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Copper is an essential trace element found ubiquitously in humans [1,2], plants [3–5],
vertebrates and invertebrates [6], and is present in different active sites at innumerous
proteins and enzymes [7–11]. In such biological systems, copper enzymes perform functions
such as uptake and transport of oxygen; electron transfer in the respiratory chain; catalytic
oxidation or reduction of many substrates; antioxidant action; uptake, transport and storage
of metal ions, etc. [12,13]. Structurally, copper compounds appear in many configurations,
coordinated with simple ligands or biomolecules, in a wide range of arrangements [14].
The two common oxidation states of copper, Cu+ and Cu2+, present in biological systems
exhibit peculiar properties, with a range of reactivity and nuclearity, forming mono-, bi-,
poly-nuclear, or even cluster species. The proteins of copper may have one or many metal
ion centers with different spectroscopic signatures and dissimilar activity [15]. On the other
hand, copper ions are also involved in neurodegenerative diseases, in which their redox
properties play important roles [16–22]. Considering the varying biological roles of copper
described above, the development of new copper-containing coordination complexes is
an intense topic of research, involving exploration of their pharmacological properties,
especially their anticancer activities [23–31].

Consequently, the Bioinorganic Chemistry of copper constitutes a rich and challenging
field of investigation, attracting the attention and interest of research groups around the
world, as demonstrated by the huge number of files found in literature searches by using
copper in combination with a second keyword, such as antibacterial, anticancer, diseases,
catalysts, mimics, proteins, spectroscopy, reactivity, etc.

This diversity is clearly demonstrated in this Special Issue of Inorganics, ‘Bioinor-
ganic Chemistry of Copper’, which contains 14 published articles that explore topics such
as antiproliferative studies, anticancer agents, anti-inflammatory compounds, potential
radioactive imaging diagnosis agents, reactive species related to amyloid peptides, antipar-
asitic activity, catalytic oxidative activity, and protein mimics.

Potential anticancer agents were reported in most of the published articles. A re-
view about mixed chelate homoleptic or heteroleptic copper(II) complexes, known as
Casiopeínas® and already used in clinical tests, was provided by Ruiz-Azuara and co-
workers (contribution 1), describing translational medicine criteria to establish a normative
process for new drug development.

Batista and coll. (contribution 2) isolated and characterized a series of Cu(I)/PPh3/
naphtoquinone complexes with anticancer properties against diverse tumor cells. Their
mode of action also involves reactive oxygen species (ROS) generation, both in the absence
(peroxyl radicals) and presence of irradiation (hydroxyl radicals).
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The cytotoxicity of phenylcarboxylate–copper(II) complexes with typical binuclear
paddle-wheel arrangements was investigated by Fernandez et al. (contribution 3), who
studied their lipophilicity, DNA binding, and cytotoxicity toward metastatic breast adeno-
carcinoma, lung epithelial carcinoma and cisplatin-resistant ovarian carcinoma cells.

A series of mononuclear copper(II) complexes with ligands containing phenolate and
imine moieties was verified by Serre et al. (contribution 4), to act as efficient artificial
nucleases, activated by reduction with ascorbate, toward cancer cell lines sensitive or
resistant to cisplatin itself, with IC50 values much lower than those for cisplatin.

New isothiosemicarbazone–copper(II) complexes with varied structural features were
isolated and characterized by different techniques, as reported by Graur et al. (contribution
5), showing antioxidant activity similar to trolox, used as an antioxidant agent in medicine,
as well as high antiproliferative activity against cells sensitive to doxorubicin, a standard
chemotherapy medication. Additionally, these compounds showed significant antibacterial
and antifungal activities.

A strategic combination of bioactive ligands and metals that are already consolidated
in the synthesis of metallopharmaceutical agents, allowed Corbi and coll. (contribution 6),
to prepare and investigate naproxen (Nap)-based complexes of copper(II) and platinum(II)
which showed cytostatic behavior over a set of tumor cells, but no bactericidal activity.

Complexes with other pharmacological activities were also presented. Copper(II)
complexes with bi-, tetra-, or pentadentate ligands showing potential anti-inflammatory
activity against Rheumatoid Arthritis (RA) were evaluated regarding their diffusion and
membrane permeability, as described by Jackson and coll. (contribution 7). Chemical
speciation was used to determine the predominant complex in solution at physiological
pH. However, no correlation was found between partition coefficient and/or molecular
weight and tissue permeability.

Since oxidative stress and metal (especially copper) dyshomeostasis are crucial fac-
tors in the pathogenesis of Alzheimer’s disease (AD), involving ROS generation, Density
Functional Theory (DFT) computations were used by L. Bertini and coll. (contribution 8),
to verify a possible mechanism of oxidation through the OH radical propagation toward
the phospholipidic membrane.

In another study, Valensin and co-workers (contribution 9) described an active alkaloid
lycorine (LYC) capable of suppressing induced amyloid β (Aβ) toxicity in differentiated
SH-SY5Y cell lines, likely by binding to the N-terminal region of Aβ via electrostatic
interactions, which are favored in the presence of copper ions.

In the work of Portes et al. (contribution 10), copper(II) and zinc(II) compounds with
oxindolimine ligands were shown to act as efficient trypanocidal agents against trypo-
mastigote and amastigote forms of the parasites, through the generation of reactive oxygen
species (ROS), inducing apoptosis, and probably involving the inhibition of selected para-
site proteins. The determined IC50 values are lower and selective indexes (LC50/IC50) are
higher, after 24 or 48 h incubation, modulated by the metal and the ligand, in comparison to
traditional antiparasitic drugs used in clinics, or other metal-based compounds previously
reported in the literature.

New penta- and hexadentate ligands containing pyridine moiety were prepared and
verified to form stable Cu(I) and Cu(II) complexes, characterized by different methods,
as reported by Mirica and coll. (contribution 11). After that, further experiments were
performed to verify their potential use in vivo as 64Cu PET imaging agents.

In addition, studies on structure–function relationships, methodologies, and catalysis
were reported. Signorella and coll. (contribution 12) described the critical role of the
flexibility or rigidity of the ligands in the redox cycle of copper superoxide dismutase (SOD)
and therefore in the design of their mimics. A combination of ligand flexibility, total charge,
and labile binding sites provided optimized catalytic properties for a trans-[Cu(II)N4-Schiff
base] complex in the dismutation of superoxide ions.

Applications of 111Ag perturbed angular correlation (PAC) of γ-ray spectroscopy to
elucidate the chemistry of Cu(I) in biological systems were reviewed by V. Karner et al.
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(contribution 13). Since monovalent copper ion is isoelectronic with Ag(I) (both closed-
shell d10), and both ions share ligand and coordination geometry preferences, the focused
spectroscopy is appropriate to investigate the structural aspects of some small blue copper
proteins, such as plastocyanin and azurin, involved in electron transport and transfer.

Finally, a catalytic action of copper compounds was reported by J. Isaac et al. (con-
tribution 14) in the study of symmetrical and unsymmetrical dicopper(I) complexes with
oxazolines or mixed pyridine–oxazoline coordination moieties that react with O2 at low
temperature to form µ-η2:η2 Cu2:O2 peroxido species. These may result in C–C coupling
products after reaction with a phenolate substrate, with the formation of an intermediary
mixed-valence CuIICuIII species, as indicated by electrochemical and EPR results.

This Special Issue includes a range of examples of copper(I) and copper(II) com-
pounds reactivity, reported by many researcher groups, using distinct strategies to illustrate
different aspects of their bioinorganic chemistry.

Conflicts of Interest: The authors declare no conflict of interest.
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