N
N

N

HAL

open science

Optimal Uniform Shortest Path Sampling through
Random Walk

Simon Dreyer, Antoine Genitrini, Mehdi Naima

» To cite this version:

Simon Dreyer, Antoine Genitrini, Mehdi Naima. Optimal Uniform Shortest Path Sampling through

Random Walk. 2024. hal-04669060v1

HAL Id: hal-04669060
https://hal.science/hal-04669060v1

Preprint submitted on 7 Aug 2024 (v1), last revised 23 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04669060v1
https://hal.archives-ouvertes.fr

Optimal Uniform Shortest Path Sampling through Random Walk

Simon Dreyer*

Abstract

Random generation of shortest paths in graphs is utilized
across various domains, including traffic-flow simulation and
network topology exploration. In this paper, we address
the challenge of uniform shortest path sampling in graphs
from an algorithmic perspective. We introduce a novel
uniform shortest path sampling algorithm that uses a biased
random walk operating in two stages. We demonstrate
that our algorithm, when combined with Alias sampling,
is optimal in terms of worst-case running time among all
algorithms in its class. Furthermore, we present an efficient
implementation of our algorithm in a low-level programming
language and evaluate it on both real-world and synthetic
datasets. We compare our theoretically optimal algorithm
with other variants to assess its practical performance and

discuss its application in traffic modeling.

1 Introduction

Graphs play a crucial role in understanding and ad-
dressing problems associated with networks and inter-
connected systems. They provide a theoretical basis for
analyzing various structures, including social networks,
communication systems, and transportation networks.

Sampling shortest paths is essential in numerous
contexts, such as simulating traffic flow, studying the
topology of large networks (like the internet and so-
cial networks), and assessing network damage. For in-
stance, the authors of [5] employ this method to eval-
uate network damage, while [8] analyzes shortest path
sampling as an approximation of traceroute paths. The
practice of approximating graphs through shortest path
sampling has been explored in [16] 20} 1, 23], where the
authors investigate the biases introduced by exploring
a graph via random shortest paths. In [I4], the au-
thors discuss which graph properties can be well approx-
imated using shortest path sampling and the influence
of the number of samples on these properties. In the
realm of traffic flow, the authors of [27] apply shortest
path sampling to enhance network transmission capac-
ities.

Despite extensive research, there is a noticeable gap
in the explicit study of the algorithmic complexity of

*Sorbonne Université, CNRS, LIP6 - UMR 7606, F-75005
Paris, France.

Antoine Genitrini*

Mehdi Naima*

shortest path sampling. Typically, this problem involves
fixed source and target nodes, aiming to sample a short-
est path between them. Some studies, as mentioned
in [8 5, 21], 27, [I8], [7], suggest randomly selecting one
shortest path from all possible paths without detailing
the implementation. This approach faces challenges due
to the potentially exponential number of shortest paths
between two nodes in some graph families, such as grid
graphs, making it impractical for simulating traffic in
city graphs, which often resemble grid graphs.

Other studies recommend assigning random weights
to edges to resolve ties among multiple shortest paths,
then returning the unique shortest path left, as detailed
in [16, [©6, 26, II]. Each change of weights generates a
new shortest path. However, this method introduces
a bias, meaning that some shortest paths are more
likely to be selected than others. To our knowledge, no
theoretical or experimental studies have addressed this
bias, which could affect the outcomes of experimental
studies relying on biased sampling methods.

The paper is organized as follows: In Section [2]
after presenting our formalism we give the problem
statement for the uniform sampling of shortest path
between fixed source and target nodes and review
the current state of the art in this field. Then, in
Section [3] we present our main contribution, a generic
two-stage random walk algorithm, and demonstrate
that, with appropriate weight settings, this algorithm
uniformly samples shortest paths. Next, in Section [4] we
discuss four different implementations of our proposed
algorithm, conducting a detailed analysis to identify the
optimal version. Section [§] extends our algorithm to
generate uniform shortest path in general. Finally, in
Section [6] we assess the performance of our algorithm
and its various implementations using both real-world
and synthetic graphs. We also explore an application of
our algorithm in traffic modeling. All missing proofs in
the main paper can be found in Appendix [A]

2 Context of the problem and state of the art

In this article, we focus on graphs represented by
G = (V,E), where V is a finite set of nodes and
E = {(u,v)|u,v € V,u # v} denotes the set of directed
edges. Therefore, the graphs under consideration are
directed and simple (no self-loops or multiple edges

are allowed). We denote n = |V| as the number of
nodes and m = |E| as the number of edges. An
undirected graph can be viewed as a directed graph
where if (u,v) € E then (v,u) € E as well. An edge
(u,v) € E will be denoted as u — v, where u is referred
to as the starting point and v as the end point. A walk
W in a graph is a sequence of edges such that the end
point of one edge is the starting point of the next edge.
The length of a walk W, denoted |W/|, corresponds to
the number of edges it contains. For a given walk, s € V/
usually denotes the source node and t € V' denotes the
target node. The distance from s to t, denoted d(s,t),
represents the minimal length among all walks from s
to t.

A shortest path from s to t is a walk W of mini-

mal length, that is |W| = d(s,t). We also denote by
W, the set of all shortest paths from s to ¢ and by
os(t) = |[Wg| the number of shortest paths. The set
of all shortest paths starting from s is written as W,.
Therefore, Wye = Uycy Wy, and oge = |[W,|. Finally,
we denote by W the set of all shortest paths in the
graph: thus W = U,cy W, and ¢ = |[W|. Given a
graph and fixed source s and target ¢, we are interested
in:
Problem 1: source-target uniform shortest path:
Nodes s,t being fixed, give a random generation algo-
rithm satisfying VW € W, P(W) = 1/04(t) and for all
W ¢ Wy, P(W) = 0.

2.1 Naive Algorithm The simplest approach in-
volves precomputing all shortest paths from s to ¢ and
storing them in a list during a preprocessing stage.
Queries can then be answered by returning a randomly
selected element from this list. This approach is implic-
itly suggested by [8, Bl 211, 27, 18, [7]. The preprocessing
stage running time depends on the number of paths in
W, which can be exponential for certain graph fam-
ilies. See for example Figure [f] Therefore, we aim to
design polynomial-time algorithms that still ensure uni-
form sampling.

2.2 Random Weights To create a random genera-
tor for shortest paths, one idea used in works such as
[16, 6 26], [T1] is to assign small random real weights
to the edges of the graph. This ensures that only one
shortest path has the minimum weight, which can then
be found and returned using Dijkstra’s Algorithm with
backtracking. The detailed procedure is outlined in Al-
gorithm (1| where shortest_path_dijkstra(G,s,t) is a
function that returns the shortest path from s to ¢ in
G by running a Dijkstra algorithm with backtracking.
Therefore, redistributing random weights on the edges
of the graph ensures that every shortest path from s

to t has some probability of being sampled. However,
the probabilities of the different shortest paths are not
equal. We illustrate this fact with the following family
of graphs Vk > 1, Gy, = (Vi, E)) as shown in Figure
We denote by W, the shortest path from « to w, given
by Wo=a—1—2—w.

Algorithm 1 Random Weights

Input: G = (V, E): a graph, s: source node, t: target
node
Output: a random shortest path
1: function RANDOM_WEIGHTS(G, s, 1)

2 for e € E do
— i 11
3: e =uniform(—,)
4: w(e)=1+¢ > Assigns a weight to e
5 end for
6 return shortest_path_dijkstra(G,s,t) >

Dijkstra with backtracking
7: end function

Figure 1: The family of graphs Gi. There are k + 1
shortest paths in total. One shortest path a — 1 —
2 — w, and k shortest paths (o = 3 — x; — w);.

LEMMA 2.1. The probability of Wy being sampled by
Algorithm [1] when k = 2 is:

737 1
= 5016~ 0.37 > 3

when k grows to infinity we have

(2.1) P(Wo)

(2.2) P(Wy) ¥ 25 i £0.

PROPOSITION 2.1. Random weights is not uniform.

Proof. Given Gy, the shortest path Wy should have a
probability P(Wy) = k—il for unbiased sampling, since
there are k + 1 shortest paths from s to t. However,
as shown in Lemma when k = 2, P(Wp) # 1.
Additionally, as k increases, P(Wy) tends towards the

constant 2—14 rather than 0. 0

Algorithm Distribution Preprocessing Space Query Section
Random Weights | biased X X O(m + nlogn) 2.2
URW biased O(m +n) O(m + n) O(0) 3-2)
Naive uniform QW) O(diam - [Wg|) O(1) 2.1
BRW-linear uniform O(m+n) O(m+n) O(n) 11}
BRW-Ordered uniform O(m+mnlogn) O(m+n) O(n))
BRW-Binary uniform O(m+mn) O(m+n) O(Llog(%)) E
BRW-Alias uniform O(m+n) O(m+n) O(¢) 4.4

Table 1: Overview of the discussed random sampling methods for fixed source s and target t, running times
correspond to the worst-case scenario given a graph G with n nodes and m edges. The value ¢ represents the
length of the sampled path, W; the set of shortest paths from s to ¢ and diam is the diameter of G.

3 Contribution : a Random Walk Approach

In this Section, source and target nodes are fixed and
we design algorithms to tackle the source-target uniform
shortest path problem.

3.1 Two stages algorithm We present a generic
two-stage random walk algorithm to ensure the sam-
pling of all shortest paths. The two phases are:

e Preprocessing: Compute the distributions, among
the edges of each node, for the random walk. This
is done only once.

e Queries: For each query, generate a random walk
in the graph.

We will discuss two random walk schemes: an
unbiased one and a biased one. We first need to ensure
that we never take edges in the graph that are not on a
shortest path from s to t.

This type of two stages problems is usually called
repetitive-mode [22] as opposed to single-shot. There
are many problems on shortest paths that operate
with this two stages procedure for instance to compute
distances or all-pairs shortest paths. We refer to [24] for
a review of these methods.

DEFINITION 3.1. (PREDECESSOR SET [4]) Let G
(V,E) be a given graph and fix a node s € V. For
v €V, the predecessor set of v is defined as:

pres(v) ={w eV |s— - s w—ve Wt

DEFINITION 3.2. (SUCCESSOR GRAPH) The successor
graph is a directed graph G5 = (Vs,Es) defined as
follows:

E, = {(w,v)|Yv e V,w € pres(v)}.

The set Vs corresponds to the nodes belonging to an edge
from Eg which is all the nodes accessible from s.

Given a successor graph G4 = (Vs, Es) and v € Vi,
we denote by IN; the list of incoming edges to node
v. This list of elements is arbitrarily ordered, thus
set(Ny,) = pres(v).

REMARK 3.1. The successor graph G is the union of
all the BFS-trees rooted in s. It is acyclic. It contains
ezxactly one source s and several sinks. Moreover, edges
(u,v) of the successor graph go from a node at distance
k =d(s,u) to a node at distance k+ 1 = d(s,v).

The successor graph from s is computed in linear time
in the size of the graph O(n+m) by using a breadth-first
search (BFS) that keeps all the optimal predecessors of
a node. Figure |2 introduces a graph-example and its
associated successor graph Gj.

Figure 2: (left) A graph and (right) the associated
successor graph for s = 0.

The successor graph from s ensures that starting
a random walk with target ¢ and taking the edges of
G5 in a reversed way, the source s will be reached af-
ter exactly k = d(s,t) transitions. The generic ran-
dom walk approach is presented in Algorithm [2| where
BFS_with predecessors((G,s) computes the successor
graph G from node s. We will discuss the different im-
plementations of compute weights and rand pred in
Section[dl The algorithm runs in two stages with a pre-
processing step computing the successor graph from s

and a random walk step that starts from ¢ and goes
backwards until reaching s. Different random walks
could be considered on G5 = (V, Ey); these different
schemes can be set by the weight function # that as-
signs weights to the edges Es. Then, the random walk
standing on node v € V; chooses a predecessor w given
by the list N, = [wy,...,wx] according to the weight
function 7 .

PROPOSITION 3.1. (GENERIC RAND. WALK COMPLEX.)
Any implementation of Algorithm @ needs Q(m + n)
operations and Q(m + n) space for the preprocessing
step and Q(¢) operations for the random walk step
where £ is the length of the walk.

Proof. During the preprocessing step we compute N
for all v € V with an edge-distribution for node from
N, . Thus the complexity is at least Q(n + m) since
> wev INg | may be equal to m for some graphs and
since we construct a list for each node v € V. For space
complexity the successor graph G, is stored together
with a weight on every edge. Thus the space complexity
is Q(n+m). Now, let W be the generated random walk,
in the second step, with || = £. Then W needs at least
¢ operations to be constructed as the predecessors are
computed one by one until reaching s. 0

Algorithm 2 Generic Random Walk
Input: G: a graph, s: source node, t: target node
Output: Gg: Successor Graph from s and the values
of W computed

1: function PREPROCESSING(S, t)

2: Gs = BFS_with_predecessors(G, s)

3: W = compute_weights(Gj)

4: return (G5, ?)

5: end function

Input: s: source node, t: target node, G5 = (V, Ey):
Successor Graph from s and # a weight function
assigning weights to F

Output: path: A shortest path from s to ¢

1: function RANDOM_WALK(s,t, G4, #)
path=[],v =t
while v # s do
path = [v] 4+ path
v = rand_pred(N, ,#") > chooses a random
predecessor of v according to #

6: end while

7: return [s] + path

8: end function

The most straightforward random walk that we
consider is the Unbiased Random Walk.

3.2 Unbiased Random Walk: URW In this sit-
uation the weight function W assigns weight 1 to all
the edges in the successor graph (see the left graph of
Figure [3] for an illustration). The random walk is thus
unbiased. Using this approach, we get an explicit for-
mula for the probability of sampling a shortest path
since all weights are equal to 1. Such a random walk is
called isotropic in the literature (cf. e.g. [19] [13]).

PROPOSITION 3.2. URW necessitates O(m+n) for the
preprocessing step and O({) operations for the random
generation step (£ being the length of the sampled walk).

Proof. The preprocessing step requires the construction
of the successor graph, done in O(m + n), and the ran-
dom walk step then needs to sample a node uniformly
in the list N which can be done in O(1) and this is
repeated /£ times. 0

PROPOSITION 3.3. Let W € Wy be a shortest path
from s to t. The probability of sampling W by URW

18:]
H | ="

veW\{s} " |

P(W)

COROLLARY 3.1. (URW 1S NOT UNIFORM) Consider
the graphs Gy, and let (s,t) = (w,«) the probability
of W' w — 2 = 1 = «a being sampled by the
URW is P(W') = 1/2 for any k > 2 instead of
P(W')=1/(k+1).

In Proposition [2.1Jand Corollary [3.1], we have shown
that Random Weights and URW are biased. One might
then ask whether one approach yields results closer to
the uniform distribution. We demonstrate that there
is no universally superior method that works for all
graphs. For example, consider the graph G5 in Figure[l]
If we fix (s,t) = (a,w), then URW assigns a probability
of 1/3 to each of the three shortest paths, while Random
Weights assigns approximately 0.37toa -1 —-2 — w
and around 0.315 to each of the other two shortest
paths, « — 3 — z; — w with ¢ € 1,2. Therefore,
in Go with (s,t) = (a,w), URW is better than Ran-
dom Weights. Conversely, considering (s,t) = (w, @),
URW assigns a probability 1/2 to w — 2 — 1 — « and
1/4 to the others, while the probabilities of the three
shortest paths by Random Weights remain unchanged.
Therefore, Random Weights is closer to the uniform dis-
tribution than URW in terms of Wasserstein-1 distance.

3.3 Biased Random Walk: BRW Now we present
how to set the weights of # such that the uniformity
of the sampling is guaranteed. The idea is to assign
weights to the edges (u,v) € E; of Gy based on

the number of shortest paths arriving at w. Then,
Biased Random Walk (BRW) is defined by assigning the
weights of # as follows:

(3.3) V(u,v) € Es, # (u — v) = 05(u).

PrROPOSITION 3.4. (BRW IS UNIFORM) The biased
random walk BRW solves the source-target uniform
shortest path problem.

Proof. Let W be the sampled random walk. Since it
is computed on the successor graph G,, W € W, is
a shortest path. Now, let W = vo(:= s) — v; —

- = vg(:=t). The probability of sampling W can
be computed by induction.

k

P(W) = H os(vi-1) _ 1 _ 1

toog(v) as(m) ou(t)

The probability of going from wv; to wvg_q1 is
0s(vg—1)/0s(vk). The same reasoning applies by induc-
tion (obviously os(s) = 1), and then terms are telescop-
ing. |

4 Implementations of BRW

Now we discuss the algorithmic complexity of com-
puting BRW. The functions compute_weights and
rand pred are implemented in different ways de-
pending on the amount of preprocessing done by
compute_weights and the computations necessary in
rand pred afterward. The function rand pred gener-
ates a random predecessor following a given discrete
probability distribution. We propose four implemen-
tations (linear, ordered, binary, alias) and prove that
alias sampling provides the optimal algorithm for both
stages. The preprocessing phase consists of computing
the successor graph G, and the weights of #. This
phase is done only once and stored in memory. The
differences between implementations lie in the chosen
ordering for N7 and in the computation of weights.
The queries involve performing random walks on G
following the distribution #. The differences between
implementations are for the function rand_pred, which
selects a predecessor w of v, where w € N7 .

For all implementations, we compute the values of
os(v) for v € V. These values are then used for the
weight function #. From the successor graph, it is
possible to dynamically compute the values of o4(z) for
all z € V by recurrence, noting that a shortest path
from s to v is the concatenation of a shortest path from
s to w with the edge (w, v), where w is a predecessor of
v (i.e., w € prey(v)). Thus, we have:

>

wepres(v)

(4.4) o4(s)=1and Vv # s, o5(v) = os(w).

This recurrence can be found in [4, Lemma 3]. The
values of o4 will be used in rand_pred implemntations
of BRW as we shall see.

4.1 Linear Implementation In the following im-
plementation, the preprocessing step consists in com-
puting the successor graph Gy from node s, and then
computing the values of o4(v) for all v € V' using Equa-
tion 4] An illustration of the computed successor
graph with weights is given in second from left graph
of Figure [3| The query step then defines a predecessor
by sampling a value r € Jos(v)] and iterating through
the predecessors of v one by one to determine where r
falls within the predecessor values.

Algorithm 3 Linear implementation of rand_pred

Input: N : List of predecessors of each node v, # :
E, — R a weight function and o,: an array with
the number of sh. paths from s to each node v

Output: w € N, according to the weights #

1: function RAND_PRED_IT(N , %, 0,)
2: r = uniform([o,[v]])

3 1 =0, w=NjI[i

4: r=r—%(w-—v)

5: while » > 0 do

6 i=1i+1, w=N,][i

7 r=r—¥(w—wv)

8 end while

9: return w

10: end function

To run this procedure we implement the method
rand pred(IN,,”#) that returns a predecessor w of v
according the number of shortest paths to each w € N .

PROPOSITION 4.1. (LINEAR PREPROCESSING) The
preprocessing stage of linear to build the successor
graph from s € V and to compute the values of o4(z)
for all z € V is done in time O(n + m).

Proof. A BFS is done, starting from the node s. This
costs O(n+m) operations. Then the values of o4(v) are
computed by the Recurrence in linear time of the
successor graph size.]

The complexity of one query step corresponds to
the biased random walk BRW and the random choice
of predecessors in function rand pred_it.

PROPOSITION 4.2. (LINEAR QUERY) The worst-case
time complezity of the generation phase is O(n) and
this bound is tight.

Proof. Every node is checked at most once by the
random walk. In the worst case, when the current node

Linear

Ordered

Figure 3: Successor Graph from s = 0 of the left graph of Figure 2| with the different weight functions #'. The
leftmost graph correspond to URW. The four remaining weights correspond to the four implementations of BRW.

is at distance ¢ from the source s, we visit every node
at distance ¢ — 1 from s to find a predecessor. Moreover
the complete bipartite graph is an example where can
visit /2 nodes to reconstruct a shortest path of length
2. So this bound is tight. |

4.2 Ordered Implementation In the linear imple-
mentation, we assumed an implicit order on the pre-
decessor set pres(v) of node v given by N~. However,
the predecessors of a node can have any ordering, and
thus for each node v € V;, there are [N, |! possible or-
derings. The ordering can be optimized by minimizing
the number of predecessor checks made by the func-
tion rand pred_it. To achieve this, we order the list
N = [wo,...,wy] in decreasing order of the values of
W (w; — v), so that # (wg — v) is the largest value.
For instance, in the successor graph given in Figure [3]
the node ¢, is renamed as ¢q in the ordered version. This
minimizes the number of checks made in Line Bl of the
function rand_pred_it. Let 7 be the ordering where the
list N is ordered by decreasing values of os(w) where
w=N;[i] and i € [N].

PROPOSITION 4.3. (OPTIMAL ORDER) Assuming uni-
form sampling of shortest paths, the ordering w is the
order that minimizes the number of predecessor checks
for each possible values r € Jos(t)].

Therefore, the ordering 7 is better than any other order-
ing and improves the average running time. However,
the worst-case time complexity is still O(n) regardless
of the length of the shortest path.

PROPOSITION 4.4. (ORDERED PREPROCESSING) The
worst-case time of preprocessing is O(m + nlogn).

PROPOSITION 4.5. (ORDERED QUERY) The worst-case
time complexity of the generation phase is O(n) and this
bound is tight.

Proof. The proof is similar to the one of Proposition

the complete bipartite graph has of a path of length 2
whose reconstruction requires visiting n/2 nodes. 0

4.3 Binary Implementation The procedure
rand _pred used in Algorithm [2| corresponds to finding
the position of an element r in a list. Thus, rather
than using an iterative approach as it is the case now,
it is possible to use binary search instead by adding
few operations in the preprocessing stage. As we
shall see this addition does not affect the theoretical
running time of the preprocessing stage but improves
the theoretical bounds of the queries afterward.

In the function rand pred_it, we draw a value
r € [os(v)] and if wo,...,wp—1 = N
return the node w; such that

v, we want to

i1 i
Zas(wj) <r< Zas(wj).
=0 j=0

To optimize this, it is natural to work with partial
sums of the weights of the incoming edges and perform
a binary search on it. Thus, we assign new weights
to the edges. In this scheme, the weights are defined
as follows: for v € Vi, let [wo,...,wr—1] = N .
Then for each w; — v € E,, we assign the weight
W (w; — v) = 35 _o0s(w;). An illustration is given
in the second from right graph of Figure

Thus, the number of shortest paths o, (t) from s to
t is just the largest label of the incoming edges of t.
We will denote this edge by t*. Now we can determine
the edge taken by the random walk more efficiently.
Given a node v and a value r we execute a function
bin_search_index (see Appendix that runs a binary
search on N to find the index ¢ such that

(4.5) W (wi—1 —v) <r < H#(w; —v).

The predecessor of v we look for is then w;. Thus,
we only need to replace the function rand_pred of
Algorithm [2| with its optimized version find_pred_bin

given in Algorithm [] and to modify the weights #
computed during the preprocessing.

Algorithm 4 Binary implementation of rand_pred

Input: N, : List of predecessors of each node v, # :
E, — R a weight function and o,: an array with
the number of sh. paths from s to each node v

Output: w € N according to the weights #

1: function RAND_PRED_BIN(N_ , %/, o)

2: r = uniform([o,[v]])
3: i = bin_search_index(IN,, % ,r)
4: return w = N, [{]

5: end function

PROPOSITION 4.6. (BINARY PREPROCESSING) The
preprocessing time complexity of Binary is O(n + m).

Proof. Additionally to O(n+m) for the successor graph
construction G4 and the values of o,. The weights on
G, is done in O(m) operations using an array containing
the values of o4(t) for all t € V. We compute the partial
sum step by step writing the weight of (w; — v) at the
step when we add o4(w;) to the partial sum. a

The following proposition proves that using
rand_pred_bin instead of rand_pred_it gives better re-
sults in the worst-case scenario.

PROPOSITION 4.7. (BINARY QUERY) Let W be the
sampled shortest path, let £ = |W| then the generator’s
worst-case time complexity is O (6 log (%))

Proof. Suppose that W = xg — -+ — x,. To find the
predecessor of x; we do a binary search on all the in-
coming edges to find the edge satisfying Equation (4.5]).
This costs O (log(|N,|)) operations. So the total com-
plexity of the random walk is of order of

l ¢
> log(IN,,|) = log <H |N;,.|> :
=1 =1

Let nj be the number of nodes at distance k from z.
With the Remark we obtain [N | < n;_;. Then,

it follows
no _|_ PN _|_ nffl ¢
E b

I ¢

H IN,.| < Hm_l <
i=1 i=1

by using the comparison between arithmetic and geo-

metric means in the last step. We get:

J4
3 log([Nz,|) < flog (5)-

by noting that ng+---+ns_1 <n O

Thus, the complexity of a query of the generator
depends on the length ¢ of the generated shortest path.
The binary implementation has a better worst-case
running time than the linear and ordered. For instance,
if the size of the sampled path ¢ = logn (which is typical
in many random graph models), the generation time in
worst case is O(log® n) with binary implementation and
O(n) for the linear and ordered one.

4.4 Alias Implementation We want to further im-
prove the generation of the random walk. Note that for
each node v € V, we compute the distribution of the
predecessors N already during the preprocessing stage.
We use this information to design a constant-time ran-
dom generator that selects a predecessor according to
the distribution. We use the Alias method [25].

To each edge (w;,v) € E, we now associate a pair
W (w; — v) = (t;,al;) € [0,1] x N where t; is a real
number in [0, 1] called threshold and al; is a predecessor
in N called alias. We compute these weights (¢, al)
such that the following condition holds

(4.6) Yw; ENy, ti+ > (1—t;) = 7 (ty) NG
as(v)
€[N]
aliij

Then, to choose a predecessor w € N using the
alias method, we draw an index ¢ € [|N;|] uniformly
at random. Let (t;,al;) = # (w; — v), we choose the
predecessor w; with probability #; and the predecessor
al; with probability 1 — ¢;. Thus, the determination of
the predecessor is done in constant time. Once again we
replace rand_pred of Algorithm [2| with its alias version
find pred_al given in Algorithm

As an example, in the rightmost graph of Figure [3]
we have # (ca — dp) = (0.5, ¢1) which means that in the
case where the edge (co — dp) is drawn (case i = 2), we
walk to co with probability 0.5 and to ¢; otherwise.

Algorithm 5 Alias implementation of rand_pred

Input: N : predecessors of each v, #: weight function
Output: w € N using the alias method

1: function RAND_PRED_AL(N,, #)

2: ¢ = uniform([|N;|]) , ¢t = uniform([0, 1])

3: w=N7[i], (¢ ,al) =#(w — v)

4: if t <t then return w else return al

5: end function

PROPOSITION 4.8. Forv € V and for allw € N :

P(rand_pred_al(N, ,#)=w) =

Proof. The proposition is a consequence of the Condi-
tion (4.6). Let w; € N . Denote by X the uniformly
drawn index in [|[N, |]. The probability law gives:

P(w;) Pluwj| X = j) +) P(w;|X =)

N | i#j

For i # j if al; # w; then the probability P(w;|X = 1)
is 0 else it is 1 — ¢;. Thus we have

Z (1-t)) = US(wj)~
i7 75(v)

al.; =wj

1
P(w;) = ﬁ(tj +

|

PROPOSITION 4.9. (ALIAS PREPROCESSING) The pre-
processing stage of Alias to compute the successor graph
from s the associated weight function W for the Alias
method is computed in time O(n 4+ m).

Proof. The computation of the threshold and alias with
respect to Condition is done in linear time in the
size of N, . To use the alias method at node v € V|,
we compute # (w — v) for all w € N, which costs
O(|N,|). Doing this for each node v in the successor
graph costs O(_, oy N7 |) = O(m) time. Since the rest
of the preprocessing remains unchanged, the running

time is then O(n + m). O

PROPOSITION 4.10. (ALIAS QUERY) Let W be the
sampled shortest path, let £ = |W| then the generator’s
worst-case time complexity is O (£).

Proof. To construct the path W, we have to call £ times
the function rand pred_al. This function executes in
constant time, since we only draw two uniform random
variables. Thus the total time complexity is O(¢). ad

THEOREM 4.1. The alias implementation is an optimal
implementation of Algorithm[1] in terms of the asymp-
totic worst case complexity for both the preprocessing
and the sampling stages.

Proof. Tt is a consequence of the Proposition [3.1] with
the results from Propositions [4.9] and 0

5 Uniform sampling among all shortest paths

In the previous section, we have shown how to sample
uniformly a shortest path with two fixed extremities (a
source and a target node). Here, we extend our results
to two related problems: Sampling uniformly a shortest
path among all shortest paths starting at a fixed s € V;
Sampling uniformly a shortest path among all shortest

paths in the graph. More formally:

Problem 2: source uniform shortest path:
Node s being fixed, give a random generation algo-
rithm satisfying VIV € Wgo,P(W) = 1/0s and for
W ¢ W, P(W) = 0.

Problem 3: uniform shortest path: Give a random
generation algorithm satisfying VW € W P(W) = 1/o
and for W ¢ W, P(W) = 0.

For both problems, the naive algorithms consist
in computing all shortest paths in the graph, storing
them in a list and drawing one uniformly. Again these
algorithms can be of exponential complexity.

5.1 Source uniform shortest path Here we sup-
pose that a source node s is fixed and we want to sample
a shortest path W € Wy, uniformly at random. One
method would be to sample ¢ € V' uniformly at random
and call random walk(s,t,Gs, #') after doing a prepro-
cessing. However, this method fails to sample uniformly
shortest paths of W, since some target nodes admit
more shortest paths, starting at s and ending to them,
than others. Instead, we must sample a target node t
according to the distribution o4(v) for all v € V. There-
fore, as before, the preprocessing needs to compute the
successor graph G, and the weights of % (using for ex-
ample Alias sampling from Section. But additionally,
we use an Alias preprocessing on a list src[s] containing
(v,04(v)) for all v € V: this step adds a term O(n) to
the preprocessing: thus the overall preprocessing step
running time is O(m + n) and the space requirement
stays the same. Then, the query step only adds a con-
stant time O(1) to define the appropriate target node ¢
and calls the function random walk(s,t,Gs, #). Thus
the query step executes in O(¢). We call this method
source_random_walk(s, Gs, #,src[s]).

5.2 Uniform shortest path Now, we aim at sam-
pling a shortest path W in the set of all shortest paths
of the graph W. It is tempting to once again choose
uniformly a source s and a target ¢t nodes and then call
BRW to uniformly sample a shortest path from s to t.
We call this algorithm uniform_s_t(G). Although ev-
ery shortest path can be drawn, this algorithm is again
biased and we show that any algorithm that samples
uniformly a source and target nodes is biased. The av-
erage length of a shortest path drawn with this algo-
rithm corresponds to the average distance in the graph.
This happens regardless of the weights chosen for the
random walk. We define the two following measures:

DEFINITION 5.1. (AVERAGE DISTANCE [17]) Let G =
(V,E) be a connected and unweighted graph. We define

the average distance in G to be
1
dog=—-) dst)
(s,t)eV2

DEFINITION 5.2. (AVERAGE SHORTEST PATH LENGTH)
Let G = (V,E) be a connected and unweighted graph.
We define the average length of a shortest path in G by

> ou(t)-d(s,t)

g
(s,t)EV?2

lo ==

In the literature, the average distance dg is often
called average path length or average shortest path
length [2,[12]. This can be somewhat confusing since the
average shortest path length corresponds to £¢ and not
to dg. To our knowledge there has been no systematic
research studies on ¢g. From the Definition of {4 any
Algorithm solving the uniform shortest path problem
will output paths of average length /5. The values of
dg and f¢ do not coincide in general as we see next:

LEMMA 5.1. In the 4-cycle graph Cy we have d¢, =1
and lc, = 1.2

LEMMA 5.2. Let 4 be an algorithm that generates
shortest paths drawing (s,t) € V2 uniformly at random.
The mean length of paths sampled by 4 is dg.

PROPOSITION 5.1. Any algorithm that draws (s,t) €
V2 uniformly at random and next generates a path W €
W cannot solve the uniform shortest path problem.

Proof. By contradiction. Suppose we have a uniform
shortest path generator, then the mean length of the
generated shortest path is /. However the Lemma [5.2
shows that such the average length of the generated
paths is dg in the graph and Lemma [5.1] states that
dg # g in general. a0

REMARK 5.1. Proposition|5.1] is true regardless of how
we choose the path W € Wg,.

The bias comes from the fact that some source-
target have a larger number of shortest paths than
others. For a fixed W € W, the probability to sample
W with uniform s t is P(W) = #'osl(t)' Then the
larger is o4(t) the smaller is P(WW).

This last result gives the intuition that, in a non-
biased shortest path sampling algorithm, the proba-
bility to have (s,t) as extremities should be propor-
tional to os(t). We then define the biased_s_t(G) al-
gorithm that given a graph determines a source node
s with respect to the distribution ose/c for all s €
V with Alias sampling. Then the algorithm calls
source_random walk(s, Gs, #,src[s]).

Preprocess. | Space Query | Sect.
SUSP | O(m +n) O(m+n) o) 5.1
USP | O(mn +n?) | O(mn+n?) | O(¢) 5.2

Table 2: Overview of the sampling algorithms complexi-
ties for Problem 2, Source uniform shortest path (SUSP)
and Problem 3, Uniform shortest path (USP).

PROPOSITION 5.2. The algorithm biased_s_t solves
the uniform shortest path problem

Proof. Let W € W and (s, t) its source-target pair. The
probability of sampling W with biased_s_t is
Ose 0s(t) 1

B(W) = P(s)B(t]s) B(W (5, 1) = == 5 -

d

The preprocessing step now requires the values
os(v) for all s € V and for all v € V. Therefore, the
overall preprocessing needs O(mn+n?) since we have to
compute of the successor graph for each node and then
compute the recurrence from Equation . The space
requirement is the same as well O(mn+n?). Finally the
query step now requires one additional constant O(1)
time sampling to determine the starting node s and
then, the rest is done in O(¢).

6 Experimental evaluation and application

In our experiments, we compare BRW and its various
implementations to assess their performance in practice
on both real-world and synthetic datasets. We eval-
uate these variants in their two stages: preprocessing
and querying. Our algorithms are implemented in C
to enhance efficiency. The code is open-source and will
be provided in the final version of this paper. We con-
ducted our experiments on an Intel(R) Xeon(R) Silver
4210R CPU at 2.40GHz without parallel processes. In
fact, the preprocessing can be fully parallelized since
constructing successor graphs from each node is an inde-
pendent task. We used several real-world datasets from
different domains, including scientific collaboration net-
works, city networks, social networks, and power grids.
For synthetic networks, we used Erdos-Rényi, Barabasi-
Albert, and 2-dimensional grids.

Figure [f] summarizes our experiments. On the pre-
processing stage results show that the ordered imple-
mentation takes more time to compute than the linear
and binary implementations due to the additional sort-
ing step required. The Alias implementation also re-
quires more computations since we need to associate a
pair of values with each edge. Although the theoreti-
cal worst-case running times are similar for all variants,

average #operations on queries

E = linear data dir. #nodes Fedges ref.
z mm ordered powergrid | u 494K 659K [I5)
o = binary hamster full | w 243K 166K [I5)
o = alias paris d 95K 183K [
= milan d 129K 253K [
g vienna d 161K 37K J
£ pow ham par mil vie ast lin sla 4 16 128 ba_ 4ba 6er 3 er 5er_7 astro_ph u o 188K 198K L)
lnuxmail | d 269K 237K [15)

average pre-computation time slashdot d 511K 130K [I5)

= linear 4 u 164K 287K x
807w ordered 16 u 164K 317K x
8 60| ™= binary 128 u o 164K 325K x
£ | mmm alias ba4 u 164K 655K x
£40 ba6 n o 164K 983K x
* 207 er3 u 164K 238K x
erd u 164K 398K x

pow ham par mil vie ast lin sla 4 16 128 ba 4ba 6er 3er 5er_ 7 er.7 u 16.4K 558K X

real-world and synth. datasets

Figure 4: (Up Left): Query complexity on the different graphs. The y-axis corresponds to the average number
of operations (arithmetic, tests, affectation) made by 50 randomly selected source-target (s,t) pairs. For each
(s,t) we generated 50 000 shortest paths and summed the number of operations made and divided them by
(50 000 x d(s,t)) the black bars gives the standard deviation. (Down Left): Preprocessing complexity on the
different graphs. The y-axis corresponds to the average running time per node in seconds with the black bars
giving the standard deviation. (Right): Real-world and synthetic datasets. Upper part corresponds to the real-
world dataset and the bottom part corresponds to the synthetic one. Columns from left to right indicate whether
the graph is directed 'd’ or undirected "u’, the number of nodes and the number of edges. Our synthetic dataset
contains from top to bottom: bi-dimensional grid graphs of 16 384 nodes with 4, 16 and 128 rows, Barabési-Albert
graphs with parameter m equals to 4 and 6, Erdés-Rényi graphs with p = % for i = 3.5 and 7.

in practice, the Alias and ordered implementations are
slower by a factor of at least 2.

On the query stage, random walks run instantly
once the preprocessing is complete. We therefore count
the average number of operations performed by each
query (sampling), normalized by the distance between
pairs of sampled nodes to avoid having large differences
between the dataset results. The Alias implementation
consistently outperforms the others, confirming our the-
oretical analysis. The binary implementation performs
well when the average distance is short. Therefore, for
2-dimensional grids where the average shortest path is
linear, the binary implementation performs the worst.
Finally, the ordered implementation is always at least
as efficient as the linear one and sometimes better.

Finally, we explore a potential application of our
scheme in traffic modeling. One of the most classical
models for determining transportation forecasts is the
four-step transportation model [9]. The second step
of this model, known as Trip Distribution, matches
tripmakers’ origins and destinations, creating a matrix
T where the coefficient ¢;; represents the number of

trips made from origin ¢ to destination j per time
unit. These trips are typically assumed to follow the
shortest paths. The fourth step in the model, called
Traffic Assignment, assigns specific routes to each trip.
The simplest assignment model is the all-or-nothing
assignment, where all trips from i to j are assigned
to the same shortest path. Other route assignment
models distribute trips across different paths based on
a probability distribution that reflects their relative
likelihood. A classical probabilistic assignment model
is presented in [I0]. This model, known as the two-
pass Markov model, includes a heat parameter § € RT.
It calculates node/link transition probabilities during
an initial pass through the network and assigns trips
during a subsequent pass. Trips are assigned to what
the author calls ”“reasonable paths,” which are not
necessarily the shortest. When 6 = oo, traffic is assigned
exclusively on shortest paths. Therefore, BRW can be
used in this context to assign traffic uniformly. Once an
assignment is done for each of the ¢;; trips for all origin-
destination pairs, the congestion c(e) of a given edge
e can be measured by to the number of paths passing

through it.

Figure [5| shows the histogram of edge congestion
when paths are assigned using uniform sampling com-
pared to the all-or-nothing heuristic. It is evident that
the uniform heuristic results in less congested edges
compared to the all-or-nothing heuristic. Specifically,
as congestion increases (along the z-axis), the values of
the uniform heuristic bars (red) are consistently lower
than those of the all-or-nothing bars (blue). The all-or-
nothing heuristic results in edges with congestion rang-
ing from over 18 000 to nearly 25 000, while the uniform
heuristic has no edges with such high congestion at all.

Histogram of Edge Congestion Values

105 5
T [all-or-nothing
[uniform
10A 4
5 =
©
3 103 4
o
= e
9
£ 107 4 H
3
o
<
" 10t]
S i
----- i - i "
100] | ' |
0 5000 10000 15000 20000 25000
Congestion

Figure 5: Congestion histogram of the edges on the
graph 128 (128 x 128 grid). We chose randomly 10 nodes
and constructed a matrix of origin-destination T of size
10 x 10 between these nodes with values for each t;;
sampled uniformly in [10 000].

References

(1]

2]

4]

5]

(6]

[7]

(9]

(10]

(11]

(12]

(13]

(14]

Dimitris Achlioptas, Aaron Clauset, David Kempe, and
Cristopher Moore. On the bias of traceroute sampling:
or, power-law degree distributions in regular graphs.
Journal of the ACM, 56(4):1-28, 2009.

Réka Albert and Albert-Laszl6 Barabasi. Statistical
mechanics of complex networks. Reviews of modern
physics, 74(1):47, 2002.

Geoff Boeing. Osmnx: New methods for acquiring,
constructing, analyzing, and visualizing complex street
networks. Computers, environment and urban systems,
65:126-139, 2017.

Ulrik Brandes. A faster algorithm for betweenness cen-
trality. Journal of mathematical sociology, 25(2):163—
177, 2001.

Fabio Ciulla, Nicola Perra, Andrea Baronchelli,
and Alessandro Vespignani. Damage detection via
shortest-path network sampling. Physical review FE,
89(5):052816, 2014.

Aaron Clauset and Cristopher Moore. Tracer-
oute sampling makes random graphs appear to have
power law degree distributions. arXiv preprint cond-
mat/0312674, 2003.

Christophe Crespelle and Fabien Tarissan. Evaluation
of a new method for measuring the internet degree dis-
tribution: Simulation results. Computer Communica-
tions, 34(5):635-648, 2011.

Luca Dall’Asta, Ignacio Alvarez-Hamelin, Alain Bar-
rat, Alexei Vazquez, and Alessandro Vespignani. Ex-
ploring networks with traceroute-like probes: The-
ory and simulations. Theoretical Computer Science,
355(1):6-24, 2006.

Juan de Dios Ortizar and Luis G Willumsen. Mod-
elling transport. John wiley & sons, 2024.

Robert B Dial. A probabilistic multipath traffic assign-
ment model which obviates path enumeration. Trans-
portation research, 5(2):83-111, 1971.

Abraham D. Flaxman and Juan Vera. Bias reduction
in traceroute sampling—towards a more accurate map of
the internet. In International Workshop on Algorithms
and Models for the Web-Graph, pages 1-15. Springer,
2007.

Agata Fronczak, Piotr Fronczak, and Janusz A Holyst.
Average path length in random networks. Physi-
cal Review E—Statistical, Nonlinear, and Soft Matter
Physics, 70(5):056110, 2004.

Antoine Genitrini, Martin Pépin, and Frédéric
Peschanski. A quantitative study of fork-join processes
with non-deterministic choice: application to the sta-
tistical exploration of the state-space. Theor. Comput.
Sci., 912:1-36, 2022.

Jean-Loup Guillaume and Matthieu Latapy. Relevance
of massively distributed explorations of the internet
topology: Simulation results. In Proceedings IEEE
2/th Annual Joint Conference of the IEEE Computer
and Communications Societies., volume 2, pages 1084—
1094. IEEE, 2005.

[15]

[16]

(17]

18]

(19]

[20]

(21]

22]

23]

24]

[25]

[26]

27]

Jéréome Kunegis. Konect: the Koblenz network collec-
tion. In Proceedings of the 22nd international confer-
ence on world wide web, pages 1343-1350, 2013.
Anukool Lakhina, John W. Byers, Mark Crovella,
and Peng Xie. Sampling biases in ip topology mea-
surements. In IEEE INFOCOM 2003. Twenty-second
Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 1, pages 332-341.
IEEE, 2003.

Vito Latora, Vincenzo Nicosia, and Giovanni Russo.
Complex networks: principles, methods and applica-
tions. Cambridge University Press, 2017.

Jérémie Leguay, Matthieu Latapy, Timur Friedman,
and Kavé Salamatian. Describing and simulating
internet routes. Computer Networks, 51(8):2067-2085,
2007.

Johan Oudinet, Alain Denise, Marie-Claude Gaudel,
Richard Lassaigne, and Sylvain Peyronnet. Uniform
Monte-Carlo model checking. In International Con-
ference on Fundamental Approaches to Software Engi-
neering, pages 127-140. Springer, 2011.

Thomas Petermann and Paolo De Los Rios. Explo-
ration of scale-free networks: Do we measure the real
exponents? The European Physical Journal B, 38:201—
204, 2004.

Marton Pésfai, Attila Fekete, and G&abor Vattay.
Shortest-path sampling of dense homogeneous net-
works. Furophysics Letters, 89(1):18007, 2010.

Franco P. Preparata and Michael I. Shamos. Compu-
tational geometry: an introduction. Springer Science &
Business Media, 2012.

Alireza Rezvanian and Mohammad Reza Meybodi.
Sampling social networks using shortest paths. Physica
A: Statistical Mechanics and its Applications, 424:254—
268, 2015.

Christian Sommer. Shortest-path queries in static
networks. ACM Computing Surveys (CSUR), 46(4):1-
31, 2014.

Alastair J. Walker. New fast method for generating
discrete random numbers with arbitrary frequency
distributions. Electronics Letters, 8(10):127-128, 1974.
Huijuan Wang and Piet Van Mieghem. Sampling net-
works by the union of m shortest path trees. Computer
Networks, 54(6):1042-1053, 2010.

Guo-Qing Zhang, Shi Zhou, Di Wang, Gang Yan,
and Guo-Qiang Zhang. Enhancing network transmis-
sion capacity by efficiently allocating node capability.
Physica A: Statistical Mechanics and its Applications,
390(2):387-391, 2011.

A Appendix

Figure [6] shows that the number of shortest paths
between two nodes can be exponential. Therefore the
naive algorithm presented in Section [2] consisting of
listing all shortest paths in the graph should be avoided.

Figure 6: Graph with 2n+2 nodes and 2" shortest paths
between o and w.

In the following proof we compute the probability
of each shortest path between o and w of the graph Gy,
when we use the algorithm random weights to sample
a path. This will show that random weights leads to a
biased distribution on the sampled shortest paths.

Proof. [of Proposition 2.1] We denote
a,by,...,bg,c1,...,ck,d,e, f the random weights

on the edges as in figure [} In the algorithm [I] these
weights follows a continuous uniform distribution on
[1— 1,1+ 1] For the sake of simplicity, we recenter
and reduce the variables. This does not change the
selected shortest path (we just subtract by 1 — % every
weights and then multiply them all by %). From now
on, we suppose that all the weights follow the standard
uniform distribution U(0, 1).

Figure 7: The family of graphs Gy with the random
variables defining the weights of the edges.

We define the following random variables:
e Yi=b;+c¢foralll <i<k

e Z=d+e+ f: total weight of the bot path.

Llet Wp=a—1—=2—wwand W, =a—3 >z, > w
for 1 <7 < k. We want to compute the probability

k
P(Wo) =1— Y P(W))
i=1

All the weights follow the same distribution, then by
symmetry :
P(Wo) =1 - kP(W1)

Note that

k
IP’(W1)=]P’<(<1+Y1 <Z)N (ﬂ(a+yl <a—|—Yi)>)

:2
:P<W+Y3<ZMWOWOG<YQ>>

We condition on ¢ € [0,2] the value of Y;. Denote by
fy the probability density function of Y;.

2 k
P(Wy) :/0 P((a+t< Z)n (ﬂ(t<Yi)>

=2

E:Qh@ﬁ

The weights are drawn independently thus the variables
(Yi)1<i<k and Z — a are independent. It follows :

k
P((a+t<Z)ﬂ (ﬂ(t<y;-)> Y1:t>

i=2
k
=P(t<Z—a).[[P(t<Yi)

i=2
All the variables Y; follow the same distribution (sum
of two independent standard uniform variables). We
denote Fy the cumulative density function of the Y;
and Fz_, that of Z — a. Then

PMD=AO—&w®M—RﬁW”h®ﬁ

Because the density function is the derivative of the
cumulative density function we can do an integration
by parts.

wmnzr4uﬂm—éu—menﬂ@m

Where f_, is the density function of Z — a. Finally

PM@z&w®+AO—Rﬁth®ﬁ

a and Z are independent. Y and Z follow the Irwin-Hall
distribution for n = 2 and n = 3 respectively then

1 1

sza(o) = P<Z < a) :/0 FZ(t)dt = 41 = 24

and the density of Z — a is the convolution product of
the density of Z and —a

0 1
foealt) = [sat=uwitu= [g+ u)au

The final formula for P(W) is then

2 1
(AJ)PUV):§%+:/(1—P}@»k/)fZQ+uﬁMdt
0 0

For k = 2 the Equation gives P(Wp) = 2% As k
grows to infinity the term (1 — Fy (¢))* converge to 0 for
t €]0,2]. Moreover the function ¢ ~ (1—Fy (t))* fz_4(t)
is continuous on [0, 2] then it is dominated by a constant.
Then the dominated convergence theorem ensures that
the integral converge towards 0. Therefore Equation[A]]

gives P(WW)) e =
O

The following proof stresses out that the order that
minimizes the number of predecessors checks is the order
where the nodes with the largest os(v) are those with
the smallest index.

Proof. [of Proposition Fix a node v € V. Let
N, = [wo,...,wg]. Note that rand pred_it(N,,#)
returns the predecessor w; for exactly og(w;) different
values of r € [os(v)]. When the function returns wj,
it has iteratively checked all the i first predecessors.
Then the average number of predecessors checked before
finding the right one in rand _pred_it is

1 k
720 z_;z - o5 (w;).

To minimize the sum the largest values of o4(w;) should
be matched with the smallest indexes ¢. That is the
ordering 7. 0

We give the proof of the preprocessing complexity
of the ordered algorithm.

Proof. [of Proposition We need to ensure that the
function rand_pred_it traverses the values of N, =
[wo, ..., wg] in decreasing order of the values of og(w;).
To achieve this, we rewrite N after computing all the
values o5(v). We start by ordering the nodes w € V
by decreasing values of o4(w), which costs O(nlogn).
For each w € V we store its successors in N . That
is v € N if and only if w € N . Then, for every
w € Vs in decreasing order of o4(w), and for every
successor node v € N we write w in N, . After this
operation, all the N are rewritten in decreasing order
of o5(w). The operation of rewriting costs O(m) as
Y vey NG| < m. Thus, the overall preprocessing stage
cost becomes O(m + nlogn). O

Binary search based on a weight function.

Algorithm 6 Binary implementation of rand pred

1: function BIN_SEARCH_INDEX(N, , %/, r)
2 i=-1,=|Ny| -1

3 while j —i >1do

& =[], w=N;[a]
5: if #(w — v) > r then
6: j==

7 else

8 1=

9 end if

10: end while

11: return j

12: end function

We present the simplest counter-example graph G
where the average distance dg and the average shortest
path length ¢g are distinct : the 4-cycle graph Cy.

Proof. [of Lemma/5.1] Let Sy = > > ,cy d(s,t) and
St =2 sev dutey 0s(t)d(s,t). Let s be a node of Cy.

D d(s,t)=0+2x1+2=4
teV

Then by symmetry

Sa 4% ey d(s,t) —é—l

de, =13 = 42 4

Moreover as there are two shortest paths between
antipodal nodes, we have o5, = 5 shortest paths starting
from s and

D o(t)d(s,t) =1x0+1x1+2x24+1x1=6
teV

Then by symmetry

Sy 4% ey os(t)d(s,t) 6
lo, = = — 212
X Oge 4 x5 5

d

Proof. [of Lemma Let L be the random variable
indicating the length of the path W sampled with 4.
Then the expected value of L is

E(L)= Y [WI.PW)= > dst) > PW)
Wew s,teVv WeW
= 3 s B 1) = g O dlst) = da
s,tev s,tev
0

	Introduction
	Context of the problem and state of the art
	Naive Algorithm
	Random Weights

	Contribution : a Random Walk Approach
	Two stages algorithm
	Unbiased Random Walk: URW
	Biased Random Walk: BRW

	Implementations of BRW
	Linear Implementation
	Ordered Implementation
	Binary Implementation
	Alias Implementation

	Uniform sampling among all shortest paths
	Source uniform shortest path
	Uniform shortest path

	Experimental evaluation and application
	Appendix

