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STRATEGIC ARMS WITH SIDE COMMUNICATION PREVAIL OVER LOW-REGRET MAB
ALGORITHMS

Ahmed Ben Yahmed∗ Clément Calauzènes† Vianney Perchet‡

ABSTRACT

In the strategic multi-armed bandit setting, when arms possess per-
fect information about the player’s behavior, they can establish an
equilibrium where: 1. they retain almost all of their value, 2. they
leave the player with a substantial (linear) regret. This study illus-
trates that, even if complete information is not publicly available to
all arms but is shared among them, it is possible to achieve a similar
equilibrium. The primary challenge lies in designing a communica-
tion protocol that incentivizes the arms to communicate truthfully.

Index Terms— multi-armed bandit, strategic arms, communi-
cation through a network, Nash equilibrium.

1. INTRODUCTION

The concept of the strategic multi-armed bandit extends the tradi-
tional multi-armed bandit (MAB) problem by incorporating the util-
ity aspect of the arms. In this context, arms have the ability to report
values that differ from the observed rewards. Formally, we consider
a set of K stochastic arms, each arm k is characterized by its own
reward distribution Dk with a mean denoted as µk = E[Dk]. To
maintain clarity while broadening our perspective, we assume an or-
der such that 1 ≥ µ1 ≥ µ2 ≥ · · · ≥ µK ≥ 0. During each round
t, the player pulls an arm kt. Subsequently, the chosen arm observes
a reward rkt,t ∼ Dkt , and it has the possibility to report a value
xk,t ̸= rk,t to the player while retaining rk,t−xk,t as its own utility.
Importantly, only arm kt possesses knowledge of the actual observed
reward rkt,t, whereas the player is only aware of xkt,t and remains
unaware of the withheld portion. Therefore, the player’s decision is
based on the information collected up to time t, which can be for-
mally encoded in the filtration FP,t = {k1, xk1,1, . . . , kt, xkt,t}.
We define xk (and rk) as the concatenation of reported values (and
rewards, respectively) over T rounds. Accordingly, the utility asso-
ciated with arm k can be expressed as:

Uk(xk, x−k) = E

[
T∑

t=1

(rkt,t − xkt,t) · 1[kt=k]

]
(1)

This strategic scenario introduces a game-like dynamic that engen-
ders a competition of objectives between the player, who strives to
minimize regret (see section 3), and the arms, which are driven by the
pursuit of maximizing their utilities. This model encapsulates a di-
verse array of dynamic agency dilemmas wherein the player selects
an arm (agent) to execute a task on his behalf, and the associated
cost remains concealed from the player due to his limited domain
or market knowledge. Broadly speaking, this model can be viewed
as an extension to the multi-agent realm, akin to the principal-agent
problem in contract theory [1, 2], albeit with multiple agents in play.
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It significantly extends the standard MAB problem, as arms can uti-
lize this reporting mechanism to influence the player’s decisions. For
example, arms may opt to report higher values initially to increase
their chances of being selected in later rounds. Conversely, they
may report lower values at the outset to decrease the reserve price
in auctions [3]. Furthermore, our study takes into consideration the
existence of side communications among arms, governed by prede-
fined rules. This consideration is motivated by real-world scenarios
in which such interactions are prevalent and influential.

1.1. Related Work

Previous studies, such as [4, 5, 6], have already examined scenarios
involving connected and communicating arms. In these scenarios,
pulling an arm k at time step t not only provides information about
arm k itself but also reveals information about some related arms. A
typical example of such a situation is advertising on social networks,
where a decision-maker targets individual users of an online plat-
form with promotions, hoping to maximize purchases. However, in
this context, the arms (i.e users) are connected and capable of com-
munication. Conceptually, pulling an arm k triggers instantaneous
communication through the arms, revealing aggregated information
about all arms related to k and itself [4]. The concept of a strategic
arm in the MAB setting was first introduced in the groundbreak-
ing work by [7]. This notion highlights the challenge of dealing
with arms that are not limited to providing their true rewards but can
instead manipulate the player to maximize their own utilities. To
achieve this, authors present a equilibrium strategy for such arms es-
pecially when µ1−µ2 ≤ µ1

K
, enabling them to leave the player with

only a minimal reward. This strategic approach poses a significant
obstacle for any low-regret algorithm employed by the player.

1.2. Contributions

This study addresses the limitation of [7] where arms need full in-
formation to be able to have an equilibrium strategy in which they
can extract (almost) all the value. The new strategy introduced here,
which includes a proper communication protocol, enables them
to achieve equilibrium for full surplus extraction and prevents the
player from generating high revenue, regardless of the low-regret
MAB algorithm the player chooses. We build upon the strategy
presented in [7], which serves as a foundation for our work. The
main challenge in constructing an equilibrium strategy that doesn’t
rely on public knowledge of the entire history is to guarantee that
the communication scheme doesn’t encourage arms to convey false
information. Indeed, from a game-theoretic perspective, both the
report xkt,t to the player and the information they share with other
arms are components of strategic behavior. We support our claims
with theoretical analysis and experimental results.
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2. MODELING COMMUNICATION

We assume that the arms are interconnected and form a network
modeled by a graph. This setting is widely used in distributed learn-
ing and multi-agent communication [8] as it provides a stronger
privacy protection and reduced risk of communication bottleneck.
Arms will be linked by some graph topology (see Fig. 1) that allows
neighboring arms to share information. At any point in time, no sin-
gle arm will have access to all the information that is available across
the graph. Additionally, all types of message passing occur simulta-
neously throughout the graph. This means that all information at all
arms is updated instantaneously and equivalently at the same time
(i.e the network has a synchronized clock).

Fig. 1. Arms are linked by a graph topology and can share infor-
mation over their shared edges. The neighborhood of an arm is the
collection of all arms linked to it. The neighborhood of arm k is
marked by the highlighted area and denoted by Nk. We assign a pair
of nonnegative scaling weights, {akℓ,aℓk}, to the edge connecting k
and ℓ. The scalar aℓk will be used by arm k to scale information it
receives from arm ℓ; this scaling can be interpreted as a measure of
confidence [9].

3. LOW-REGRET MAB ALGORITHMS

The efficiency of MAB algorithms is most commonly compared with
the notion of regret. Regret measures the cumulative loss incurred
over T rounds by choosing arm kt at time t instead of the best arm
k⋆. Ideally, we aim for a low-regret, which implies convergence to
the best arm, at least asymptotically. Formally, let kt be the strategic
arm selected by the player at round t using algorithm A. The selected
arm observes a reward rkt,t that we consider in this work in [0, 1].
Then, it reports , in an adversarial fashion, a value xkt,t. The regret
of the algorithm A is the random variable:

R(A) = max
k

T∑
t=1

xk,t −
T∑

t=1

xkt,t (2)

We follow the (ρ, δ)-low-regret definition given in [7], i.e an algo-
rithm A is a (ρ, δ)-low-regret for the MAB problem if with proba-
bility 1− ρ,

R(A) ≤ δ (3)

The majority of MAB algorithms, particularly in the adversarial sce-
nario – which is relevant here, considering that the reporting proto-
col is widely regarded as an adversarial setting – assign a probability
pk,t to each arm k ∈ {1, · · · ,K} to be pulled at round t. The al-
gorithm then selects the arm according to these probabilities. The
probability pk,t is primarily determined by the parameters of the al-
gorithm A, an intrinsic information Ik of arm k, and the average

value of this information Ĩ across all the arms. Formally it can be
seen as the following function:

Pr : {set of parameters} × R× R → [0, 1] (4)

(A, Ik,t, Ĩt) 7→ pk,t (5)

For instance, in the EXP3 algorithm [10], to compute the probability
pk,t of choosing arm k at time t, we require the parameter γ, which
determines the trade-off between exploration and exploitation. Ad-
ditionally, we need the weighted estimated reward which is the in-
trinsic information Ik,t associated with arm k at time t, and the sum
of these rewards over all arms, denoted as KĨt.

4. ARMS’ STRATEGY THAT PREVAILS OVER
LOW-REGRET MAB ALGORITHMS

In this section, we extend the work presented in [7] and introduce
a strategy that enables strategic arms with restricted communication
to reach an ϵ-Nash equilibrium while providing only a marginal util-
ity to the player. The Strategy 1 adopts market sharing techniques,
where arms select their actions in a way that ensures they are cho-
sen an equal number of times. As a result, the player receives only
minimal revenue, as he is unable to commit to selecting the best arm
consistently, deviating from the traditional bandit setting. This strat-
egy does not assume that the arms possess prior knowledge of their
own distributions or the history of selected arms. In other words,
their respective information available at time t is less complex com-
pared to the setting presented in [7]. The strategy is presented as
follow: let A be the low-regret MAB algorithm used by the player
, Nk(t) be the number of times arm k has been pulled up to time t
and A = [akℓ] the combination matrix describing the communica-

tion graph topology. Set B = 7
√
KTδ and θ =

√
Kδ
T

. Then the
strategy that the arms shall use is Strategy 1.

Strategy 1: Equilibrium strategy

1 for t = 1, · · · , T do
2 Update Ik,t the intrinsic information available for all

arm k at time t. Initiate Ĩk,0 = Ik,t, ∀k.
3 for n = 1, · · · , τ do
4 for k = 1, · · · ,K do
5 Ĩk,n =

∑
ℓ∈Nk

aℓkIℓ,n−1

6 end
7 end
8 for k = 1, · · · ,K do
9 If at any time s ≤ t in the past Nk(s) <

s
K

−B
then arm k defects and offers its full value
xk,t = rk,t.

10 Else arm k computes the probability
p̂k,t = Pr(A, Ik, Ĩk,τ ) and offers
xk,t = θ(1− p̂k,t).

11 end
12 end

This strategy consists of two parts. In the first part, each arm up-
dates its information individually. For example, if an arm is pulled,
it updates its reward information based on the received reward. If it
is not chosen, the information remains the same as in the previous
time step t − 1. Then, iteratively, the arms use the communication



scheme to compute a local estimate, denoted as Ĩk,τ , of the true av-
erage information Ĩt. During the second part, each arm k uses its
estimated average to compute the probability p̂k,t of being selected
by the player. The arm then adjusts its offer based on this probability.
If p̂k,t is high, the arm sets a low value for xk,t, allowing other arms
to have a higher chance of being chosen. On the other hand, if p̂k,t
is low, the arm sets a high value for xk,t, increasing its own chance
of being chosen since other arms are more likely to be selected. By
following this approach, the arms achieve an equilibrium in terms of
market sharing, which results in lower revenue for the player. The
parameter θ in xk,t is introduced to facilitate the theoretical analysis
of the strategy. In the next section, we will proceed with the theoret-
ical analysis, where we will demonstrate that if the arms follow this
strategy, they will reach an equilibrium, discouraging any defection.

5. THEORETICAL ANALYSIS

To facilitate the analysis, we suppose that K ≤ T
1
3

log(T )
, ρ ≤ 1

T2 and

δ ≥
√

T log(T ).

5.1. Reliable approximation of pulling probabilities

First, we will demonstrate the utility of the communication steps and
how, after a sufficient number of iterations τ , the local values Ĩk,τ
serve as accurate estimates of the true average Ĩt which allows each
arm k to compute an accurate estimate p̃k,t of pk,t. To do so, we
start by introducing some assumptions that are commonly used in
the literature [8, 11, 9, 12].

Assumption 1 (Doubly-stochastic combination matrix). The
combination matrix A = [aℓk] representing the graph topology is
doubly-stochastic and symmetric. This means that the matrix has
non-negative elements and satisfies:

A1K = 1K
1,AT = A (6)

We also assume that the matrix A is primitive. This implies that
there exist paths, in both directions, between any two distinct nodes
with nonzero scaling weights. Additionally, there is at least one non-
trivial self-loop present, meaning that akk > 0 for at least one node
k.

By applying the Perron-Frobenius theorem, Assumption 1 states
that the mixing rate λ of the combination matrix (i.e., the spectral
radius of A− 1

K
1K1

T
K ) is strictly less than 1:

λ < 1 (7)

Assumption 2 (Lipschitz mapping). The mapping Ĩ 7→ Pr(., ., Ĩ)

is Lipschitz, namely: ∃L ∈ R+ such that ∀Ĩ , Ĩ ′:

||Pr(., ., Ĩ)− Pr(., ., Ĩ ′)|| ≤ L||Ĩ − Ĩ ′|| (8)

Assumption 2 is valid since we are considering a finite horizon
T .

Theorem 1 (Network disagreement). Under Assumption 1, the
network disagreement between the true average Ĩt and the local es-
timates Ĩk,τ converges to zero.

1

K

K∑
k=1

∥Ĩk,τ − Ĩt∥2 ≤ αtλ
2τ −→

τ→+∞
0 with αt > 0 (9)

11K is a vector of length K consisting of ones.

Proof: for generality we suppose that the dimension of variables
is M , i.e dim(Ik,t) = dim(Ĩt) = dim(Ĩk,t) = M . We begin by
defining the following variable that aggregates the local variables of
each arm into a single variable:

Ĩn ≜ col{Ĩ1,n, · · · , Ĩk,n} (10)

A ≜ A⊗ 1M
2 (11)

Where Ĩn is a vector of length K ×M , obtained by vertically con-
catenating vectors enclosed in brackets. We express the update in
the communication scheme using a more concise notation:

Ĩn = A⊤Ĩn−1 (12)

⇒
(

1

K
1
⊤
K ⊗ 1M

)
Ĩn

(
3
)

=

(
1

K
1
⊤
K ⊗ 1M

)
Ĩn−1 (13)

It should be noted that due to the nature of the combination matrix
A, the true average Ĩt is equivalent to the average of the variables
Ĩk,n for any given n. So we write:

Ĩt =
1

K

K∑
k=1

Ĩk,n =

(
1

K
1
⊤
K ⊗ 1M

)
Ĩn (14)

and we define the extended average as a vector of length K ×M :

Ĩt ≜ 1K ⊗ Ĩt =

(
1

K
1K1

⊤
K ⊗ 1M

)
Ĩn (15)

We get:

Ĩn − Ĩt =

(
A⊤ − 1

K
1K1

⊤
K ⊗ 1M

)
Ĩn−1 (16)

(
4
)

=

(
A⊤ − 1

K
1K1

⊤
K ⊗ 1M

)(
1M − 1

K
1K1

⊤
K ⊗ 1M

)
Ĩn−1

(17)

=

(
A⊤ − 1

K
1K1

⊤
K ⊗ 1M

)(
Ĩn−1 − Ĩt

)
(18)

Taking the square norm:

∥Ĩn − Ĩt∥2 = ∥
(
A⊤ − 1

K
1K1

⊤
K ⊗ 1M

)(
Ĩn−1 − Ĩt

)
∥2

(19)

≤ λ2∥Ĩn−1 − Ĩt∥2 (20)

Iterating from τ to 0:

∥Ĩτ − Ĩt∥2 ≤ λ2τ∥Ĩ0 − Ĩt∥2 (21)

Taking αt =
∥Ĩ0−Ĩt∥2

K
finishes the proof.

Corollary 1. Under Assumption 2 and using Theorem 1, we have:

|pk,t − p̂k,t| = |Pr(A, Ik,t, Ĩt)− Pr(A, Ik,t, Ĩk,t)| (22)
≤ L

√
αtλ

τ −→
τ→+∞

0 (23)

Therefore, we have demonstrated that after a sufficient number
of iterations τ , p̂k,t provides a reliable approximation for pk,t. This
allows the arms to calibrate their rewards as if they have access to
the complete information available to the player.

21M refers to the identity matrix of dimension M , and ⊗ represents the
Kronecker product.

3
(

1
K
1⊤
K ⊗ 1M

)
A⊤ = 1

K
1⊤
K ⊗ 1M

4
(
A⊤ − 1

K
1K1

⊤
K ⊗ 1M

) (
1M − 1

K
1K1

⊤
K ⊗ 1M

)
= A⊤ −

1
K
1K1

⊤
K ⊗ 1M



5.2. Equilibrium resulting from Strategy 1

Following Strategy 1, arms won’t defect and will achieve a market
sharing situation where each arm is pulled approximately an equal
number of times. This renders the utilized low-regret MAB algo-
rithm inefficient. This observation is formalized as follows:

Theorem 2. If arms use Strategy 1, then with high probability (1−
3
T
), Nk(t) ≥ t

K
− B,∀t ∈ [T ], k ∈ [K] and they will be in an

O(
√
KTδ)-Nash equilibrium.

Proof sketch5: if arms faithfully adhere to the Strategy 1 de-
noted as S⋆, then by employing Corollary 1 and similar arguments
as in [7], we can demonstrate that with high probability (1 - 3

T
),

Nk(t) ≥ t
K

− B for all t ∈ [T ] and k ∈ [K]. This implies that
arms do not defect, and step 9 of the strategy is never executed. To
establish equilibrium, we will evaluate the utility of arm k when all
arms are adhering to S⋆, while the player employs a low-regret MAB
algorithm. We show that:

Uk(S
⋆
k , S

⋆
−k) ≥

µkT

K
−O(

√
KTδ) (24)

On the other hand, if arm k plays any strategy S other than S⋆, we
can demonstrate that:

Uk(Sk, S
⋆
−k) ≤

µkT

K
+O(

√
KTδ) (25)

Therefore, for all strategies S different from S⋆, we can derive the
following inequality:

Uk(Sk, S
⋆
−k)− Uk(S

⋆
k , S

⋆
−k) ≤ O(

√
KTδ) (26)

showing that (S⋆
1 , . . . , S

⋆
K) is an O(

√
KTδ)-Nash equilibrium for

all arms. Therefore, it becomes evident that the equilibrium is pri-
marily determined by the number of times each arm is pulled. At
equilibrium, we observe that each arm is pulled approximately the
same number of times and receives in average µk

K
per round. If

arms choose to deviate from this strategy by dishonestly reporting
either their values to the player or the values communicated to their
neighbors, one of two scenarios will unfold. In the first scenario, this
deviation will not impact the number of times each arm is pulled,
thus failing to activate the defection step 9. Consequently, the utility
of the arms remains unaffected, and the equilibrium remains intact.
In the second case, the defection step 9 is triggered, resulting in arm
1, which has the highest real mean value, emerging as the winner.
In this case, it gains at maximum µ1 − µ2 per round. However,
it’s important to note that µ1 − µ2 ≤ µ1

K
by assumption. Given

this condition, there is no incentive for arms to deviate from the
strategy, as the potential gain from defection is less than what they
can achieve by adhering to the equilibrium strategy.

This equilibrium proves detrimental to the player, resulting in con-
strained revenue, irrespective of the low-regret algorithm employed:

Corollary 2. If arms follow Strategy 1, the player gets at most
O(

√
KTδ) revenue.

Proof: given that playing according to Strategy 1 implies that
with high probability ∀t ∈ [T ], k ∈ [K], Nk(t) ≥ t

K
− B, arms

won’t defect and the player gets Tθ = O(
√
KTδ). In the case of

5The detailed proof is omitted due to space limitations.

the low probable event the player will get at most T . So the player
revenue is:

Player-revenue ≤ (1− 3

T
)O(

√
KTδ) +

3

T
T (27)

⇒ Player-revenue ≤ O(
√
KTδ) (28)

6. EXPERIMENT

In this section we test Strategy 1 against an adapted version of
EXP3.P [13] as it is done in [4] to take into consideration the exis-
tence of the side communication. It is a

(
ρ,O(

√
T log(Kρ−1))

)
-

low-regret MAB algorithm. The intrinsic information for arm k
is the exponential of its weighted estimated cumulative gain. We
create a random Erdos-Rényi graph over K = 10 nodes, where each
pair of nodes are linked independently with probability p = 0.6.
Arms are modeled as Bernoulli random variables. For most arms,
mean is set at 0.4, while three specific arms have different means:
0.8, 0.85, and 0.9. The combination matrix A is generated using the
Metropolis rule [14]. We run the experiment for T = 5.105 rounds
and set τ = 50.

Fig. 2. The number of rounds each arm is pulled by the player when
arms are using Strategy 1.

Table 1. Summary of the numerical results.
T δ Experimental total revenue

√
KTδ

5.105 2778 105169 117838

Fig. 2 confirms our claim that by following Strategy1 against a
low-regret algorithm, arms will reach an equilibrium. This is ev-
ident from the balanced number of rounds the arms are pulled, in
contrast to the ordinary MAB setting where the algorithm tends to
favor choosing the best arm much more frequently than the others.
Table 1 further supports our second claim that this strategy leaves
the player with a cumulative reward less than O(

√
KTδ).

7. CONCLUSION

In scenarios involving repeated interactions, converting a single-step
collusion scenario into an equilibrium within the cumulative game
necessitates the ability of each participant to identify instances where
others deviate from the collusive behavior. This study illustrates
that even when not all historical information is publicly accessible,
the arms can implement a communication strategy enabling each of
them to detect deviations, whether they involve falsifying player re-
ports or manipulating shared information. The established equilib-
rium surpasses any low-regret MAB algorithm, resulting in reduced
player revenues. Future research can focus on developing mecha-
nisms that encompass not only traditional sequential learning in the
classical MAB style but also integrate incentive mechanisms to ef-
fectively address the challenges highlighted in this paper.
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