
equilibrium version of equation (2.2), we have the following:

−x̂1 + β1
1(I − X̂1 − X̂2)A1x̂1 + β1

2(I − X̂1 − X̂2)


(x̂1)⊤B1

1 x̂1

(x̂1)⊤B1
2 x̂1

.

.

.

(x̂1)⊤B1
nx̂1

 = 0(5.2)

−x̂2 + β2
1(I − X̂1 − X̂2)A2x̂2 + β2

2(I − X̂1 − X̂2)


(x̂2)⊤B2

1 x̂2

(x̂2)⊤B2
2 x̂2

.

.

.

(x̂2)⊤B2
nx̂2

 = 0(5.3)

From (5.2) and (5.3), we have the following:

(
β1
1(I − X̂1 − X̂2)A1 + β1

2(I − X̂1 − X̂2)


(x̂1)⊤B1

1
(x̂1)⊤B1

2

.

.

.

(x̂1)⊤B1
n

 )x̂1 = x̂1(5.4)

(
β2
1(I − X̂1 − X̂2)A2 + β2

2(I − X̂1 − X̂2)


(x̂2)⊤B2

1
(x̂2)⊤B2

2

.

.

.

(x̂2)⊤B2
n

 )x̂2 = x̂2(5.5)

By Assumption 1, we know that the matrices A1 and A2 are nonnegative and β1
1 , β

1
2 , β

2
1

and β2
2 are all strictly positive, and (I−X̂1−X̂2) is a positive diagonal matrix (because

by Lemma 2.6, x̂1 + x̂2 ≪ 1), whereas, because of Assumption 2, from Corollary 2.5

we have that the matrix βk
1 (I−X̂1−X̂2)Ak+βk

2 (I−X̂1−X̂2)

(x̂k)⊤Bk
1

(x̂k)⊤Bk
2

.

.

.

(x̂k)⊤Bk
n

 is irreducible.

Since x̂1, x̂2 ≫ 0, from Lemma 2.8, it follows that

ρ(β1
1(I − X̂1 − X̂2)A1 + β1

2(I − X̂1 − X̂2)

(x̂1)⊤B1
1

(x̂1)⊤B1
2

.

.

.

(x̂1)⊤B1
n

) = 1(5.6)

ρ(β2
1(I − X̂1 − X̂2)A2 + β2

2(I − X̂1 − X̂2)

(x̂2)⊤B2
1

(x̂2)⊤B2
2

.

.

.

(x̂2)⊤B2
n

) = 1(5.7)

By assumption, β1
1A

1 + β1
2R

1 < β2
1A

2. Since x̂1 ≪ 1, it must be that β1
1A

1 +

β1
2

(x̂1)⊤B1
1

(x̂1)⊤B1
2

.

.

.

(x̂1)⊤B1
n

 < β1
1A

1 + β1
2R

1 < β2
1A

2. Since (I − X̂1 − X̂2) is positive diagonal, we

obtain the following:

β1
1(I − X̂1 − X̂2)A1 + β1

2(I − X̂1 − X̂2)


(x̂1)⊤B1

1
(x̂1)⊤B1

2

.

.

.

(x̂1)⊤B1
n

 < β2
1(I − X̂1 − X̂2)A2(5.8)
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Applying the condition in statement iv) of Lemma 2.8 to (5.8) yields:

ρ(β1
1(I − X̂1 − X̂2)A1 + β1

2(I − X̂1 − X̂2)


(x̂1)⊤B1

1
(x̂1)⊤B1

2

.

.

.

(x̂1)⊤B1
n

) < ρ(β2
1(I − X̂1 − X̂2)A2)(5.9)

From (5.6) and (5.9), ρ(β2
1(I−X̂1−X̂2)A2) > 1. Therefore, since β2

2 > 0, (I−X̂1−X̂2)

is positive diagonal and the matrix

(x̂2)⊤B2
1

(x̂2)⊤B2
2

.

.

.

(x̂2)⊤B2
n

is nonnegative, it is clear that

(5.10) ρ(β2
1(I − X̂1 − X̂2)A2 + β2

2(I − X̂1 − X̂2)

(x̂2)⊤B2
1

(x̂2)⊤B2
2

.

.

.

(x̂2)⊤B2
n

) > 1,

which contradicts (5.7). Therefore, there does not exist a coexistence equilibrium
(x̂1, x̂2), where 0 ≪ (x̂1, x̂2) ≪ 1 and x̂1 + x̂2 ≪ 1; thus completing the proof.

Proposition 5.4 answers question v) raised in Section 2.3. It can also be shown
that the condition in Proposition 5.4 implies that a) the DFE is unstable, and b) the
boundary equilibrium, (x̄1,0) is unstable.

6. Numerical Examples. In this section, we present a series of simulations
of the bivirus system with HOIs to highlight interesting phenomena that can emerge
when HOIs are incorporated. The network has n = 4 nodes, and we set D1 = D2 = I.
The pairwise interactions are captured by the following matrices

(6.1) A
1
=

2 0 0 0
1 1 1 0
0 1 1 0
0 0 0 0

 , A
2
=

1 0 0 0
0 1 1 0
1 1 2 0
0 0 0 0

 .

The HOI are captured by the following nonzero Bk
i matrices (all other Bk

i = 0):

B1
1 =

[
1 0 0 0
0 0 1 0
0 1 0 1
0 0 1 0

]
, B1

4 =

[
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 1

]
, B2

1 =

[
1 0 0 0
0 0 1 1
0 1 0 0
0 1 0 0

]
, B2

4 =

[
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 1

]
.

First, note that Ak is not irreducible for k = 1, 2, and so the graph associated with
just the pairwise interactions is not strongly connected (Assumption 3 is not satisfied).
Nonetheless, the hypergraph associated with Ak and Bk

i , i = 1, 2, . . . , n is strongly
connected for k = 1, 2 (Assumption 2 is satisfied).

In our simulations, we randomly sample xk
i (0) from a uniform distribution (0, 1),

and then normalize the vectors x1(0) and x2(0) to ensure that (x1(0), x2(0)) ∈ int(D).
The βk

i are varied to yield different stability properties for the system in (2.2).
Example 1: We set β1

1 = β1
2 = 0.2 and β2

1 = β2
2 = 5. This ensures the inequalities

of both conditions for Proposition 4.1 are satisfied. For initial conditions close to
the DFE (Fig. 1a), the trajectories converge to the locally exponentially stable DFE,
(x1 = 0, x2 = 0). When the initial conditions are further in the interior of D,
and depending on the particular initial condition, we observe convergence to one of
two boundary equilibrium (both of which are locally exponentially stable), (x̄1,0) or
(0, x̄2) for some positive x̄1 > 0.5×1 and x̄2 > 0.5×1, see Figs. 1b and 1c, respectively.
It is important to note that, without HOIs, it is impossible for a bivirus system to
have the DFE, (x̄1,0), and (0, x̄2) all locally exponentially stable [44, Section E].
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Example 2: We set β1
1 = β2

1 = 2, and β1
2 = β2

2 = 0.5. The resulting bivirus system
satisfies the first two inequality conditions in Proposition 5.1. The system also has two
boundary equilibria (x̄1,0) and (0, x̄2), which satisfy the last two inequality conditions
in Proposition 5.1. Proposition 4.3 indicates that the two boundary equilibria are
unstable, and this can indeed be verified. As noted below Proposition 4.3, there is no
theoretical proof that (x̄1,0) (resp. (0, x̄2)) is the unique boundary equilibrium for
virus 1 (resp. virus 2) but simulations suggest the uniqueness property holds true.
Figure 1d indicates that the system converges to a coexistence equilibrium, (x̂1, x̂2) for
some x̂1 ≫ 0 and x̂2 ≫ 0; the presence of such a coexistence equilibrium is predicted
by Proposition 5.1 (though the Proposition is silent on the stability properties of
any coexistence equilibrium). Additional simulations suggest that this coexistence
equilibrium is the unique attractor of all initial conditions in the interior of D.

Next, we increase the HOI interaction strength for virus 2, by changing β2
2 = 0.7.

Fig. 1e and 1f show convergence to different equilibria for different initial conditions
(i.e., there are multiple locally exponentially stable equilibria). Importantly, of the
two stable equilibria observed, one is a boundary equilibria (0, x̄2), where virus 2
is endemic and virus 1 extinct, while the other is a coexistence equilibrium. Note
that the inequality s(−D2 + β2

1(I − X̄1)A2) > 0 of Proposition 4.3 is violated for the
boundary equilibrium (0, x̄2), but as noted below the proposition, this is not enough
to theoretically establish the local exponential stability of the boundary equilibrium
(0, x̄2); this contrasts with the bivirus system without HOIs [45].

Example 3: We set β1
1 = 2.5, β1

2 = 2, β2
1 = 2 and β2

2 = 2.5. The inequalities
of Theorem 5.2 are satisfied. Figs. 2a and 2b reveal that there are two locally ex-
ponentially stable boundary equilibria (x̄1,0) or (0, x̄2), with convergence to either
depending on the initial conditions. However, the DFE is unstable, and no trajectories
in D converge to the DFE.

We conclude with several remarks about the simulations. First, the majority of
the propositions and theorems in Sections 4 and 5 are stated under Assumption 3,
and yet in the simulations, we find that the same conclusions regarding stability and
existence of various equilibria continue to hold under the more relaxed Assumption 2.
This suggests that an important future direction is to formally prove the results
in Sections 4 and 5 will hold under Assumption 2. Second, we have a number of
example systems that demonstrate multi-stability, viz., having multiple attractive
(locally exponentially stable) equilibria with different regions of attraction. In the
classical bivirus systems without HOIs, multi-stable systems are more difficult to
come by. They are often constructed by special design of the two-layer network to
create strong asymmetry in the spread of virus 1 and virus 2 [1, 46]. Here, all three
examples appear to suggest that the presence of HOIs helps to facilitate a multi-
stability property. This suggests a second line of future work, viz., further analysis of
how HOIs can lead to novel dynamical phenomena in SIS models.

7. Conclusion. In this paper, we analyzed a competitive networked bivirus SIS
HOI model. We obtained general results on equilibria and convergence under milder
connectivity conditions compared to the literature. We then derived new conditions
for the stability and existence (or otherwise) of various equilibria. Several lines of
research are worthy of further attention, as we have noted throughout the paper.
We mention a few additional ones as well: First, the paper has not commented on
conditions for global stability of single-virus endemic equilibria. Hence, one line of
investigation may center around that. Second, provision of conditions for uniqueness
and local stability of the coexistence equilibria discussed in Section 5 remains an open
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Fig. 1. Trajectories of the system (2.2), for different simulation parameters and initial con-
ditions. 1a, 1b and 1c correspond to different initial conditions for Example 1. 1d, 1e, and 1f
correspond to Example 2, for different HOI interaction strengths for virus 2, and different initial
conditions.
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Fig. 2. Trajectories of the system (2.2), for different simulation parameters and initial condi-
tions. 2a and 2b correspond to different initial conditions for Example 3.
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problem. Finally, devising control strategies for mitigating the spread of competing
viruses with(out) accounting for HOI is another promising research direction.
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Appendix: Proof of Theorem 3.2. We treat first the case where the Ak and
Bk

i are fixed. Consider (2.2) in the shorthand form ẋ = f(x), and to emphasise
the possibility of variations in the entries of Dk, show this explicitly by writing the
equations as ẋ = fδ(x, δ), where δ is a vector containing all the diagonal entries of
the Dk. It is easily established that

(7.1)
∂fδ(x

1, x2, D1, D2)

∂δ
=

∂fδ(x
1, x2, D1, D2)

∂(D1, D2)
=

[
X1 0
0 X2

]
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At a coexistence equilibrium, from Lemma 2.6, it is clear that this matrix has full row

rank. Consequently, the matrix ∂fδ(x,δ)
∂(x,δ) (which is obtained simply by adding further

columns) also has full row rank at a coexistence equilibrium.
Similarly, in preparation for considering the second claim of the theorem, we can

consider f as depending explicitly on the possibly variable Ak and Bk. It is helpful
to introduce a rewriting of the key system equation (2.2). Define for k = 1, 2 the
matrices

(7.2) Ck(xk) = βk
1A

k + βk
2


(xk)⊤Bk

1

(xk)⊤Bk
2

...
(xk)⊤Bk

n


This means that the system equations can be written as

ẋ1 =−D1x1 + (I −X1 −X2)C1(x1)x1(7.3)

ẋ2 =−D2x2 + (I −X1 −X1)C2(x2)x2

There are a finite number of patterns of zero entries for the Ak and Bk for which
the hypergraph is strongly connected. When the hypergraph is strongly connected,
by Corollary 2.5 for any positive xk the matrices Ck are irreducible. For each matrix
separately, arbitrarily choose any one such pattern, and let γk denote the vector of
nonzero entries of the Ck; also set γ = [(γ1)⊤ (γ2)⊤]⊤. Denote the associated f as
fγ(x, γ). Then, one can show that

(7.4)
∂fγ(x, γ)

∂γ
=

[
I −X1 −X2 0

0 I −X1 −X2

][∂(C1(x1)x1)
∂γ1 0

0 ∂(C2(x2)x2)
∂γ2

]

A detailed calculation as set out in [1] shows that the second matrix in the product
(on the right-hand side of (7.4)) has full row rank. (The irreducibility of each Ck(xk)
for any positive xk ensures in particular that every row is nonzero, and this is the
key property which guarantees the conclusion.) We also know from Lemma 2.6 that
no equilibrium of (2.2) can cause any diagonal entry of I − X1 − X2 to be zero,
which means that the first matrix of the product is nonsingular. Hence, the matrix

on the left has full row rank at any equilibrium. The matrix
∂fγ(x,γ)
∂(x,γ) , obtained by the

addition of further columns to
∂fγ(x,γ)

∂γ , then has full row rank.

We now complete the proof for the first part of the theorem. (Proof of the second
part is virtually identical). Without loss of generality, suppose that for some δ̄, all
diagonal entries δi of the Dk satisfy 0 < δ̄ < δi < δ̄−1. Denote the set of such δ
as D. Call the set of x in the interior of the region of interest X . Then X × D is
a manifold, being a product of open sets, and fδ(x, δ) is a mapping of the manifold
X ×D. Let the image be denoted by Y, and let Z be the submanifold of Y consisting
of the single point 02n. (The set f−1

δ (Z) is the set of zeros of f .) Since the Jacobian
of fδ with respect to (x, δ) has full row rank on this set, this means that the map
fδ is transversal to Z. By the Parametric Transversality Theorem, this means that

for all choices of δ = δ∗ excluding a set of measure zero, the Jacobian ∂fδ∗ (x,δ
∗)

∂x will
be nonsingular at a preimage of Z, i.e at a zero. This is equivalent to saying that
the zeros are nondegenerate. The boundedness of the region X then guarantees that
there can only be a finite number of such zeros.
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