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Abstract. Random generation of shortest paths in graphs is utilized
across various domains, including traffic-flow simulation and network
topology exploration. In this paper, we address the challenge of uniform
shortest path sampling in graphs from an algorithmic perspective. We
introduce a novel uniform shortest path sampling algorithm that uses
a biased random walk operating in two stages. We demonstrate that
our algorithm, when combined with a new variant of the Alias method
is optimal in terms of worst-case running time and number of random
bits needed, among all algorithms in its class. Furthermore, we present
an efficient implementation of our algorithm in a low-level programming
language and evaluate it on both real-world and synthetic datasets. We
compare our theoretically optimal algorithm with other variants to assess
its practical performance.

Keywords: Graph Algorithm · Random Generation · Uniform Sampling
· Shortest Paths · Alias Sampling

1 Introduction

Graphs play a crucial role in understanding and addressing problems associated
with networks and interconnected systems. They provide a theoretical basis for
analyzing various structures, including social networks, communication systems,
and transportation networks.

Sampling shortest paths is essential in numerous contexts, such as simulating
traffic flow, studying the topology of large networks (like the internet and social
networks), and assessing network damage. For instance, the authors of [4] employ
this method to evaluate network damage, while [7] analyzes shortest path sam-
pling as an approximation of traceroute paths. The practice of approximating
graphs through shortest path sampling has been explored in [14,17,1,20], where
the authors investigate the biases introduced by exploring a graph via random
shortest paths. In [11], the authors discuss which graph properties can be well
approximated using shortest path sampling and the influence of the number of
samples on these properties. In the realm of traffic flow, the authors of [24] apply
shortest path sampling to enhance network transmission capacities.

Despite extensive research, there is a noticeable gap in the explicit study of
the algorithmic complexity of shortest path sampling. Typically, this problem
involves fixed source and target nodes, aiming to sample a shortest path between
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them. Some studies, as mentioned in [7,4,18,24,15,6], suggest randomly selecting
one shortest path from all possible paths without detailing the implementation.
This approach faces challenges due to the potentially exponential number of
shortest paths between two nodes in some graph families, such as grid graphs,
making it impractical for simulating traffic in city graphs, which often resemble
grid graphs.

Other studies recommend assigning random weights to edges to resolve ties
among multiple shortest paths, then returning the unique shortest path left, as
detailed in [14,5,23,9]. Each change of weights generates a new shortest path.
However, this method introduces a bias, meaning that some shortest paths are
more likely to be selected than others. To our knowledge, no theoretical or ex-
perimental studies have addressed this bias, which could affect the outcomes of
experimental studies relying on biased sampling methods.

Main contributions : We propose several algorithms for the uniform short-
est path sampling and analyse their theoretical complexities as well as their be-
haviors in practice. We also propose a new variant of the Alias sampling (method
to sample from a discrete probability distribution) that uses only integer arith-
metic avoiding bias due to floating arithmetic approximations. This variant is
then used in an unranking scheme to ensure random bits optimality as well as
optimal running time.

The paper is organized as follows. In Section 2 after presenting our formal-
ism we give the problem statement and review the state of the art. Then, in
Section 3 we present a generic two-stage random walk algorithm, and demon-
strate that, with appropriate weight settings, this algorithm uniformly samples
shortest paths. Next, in Section 4 we discuss four different implementations of
our proposed algorithm, conducting a detailed analysis to identify the optimal
version. In Section 5 we present an unranking algorithm that uses the integer
variant of the Alias method. Finally, in Section 6, we assess the performance of
our algorithms using both real-world and synthetic graphs. All missing proofs in
the main paper can be found in Appendix A.

2 Context of the problem and state of the art

In this article, we focus on graphs represented by G = (V,E), where V is a
finite set of nodes and E = {(u, v) |u, v ∈ V, u ̸= v} denotes the set of directed
edges. Therefore, the graphs under consideration are directed and simple (no
self-loops or multiple edges are allowed). We denote n = |V | as the number
of nodes and m = |E| as the number of edges. An undirected graph can be
viewed as a directed graph where if (u, v) ∈ E then (v, u) ∈ E as well. An edge
(u, v) ∈ E will be denoted as u → v, where u is referred to as the starting point
and v as the end point. A walk W in a graph is a sequence of edges such that
the end point of one edge is the starting point of the next edge. The length of
a walk W , denoted |W |, corresponds to the number of edges it contains. For a
given walk, s ∈ V usually denotes the source node and t ∈ V denotes the target
node. The distance from s to t, denoted d(s, t), represents the minimal length
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among all walks from s to t. A shortest path from s to t is a walk W of minimal
length, that is |W | = d(s, t). We also denote by Wst the set of all shortest paths
from s to t and by σs(t) = |Wst| the number of shortest paths. The set of all
shortest paths starting from s is written as Ws•. Therefore, Ws• = ∪t∈V Wst

and σs• = |Ws•|. Finally, we denote by W the set of all shortest paths in the
graph: thus W = ∪v∈V Wv• and σ = |W|. Given a graph and fixed source s and
target t, we are interested in:
Problem: source-target uniform shortest path: Nodes s, t being fixed, give
a random generation algorithm satisfying ∀W ∈ Wst,P(W ) = 1/σs(t) and for
all W /∈ Wst,P(W ) = 0.

The simplest approach addressing this problem, involves precomputing all
shortest paths from s to t and storing them in a list during a preprocessing
stage. Queries can then be answered by returning a randomly selected element
from this list. This approach is implicitly suggested by [7,4,18,24,15,6]. The pre-
processing stage running time depends on the number of paths in Wst, which
can be exponential for certain graph families. See for example Fig. 4 in Ap-
pendix A.1. Therefore, we aim to design polynomial-time algorithms that still
ensure uniform sampling.

To overcome this issue, one idea used in works such as [14,5,23,9] is to assign
small random real weights to the edges of the graph. This ensures that only one
shortest path has the minimum weight, which can then be found and returned
using Dijkstra’s Algorithm with backtracking. Therefore, redistributing random
weights on the edges of the graph ensures that every shortest path from s to t
has some probability of being sampled. However, the probabilities of the different
shortest paths are not equal see Appendix A.1 for a counterexample.

3 A random walk approach for uniform generation of
shortest paths

In this section, source s and target t nodes are fixed and we design algorithms
to tackle the source-target uniform shortest path problem. An overview of the
complexity results of our approaches is presented in Table 1.

Algorithm Bit opt. Preprocessing Space Query Section
BRW-linear no O(m+ n) O(m+ n) O(n) 4.1
BRW-Ordered no O(m+ n logn) O(m+ n) O(n) 4.2
BRW-Binary no O(m+ n) O(m+ n) O(ℓ log(n

ℓ
)) 4.3

BRW-Alias no O(m+ n) O(m+ n) O(ℓ) 4.4
Unrank-Alias yes O(m+ n) O(m+ n) O(ℓ) 5

Table 1: Overview of the discussed random sampling methods: running times
correspond to the worst-case scenario given a graph G with n nodes and m edges.
The value ℓ is the length of the sampled shortest path and Bit opt. corresponds
to whether the algorithm is optimal in terms of random bits usage.
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3.1 Two stages algorithm

We present a generic two-stage random walk algorithm to ensure the sampling
of all shortest paths. The two phases are:

– Preprocessing : Compute the distributions, among the edges of each node, for
the random walk. This step is done only once.

– Queries: For each query, generate a random walk in the graph.

We will discuss two random walk schemes: an unbiased one and a biased one.
We first need to ensure that we never take edges in the graph that are not on a
shortest path from s to t.

This type of two stages problems is usually called repetitive-mode [19] as
opposed to single-shot. There are many problems on shortest paths that operate
with this two stages procedure. We refer to [21] for a review of these methods.

Definition 1 (Predecessor Set [3]). Let G = (V,E) be a given graph and fix
a node s ∈ V . For v ∈ V , the predecessor set of v is defined as:

pres(v) = {w ∈ V | s → · · · → w → v ∈ Wsv}.

Said differently, the set pres(v) contains the nodes w such that the edge w → v
is the last one of a shortest path from s to v.

Definition 2 (Successor Graph). Let s be a node. The successor graph related
to s is a directed graph Gs = (Vs, Es) defined as follows:

Es = {(w, v) | ∀v ∈ V,w ∈ pres(v)}.

The set Vs corresponds to the nodes belonging to an edge from Es which are the
nodes accessible from s.

Said differently Es is the subgraph of G containing all the edges belonging to a
shortest path starting from s. Given a successor graph Gs = (Vs, Es) and v ∈ Vs,
we denote by N−

v the list of incoming edges to node v. This list of elements is
arbitrarily ordered, thus set(N−

v ) = pres(v).

Remark 1. The successor graph Gs is the union of all the BFS-trees rooted in s.
It is acyclic. It contains exactly one source s and several sinks. Moreover, edges
(u, v) of the successor graph go from a node at distance k = d(s, u) to a node at
distance k + 1 = d(s, v).

The successor graph from s is computed in linear time in the size of the graph
O(n + m) by using a BFS that keeps all the optimal predecessors of a node.
Fig. 1 introduces a graph-example and its associated successor graph G0.

The successor graph from s ensures that starting a random walk with target
t and taking the edges of Gs in a reversed way, the source s will be reached after
exactly k = d(s, t) transitions. The generic random walk approach is presented
in Algorithm 1, once the preprocessing stage has been computed. During the
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Fig. 1: (left) A graph and (right) the associated successor graph for s = 0.

latter preprocessing step, a weight distribution for edges of Gs is computed. We
will discuss the weight distribution and the function rand_pred in Section 4. The
second stage computes a random walk that starts from t and goes backwards
until reaching s. Different random walks could be considered on Gs = (Vs, Es)
by using different weight functions W that assign weights to the edges Es. Then,
the random walk standing on node v ∈ Vs calculates a predecessor w given by
the list N−

v = [w0, . . . , wk] according to the weight function W .

Proposition 1 (Generic random walk complexity). Any implementation
of the preprocessing stage and Algorithm 1 needs Ω(m+n) operations and Ω(m+
n) space for the preprocessing step and Ω(ℓ) operations for the random walk step
where ℓ is the length of the walk.

Algorithm 1 Generic Random Walk
Input: s: source node, t: target node, Gs = (Vs, Es): Successor Graph from s and W

a weight function assigning weights to Es

Output: path: A shortest path from s to t
1: function Random_Walk(s, t, Gs,W )
2: path = [ ], v = t
3: while v ̸= s do
4: path = [v] + path
5: v = rand_pred(N−

v ,W ) ▷ choosing a random predecessor according to W
6: end while
7: return [s] + path
8: end function

The most straightforward random walk that we consider is the Unbiased
Random Walk where the weight function W assigns weight 1 to all the edges in
the successor graph. The random walk is thus unbiased. We can then show that
the probability of sampling a shortest path W ∈ Wst is: P(W ) =

∏
v∈W\{s}

1
|N−

v | ,
which is not the uniform probability in general. Such a random walk is called
isotropic in the literature (cf. e.g. [10]). The unbiased random walk (URW )
necessitates O(m + n) for the preprocessing step and O(ℓ) operations for the
random generation step (ℓ being the length of the sampled walk).
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3.2 Biased Random Walk: BRW

Now we present how to set the weights of W such that the uniformity of the
sampling is guaranteed. The idea is to assign weights to the edges (u, v) ∈ Es of
Gs based on the number of shortest paths arriving at u. Then, Biased Random
Walk (BRW) is defined by assigning the weights of W as follows:

∀(u, v) ∈ Es,W (u → v) = σs(u). (1)

Proposition 2 (BRW is uniform). The biased random walk BRW solves the
source-target uniform shortest path problem.

Proof. Let W be the sampled random walk. Since it is computed on the successor
graph Gs, W ∈ Wst is a shortest path. Now, let W = v0(:= s) → v1 → · · · →
vk(:= t). The probability of sampling W can be computed by induction.

P(W ) =

k∏
i=1

σs(vi−1)

σs(vi)
=

1

σs(vk)
=

1

σs(t)
.

The probability of going from vk to vk−1 is σs(vk−1)/σs(vk). The same reasoning
applies by induction (obviously σs(s) = 1), and then terms are telescoping. ⊓⊔

4 Implementations of BRW

Now we discuss the algorithmic complexity of computing BRW. The functions
compute_weights (inside the preprocessing stage) and rand_pred (in Algo-
rithm 1) are implemented in different ways depending on the amount of pre-
processing done and the computations necessary in rand_pred afterward. The
function rand_pred generates a random predecessor following a given discrete
probability distribution. We propose four alternative implementations (linear,
ordered, binary, alias) and prove that alias sampling provides the optimal algo-
rithm for both stages. The preprocessing phase consists of computing the succes-
sor graph Gs and the weights of W . This phase is done only once and stored in
memory. The differences between implementations lie in the chosen ordering for
N−

v and in the computation of weights. The queries involve performing random
walks on Gs following the distribution W . The differences appear in the function
rand_pred, which selects a predecessor w of v, where w ∈ N−

v .
For all implementations, we compute the values of σs(v) for v ∈ V . These

values are then used for the weight function W . From the successor graph, it is
possible to dynamically compute the values of σs(z) for all z ∈ V by recurrence,
noting that a shortest path from s to v is the concatenation of a shortest path
from s to w with the edge (w, v), where w is a predecessor of v (i.e., w ∈ pres(v)).
Thus, we have:

σs(s) = 1 and ∀v ̸= s, σs(v) =
∑

w∈pres(v)

σs(w). (2)

This recurrence can be found in [3, Lemma 3]. The values of σs will be used in
rand_pred implementations of BRW as we shall see.
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Fig. 2: Successor graph from s = 0 for the left graph of Fig. 1 with the different
weight functions W .

4.1 Linear Implementation

In the following implementation, the preprocessing step consists in computing
the successor graph Gs from node s, and then computing the values of σs(v) for
all v ∈ V using Equation (2). An illustration of the successor graph with weights
is given in second from left graph of Fig. 2. The query step then defines a prede-
cessor by sampling a value r ∈ Jσs(v)K(where JnK = {1, . . . , n−1}) and iterating
through each predecessor of v to determine where r falls within the predecessor
values. To run this procedure we implement the function rand_pred(N−

v ,W )
that returns a predecessor w of v according the number of shortest paths to each
w ∈ N−

v with rand_pred_it that is given in Appendix A.2.

Proposition 3 (linear Preprocessing). The preprocessing stage of linear to
build the successor graph from s ∈ V and to compute the values of σs(z) for all
z ∈ V is done in time O(n+m).

Proof. A BFS is done, starting from the node s. This costs O(n+m) operations.
Then the values of σs(v) are computed by the Recurrence (2) in linear time of
the successor graph size. ⊓⊔

The complexity of one query step corresponds to the biased random walk
BRW and the random choice of predecessors.

Proposition 4 (linear Query). The worst-case time complexity of the gener-
ation phase is O(n) and this bound is tight.

4.2 Ordered Implementation

In the linear implementation, we assumed an implicit order on the predecessor
set pres(v) of node v given by N−. The ordering can be optimized by mini-
mizing the number of predecessor checks made by the function rand_pred_it.
To achieve this, we order the list N−

v = [w0, . . . , wk] in decreasing order of the
values of W (wi → v), so that W (w0 → v) is the largest value. For instance, in
the successor graph given in Fig. 2, the node c1 is renamed as c0 in the ordered
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version. This minimizes the number of checks made in Line 5 of the function
rand_pred_it. Let π be the ordering where the list N−

v is ordered by decreasing
values of σs(w) where w = N−

v [i] and i ∈ JN−
v K. This classical ordering is called

boustrophedonic order int the context of recursive generation [8].

Proposition 5 (Optimal order). Assuming uniform sampling of shortest paths,
the ordering π is the order that minimizes the number of predecessor checks for
each possible values r ∈ Jσs(t)K.

Therefore, the ordering π is better than any other ordering and improves the
average running time. However, the worst-case time complexity is unchanged.

Proposition 6 (Ordered Preprocessing and Query). The worst-case time
of preprocessing is O(m + n log n) and the worst-case time complexity of the
generation phase is O(n) and this bound is tight.

4.3 Binary Implementation

The procedure rand_pred used in Algorithm 1 corresponds to finding the posi-
tion of an element r in a list. Thus, rather than using an iterative approach as
it is the case now, it is possible to use binary search instead by adding few op-
erations in the preprocessing stage. As we shall see this addition does not affect
the theoretical running time of the preprocessing stage but obviously improves
the theoretical bounds of the queries afterward.

In function rand_pred_it (Appendix A.2), we draw a value r ∈ Jσs(v)K and
if [w0, . . . , wk−1] = N−

v , we want to return the node wi such that

i−1∑
j=0

σs(wj) ≤ r <

i∑
j=0

σs(wj).

To optimize this, it is natural to work with partial sums of the weights of the
incoming edges and perform a binary search on it. Thus, we assign new weights
to the edges. In this scheme, the weights are defined as follows: for v ∈ Vs,
let [w0, . . . , wk−1] = N−

v . Then for each wi → v ∈ Es, we assign the weight
W (wi → v) =

∑i
j=0 σs(wj). An illustration is given in the second from right

graph of Fig 2. Thus, the number of shortest paths σs(t) from s to t is just the
largest label of the incoming edges of t. We will denote this edge by t∗. Now we
can determine the edge taken by the random walk more efficiently. Given a node
v and a value r we execute a binary search on N−

v to find the index i such that

W (wi−1 → v) ≤ r < W (wi → v). (3)

The predecessor of v we look for is then wi. Thus, we use Algorithm 4 (cf.
Appendix A.2) to implement rand_pred and modify the weights W computed
during the preprocessing.

Proposition 7 (Binary Preprocessing). The preprocessing time complexity
is O(n+m).
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Proof. Additionally to O(n + m) for the successor graph construction Gs and
the values of σs. The weights on Gs is done in O(m) operations using an array
containing the values of σs(t) for all t ∈ V . We compute the partial sum step
by step writing the weight of (wi → v) at the step when we add σs(wi) to the
partial sum. ⊓⊔

Proposition 8 (Binary Query). Let W be the sampled shortest path, let ℓ =
|W | then the generator’s worst-case time complexity is O

(
ℓ log

(
n
ℓ

))
.

Thus, the complexity of a query of the generator depends on the length ℓ of
the generated shortest path. The binary implementation has a better worst-case
running time than the linear and ordered. For instance, if the size of the sampled
path ℓ = log n (which is typical in many random graph models), the generation
time in worst case is O(log2 n) with binary implementation and O(n) for the
linear and ordered one.

4.4 Alias Implementation

We want to further improve the generation of the random walk. Note that for
each node v ∈ Vs, we compute the distribution of the predecessors N−

v already
during the preprocessing stage. This distribution is fixed, and not dynamical. We
can use this constraint to design a constant-time random generator that selects
a predecessor by applying the classical Alias method defined by Walker [22].

Let us recall the fundations of the method. To each edge (wi, v) ∈ E, we now
associate a pair W (wi → v) = (ti, ali) ∈ [0, 1] × N−

v where ti is a real number
in [0, 1] called threshold and ali is a predecessor in N−

v called alias. We compute
these weights (t, al) such that the following condition holds

∀wj ∈ N−
v , tj +

∑
i∈J|N−

v |K
ali=wj

(1− ti) =
σs(wj)

σs(v)
· |N−

v |. (4)

Then, to choose a predecessor w ∈ N−
v using the alias method, we draw an

index i ∈ J|N−
v |K uniformly at random. Let (ti, ali) = W (wi → v), we choose

the predecessor wi with probability ti and the predecessor ali with probability
1− ti. Thus, the determination of the predecessor is done in constant time. We
then use the alias version rand_pred_al given in Algorithm 6 (Appendix A.2)
to implement rand_pred of Algorithm 1. As an example, in the rightmost graph
of Fig. 2, we have W (c2 → d0) = (0.5, c1) which means that in the case where
the edge (c2 → d0) is drawn (case i = 2), we walk to c2 with probability 0.5 and
to c1 otherwise.

Proposition 9. For v ∈ V and for all w ∈ N−
v :

P(rand_pred_al(N−
v ,W ) = w) =

σs(w)

σs(v)
.
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Proof. The proposition is a consequence of the Condition (4). Let wj ∈ N−
v .

Denote by X the uniformly drawn index in J|N−
v |K. The probability law gives:

P(wj) =
1

|N−
v | (P(wj |X = j) +

∑
i ̸=j P(wj |X = i)). For i ̸= j if ali ̸= wj then the

probability P(wj |X = i) is 0 else it is 1 − ti. Thus we have P(wj) =
1

|N−
v | (tj +∑

i̸=j
ali=wj

(1− ti)) =
σs(wj)
σs(v)

. ⊓⊔

Proposition 10 (Alias Preprocessing). The preprocessing stage to compute
the successor graph from s the associated weight function W for the Alias method
is computed in time O(n+m).

Proof. The computation of the threshold and alias with respect to Condition (4)
is done in linear time in the size of N−

v . To use the alias method at node v ∈ V ,
we compute W (w → v) for all w ∈ N−

v , which costs O(|N−
v |). Doing this for each

node v in the successor graph costs O(
∑

v∈V |N−
v |) = O(m) time. Since the rest

of the preprocessing remains unchanged, the running time is then O(n+m). ⊓⊔

Proposition 11 (Alias Query). Let W be the sampled shortest path, let ℓ =
|W | then the generator’s worst-case time complexity is O (ℓ).

Proof. To construct the path W , we have to call ℓ times the function rand_pred_al.
This function executes in constant time, since we only draw two uniform random
variables. Thus the total time complexity is O(ℓ). ⊓⊔

Theorem 1. The alias implementation is an optimal implementation in terms
of the asymptotic worst case complexity for both preprocessing and sampling.

Proof. It is a consequence of the Proposition 1 with the results from Proposi-
tions 10 and 11. ⊓⊔

5 Optimal random bit complexity and unranking

The Alias method is a powerful technique to obtain an efficient generation al-
gorithm. However the main drawback concerning the method is that it relies on
floating arithmetic which raises a number of questions related to the rounding
approximations, the accuracy of the generation, the bias induced and the quan-
tity of required random bits. We propose in the next section what seems a new
approach by adapting the Alias method in the context of arbitrary-size integer
arithmetic. We thus rely on the exact uniform distribution (that is central for
us) and furthermore we are able to prove the optimality of our method for the
number of random bits that are necessary during the sampling. As far as we
know, we never encountered this adaptation in the literature.

5.1 A new Alias method with integers

We focus on a set {v0, v1, . . . , vn−1} of objets, each vi has a positive integer weight
wi. We aim at sampling each vi with probability wi/W where W =

∑n−1
j=0 wj .
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We first run a preprocessing step building two data structures of cumulated
space complexity that is linear in n and that will allow during the random
sampling step to get a random object with time complexity O(1). Our approach
is directly related to the Euclidean division of W by n, the number of objects.
Let us introduce the quotient q and the remainder r satisfying

W = q · n+ r with 0 ≤ r < n. (5)

We then dispatch the total weight W among two tables: a first one of size n
corresponding to the Alias table T . Cells of T are indexed between 0 to n − 1
and each one contains a triplet. And a second table R of size r containing the
remaining weight of the distribution. Let us devise how to distribute the objects
inside the two tables. We first define two stacks S0 and S1 containing respectively
the objects whose weight is larger than or equal to q and those whose weight is
(strictly) smaller than q. While T is not full, we iteratively consider

– the first elements of each stack (if both exist), x0 and x1 with respective
weight y0 ≥ q and y1 < q. We then distribute the weight y0 as q − y1 and
y0− (q−y1). We take the first empty cell of the table T , and assign to it the
triplet (y1, x1, x0). There are two possibilities for the remaining part of x0

with remaining weight y0 − (q − y1). Either the later is still greater than or
equal to q, and we keep it in S0 with its remaining weight y0 − (q − y1), or
the remaining weight y0 − (q− y1) is smaller than q and we move the object
x0 with its remaining weight y0 − (q − y1) in the second stack S1.

– the second stack S1 is empty, and x0 with weight y0 is the first element from
S0. Then, we fill the next cell from T with the triplet (q, x0, ∅), and we deal
with the remaining weight y0 − q for x0 as in the previous case.

When the Alias table T is full, we fill the table R with the remaining weight of
the distribution, whose value is r, in fact we put in each cell one of the remaining
object (with weight 1). Eventually if an object has a remaining weight greater
than 1 it will appear several times in R. The key idea proving the correctness of
the building of T and R is based on the fact that S0 is never empty (until T is
full). This is due to the fact that whenever S1 is not empty we remove one of its
element at each loop.

We are now ready to state the sampling step algorithm satisfying the claimed
constant time complexity.

Proposition 12. In order to sample an object according to the weight distribu-
tion, one samples an integer i ∈ JW K uniformly at random, and then computes
its Euclidean division by q: i = qi · q+ ri. If qi < n, then one extracts the triplet
(x, v, w) in T [qi] and returns the object v if ri < x, otherwise, one returns the
object w. If qi = n, then one returns the object R[ri]. The whole process is done
in O(1) operations.

Proof details are provided in Appendix A.3.
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5.2 Unranking algorithms

The problem of unranking objects emerges as one of the most fundamental chal-
lenges in combinatorial generation, as seen in Kreher and Stinson’s book [12].
Usually, the approach for constructing structures is based on a recursive de-
composition [16]. The schema involves leveraging this decomposition to build a
larger object from smaller ones. The term unranking comes from the fact that we
totally order the objects under consideration, thus each one gets a rank between
0 and the number of objects minus 1. Then we build the object of rank r from
scratch. Our three algorithms BRW-linear, Ordered and Binary can easily be
adapted to the context of unranking, without modifying their time-complexity.
However, some care is needed to keep the time complexity of Alias method espe-
cially during the update of the rank after each predecessor determination. In our
Alias method with integers, we derive in a way an unranking algorithm based
on a multiset of objects where each object appears a number of times equal to
its weight and the total order is related to the constructions of both tables T
and R.

We are now ready to derive an unranking algorithm to reconstruct the short-
est path of a given rank, as follows: the preprocessing stage consists of computing
the predecessor graph Gs and ∀v ∈ V, σs(t) using Equation (2) and for each list
N−

v it computes augmented versions of the tables T and R as described in Sec-
tion 5.1 keeping additionally partial sums (see Appendix A.3). The preprocessing
still necessitates O(n +m) operations. The query stage does the following: (1)
Sample uniformly at random an integer ρ ∈ Jσs(t)K. (2) Alias method with in-
tegers is used to choose the predecessor x of t and update the rank as ρ̃ which
requires O(1) time. (3) Iterate the process with the new rank ρ̃ and new node x
until reaching s. The query stage then requires O(ℓ) operations. We only use a
single call for random bits in the rank sampling (ρ ∈ Jσs(t)K) which is clearly
optimal. Since we need at least to distinguish between all shortest paths. The
process is detailed in Appendix A.3. From the preceding, it follows that:

Theorem 2. The unranking algorithm is an optimal implementation in terms of
the asymptotic worst case complexity for both the preprocessing and the sampling
stages and is also optimal in terms of random bits complexity.

6 Experimental evaluation and application

In our experiments, we compare BRW and its various implementations to assess
their performance on both real-world and synthetic datasets. We used several
real-world datasets from different domains, including scientific collaboration net-
works, city networks, social networks, and power grids. For synthetic networks,
we used Erdős-Rényi and Barabási-Albert random graphs, and 2-d grids.

Fig. 3 summarizes our experiments. On the preprocessing stage results show
that the ordered implementation takes more time to compute than the linear and
binary implementations due to the additional sorting step required. The Alias
implementation also requires more computations since we need to associate a
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data dir. #nodes #edges ref.
power_grid u 4.94K 6.59K [13]
hamster_full u 2.43K 16.6K [13]
paris d 9.52K 18.3K [2]
milan d 12.9K 25.3K [2]
vienna d 16.1K 35.7K [2]
astro_ph u 18.8K 198K [13]
linux_mail d 26.9K 237K [13]
slashdot d 51.1K 130K [13]
4 u 16.4K 28.7K x
16 u 16.4K 31.7K x
128 u 16.4K 32.5K x
ba_4 u 16.4K 65.5K x
ba_6 u 16.4K 98.3K x
er_3 u 16.4K 238K x
er_5 u 16.4K 398K x
er_7 u 16.4K 558K x

Fig. 3: (Up Left): Query complexity on the different graphs. (Down Left): Pre-
processing complexity on the different graphs. (Right): Real-world and synthetic
datasets. More details about the experiments are presented in Appendix A.4.

pair of values with each edge. Although the theoretical worst-case running times
are similar for all variants, in practice, the Alias and ordered implementations
are slower by a factor of at least 2. On the query stage, random walks run
instantly once the preprocessing is complete. We therefore count the average
number of operations performed by each query (sampling), normalized by the
distance between pairs of sampled nodes to avoid having large differences be-
tween the dataset results. The Alias implementation consistently outperforms
the others, confirming our theoretical analysis. The binary implementation per-
forms well when the average distance is short. Therefore, for 2-dimensional grids
where the average shortest path is linear, the binary implementation performs
the worst. Finally, the ordered implementation is always at least as efficient as
the linear one and sometimes better.
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A Appendix

A.1 Appendix related to Section 2

Fig. 4 shows that the number of shortest paths between two nodes can be expo-
nential. Therefore the naive algorithm presented in Section 2 consisting of listing
all shortest paths in the graph should be avoided.

α ω

x1

y1

x2

y2

xn

yn

. . .

. . .

Fig. 4: Graph with 2n+ 2 nodes and 2n shortest paths between α and ω.

In the following we show that the probability of each shortest path between
α and ω of the graph Gk see Fig. 5 when we use the algorithm random weights to
sample a path. This will show that random weights leads to a biased distribution
on the sampled shortest paths.

We denote a, b1, . . . , bk, c1, . . . , ck, d, e, f the random weights on the edges as
in Fig. 5. The weights follows a continuous uniform distribution on [1− 1

n , 1+
1
n ].

For the sake of simplicity, we recenter and reduce the variables. This does not
change the selected shortest path (we just subtract by 1− 1

n every weights and
then multiply them all by n

2 ). From now on, we suppose that all the weights
follow the standard uniform distribution U(0, 1).

α

1 2

ω3

x1

x2

xk

...

d

e

f

a

b1

b2

bk

c1

c2

ck

Fig. 5: The family of graphs Gk with the random variables defining the weights
of the edges.

We define the following random variables:
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– Yi = bi + ci for all 1 ≤ i ≤ k
– Z = d+ e+ f : total weight of the bot path.

Let W0 = α → 1 → 2 → ω and Wi = α → 3 → xi → ω for 1 ≤ i ≤ k. We want
to compute the probability

P(W0) = 1−
k∑

i=1

P(Wi).

All the weights follow the same distribution, then by symmetry :

P(W0) = 1− kP(W1).

Note that

P(W1) = P

(
(a+ Y1 < Z) ∩

(
k⋂

i=2

(a+ Y1 < a+ Yi)

))

= P

(
(a+ Y1 < Z) ∩

(
k⋂

i=2

(Y1 < Yi)

))
.

We condition on t ∈ [0, 2] the value of Y1. Denote by fY the probability density
function of Y1.

P(W1) =

∫ 2

0

P

(
(a+ t < Z) ∩

(
k⋂

i=2

(t < Yi)

)∣∣∣∣∣Y1 = t

)
fY (t)dt.

The weights are drawn independently thus the variables (Yi)1≤i≤k and Z−a are
independent. It follows :

P

(
(a+ t < Z) ∩

(
k⋂

i=2

(t < Yi)

)∣∣∣∣∣Y1 = t

)

= P(t < Z − a).

k∏
i=2

P(t < Yi).

All the variables Yi follow the same distribution (sum of two independent stan-
dard uniform variables). We denote FY the cumulative density function of the
Yi and FZ−a that of Z − a. Then

P(W1) =

∫ 2

0

(1− FZ−a(t))(1− FY (t))
k−1fY (t)dt.

Because the density function is the derivative of the cumulative density function
we can do an integration by parts.

kP(W1) = 1− FZ−a(0)−
∫ 2

0

(1− FY (t))
kfZ−a(t)dt,
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where fZ−a is the density function of Z − a. Finally

P(W0) = FZ−a(0) +

∫ 2

0

(1− FY (t))
kfZ−a(t)dt.

a and Z are independent. Y and Z follow the Irwin-Hall distribution for n = 2
and n = 3 respectively then

FZ−a(0) = P(Z < a) =

∫ 1

0

FZ(t)dt =
1

4!
=

1

24
.

and the density of Z − a is the convolution product of the density of Z and −a

fZ−a(t) =

∫ 0

−1

fZ(t− u)du =

∫ 1

0

fZ(t+ u)du.

The final formula for P(W0) is then

P(W ) =
1

24
+

∫ 2

0

(1− FY (t))
k

∫ 1

0

fZ(t+ u)du dt. (6)

For k = 2 the Equation 6 gives P(W0) = 737
2016 . As k grows to infinity the

term (1 − FY (t))
k converge to 0 for t ∈]0, 2]. Moreover the function t 7→ (1 −

FY (t))
kfZ−a(t) is continuous on [0, 2] then it is dominated by a constant. Then

the dominated convergence theorem ensures that the integral converge towards
0. Therefore Equation 6 gives P(W0)

k→+∞−→ 1
24 .

A.2 Appendix related to Section 3

Algorithm 2 Preprocessing step
Input: G: a graph, s: source node, t: target node
Output: Gs: Successor Graph from s and the values of W computed
1: function preprocessing(s, t)
2: Gs = BFS_with_predecessors(G, s)
3: W = compute_weights(Gs)
4: return (Gs,W )
5: end function

The following proof stresses out that the order that minimizes the number
of predecessors checks is the order where the nodes with the largest σs(v) are
those with the smallest index.

Proof (of Proposition 5). Fix a node v ∈ V . Let N−
v = [w0, . . . , wk]. Note that

rand_pred_it(N−
v ,W ) returns the predecessor wi for exactly σs(wi) different

values of r ∈ Jσs(v)K. When the function returns wi, it has iteratively checked
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Algorithm 3 Linear implementation of rand_pred
Input: N−

v : List of predecessors of each node v, W : Es → R a weight function and
σs: an array with the number of sh. paths from s to each node v

Output: w ∈ N−
v according to the weights W

1: function Rand_Pred_it(N−
v ,W , σs)

2: r = uniform(Jσs[v]K)
3: i = 0, w = N−

v [i]
4: r = r − W (w → v)
5: while r ≥ 0 do
6: i = i+ 1, w = N−

v [i]
7: r = r − W (w → v)
8: end while
9: return w

10: end function

all the i first predecessors. Then the average number of predecessors checked
before finding the right one in rand_pred_it is

1

σs(v)

k∑
i=1

i · σs(wi).

To minimize the sum the largest values of σs(wi) should be matched with the
smallest indexes i. That is the ordering π.

We give the proof of the preprocessing complexity of the ordered algorithm.

Proof (of Proposition 6). We need to ensure that the function rand_pred_it
traverses the values of N−

v = [w0, . . . , wk] in decreasing order of the values of
σs(wi). To achieve this, we rewrite N−

v after computing all the values σs(v). We
start by ordering the nodes w ∈ V by decreasing values of σs(w), which costs
O(n log n). For each w ∈ V we store its successors in N+

w . That is v ∈ N+
w if and

only if w ∈ N−
v . Then, for every w ∈ Vs in decreasing order of σs(w), and for

every successor node v ∈ N+
w , we write w in N−

v . After this operation, all the
N−

v are rewritten in decreasing order of σs(w). The operation of rewriting costs
O(m) as

∑
v∈V |N+

v | ≤ m. Thus, the overall preprocessing stage cost becomes
O(m+ n log n).

Binary search based on a weight function.
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Algorithm 4 Binary implementation of rand_pred

Input: N−
v : List of predecessors of each node v, W : Es → R a weight function and

σs: an array with the number of sh. paths from s to each node v
Output: w ∈ N−

v according to the weights W
1: function Rand_Pred_Bin(N−

v ,W , σs)
2: r = uniform(Jσs[v]K)
3: i = bin_search_index(N−

v ,W , r)
4: return w = N−

v [i]
5: end function

Algorithm 5 Binary implementation of rand_pred

1: function bin_search_index(N−
v ,W , r)

2: i = −1, j = |N−
v | − 1

3: while j − i > 1 do
4: x = ⌊ i+j

2
⌋, w = N−

v [x]
5: if W (w → v) > r then
6: j = x
7: else
8: i = x
9: end if

10: end while
11: return j
12: end function

Here we present the proof of Proposition 8.

Proof. Suppose that W = x0 → · · · → xℓ. To find the predecessor of xi we do a
binary search on all the incoming edges to find the edge satisfying Equation (3).
This costs O

(
log(|N−

xi
|)
)

operations. So the total complexity of the random walk
is of order of

ℓ∑
i=1

log(|N−
xi
|) = log

(
ℓ∏

i=1

|N−
xi
|

)
.

Let nk be the number of nodes at distance k from x0. With the Remark 1, we
obtain |N−

xi
| ≤ ni−1. Then, it follows

ℓ∏
i=1

|N−
xi
| ≤

ℓ∏
i=1

ni−1 ≤
(
n0 + · · ·+ nℓ−1

ℓ

)ℓ

,

by using the comparison between arithmetic and geometric means in the last
step. We get:

ℓ∑
i=1

log(|N−
xi
|) ≤ ℓ log

(n
ℓ

)
,

by noting that n0 + · · ·+ nℓ−1 ≤ n. ⊓⊔
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Algorithm 6 Alias implementation of rand_pred

Input: N−
v : predecessors of each v, W : weight function

Output: w ∈ N−
v using the alias method

1: function rand_pred_al(N−
v ,W )

2: i = uniform(J|N−
v |K) , t = uniform([0, 1])

3: w = N−
v [i], (t′, al) = W (w → v)

4: if t ≤ t′ then return w else return al
5: end function

A.3 Appendix related to Section 5

We first exhibit an example for the Alias method with integers. To provide an
interesting example, we modify a little our main example as:

0

1

x2

3

4

5

x6

x7

9

8

Fig. 6: Example used for our Alias method.

In our new example (Fig. 6) we get:

σ0(9) = 7 σ0(x2) = 1

σ0(x6) = 5

σ0(x7) = 1.

Let us exhibit both tables T and R by our Alias algorithm to reach the last
node 9 starting either with x2, x6 or x7 with respective weights 1, 5 and 1. The
Euclidean division is 7 = 2× 3 + 1, thus we have

T = [(1, x2, x6), (1, x7, x6), (2, x6, ∅)] and R = [x6].

A call to Alias with integer 0 gives x2. A call with integer 2 gives x7 and all
other possibilities 1, 3, 4, 5, 6 give x6, respectively from T [0] then T [1], then two
times from T [2] and finally from R[0].

Now we are ready to prove Proposition 12 that gives the time-complexity for
our Alias method with integers.
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Proof (Proposition 12). We use the notations introduced in Equation (5)) and
for each stack Si (i = 0, 1) we define its weight ∥Si∥ to be the cumulated weight
of the elements it contains. Furthermore if a cell from T is not empty then it
contains a weight q.

The algorithm is based on the following loop invariant:
At each iteration i, we remove a weight q from the total weight ∥S0∥+ ∥S1∥ that
is added to the total weight contained in T .

The algorithm terminates after n iterations and finally the remaining weight
in ∥S0∥ + ∥S1∥ is r. Then, R is filled. Finally, the sampling an integer i ∈ JW K
and returning the result allows to sample an object according to the distribution
of wj for j ∈ JnK.

⊓⊔

In order to get the unranking algorithm to calculate the shortest path of rank
r ∈ Jσs(t)K we must adapt a little our Alias method with integers to keep track
of a little more of information (partial sums of appearances of elements). We
show how this works on the previous example as it contains most ideas of the
proof. The complete proof is left out to avoid a lengthy presentation. We have
the following new tables

T̃ = [(1, (x2, 0), (x6, 0)), (1, (x7, 0), (x6, 1)), (2, (x6, 2), ∅)] and R̃ = [(x6, 4)].

Let us focus on T̃ [1] containing (1, (x7, 0), (x6, 1)). The third element from the
triplet is (x6, 1) meaning that the object under consideration is x6 and further-
more, before in the table T̃ , i.e. in T̃ [0] we have already a weight equal to 1 for
the object x6 that has been dispatched.

Suppose now, we unrank the shortest path 5 in σ0(9). The Alias method with
tables T̃ and R̃ has been preprocessed. The quotient q = 2 is the weight of each
cell of T̃ , we thus are interested in the cell ⌊5/2⌋ = 2 containing (2, (x6, 2), ∅).
The object we get is x6 because its value 5 mod 2 = 1 satisfies 1 < 2. Thus the
predecessor of 9 we are interested in is x6. We must then update the rank value.
Inside the cell we desire the value 5 mod 2 = 1 but for going on in the process
we must recall that x6 had already been dispatched before in T̃ , with weight
2, corresponding to the second coordinate of (x6, 2). Finally the new rank to
continue the process is 1 + 2, corresponding to the element of rank 3 in σ0(x6).

A.4 Appendix related to Section 6

Our algorithms are implemented in C to enhance efficiency. The code is open-
source and will be provided in the final version of this paper. We conducted
our experiments on an Intel(R) Xeon(R) Silver 4210R CPU at 2.40GHz with-
out parallel processes. In fact, the preprocessing can be fully parallelized since
constructing successor graphs from each node is an independent task.

The Fig. 3 is built using the following information.
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– (Up Left): Query complexity on the different graphs. The y-axis corresponds
to the average number of operations (arithmetic, tests, affectation) made by
50 randomly selected source-target (s, t) pairs. For each (s, t) we generated
50 000 shortest paths and summed the number of operations made and
divided them by (50 000×d(s, t)) the black bars gives the standard deviation.

– (Down Left): Preprocessing complexity on the different graphs. The y-axis
corresponds to the average running time per node in seconds with the black
bars giving the standard deviation.

– (Right): Real-world and synthetic datasets. Upper part corresponds to the
real-world dataset and the bottom part corresponds to the synthetic one.
Columns from left to right indicate whether the graph is directed ’d’ or
undirected ’u’, the number of nodes and the number of edges. Our synthetic
dataset contains from top to bottom: bi-dimensional grid graphs of 16 384
nodes with 4, 16 and 128 rows, Barabási-Albert graphs with parameter m

equals to 4 and 6, Erdős-Rényi graphs with p = i log(n)
n for i = 3.5 and 7.
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