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Shape sensitivities of 2D airfoils for broadband noise reduction
using the adjoint method and semi-analytical models
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An adjoint-based methodology is developed and validated to numerically estimate the
sensitivities of a semi-analytical model for computing the broadband noise associated to the
interaction between a turbulent boundary layer and a two-dimensional airfoil trailing-edge.
To this end, an acoustic objective function based on Amiet’s theory in combination with a
semi-empirical wall pressure spectrum model is proposed. The steady-state boundary layer
integral quantities required by the semi-empirical model are obtained using Reynolds-Averaged
Navier-Stokes simulations. After validation of this methodology on a NACA0012 airfoil, the
model sensitivities are obtained numerically using algorithmic differentiation of computer
programs. The sensitivities to camber and thickness, computed with the associated adjoint
solver, are compared to finite differences evaluations on an asymmetric OAT15 airfoil at subsonic
and transonic speeds. The results show that the model is most sensitive to camber and thickness
variations close to the trailing-edge, especially at transonic speed. The adjoint method proves
much more computationally efficient in obtaining the sensitivities than finite differences and
offers perspectives for multi-disciplinary propeller blade shape optimization.

Nomenclature

x = (𝑥, 𝑦, 𝑧) = Cartesian coordinates Λ = Objective function scaling factor
𝑆0 = Convective distance ℎ = Finite differences step
𝜔 = Pulsation 𝑉𝑖 𝑗 = Generic cell-center/cell-node value
𝐿 = Airfoil span 𝜆𝑇 = Adjoint vector
𝑐 = 2𝑏 = Airfoil chord 𝑆𝑝𝑝 = Far-field acoustic pressure PSD
v = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) = Fluid velocity 𝑐0 = Speed of sound
𝐸 = Fluid total energy Π0 = Wavenumber spectral density
𝜌 = Fluid density 𝐾𝑦 = Spanwise aerodynamic wavenumber
𝑀 = Mach number 𝑘 = Acoustic wavenumber
𝑅𝑒𝑐 = Chord-based Reynolds number L = Airfoil transfer function
𝑛 = Number of shape parameters 𝑙𝑦 = Coherence length
𝛼𝑖,1≤𝑖≤𝑛 = Shape parameters 𝑈𝑐 = Boundary layer convection velocity
J = Acoustic objective function 𝑈𝑒 = Boundary layer external velocity
𝑋 = Volumic CFD grid Φ𝑝𝑝 = Wall-pressure PSD
𝑊 = (𝜌, 𝜌𝑣𝑥 , 𝜌𝑣𝑧 , 𝜌𝐸) = Fluid conservative variables 𝑝ref = 2 × 10−5 Pa = Reference pressure
𝑅(𝑊, 𝑋) = CFD numerical scheme 𝛿∗ = Boundary layer displacement thickness
𝑦+ = Dimensionless wall-distance
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I. Introduction

The most obvious aim of propeller blade design is to maximize the aerodynamic efficiency in view of reducing the
energy consumption, and has accordingly been the subject of numerous work. In the early 90s, drawing on the

maturity of physical models and computer programs, Dunn & Farassat [1] have focused on structural (aeroelasticity) as
well as acoustic (aeroacoustics) constraints on top of aerodynamic performance. Addressing jointly these issues means in
practice dealing with a multi-disciplinary optimisation problem and is currently the subject of active research, as shown
by the European project MADELEINE (Multidisciplinary ADjoint-based Enablers for LargE-scale Industrial desigN
in aEronautics, 2018-2021) [2] and the ongoing project NEXTAIR [3], in which this work is inscribed. Solving this
problem can be formulated mathematically by introducing a set of 𝑛 parameters 𝛼 = (𝛼1, . . . , 𝛼𝑛)𝑇 that parameterize
the blade shape. These shape parameters can include the blade radius, chord, twist, camber, or thickness distributions,
etc. (see Fig. 1).

𝛼1

𝛼2

𝛼3

𝛼4

𝛼5

𝛼6

Fig. 1 Examples of typical propeller blade design variables.

As a first step toward a truly multidisciplinary optimization, the acoustic optimisation sub-problem is tackled in
this paper. It involves a functional J : 𝛼 → J(𝛼) that provides a quantitative evaluation of the noise emitted by the
propeller blades in rotating motion. This noise has both tonal and broadband noise components that result from various
physical phenomena described for instance in [4]. A physics-based metrics such as the squared acoustics pressure at a
given listener’s position will be considered. Extension to more human-based metrics might incorporate psychoacoustics
but are beyond the scope of this paper. In any case, the relation between J and the shape 𝛼 is usually implicit. Therefore,
it involves physical modelling, typically based on a hybrid CFD/CAA method in the traditional approach of the acoustic
analogy. As for the optimization process, recent contributions include the use of evolutionary algorithms [5], as well
as machine learning-based approaches [6]. Another approach that has received some attention lately is based on the
determination of the objective function gradient dJ/d𝛼 using the adjoint method. In a computational fluid dynamics
framework, this gradient can be expressed as a function of the partial derivatives 𝜕J/𝜕𝑋 and 𝜕J/𝜕𝑊 , where 𝑋 and
𝑊 are the computational grid and the flow variables, respectively. Using this approach, Zhang & Barakos [7] have
conducted the aerodynamic optimization of a ducted propeller. By means of an acoustic analogy, they have shown, but
only a posteriori, that the aerodynamically optimal design leads to an improvement of the acoustics too. An application
of the adjoint method to propeller noise was proposed by Chelius et al. [8] who used Hanson’s model [9] to derive the
squared acoustic pressure at a far-field listener. They have derived the analytical expression of the gradient of J by
hand, which involved sensitivities of the propeller thrust and torque, that had previously been developed in Dumont’s
work on helicopter rotor optimization [10]. Hanson’s model, however, only describes the propeller tonal noise at the
blade passing frequency and its harmonics. In this work, we focus on the broadband component of a propeller noise
spectrum. From a phenomenological perspective, propeller broadband noise is due (for an undisturbed upstream inflow)
to the scattering of the turbulent structures inside the blade turbulent boundary layer by its trailing edge. Therefore, due
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to the stochastic nature of turbulence, we suppose that the problem of minimizing the broadband trailing-edge noise of
the entire propeller can be reduced to that of minimizing the broadband noise of independent blade radial portions.
Moreover, the blade can be viewed as in a steady circular motion around the propeller axis, with no incidence and
in a uniform mean flow. Thus, the full problem can be reduced to that of minimizing the trailing edge noise of 2D
airfoil profiles mimicking individual propeller blade iso-radius cuts with a constant inflow velocity in the reference
frame attached to the blade. Then, the noise generated by the entire blade could be obtained by summing the individual
contributions of every strip, while including the Doppler effect associated with rotating motion [11, 12]. Thus, in this
work, we focus on the shape optimisation of two-dimensional airfoil profiles.

The objective of this paper is to develop and validate an adjoint-based methodology to numerically estimate the
sensitivities of a semi-analytical model for computing the broadband noise associated to the scattering of a turbulent
boundary layer over a two-dimensional airfoil trailing-edge. To this end, we will use Amiet’s model [13] in combination
with semi-empirical wall pressure spectrum models at the airfoil trailing-edge. The sensitivities of these models with
respect to the CFD grid 𝑋 and the flow variables𝑊 are necessary to compute the derivative dJ/d𝛼 and will be obtained
through the algorithmic differentiation (AD) tool Tapenade developed by INRIA [14]. The steady-state boundary
layer integral quantities required by the semi-empirical models will be obtained using ONERA’s Reynolds-Averaged
Navier-Stokes (RANS) solver elsA and its adjoint [15]. After a presentation of both physical and numerical models in
Sec. II, a verification of the forward aerodynamic and noise computations is then proposed in Sec. III.A for a low-speed
symmetric NACA0012 airfoil with comparison to reference data, and in Sec. III.B for an asymmetric OAT15 profile
more representative of future propeller applications at two Mach numbers. Then, the computation of the acoustic
objective function sensitivities using the adjoint method is compared to traditional finite differences (FD) evaluations in
Sec. III.C. A physical interpretation of the results, alongside with a discussion on the computational cost associated to
both methods and perspectives are finally proposed in Sec. IV.

II. Methods

A. Physical modelling

1. Amiet’s model and further extensions
The problem of thin airfoils trailing-edge noise is classically approached by approximating the airfoil as a semi-infinite

plane. Doing so, Amiet [13] has proposed to combine Schwarzschild’s solution [16] for the determination of the
turbulent boundary layer wall pressure disturbance, and Curle’s aeroacoustic analogy [17] for noise radiation. The
extension of Amiet’s solution to account for finite-chord effects has been proposed by Roger & Moreau [18]. For a
far-field observer located in x, the acoustic pressure autospectrum 𝑆𝑝𝑝 (x, 𝜔) can be expressed as:

𝑆𝑝𝑝 (x, 𝜔) =
(
𝜔𝑧𝐿𝑏
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where 𝐿 and 𝑏 are the airfoil respective span and half-chord, quantities denoted (·) being adimensioned by 𝑏. 𝑐0 is the
speed of sound, 𝑆0 is the distance between the trailing-edge and the observer corrected for mean flow convection effects,
𝑈𝑐 is the convection velocity of turbulence inside the boundary layer, 𝐾𝑦 is the spanwise aerodynamic wavenumber and
𝑘 is the acoustic wavenumber. L is the so-called airfoil transfer function, and is supposed to only be a function of the
airfoil macroscopic dimensions 𝐿 and 𝑏. Π0 is the wavenumber spectral density of the incident turbulent gust. Equation
1 can be simplified, in the long span limit 𝐿/𝑏 ≫ 1 as:
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, 𝜔). (2)

In this latter expression, 𝑙𝑦 represents the coherence length. We use Corcos’ model following Roger & Moreau [18].
Finally, Φ𝑝𝑝 (𝜔) is the autospectrum of wall-pressure disturbances near the trailing-edge region. It is the main input to
the model for aeroacoustic predictions.

For a specified position x, a straightforward overall acoustic objective function can be derived by taking the integral
of the pressure far-field autospectrum over all frequencies. The result is normalised by an arbitrary multiplicative
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constant Λ since we are mostly interested in variations of J :

J (𝑆𝑝𝑝) =
Λ

𝑝ref2

∫ +∞

0
𝑆𝑝𝑝 (𝜔)d𝜔, 𝑝ref = 20 𝜇Pa (3)

Please note that there is no explicit relation between 𝑆𝑝𝑝 (𝜔) and 𝛼 in Eq. 2. This is partly due to the fact that the
airfoil is reduced to a finite flat plate of dimensions 𝐿 and 2𝑏. Let us suppose furthermore that the airfoil chord is
imposed. Then, the only dependence between the 2D airfoil shape (camber, thickness, etc) and the far-field pressure
power spectral density is in the wall-pressure spectrum Φ𝑝𝑝 . Since the adjoint CFD solver in elsA is only stationary, a
model is needed to relate boundary layer steady-state integral quantities near the trailing-edge, which are affected by a
shape modification, to this spectrum.

2. Wall-pressure spectrum modelling from steady-state boundary layer variables
Wall-pressure spectrum modelling beneath a turbulent boundary layer has been extensively studied and a large panel

of models exists that have been reviewed by Lee [19]. Among others, Goody’s model accounts for Reynolds number
variation effects, and Rozenberg’s model has been widely used due to the fact that it allows taking into account adverse
pressure gradients on cambered airfoils [20]. The analytical expression of such models can be quite involved and their
derivatives with respect to the flow and geometry, accordingly, difficult to derive by hand. In the present work, we
consider as a first step Amiet’s model [13] that writes:

Φ𝑝𝑝 (𝜔)
𝜌02𝛿∗𝑈𝑒

3 =
𝑝ref/2

1 + �̃� + 0.217�̃�2 + 0.00562�̃�4 , �̃� = 𝜔𝛿∗/𝑈𝑒 (4)

This model only involves the displacement thickness 𝛿∗ and the boundary layer outer velocity𝑈𝑒 that can be obtained
from the computed vorticity field Ω as :

𝑈𝑒 (𝑥) =
∫ +∞

0
−Ω(𝑥, 𝑧)d𝑦𝑧 (5)

𝛿∗ (𝑥) = −1
𝑈𝑒 (𝑥)

∫ +∞

0
𝑧Ω(𝑥, 𝑧)d𝑧 (6)

Using this model, Eq. 5 and 6 can be exactly differentiated with respect to the CFD grid and the flow variables. In this
work, the integral over 𝑧 is computed with the trapezoidal rule, and the vorticity ®Ω = ®∇ × ®𝑣 is numerically computed
using the Cartesian mesh Jacobian, the gradient operator being approximated with finite differences on the curvilinear
mesh 𝑋 used for airfoil computations. More advanced models require the boundary layer thickness which is not
unequivocally defined for nonequilibrium flows and might involve non-𝐶1 functions [21] (regularity issues when using
the discrete adjoint method are discussed by Peter [22]). Then, it appears that partial derivatives of Φ𝑝𝑝 with respect to
𝑋 and𝑊 will involve partial derivatives of the boundary layer integral parameters 𝑈𝑒 and 𝛿∗ which are not trivially
implemented. To avoid deriving the sensitivities of the boundary layer integral parameters to 𝑋 and𝑊 by hand, which
is error-prone, and to allow further developments of the methodology with a physically more consistent wall pressure
spectrum model, we use algorithmic differentiation to obtain the derivatives of the complex semi-analytical models.

B. Numerical modelling

1. Numerical evaluation of the objective function gradient
Formally, the optimisation problem to be solved is a minimization one:

Find 𝛼∗ ∈ 𝐷𝛼 such that J (𝛼∗) = min J where 𝐷𝛼 is the vicinity of an already acceptable shape 𝛼

It is important to note that the present approach is restricted to local optimisation only, so this methodology is not suited
for finding disruptive blade designs, but rather improving an existing shape.
This problem can be approached very classically by determination of the gradient of J with respect to 𝛼, which is the
𝑛-sized vector of coordinates 𝜕J/𝜕𝛼𝑖 and using a descent algorithm. The relation between J and 𝛼 is, as already stated
in the introduction, not explicit. Specifically, for the present application, J is estimated using the physical modelling
described in Eqs. 2 - 6 evaluated numerically using the flow conservative variable vector𝑊 and a computational grid 𝑋 ,
on which the RANS equations, formally written 𝑅(𝑋,𝑊) = 0 in what follows, are solved.
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A naive method to obtain the gradient of J is to use finite differences. For instance, using a central difference
approximation, one would compute, ∀𝑖 ≤ 𝑛 and with a small perturbation ℎ of the 𝑖-th component 𝛼𝑖:

dJ
d𝛼𝑖

=
J (𝛼 + ℎ) − J (𝛼 − ℎ)

2ℎ
, ℎ → 0 (7)

The procedure is represented schematically in Fig. 2 where the red cells refer to RANS computations, while the blue
cells refer to evaluations of Eqs. 2-6.

𝛼+
𝑖

𝛼−
𝑖

𝑋+

𝑋−

𝑅(𝑊+, 𝑋+) ≈ 0

𝑅(𝑊− , 𝑋−) ≈ 0 J −

J+
dJ
d𝛼𝑖

≈ 𝐽+−𝐽−

2ℎ

Fig. 2 Finite difference workflow to compute d𝐽
d𝛼𝑖

.

It is clear that using eq. 7 requires 2𝑛 RANS simulations, which is prohibitive for design when 𝑛 is large. In that
case, the adjoint method allows to obtain the gradient of J with a computation cost independent of 𝑛. Specifically, we
use the discrete adjoint method, which can be introduced in several ways. A straightforward one, proposed by Peter [22],
is briefly reproduced here. For a given shape, the RANS equations are solved:

𝑅(𝑊 (𝛼), 𝑋 (𝛼)) = 0 (8)

Then, supposing that 𝑅 is a 𝐶1 function of 𝑋 and𝑊 , by differentiation:

𝜕𝑅

𝜕𝑊

d𝑊
d𝛼𝑖

+ 𝜕𝑅
𝜕𝑋

d𝑋
d𝛼𝑖

= 0 (9)

which can be multiplied by an arbitrary vector 𝜆𝑇

𝜆𝑇
𝜕𝑅

𝜕𝑊

d𝑊
d𝛼𝑖

+ 𝜆𝑇 𝜕𝑅
𝜕𝑋

d𝑋
d𝛼𝑖

= 0 (10)

Likewise, by differentiation of J :
dJ
d𝛼𝑖

=
𝜕J
𝜕𝑊

d𝑊
d𝛼𝑖

+ 𝜕J
𝜕𝑋

d𝑋
d𝛼𝑖

(11)

to which we can add Eq. 10 and obtain:

dJ
d𝛼𝑖

=

(
𝜕J
𝜕𝑊

+ 𝜆𝑇 𝜕𝑅
𝜕𝑊

)
d𝑊
d𝛼𝑖

+
(
𝜕J
𝜕𝑋

+ 𝜆𝑇 𝜕𝑅
𝜕𝑋

)
d𝑋
d𝛼𝑖

(12)

Equation 12 involves the term d𝑊/d𝛼𝑖 of which computation is avoided if 𝜆𝑇 satisfies the discrete adjoint equation:

𝜕J
𝜕𝑊

+ 𝜆𝑇 𝜕𝑅
𝜕𝑊

= 0 (13)

Then, the gradient is expressed as:
dJ
d𝛼𝑖

=
𝜕J
𝜕𝑋

d𝑋
d𝛼𝑖

+ 𝜆𝑇 𝜕𝑅
𝜕𝑋

d𝑋
d𝛼𝑖

(14)

provided that we have computed 𝜆𝑇 beforehand from Eq. 13.
Since Eq. 13 does not involve 𝛼, it has to be solved only once and the result can be used for all shape parameters. The

gain in computational cost compared to finite differences is then substantial when 𝑛 is large. A schematic representation
of the adjoint workflow is presented in Fig. 3 using the same color code as Fig. 2. It must be stressed once again that the
output of the adjoint workflow is the sensitivities to all shape parameters whereas finite differences need to be repeated
for all shape parameters. In this work, red cells are correspond to computations using elsA and its adjoint. The blue
cells correspond once again to the physical models described in equations 2-6 but this time their partial derivatives with
respect to 𝑋 and𝑊 are needed. These derivatives can either be differentiated by hand, which is tedious and error-prone,
or differentiated using algorithmic differentiation. The latter strategy has been retained here. Finally, a numerical tool is
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needed to provide the sensitivities of 𝑋 to the shape parameters. This part of the workflow has been highlighted in
green. Details about the three aforementioned parts are given in the following subsections.

𝛼 𝑋 𝑅(𝑊, 𝑋) = 0

J
𝜕J/𝜕𝑋

𝜕J/𝜕𝑊

d𝑋/d𝛼𝑖

𝜆𝑇 = − 𝜕J
𝜕𝑊

𝜕𝑅
𝜕𝑊

−1

dJ
d𝛼𝑖

=
𝜕J
𝜕𝑋

d𝑋
d𝛼𝑖

+ 𝜆𝑇 𝜕𝑅
𝜕𝑋

d𝑋
d𝛼𝑖

dJ
d𝛼

Fig. 3 Schematic representation of the workflow used to obtain the gradients of the acoustic objective function.
In red: CFD part, in blue: acoustic objective function, and in green: computational grid deformation.

2. Reynolds-Averaged Navier-Stokes forward and adjoint solvers
The forward RANS simulations around the airfoil profiles are carried out using ONERA’s solver elsA [23] on

Cartesian multiblock curvilinear grids fitted to the airfoil surface using a finite-volume, cell-centered formulation.
Convective fluxes are discretized with a Roe upwind scheme and a van Albada slope limiter. The pseudo-time stepping
scheme used is Backward Euler with an LU-SSOR implicit stage. The Spalart-Allmaras model is used for turbulence.
The computation of the adjoint vector 𝜆 is solved using a preconditioned General Minimum RESidual (GMRES)
algorithm [24] featuring 10 inner sub-iterations in a Krylov space of dimension 60. The linearised Spalart-Allmaras
(SAlin) turbulence model is preferred to the so-called frozen-𝜇𝑡 approach, usually considered more robust but also less
precise, for adjoint computations. More details about the implementation of the SAlin model within elsA can be found
in [25].

3. Algorithmic differentiation
According to the previous sections, J is a composed function of several models for a given 𝑋 and𝑊 . In fact, only a

small portion of the computational domain is used by the models, since the useful information is the boundary layer
displacement thickness and convective velocity at a selected point close to the trailing-edge. In the present discrete
adjoint framework, all these functions have been implemented as Fortran 90 programs. Following the chain rule, the
derivatives of J with respect to 𝑋 and𝑊 , needed for the gradient computation (see Fig. 3), require the derivatives of
intermediate functions. Instead of deriving by hand and implementing the expressions, the associated derivatives are
obtained as Fortran sources as well, using the Algorithmic Differentiation (AD) tool Tapenade [14] developed by INRIA.
This tool builds additional Fortran sources containing the derivatives of the forward program’s selected output(s) with
respect to selected input(s).

4. Sequential Analytical Deformation
The final gradient with respect to 𝛼 requires the previously discussed derivative with respect to the grid nodes 𝑋 be

multiplied by d𝑋/d𝛼. This latter term is evaluated using an in-house Sequential Analytical Deformation (SeAnDef)
tool, which additionally provides the deformed grids 𝑋 (𝛼+) and 𝑋 (𝛼−) to allow finite differences comparisons with
adjoint computations. The purpose of SeAnDef is to compute parametric grid deformations of complex geometries
which have a main axis along which the user can parameterize the surface at given control points and sections. Surface
deformations are then propagated to the entire volumic grid. Various deformation parameters are included, such as twist,
translation, thickness, camber, or local deformation. For clarity, the focus in what follows will be on local thickness and
camber only. Other successful shape optimizations using SeAnDef can be found for instance in Meheut et al. [26].
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III. Results

A. Validation of the forward computation on a NACA0012 airfoil
The forward aerodynamic and acoustic numerical solutions are first validated on a classical trailing-edge noise

case: a NACA0012 airfoil of chord 𝑐 = 2𝑏 = 6.096 × 10−1 m and span 𝐿 = 4.6 × 10−1 m in a low Mach number flow
of 0.2048 with no incidence. The boundary layer at the trailing-edge can be considered turbulent as the chord-based
Reynolds number is Re𝑐 = 2.85 × 106. Reference data for this case are to be found in the experiments of Brooks &
Hodgson [27] which include acoustic measurements. Turbulent boundary layer quantities are compared to reference
values obtained by Rozenberg et al. [20] using the code XFOIL.

The forward RANS computation (red cells in Fig. 3) is carried out on a Cartesian mesh with 300 points on the
airfoil contour. The stretching of the cells normal to the wall is such that 𝑦+ = 0.5 on the initial layer in order to correctly
capture the boundary layer development. A cell size growth rate of 10% (Fig. 4a) is then imposed to keep an acceptable
cell count.

(a) Computational grid used for the forward RANS computation
around the NACA0012 profile.

0 2000 4000 6000 8000 10000

10−6

10−4

10−2

100

102
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R
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(b) Residual of the forward RANS simulations on the NACA0012
profile. Solid: 𝜌, dashed: 𝜌𝑣𝑥 , dotted, 𝜌𝑣𝑧 , dash-dotted: 𝜌𝐸

Fig. 4 Computational grid and residuals for the forward NACA0012 RANS computation.

The adjoint method heavily relies on the implicit functions theorem which requires the CFD computation to be
perfectly converged. This means that Eq. 8 must be satisfied with the best possible precision. Figure 4b presents the
residual of the Navier-Stokes system as a function of the number of iterations. This residual drops by at least six orders
of magnitude after 104 iterations. The simulation is then supposed well converged.

1. Verification of boundary layer parameters
The boundary layer parameters used in Amiet’s wall pressure spectrum model (Eq. 4) are compared to XFOIL

6.9 simulations provided by Rozenberg et al. [20] in Tab. 1 and 2. Although the airfoil considered is symmetrical,
computed boundary layer quantities are presented for both the pressure and suction sides. The values obtained are
identical to 1 or 2-digits precision, supporting the good convergence of the flow already suggested by Fig. 4b. The
values of 𝛿∗ and 𝑈𝑒 are computed using Eqs. 5 and 6 with the assumption that the mesh is locally orthogonal to the
profile in the region where Ω varies substantially, allowing the numerical integration to be calculated directly using
the values of the flow at the mesh nodes. This approximation proved to be reasonable with the chosen grid. The error
at 𝑥/𝑐 = 0.87 is 14% for displacement thickness, but the agreement is more satisfying closer to the trailing-edge, at
𝑥/𝑐 = 0.97 where the error drops to 6% with respect to XFOIL data. In terms of external velocity, the agreement is
remarkable with relative errors of 0.2% at 𝑥/𝑐 = 0.87 and 1% at 𝑥/𝑐 = 0.97.
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𝛿∗ (×10−3 m) 𝑈𝑒 (m/s)

Rozenberg et al. 1.62 69.3
Present - SS/PS 1.85/1.84 69.42/69.52

Relative error 14% 0.2%

Table 1 𝑥/𝑐 = 0.87

𝛿∗ (×10−3 m) 𝑈𝑒 (m/s)

Rozenberg et al. 2.36 64.6
Present SS/PS 2.50/2.52 65.22/65.13

Relative error 6% 1%

Table 2 𝑥/𝑐 = 0.97

Comparison of boundary layer characteristics obtained with the forward RANS solver and XFOIL data.

2. Verification of noise spectrum
Combining Amiet’s theory (Eq. 2) with the wall-pressure spectrum model (Eq. 4) evaluated with 𝛿∗ and𝑈𝑒 averaged

between pressure and suction sides at 𝑥/𝑐 = 0.97, we can compare the noise spectrum for a listener located at 𝑧 = 1.2 m
above the trailing-edge, at the same location as Brooks & Hodgson’s experiment [27]. The agreement between the
prediction and the experimental data shown in Fig. 5, reaches a 1 dB precision between 2 and 3 kHz. At lower and higher
frequencies, the general shape of the noise spectrum is approximately captured but errors of several dB are observed.
These errors are most likely due to two inappropriate approximations. The first one is that 𝐿/𝑏 ≃ 1.5, which makes the
approximation used to derive expression 2 debatable. The second point is that the wall-pressure spectrum model used is
rather basic and incorporates neither Reynolds nor adverse pressure gradient effects. Rozenberg’s model has shown
more precise on this particular case (see Fig. 21 in [20]) but, as already mentioned in II.A.2, concerns about boundary
layer thickness not being regular enough prevented the use of more advanced models. Overcoming this difficulty will be
the key to improving the method. Despite this lack of precision, gradient estimations might however be valid since it is
the variations in the noise spectra that are of interest here, rather than the absolute values of the noise spectra.
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Fig. 5 Far-field broadband trailing-edge noise (–) predicted compared against (◦) experimental data from
Brooks & Hodgson [27].

B. Forward computation on a more relevant test-case for future propeller applications: OAT15 profile in subsonic
and transonic conditions
The NACA0012 results can readily serve as a basis for airfoil trailing-edge noise. They also prove that the forward

part of the methodology gives physically sound results. A second test-case has been selected for subsequent gradient
evaluations since the final aim of this work is propeller blade optimization, which present non-symmetric profiles as well
as possible high Mach numbers, especially close to the blade tip. Accordingly, a supercritical ONERA OAT15 profile
[28], which is also currently the subject of other adjoint-based aerodynamic optimization studies, (see eg Jadoui et al.
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[24]), is considered in the following. This time, only suction side integral quantities are used for noise computations,
following Finez [29]. The near-wall grid spacing is similar to the NACA0012 case. The method is assessed for two
inflow Mach numbers (𝑀 = 0.2, 𝑅𝑒𝑐 = 5.5 × 106) and (𝑀 = 0.734, 𝑅𝑒𝑐 = 20.3 × 106), corresponding to subsonic and
transonic conditions, respectively, representative for instance of blade positions closer to either the hub or the tip. The
validity of the Amiet’s trailing-edge noise model in the presence of a shock has been questioned recently by Koch et
al. [30]. They have shown correct far-field predictions at 90◦ from the mean flow direction around a transonic airfoil.
Therefore, Eq. 2 will be used both in subsonic and transonic conditions.
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0 5000 10000 15000 20000

10−12

10−10

10−8

10−6

10−4

10−2

100
102

Iteration

R
es
id
u
al

(b) M=0.734

Fig. 6 Residual of the forward RANS simulations on the OAT15 profile. Solid: 𝜌, dashed: 𝜌𝑣𝑥 , dotted, 𝜌𝑣𝑧 ,
dash-dotted: 𝜌𝐸

Once again, the convergence of RANS simulations for both values of the inflow Mach number is provided in Fig. 6
where the decrease by several orders of magnitude in the residual values suggests the convergence of the numerical
simulation. The subsonic case shows however a noticeably slower convergence, about twice as many iterations than the
transonic one for an equivalent target residual value for all variables but the density which presents an especially slow
decay.

Mach contour maps of the steady-state solution are illustrated in Fig. 7. On the transonic profile, the normal shock
wave has a very distinct influence on the boundary layer development. As will be discussed later on, a high sensitivity
of the noise results is then to be expected in transonic conditions, especially with respect to the shockwave position.
This, again, clearly indicates the relevance of aerodynamic and acoustic multi-disciplinary optimization. The green line
over-plotted at 𝑥/𝑐 = 0.9 in Fig. 7 presents the region of interest for boundary layer integral quantities evaluation.
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(a) M=0.2 (b) M=0.734

Fig. 7 Mach number contour maps (zoom on the OAT15 geometry).

C. Validation of the adjoint chain by comparison with finite differences

1. Verification of the objective function derivatives w.r.t. X and W and implementation of the adjoint computation
Intermediate sensitivities of J with respect to 𝑋 and 𝑊 are usually compared to finite differences evaluations.

Specifically, this validates the blue cells in Fig. 3. To do so, small variations are imposed to the volume grid 𝑋 and the
flow field𝑊 obtained with the forward computation previously described. The sensitivities are then computed in two
ways. First, finite differences are performed. Let 𝑉 designate either 𝑋 or𝑊 and 𝑉𝑖 𝑗 a particular value at either the cell
center (for𝑊) or node location (for 𝑋) of indices (𝑖, 𝑗). For each point of the Cartesian grid, the partial derivative is
obtained using a central difference approximation, with Δ𝑉𝑖 𝑗 = 10−7, as:

𝜕J
𝜕𝑉𝑖 𝑗

=
J (𝑉 + Δ𝑉𝑖 𝑗 ) − J (𝑉 − Δ𝑉𝑖 𝑗 )

2Δ𝑉𝑖 𝑗

Secondly, these derivatives are obtained directly using differentiated Fortran sources built with Tapenade (see II.B.3).
The comparison between AD and FD is presented for space (𝑥 and 𝑧) and flow (𝜌, 𝜌𝑣𝑥 , 𝜌𝑣𝑧) variables in figures 8

(subsonic flow) and 9 (transonic flow), as a function of the position 𝑧 at 𝑥/𝑐 = 0.9 (green line in Fig. 7). Several general
remarks can be made about these figures. First, it is evident that the sensitivities obtained through AD are correctly
implemented since they perfectly match the ones obtained with FD. Furthermore, for all variables, the sensitivities
increase, in absolute value, with increasing 𝑧. One must however bear in mind that shape modifications will mostly
affect 𝑧 positions close to zero so the apparent diverging behavior is in practice compensated by the local character of
shape-induced grid and flow variations. It is also noteworthy that the general shape of the curves is conserved between
the subsonic and transonic cases despite the second case involving substantially different physical content. Looking at
the absolute values however, it appears that the transonic case is two to three orders of magnitude more sensitive than
the subsonic one to variations in 𝑋 or𝑊 , as already inferred from Mach number contours examination in Fig. 7.

Now, looking at the resolution of the adjoint equation 13 with the GMRES algorithm detailed in II.B.2 for a target
residual of 10−10, similar conclusions about the convergence rate shown in Fig. 10 can be made as for the forward
computation. Indeed, it takes about twice as many iterations to reach the target residual for the subsonic case than for
the transonic one.
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Fig. 10 GMRES residual of the adjoint calculation. Solid line: 𝑀 = 0.2. Dashed line: 𝑀 = 0.734

2. Verification of the objective function gradients w.r.t. 𝛼
The gradient dJ/d𝛼 is finally obtained by multiplying the so-called "adjoint-mesh" solution d𝐽/d𝑋 (𝛼) by the grid

sensitivity d𝑋/d𝛼 which is given by SeAnDef. To assess the validity of this gradient, we consider two shape parameters,
namely camber and thickness at three specified positions 𝑥/𝑐 of 0.25, 0.5 and 0.75. A simple approach is again to
consider finite differences with a centered scheme:

𝜕J
𝜕𝛼𝑖

=
J (𝛼𝑖 + Δ𝛼𝑖) − J (𝛼𝑖 − Δ𝛼𝑖)

2Δ𝛼𝑖
(15)

For each partial derivative with respect to a shape parameter 𝛼𝑖 , two RANS computations are then needed, resulting
here in two shape parameters × three locations × two evaluations for the centered scheme, for a total of 12 RANS
simulations. Exaggerated deformations applied on the OAT15 geometry provided by SeAnDef corresponding to each
RANS simulation are shown in Figs. 11,12,13, and 14. Moreover, as the finite difference approach only provides
an approximation of the derivative values, several step sizes Δ𝛼𝑖 have been considered for each deformation, thus
multiplying the number of required computations to assess the convergence of FD as well.

(a) 25% of the chord (b) 50% of the chord (c) 75% of the chord

Fig. 11 Exaggerated camber deformations (positive direction).
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(a) 25% of the chord (b) 50% of the chord (c) 75% of the chord

Fig. 12 Exaggerated camber deformations (negative direction).

(a) 25% of the chord (b) 50% of the chord (c) 75% of the chord

Fig. 13 Exaggerated thickness deformations (positive direction).

(a) 25% of the chord (b) 50% of the chord (c) 75% of the chord

Fig. 14 Exaggerated thickness deformations (negative direction).

The sensitivity to each parameter, obtained following both adjoint and FD methods, is finally compared in Figs. 15
and 16. The examination of these results confirms once again that the sensitivities are, in absolute value, much larger for
the transonic profile than for the subsonic one. Accordingly, FD evaluations converge faster for the subsonic case than
for the transonic case, at equivalent finite difference step and for a given shape parameter. In other words, the higher
the sensitivity to a shape parameter is, the finer the FD step is needed to get a correct approximation of the gradient.
Now comparing converged FD (filled circles) with the adjoint method (filled triangles), we can see that the agreement
between both approaches is very good on camber at subsonic and transonic speeds, with a slight loss of agreement as
the deformation is imposed closer to the trailing-edge. Looking at the thickness, the evolution of the sensitivity with
the position on the profile follows the same trend between adjoint and FD evaluations, but, for each Mach number, a
nearly constant value separates adjoint and FD values. This difference is ∼ 2 × 10−5 at 𝑀 = 0.2 and ∼ 2.5 × 10−2 at
𝑀 = 0.734. The origin of this constant error is still under investigation.
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Fig. 15 Trailing-edge noise sensitivities of the OAT15 profile at 𝑀 = 0.2.
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Fig. 16 Trailing-edge noise sensitivities of the OAT15 profile at 𝑀 = 0.734.

D. Variation in sound spectrum for deformed shape w.r.t. the baseline case
According to Figs. 15 and 16, the largest variation in trailing-edge noise for all considered cases is to be expected

for an increase in camber at 𝑥/𝑐 = 0.75 at 𝑀 = 0.734. As shown in Fig. 17a, the shock position is quite sensitive to a
small camber increase of Δ𝛼 = 10−3 (please note that the shape variation is too small to be observable on the figure). In
this case, the shock is moved downstream of its initial location when camber is increased. This affects the subsequent
boundary layer development. Recalling that J is integrated over all frequencies and scaled by a constant, the absolute
value of the gradient is not easily interpreted. The effective variation in SPL is plotted in Fig. 17b to determine the
orders of magnitude that can be expected for this shape modification.

For this modification in camber close to the trailing-edge, the increase in SPL is not uniform across all frequencies.
It is about 0.1 dB at low frequencies and decreases to about 0.04 dB at 7 kHz. This variation must be understood as only
one step in the optimization loop, so larger variations are expected when several steps have been performed. Future
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(a) Isocontour 𝑀 = 1 of the (–) baseline and (–) deformed OAT15 profiles.
Light gray: camber increase of 10−3. Dark gray: camber decrease of 10−3.
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(b) Variation in SPL for a small increase in camber at
𝑥/𝑐 = 0.75 w.r.t. the baseline 𝑀 = 0.734 OAT15 profile.

Fig. 17 Variations of the Mach number field and SPL for a small camber variation on the OAT15 profile at
𝑀 = 0.734.

work will be devoted to running the entire optimization loop to determine if the optimization converges to a minimum,
and if so, in how many steps, for which global SPL variation. Coupling with aerodynamic constraints will likely be
crucial to convergence of the optimization process while retaining a realistic shape.

IV. Discussion
From a physical point of view, the results might be interpreted as follows. First, the transonic profile is much more

sensitive to shape deformations than the subsonic one for trailing-edge noise. Second, applying a camber increase on the
subsonic profile results in a noise increase for all three positions considered since the gradient is strictly positive. This is
not the case for the transonic profile where a camber increase at 𝑥/𝑐 = 0.25 implies a decrease in the noise predicted.
This would be consistent with the intuition that the shock location (and, thus, the boundary layer state downstream) might
also be highly sensitive to upstream camber. Determining if a decrease in noise would also come with an improvement
of the aerodynamic performance will be the subject of future investigations, as proper multi-disciplinary optimization
will be carried out. In both cases, the sensitivity absolute value is larger as the deformation takes place closer to the
trailing-edge, which could have been anticipated, since this is the region where the acoustic source is active. The same
conclusions might be drawn from thickness sensitivities if the FD gradients are considered. Here again, adjoint-based
gradients must be further investigated by (i) working on the mesh deformation propagation, currently artificially limited
to the 𝑧 line over which boundary layer integral quantities are computed and (ii) integrating over a line actually normal
to the profile rather than following the grid. This would require an additional interpolation step. In the current state of
this work, the sign of thickness adjoint sensitivities is not reliable and cannot be used in the optimization chain yet. For
a small camber variation, the resulting difference in SPL is a fraction of dB, which may add up during the optimization
process.

The main motivation for using the adjoint method is the gain in computational cost associated to the gradient
estimation. In this respect, it is worth noting that the adjoint simulation took around 5 minutes on 16 cores, regardless
of the parameter space dimension, the final assembly of the gradient being carried out afterwards. On the other hand
computing the gradient of J with centered FD took about 80 minutes on 16 cores × 2 evaluations for each design
variables. It should be emphasized that here a total of six shapes parameters have been considered, so the gain is, as
expected, substantial, thus supporting the relevance of adjoint-based methods in combination with semi-empirical
modelling. This computation time could also be further reduced if the target residual in the GMRES algorithm is
decreased. Fine tuning of this parameter will be investigated in future work as a perspective to improve the method
efficiency.

Despite these advantages, the work presented here is based on some strong assumptions which will require some
careful inspection. A first concern is about the contrast in the simpleness of the physical modelling and the effective
variations in the objective function. Indeed, real variations might be overwhelmed by approximation errors. For
example, the flat-plate assumption in Amiet’s model hides possible 𝑋 dependencies and may seem contradictory with
the objective of performing shape optimization, although this model is routinely used for airfoil trailing-edge noise
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evaluations. This paradox is however only partial since a dependency on 𝑊 is still present through wall pressure
modelling. High-fidelity simulations of the final supposed optimal shape will be necessary to confirm the result of the
optimization process as well as aerodynamic performance constraints. Similarly, imposing camber variations clearly
calls for the use of wall-pressure spectrum models that take into account adverse pressure gradients, such as the one
proposed by Rozenberg et al. [20]. This extension will be considered in future work too. Another important assumption
is that local optimization of blade sections will result in a smooth and optimal blade shape. The extent of independent
blade sections to be considered might be dependant on the coherence length over the trailing edge. Such aspects will
be considered as single airfoil optimization will be available. A long-term solution to the points raised above is to
replace the semi-empirical modelling (Hanson’s model in Chelius et al. [8], or Amiet’s model in this work) by an
adjoint formulation of the acoustic analogy. This work has been initiated at ONERA with the development of an adjoint
formulation of the FW-H integral equation.

V. Conclusion
An adjoint-based methodology has been proposed with the final aim of performing propeller blade shape optimization.

This paper has been devoted to exposing the methodology, which relies on the combined use of Amiet’s semi-empirical
wall-pressure spectrum model and trailing-edge noise model over two-dimensional airfoils. The inputs to these models
are determined using steady CFD solutions obtained with ONERA’s RANS solver elsA, as well as its adjoint. The
inputs to the adjoint solver, which are the objective function’s sensitivity to the computational grid and flow variables
and the grid sensitivity to shape parameters are provided by the algorithmic differentiation tool Tapenade and the
sequential analytical deformation tool SeAnDef, respectively. The forward aerodynamic and acoustic computations
have first been validated over a classical trailing-edge noise database on a subsonic and symmetric NACA0012 airfoil.
Then, an asymmetric OAT15 profile at both subsonic and transonic speeds has been considered in order to evaluate the
methodology on profiles more similar to propeller blade sections. Partial derivatives of the objective function with
respect to the grid and flow have been compared to finite differences evaluations, showing a perfect agreement and
confirming the effectiveness of AD in providing differentiated Fortran sources for adjoint evaluations. Then, the gradient
of the objective function has been evaluated with respect to two shape parameters, namely camber and shape, for both
Mach numbers considered, and compared to FD evaluations. Again, adjoint-based and FD evaluations have shown
a very good agreement at both Mach numbers for camber, but partially inconclusive results have been obtained for
thickness sensitivities. Values obtained using adjoint-based computations systematically present a constant difference
with FD. The origin of this discrepancy is currently under investigation. Finally, considering the most sensitive camber
variation, the difference in SPL has been evaluated. In this case, it caused a variation in SPL by about 0.1 dB in the low
frequency range. These results show the first use of an adjoint-based method with semi-empirical modelling to perform
airfoil shape optimization of trailing-edge noise and offer perspectives for designing more quiet propeller blades.
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