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Abstract

Rank-size distributions, such as Zipf’s Law, have been instrumental in pro-
viding insights into the emergence of hierarchies across diverse systems, from
linguistic corpuses to urban structures. However, the application of Zipf’s
Law reveals limitations, particularly in its focus on distribution tails, some-
times overlooking a large proportion of the data which might play a piv-
otal role in system dynamics. Yet, fitting rank-size distributions other than
a straight line on the log-log scale requires caution. In this study, we re-
evaluate the utility of rank-size distributions by contrasting the traditional
Zipf’s Law with the Discrete Generalized Beta Distribution (DGBD). We
show the need of cautious fitting techniques for rank distributions, including
the use of binning to prevent overfitting to data tails. Through both an-
alytical derivation and empirical validation on commit data of open-source
repositories, we show that DGBD consistently improves over Zipf distribution
for concave rank distributions of large datasets (N ≥ 100). This approach
contributes to the advancement of methodologies for analyzing hierarchical
systems.

Keywords: DGBD, Discrete Generalized Beta Distribution, Rank-size
distribution, Fitting methods, Open-source data
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1. Introduction – rank-size distributions

When dealing with numerical data, it is sometimes useful to consider the
ordered list of values, or ranking. Indeed, sorting numerical values, e.g. from
largest to smallest, reveals the subset of observations achieving the highest
results, indicating the top of a given set. Such rankings are present in almost
every area of life (e.g., rankings of the largest cities, most popular musicians,
wealthiest people, and most famous universities, to name a few) [1, 2]. The
first scholarly discussion of the regularities in rankings can be attributed
to Felix Auerbach in the context of city sizes (for English translation and
reference to original German article, see [3]), later extended by George Zipf to
the frequency of words in corpora of natural languages [4, 5]. Zipf showed that
the frequency of any word is inversely proportional to its rank in the frequency
table, following a power law. This law has been later widely observed in
numerous systems [6, 7, 8, 9]. Zipf’s Law states that for the ordered sample
x(1) ⩾ x(2) ⩾ · · · ⩾ x(N) of size N

x(r) =
C

rα
⇒ log (x(r)) = −α log(r) + log(C), (1)

where r is the rank (i.e., 1, 2, . . . , N) and x(r) can be any numeric property of
the considered objects such as frequency, size, value, etc. The two constants
α, C > 0 are parameters, and α is usually called the Pareto exponent (for
more connection with the Pareto distribution, see below), with α ≃ 1. Eq.
(1) is one of the most famous rank-size distributions, linking rank r to size
x(r) across the whole sample, observed widely in real datasets. However, it
is not the only such distribution. Before considering others, let us note the
connections between rank-size and probability distributions.

When considering fat-tailed distributions, Newman, Clauset and Shalizi
[7, 10] suggest using the Complementary Cumulative Distribution Function
(CCDF, sometimes also called the survival function):

S(x) = Prob(X ≥ x) =

∫ ∞

x

f(t)dt, (2)

rather than the probability density function f(x). Such an approach offers
a robust perspective on extreme values and rare events within a dataset,
effectively reducing uncertainties associated with infrequent occurrences [7,
10]. One can show (see Appendix A) that there is a strict relation between
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the expected rank-size distribution r(x) for a sample of size N and the CCDF
S(x) of the distribution from which the sample was drawn:

x = S−1

(
r(x)− 1

N − 1

)
. (3)

From the above formula in Eq. (3), one can see that the rank-size distri-
bution can be expressed in terms of the inverse CCDF, connecting these two
different methods for the description of the ranked data. In the case of Zipf
Law of Eq. (1), the survival function, which is the Pareto type I distribution
[11], is analytically invertible so that one can express both the CCDF and
the rank-size distribution in a compact and explicit form. Unfortunately, in
general, this property does not hold. One faces the problem that a close
analytical formula is given either for the CCDF or the rank-size distribu-
tion, while the other is available only implicitly. As a consequence, apart
from the elegant (because reversible) Zipf Law, there are in the literature no
compact formulas for both CCDF and rank-size domains. When considering
the CCDF, the most significant competitors to Zipf are Pareto type II [6],
log-normal ([12]), Tsallis-Pareto [13], Tsallis q-exponential distribution [14],
Generalized Beta family of distributions [15], other Pareto modifications [9]
and Gumbel [16] to name just a few. Alternative rank-size distributions in-
clude, among others, Price Model [6, 17] and the Discrete Generalized Beta
Distribution (DGBD, sometimes named generalized Lavalette distribution
[18]) [19, 20, 21, 22, 23, 24, 25]. Importantly, DGBD focuses on the whole
spectrum of ranks, while Zipf’s Law describes only the tail of the data, which
in many cases covers a small part of the data [7]. While in the context of
probability distributions, the tail encompasses largest values (e.g. hubs in
degree distributions), for rank distributions the tail corresponds to low values
with large ranks. Being able to describe the top ranking elements along with
the tail of lower ranking elements is therefore important to get a full picture
of the mechanism at play.

Since the Zipf distribution has an explicit form in the rank-size and prob-
ability domains, it allows the direct use of fit and testing methods and tech-
niques derived classically in the language of probability distributions to de-
scribe the rank-size distribution as well [7]. Unfortunately, many of these
methods fail for models with explicit form in the rank-size domain, and their
application may lead to erroneous conclusions. While some of the rank-size
models (e.g., [6]) are asymptotically reversible between the rank-size and
probability domains, this is not always the case. In this work, we focus on
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the more complex case of the DGBD rank-size distribution, for which there
are solid indications that it is not reversible [20]. The DGBD distribution is a
straightforward generalization of Zipf’s Law (compare Eqs. (1) and (4)) with
a larger applicability domain, provided it is appropriately applied, which we
demonstrate later in the work.

The paper outline is as follows: In section 2, we introduce and provide
new derivations of the properties of DGBD and of its parameters constraints.
Next, in section 3, we review methods from earlier works considering DGBD
[19, 20, 21, 22, 23, 24, 25], discuss their weaknesses, and point out some
limitations of them. In section 4, we we empirically compare DGBD and
Zipf Law using a unique dataset of ranked commit data from open-source
GitHub repositories. In particular, to reduce the importance of low ranking
data on the fit, we investigate the impact of binning ranks to improve the
model fit. Finally, in section 5 we draw conclusions from the theoretical
considerations and empirical investigation.

2. Discrete Generalized Beta Distribution

We focus in this study on the Discrete Generalized Beta Distribution
(DGBD) [19]. This rank-size distribution serves as a versatile generalization
of Zipf’s Law (Eq. 1), extending its applicability and enhancing its potential
to capture the nuances of real-world data through the formula:

x = C
(N − r(x) + 1)β

(r(x))α
, (4)

where r(x) ∈ [1, N ] is the rank of the numerical property x, N is the sample
size, and C, α, β are parameters.

Despite the undoubted elegance of Zipf’s law, not all natural and artifi-
cial phenomena generate data from this distribution. This was undoubtedly
one motivation behind studying the generalized DGBD distribution and its
presence in observational data. Starting with population distribution of ur-
ban areas, authors in [20] introduced Zipf’s law generalization in the form of
DGBD. Other researchers have also explored the use of the DGBD for diverse
applications, including fitting city size distributions [21], biomass distribution
in weighted food webs [22], character frequency distribution in the Chinese
language [23, 24], letter frequency distribution in various languages [25], baby
name popularity [26], stochastic resonance [27], and in the dynamics of non-
linear maps [28]. It is worth mentioning that the term “generalized Lavalette
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distribution” has also been used instead of DGBD [18]. In all of these works,
authors claim that DGBD offers a more accurate data description than Zipf’s
Law. One of the most significant advantages of the DGBD distribution is
that it usually fits the entire data set, not just the tail, in contrast to Zipf’s
law [7]. In some cases, this means that Zipf’s law describes only a tiny por-
tion of the data, and what is not in the tail is overlooked. This is concerning,
since in rank distributions, the first few items are the top-ranking elements
which can be the key drivers of the dynamics of the system. In Figure 1,
the top elements (i.e., those with the highest values) correspond to the first
ranks, which are visible on the left side in the Rank-size representation. Con-
versely, in the probability domain, these same top elements are visible in the
tail on the right side, where Zipf’s Law is typically fitted. On the other hand,
the DGBD model considers the entire range, simultaneously focusing on the
largest and the smallest values.

2.1. Selected properties
DGBD is parameterized by two exponents: β primarily influences large

rank values r, while α plays a more significant role for lower rank values. This
distribution generalizes Zipf’s Law, which relies only on a single exponent,
α. It is important to note that one of the most common properties of Zipf’s
Law is its representation as a straight line in a double-logarithmic scale. This
relationship can be expressed as log (x(r)) = −α log (r) + log (C) (as shown
in Eq. (1)), where the exponent α corresponds to the slope of the line. One
might assume that since the DGBD is a generalization of Zipf’s Law, their
properties would also generalize, resulting in two straight lines when plotted
in a double logarithmic scale. However, this assumption is only partially
true. To illustrate this feature, we show in Figure 1 two lines at low and
high rank values. Nevertheless, the slopes of these lines do not correspond to
the exponents α and β, as seen in Zipf’s Law. It can be demonstrated that
in a double logarithmic scale, the DGBD (4) can be approximated using a
Maclaurin series as follows:

log x = log (CNβ) +

(
−α− β

N

)
z +O(z2),

where z = log r. It means that the slope is equal to −α− β
N

for low values of
rank r. Similarly, the Taylor expansion near the end of DGBD (for r = N)
takes the form:

log x = log (CN−α) + (−α− βN)ζ +O(ζ2),
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where ζ = log r− logN . In that case, the slope is equal to −α−βN for high
values of rank r. This observation is depicted in Figure 1. Among different
probability distributions mentioned in the Introduction, the Beta Prime dis-
tribution yields similar property, as it exhibits two power-law dependencies
when x → 0 and x → ∞.

100 101

r
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10 3

10 1

101

x(
r)

Rank-size distribution

, =1.00, 1.00
, =0.75, 5.25

Slope: N

Slope: N
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100
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Complementary cumulative distribution
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Slope: N

Best fit Zipf Law

Figure 1: A comparison of two different distributions of DGBD on the double log scales.
On the left side, we present rank-size distribution (data in the domain of sizes versus
ranks). In this plot, we observe two lines - pink and orange - which, despite having
different parameters α and β, exhibit the same slope at the beginning of the graph. This
phenomenon can be exploited in the probabilistic domain (illustrated on the right side of
the figure, where we plot DGBD’s complementary cumulative distribution functions). In
such a situation, fitting the Zipf’s law to both sets of data, as proposed in [7], would yield
a line with identical results (in other words, the same slope).

As we discuss DGBD properties, we need to address the topic of param-
eter boundaries. Remembering that DGBD is a rank-size function and must
exhibit a decreasing trend is crucial. As the rank r increases, the values x(r)
should decrease accordingly. Interestingly, this property does not hold for
every combination of the parameters C, N , α, and β of the DGBD. This
aspect has not been widely recognized in recent studies concerning DGBD
but is of significant importance. Careless fitting of data to functions can lead
to incorrect distributions. To ensure the validity of such fits, one must satisfy
the following inequalities, which we have derived in Appendix B:{

Nα + β ≥ 0,
α +Nβ ≥ 0.
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The DGBD itself can represent several well-known distributions, as noted
in [20]: Zipf’s Law is obtained by setting β = 0, a Uniform distribution can
be approximated with α = 0 and β = 1, a Dirac delta Distribution can
be modeled with α = β = 0, and the Lavalette distribution corresponds to
α = β, closely resembling the lognormal distribution [29]. However, it also
comes with limitations. DGBD has limited applicability in cases where the
data exhibit a convex shape in a double logarithmic scale. As demonstrated
in Appendix B, the minimum possible value of parameter β is β = − α

N
and

DGBD is convex when β < 0. As such, when the size of the data N is big,
DGBD will be more prone to fail serving as a suitable model. Examples of
this phenomena are shown in Figures 2 and 3. The left panel of Figure 2
depicts concave data on a double logarithmic scale, where DGBD can be a
good model (and indeed, the fit is satisfactory). On the other hand, the right
panel presents convex data, where the limitation of DGBD can be observed.
Despite the fact that negative β is allowed, its minimum value β = − α

N
is so

small that it prevents the model from fitting the data properly. The best fit
shown there is convex, but this "convexity" is barely noticeable, only at the
very end. Another example of convex data is visible in Figure 3, where we
discuss the impact of the rank-size domain on the Kolmogorov-Smirnov test.

In summary, before fitting DGBD to the given data, it is necessary to
verify whether it appears concave on a double logarithmic scale. This can
be estimated either visually or by attempting to fit a quadratic function
a(log r)2 + b(log r) + c. The coefficient a determines whether the function is
concave (a < 0) or convex (a > 0) and can serve as a criterion to examine
concavity.

3. Fitting and testing rank-size distributions: state-of-the-art re-
view

In order to compare the efficacy of Zipf and DGBD to describe rank-
size distributions, we need to address what constitutes a “good fit” when
analyzing rank-size distributions. In statistical analysis and data modeling, a
“good fit” measures the extent to which a chosen model accurately represents
the underlying data. However, the answer is not straightforward, as various
methods are commonly employed to assess the goodness of fit, each with its
advantages and disadvantages [30]. Importantly, it is important to keep in
mind what is the mechanism of interest for which an accurate assessment
is most needed. For example, in the context of ranked distributions, the
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first few elements are of primordial importance in the system, since they can
drive the overall attention dynamics of the system (e.g. the largest cities
in a country, or the most frequent words in a language). This importance
is usually highlighted by the use of a graphical log-log distributions, giving
disproportionate visual weight to the top-ranked elements of the distribution.
Such a log-log scale can reveal important discrepancies of a fitting method
on a small yet essential subset of the data (the first few elements at the start
of the distribution) that a statistical analysis, focusing on the much larger
number of observations in the tail, would overlook. Here we survey methods
and provide heuristics to ensure an equal treatment of the top and the tail of
the rank-size distribution, using the DGBD rank-size distribution as a case
study.

We surveyed fitting methods (Table 1) and goodness of fit measures (Ta-
ble 2) for data described by the DGBD distribution. The approaches em-
ployed for the fitting process and the computation of goodness of fit within
the literature are diverse and lack consistency: contrary to Zipf’s law [7, 10],
for the DGBD and other generalized rank-size distributions, there is no gold
standard. Therefore, here we propose a thorough analysis of the methods
employed, including a detailed examination of their limitations and their
impact on the quality of the conclusions.

3.1. Overview of fitting procedures for DGBD

Method Formula Publications
Multiple Linear Regression Eq. (5) [20, 22, 23, 24,

28, 31, 32, 33]
Nonlinear Least Squares Eq. (6) [20, 22, 23, 24,

25, 26, 34]
Methods of Moments Eq. (7) [35]

Maximum Likelihood Estimation Eq. (8) [21, 36]

Table 1: Review of the fitting methods used previously for DGBD.

The methods listed in Table 1 and used in previous work to fit DGBD
encompass Multiple Linear Regression, Nonlinear Least Square, and Max-
imum Likelihood Estimation (MLE). These methods are equivalent under
the assumption of independent variables and Gaussian noise. However, in
the case of the DGBD distribution, the variables are not independent, and
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as we shall see the likelihood function does not have a closed form (Appendix
C).

The first method listed in Table 1 is the Multiple Linear Regression,
a widely used statistical technique for analyzing the relationship between
a dependent variable and multiple independent variables:

log x = logC + β log (N − r + 1)− α log r + ε, (5)

where log x is the dependent variable, α, β, C are coefficients to be estimated,
log r and log (N − r + 1) are variables, and ε is the error term, usually Gaus-
sian distributed. In this approach, the dependent variable is a linear combi-
nation of the independent variables, and the coefficients quantify the impact
of each independent variable on the dependent one. However, the estimation
of the parameters is unstable when the variables have some degree of multi-
collinearity. In the case of DGBD, the variables log r and log (N − r + 1) are
dependent since they both are functions of the rank r. Therefore, caution
should be exercised when using regression as the assumptions of indepen-
dence are not met.

The second technique in Table 1 is Nonlinear Least Squares. It is an op-
timization technique that fits nonlinear models, such as DGBD, to observed
data. It minimizes a chosen loss function, in our case the sum of the square
of errors on the logarithmic scale:

min
α,β,C

N∑
r=1

(log x(r)− logC − β log (N − r + 1) + α log r)2 . (6)

Unlike linear regression, this approach accommodates nonlinear relation-
ships between variables by estimating parameters that minimize the sum of
squared residuals. It step-by-step refines the parameter estimates until the
gradient of Eq. 6 is sufficiently close to zero. This method was applied to
fit rank distributions in diverse scientific domains, including social systems
[19, 23, 25, 37], bibliometrics [6] and biology [22]. Its flexibility and ability to
handle nonlinearities make it useful for the investigation of complex systems.
However, the sensitivity to initial parameter estimates remains critical, as
improper choices may lead to convergence towards local minima rather than
the global minimum. Additionally, the vulnerability to outliers poses a chal-
lenge, potentially compromising the accuracy of model fitting.

The third method in Table 1 is the Method of Moments. In this method,
moments (such as mean, variance, skewness, etc.) of the observed data are
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equated to the corresponding theoretical moments of the probability distri-
bution

µi(α, β) = µ̂i(α̂, β̂), (7)

where µi and µ̂i are the i-th moment and sample moment. By solving
these equations, estimates of the parameters α̂, β̂ of the DGBD are obtained.
This method is widely used in statistics, including for Beta Rank Functions
(BRF) serving as the continuous equivalent of DGBD [35]. However, deriv-
ing a closed-form expression for DGBD poses a challenge. Nonetheless, the
derivation of the first two moments for the log-BRF family of distributions
[35] was successful.

The last method in Table 1 is Maximum Likelihood Estimation [21, 36].
This approach aims to determine the parameter values that maximize the
likelihood function within a parameter space denoted as θ ∈ Θ. The likeli-
hood function is defined as follows:

max
α,β,C

LR(x;α, β, C) = max
α,β,C

n∏
i=1

f(xi;α, β, C), (8)

Here f(xi;α, β, C) is a probability of obtaining xi given α, β, C parameters.
Maximizing the likelihood, one can identify the most reasonable set of pa-
rameter values that explain the observed data. It is important to note that
MLE was designed to estimate parameters in the probability domain. As we
said earlier, for DGBD one faces the problem of having no compact analyti-
cal formula on the probability domain, and one needs to compute numerical
values of its inverse x−1(r) (see Appendix A). We derive these formulas ana-
lytically for the case of DGBD in Appendix C, resulting in implicit equations
for the value of α and β:

∑N
r=1 log(r)r

−α(N − r + 1)β∑N
r=1 r

−α(N − r + 1)β
=

1

C

N∑
r=1

x(r) log(r), (9)

∑N
r=1 log(N − r + 1)r−α(N − r + 1)β∑N

r=1 r
−α(N − r + 1)β

=
1

C

N∑
r=1

x(r) log(N − r + 1). (10)

There is no analytical solution for the above system of equations for α
and β, so we solve them numerically using Powell hybrid method.
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3.2. Exploring the idea of a good fit
The concept of a “good fit” holds fundamental importance for emprirical

investigations across numerous fields of study, spanning physics, statistics,
and mathematics [30, 38]. A “good fit” refers to the degree of agreement be-
tween some observed data and a theoretical or expected model. This section
will briefly explore the meaning and importance of a good fit for the rank-size
distribution domain.

Method Formula Publications
Coefficient of determination (R2) Eq. (11) [18, 19, 22, 28,

34, 31, 32, 33,
39, 37]

Mean squared error 1
N

∑
(yi − ypred)

2 [23, 25, 26, 33]
KS distance Eq. (12) [20, 21, 36]

KS test % of Dsim < Dn [20]

Table 2: Review of the goodness of fit measures used for DGBD.

One of the most widely used measures to assess the goodness of fit is the
coefficient of determination, also known as R2. This coefficient measures the
proportion of the variance in the dependent variable that is predictable from
the independent variable when using a linear model [40]:

R2 = 1−

∑
r

(
x(r)− C (N−r+1)β

rα

)2

∑
r (x(r)− x̄)2

, (11)

where x(r) is the observed rank data and x̄ is the mean of the data.
A high coefficient of determination indicates a linear association between

the predicted and observed data, commonly interpreted as a good fit. In the
later sections of the article, we will highlight the limitations and potential
weaknesses of this coefficient.

The other measures mentioned in Table 2 are closely associated with hy-
pothesis testing. The Kolmogorov-Smirnov test (KS test) [41] is the only
non-parametric statistical test that has been used for computing goodness
of fit for DGBD, despite the existence of other tests such as the chi-square
test. KS test compares the observed data empirical cumulative distribution
function Femp(x) to the theoretical or expected cumulative distribution func-
tion FΘ(x) by computing the maximum distance. This measure is commonly
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referred to as the KS distance, denoted as:

DxN
= sup

x∈xN

|Femp(x)− FΘ(x)|, (12)

where supx is taken over the whole sample xN . Through Monte Carlo Sim-
ulation and the bootstrap method, we obtain the probability of getting the
observed KS distance by chance alone, referred to as the p-value [7].

3.3. Pitfall and limitations of the considered methods
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# 
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m
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(r)

    R2=0.505
p-val=0.170

100 101

rank r
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    R2=0.763
p-val=0.165

Figure 2: In both plots, the focus is on the potentially misleading R2 coefficient. On the
left, it is evident that the data closely aligns with the orange fit. On the right, the visual
fit appears worse, but the R2 value is higher, which is deceptive. This discrepancy may
be attributed to the non-linearity inherent in DGBD. The data used for this comparison
is from two different GitHub repositories.

While R-squared is a commonly used measure for assessing the quality
of a regression model, it can be misleading in some instances. We empha-
size, based on Table 2, that many authors rely on the R-squared coefficient
(Eq. 11) and visual assessment to confirm the presence of a DGBD. However,
as illustrated in Figure 2, a high R2 value does not necessarily imply that
the model best fits the data. Other factors, such as model complexity and
sample size, must also be considered.

Among the methods listed in Table 2, the Kolmogorov-Smirnov test is
the only statistical test that compares the result obtained to expectation to
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derive a p-value. Therefore, it is the only method that provides the sig-
nificance level at which one obtains the result [42]. However, the KS test
operates at the level of the cumulative distribution S(x), while we are in-
terested in the quality of fit at the level of the rank-size distribution x(r)
in double logarithmic scale. Because of the power-law nature of the distri-
bution, this means that the KS test will focus on deviations happening at
low x values, corresponding to high rank values. As shown in Fig 3, when
the data is inverted, the axes are swapped, meaning that the KS test mea-
sures the horizontal distance on the rank-size plot. The green arrow in the
right-hand plot represents the KS distance at the commit count equal to 1.
However, this effect is not readily apparent in the rank-size plot due to the
double logarithmic scale, which makes hundreds of points in the tail appear
as minor deviations from the best fit. Therefore, the KS test will generate a
strong bias towards fitting the tail of the rank-size distribution, which might
not be representative of the broader distribution, especially the top ranked
elements. This discrepancy highlights how a fit yielding a relatively good
p-value can be rejected based on convexity in double logarithmic scale.
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Figure 3: An illustrative example of a potentially misleading p-value stemming from the
KS test is presented. Despite the p-value being relatively high at 0.664, suggesting that
the data conforms to the DGBD model, a visual inspection reveals that the fit is notably
poor. On the right-hand side of the figure, we provide insight into what the KS distance
is evaluating, as indicated by the green arrow. This example is based on the repository
named Faker.
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4. Application to commit distributions in open-source software
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Figure 4: Rank-size distribution showing the number of commits as a function of a user
rank across 4 open-source repositories selected based on their concave behavior in a double
log scale. We have divided the charts in such a way that the charts on the left show small
repositories, while the charts on the right show large repositories. The top two plots show
examples where DGBD (orange line) is significantly better than Zipf’s law (blue line),
while in the bottom both models produce similar results.

In order to empirically explore the fit of the DGBD distribution, we
use commit data from the web-based collaborative software development
platform GitHub. It allows users to store and manage their code, track
changes made to the code (referred to as commits), and collaborate with
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others through pull requests, code reviews, and issue tracking. It is the most
prominent source code host, with over 83 million developers and more than
200 million repositories [43]. Commit distributions are known to be heavy-
tailed and GitHub repositories have been investigated in the context of rank
dynamics [1].

As we mentioned in Section 2, fitting the DGBD model is meaningful
only when the data exhibits concavity in a double log scale, as we elabo-
rated in Appendix B. Consequently, we selected repositories from GitHub
that showed this concavity. In Figure 4, we showcase 4 repositories where
we conducted the fitting process and assessed the goodness of fit. The es-
timators were computed using the nonlinear least square method with the
Trust Region Reflective algorithm [44] to minimize residuals, as introduced
in Section 3. The outcomes of these analyses are presented in Figure 4. We
also explored maximum likelihood estimation, but it yielded similar or worse
results compared to nonlinear least square, and sometimes did not converge.
MLE does not describe well the heavy tails of CCDF and the same applies
to the rank-size distribution.

4.1. Binning data
We first note the importance of binning the data to improve the fitting

process. Indeed, in the heavy tail processes, the tail contains most data
points, dominating the early part of the rank-size distribution. However, this
early part includes the top individuals, meaning that a traditional fitting
procedure yields very noisy estimates over a crucial part of the data. To
remedy this problem, before the fitting procedure we use bins on commit
data to give equal weights to all ranks in double log space. When one fits by
minimizing residuals using nonlinear least squares, binning methods provide
a fairer fit over all the distribution and avoids treating the essential part of
top-ranked elements as outliers.

We compared three types of data binning methods. The first is log bin-
ning, also referred to as logarithmic binning or log-spaced binning. This
technique groups data points into bins or intervals so that each bin covers a
range of values that increases exponentially [7]. However, log binning comes
with certain drawbacks. Firstly, the quality of the analysis is highly depen-
dent on the choice of the number of bins. Selecting too few or too many
bins can result in an oversimplified or overly detailed representation of the
data. Furthermore, when employing log binning, comparing fits can be com-
plicated because different numbers of bins can yield different fit results. This
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lack of consistency can pose challenges when making comparisons between
other datasets or studies, impacting the reproducibility and generalizability
of the analysis.

In contrast to log binning, we introduce mean binning as an alternative
for integer-type data, such as the number of commits. The approach is
straightforward: for each integer value of commits, denoted as x, we compute
its rank r̂x as the mean value of all ranks corresponding to a given number
of commits x(r) = x:

r̂x =

∑
{r : x(r)=x} r

#{r : x(r) = x}
. (13)

One of the primary advantages of mean binning over log binning is its
parameter-free nature. As mentioned earlier, the analysis, including best-fit
computation, when based on log binning, is significantly influenced by the
choice of the number of bins. In contrast, mean binning does not require
specifying a bin count, eliminating this parameter.

Third, we introduce geometrical binning, where for each value of commits
x we calculate the geometrical mean of its corresponding ranks:

r̂x =

 ∏
{r : x(r)=x}

r

1/#{r : x(r)=x}

. (14)

On a double log scale, the midpoint between two points x and y is deter-
mined by the equation:

log x+ log y

2
= log(

√
xy),

where √
xy is called the geometric mean. Hence, we refer to this binning

method as geometric bin.
Figure 5 shows the impact of binning on fit performance. In the left-hand

graph, one can see an example repository where the best fit without binning
(represented by the orange line) yields poor results. Applying any of the
three binning methods visibly improves the best fit. On the right-hand side
of the same Figure, we show the distribution of the maximum log-fold change
between the best fit and actual data, computed as follow:

log2 FC = log2

(
max

{
max

r

x(r)

xDGBD(r)
,max

r

xDGBD(r)

x(r)

})
, (15)
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Figure 5: The left-hand plot illustrates the impact of binning data on the best fit.
Binning is necessary for the good fit to emphasize the tail of the rank-size distribution,
leading to an uneven representation of points in the double log scale. Consequently, the
orange line yields visually suboptimal results, especially when compared to the log bin or
geometrical bin. On the right-hand plot, we visualize the logarithmized maximum fold
change distribution between the data and the best fit. This representation highlights that
the maximum distance is several times greater when data is not binned compared to the
binned versions.

where x(r) is actual data and xDGBD(r) is data determined from the best
fit using formula (4). The log-fold change describes the difference between the
observed and expected distributions in the log scale, and is similar to the KS
technique, adapted for rank-size distributions (i.e. vertical deviations rather
than horizontal ones). Additionally, when DGBD takes values below 1, for
calculations of log-fold change, we assume DGBD=1, as the smallest number
of commits one can have is precisely 1 and the comparison is meaningful.

We find that the maximum log-fold change is on average 2.54 times greater
when no binning is applied, yielding significantly poorer results compared
with any binning methods (p < 0.01, Mann-Whitney test). Finally, we find
no significant difference between the different binning methods (p > 0.05
between each pair of binning methods, Mann-Whitney test). Boxplots of
maximum log-fold changes of the different binning methods are shown in
Figure 5.

As such, it is not possible to unequivocally determine which type of data
binning is best. Among the concave repositories we tested, we can find at
least one for which one of the four approaches is best in terms of Fold Change
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Figure 6: Comparison of four different repositories regarding the use of various binning
methods. They were selected in such a way that a different binning method performs
better on each of them compared to the others. The numbers in the legend represent the
absolute value of maximum log-fold change computed by 15. In the top-left corner, no
binning is the best, in the top-right corner, log binning, in the bottom-left corner, mean
binning, and in the bottom-right corner, geom binning is the best.

measure. In Figure 6, we highlight four repositories in which we have marked
the increasing value of FC calculated by formula (15) for the different types
of binning, with the best method having the lowest FC. Therefore, when
analyzing individual datasets, caution should be exercised in the choice of
binning, as the statistically best option may not necessarily be the best choice
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for that specific dataset.

4.2. Performance of DGBD compared with Zipf Law
In the introduction, we mentioned that DGBD serves as a natural general-

ization of Zipf’s Law, with the potential to extend its applicability. To assess
this, we compared their goodness of fit to the commit distributions using
p-values from the KS test described in Section 3. For the case of DGBD we
utilized the same schema as in [7], which is a bootstrap method with Monte
Carlo simulations to ensure the validity of p-values. To study the quality of
fit, we need to generate M samples, where each sample consists of N pseu-
dorandom values from DGBD distribution with parameters N,α, β and C
separately obtained from each repository. Then we estimate the distribution
parameters α̂, β̂ and Ĉ and compare the estimated distribution with the ini-
tial values. We compute M KS distances using Eq. (12) and compare them
with the corresponding value from the given repository to obtain a p-value.
This step is crucial because DGBD lacks an analytical inverse function (as
detailed in Appendix A), necessitating Monte Carlo simulations.

We show the results of the statistical analysis in Figure 7. We first show
a volcano plot comparing the statistical significance (p-value) against the
magnitude of change (maximum log-fold change) for each fit. Inspecting both
measures simultaneously allows for a better confirmation of DGBD and Zipf’s
Law. We set the thresholds to p = 0.05 for the p-value and | log2 FC| = 2 for
the maximum log-fold change. For example, we excluded three cases where,
despite a high p-value, the maximum fold change was exceedingly large (see
two gray triangles and one gray circle on the left side of the plot). As we can
see, most of the DGBD fits pass the threshold, while a larger number of Zipf
tests fail.

Another comparison of Zipf’s Law and DGBD is illustrated in the right-
hand plot of Figure 7. It shows the maximum fold change for both models
alongside a diagonal line. We find that the points are concentrated above the
diagonal line, meaning that the maximum fold change for Zipf’s Law is gen-
erally larger than that of DGBD. As such, DGBD yields better results than
Zipf’s Law, except for three repositories, where DGBD has worse FC. Some
repositories fall on or close to the diagonal line, meaning that both Zipf’s
Law and DGBD are good models to fit such repositories. These correspond
to the cases where the data is shaped like a straight line across all ranks (see
repositories at the bottom of Figure 4).
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Figure 7: On the left-hand side, the volcano plot compares the statistical significance
(p-value from KS test) with maximum fold change of each fit to a commit distribution.
Circles and triangles respectively represent DGBD and Zipf fits. Goodness of fit is set with
two thresholds at p > 0.05 for p-value and log2 FC < 2 for the fold change, and indicated
by the use of pink (DGBD) and green (Zipf) colors. Comparison between the two model
shows that we reject Zipf more often than DGBD. On the right-hand graph we compare
the absolute value of the log-fold changes for Zipf and DGBD across repositories. Points
generally lie above the diagonal, indicating that DGBD provides a the same or better fit
in almost every case, except of three repositories.

To address the concern regarding the improvement of model fit not be-
ing solely attributed to an increased number of parameters (DGBD has two
exponents α and β, while Zipf’s Law has only one exponent α), we em-
ployed a k-fold cross-validation. This involved partitioning the data set into
75% for training and 25% for testing, and repeating this process multiple
times to compute the average accuracy and its standard error on the test set.
The accuracy was measured using a normalized sum of residuals, which is a
what we minimized when determining the best fit via nonlinear least squares.
Through this method, we aimed to demonstrate that the DGBD provides on
average better fit compared to the Zipf’s Law, beyond the mere inclusion of
additional parameters.

Our findings are supported by a Figure 8, where we plot model accuracy
as a function of repository size. For small repositories (N < 30), the Zipf’s
Law performs better due to the tendency of DGBD to overfit the initial few
data points. This is particularly evident in k-fold cross-validation, where the
probability of randomly selecting the most influential contributors is higher
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Figure 8: Comparison of accuracy of the DGBD and Zipf’s Law across varying repository
sizes, assessed using k-fold cross-validation. The accuracy difference is computed as the
difference in the normalized sum of residuals between Zipf and DGBD models. Values
above zero indicate that the DGBD does not overfit and performs better than the Zipf’s
Law, whereas values below zero signify that the DGBD overfits the data and has worse
accuracy compared to the Zipf’s Law. The points on the left-hand plot are color-coded as
follows: green points indicate repositories where the Zipf’s Law performs better than the
DGBD within one standard deviation, pink points denote repositories where the DGBD
outperforms the Zipf’s Law within one standard deviation, and gray points represent
repositories where both models perform equally well. Right-hand plot shows the same
accuracy measure but highlights repositories where the performance difference between
the two models exceeds two standard deviations.

in smaller repositories, leading to less reliable performance for DGBD. How-
ever, as repository size increases (N > 100), DGBD consistently outperforms
Zipf’s Law. This improvement is not only statistically significant but also
aligns with theoretical expectations that larger data sets benefit more from
the additional flexibility provided by DGBD. Figure 8 clearly shows this tran-
sition: green points indicate regions where Zipf performs better, pink points
highlight areas where DGBD excels, and gray points show where both models
perform equally well. Thus, while Zipf may suffice for small datasets, DGBD
proves to be the superior choice for larger datasets, validating DGBD.
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5. Conclusions

The methodologies employed in recent works investigating DGBD contain
limitations and weaknesses that can give misleading results (see Figure 2).
Neglecting these limitations may lead to the incorrect conclusion that DGBD
is suitable for the data, even when the visual fit is clearly poor (as exemplified
in Figure 3). The solutions proposed in this paper address several of the issues
encountered in analyzing rank-size distributions. We found that employing
log binning, mean binning, or geometrical binning can significantly improve
the quality of best-fit models by reducing the importance of high r values
in the tail. Furthermore, we showed that DGBD is primarily limited to
datasets exhibiting a concave pattern when plotted on a double log-scale.
This limitation was derived and established in Section Appendix B, and its
significance was illustrated in Figure 3, where we showed the consequences
of attempting KS tests on convex data. We found that in the case of concave
rank-size distributions from commit data, DGBD consistently provides better
fit than Zipf.

Future directions include evaluating approaches for convex data patterns
in a double-log scale. Our examination encompassed a wide range of skewed
rank-size distributions and probability distributions, including Zipf, Pareto
type II [6], log-normal [12], Tsallis-Pareto [13], Tsallis q-exponential distri-
bution [14], other Pareto modifications [9] and Gumbel [16]. None of these
distributions exhibited convex patterns on a double log scale. However, this
exploration raises an intriguing challenge concerning modeling datasets char-
acterized by convex patterns, which remains an open area for statistical re-
search.
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Appendix A. Ranks and cumulative distributions

In the following section, we derive the relation between the rank-size
distribution x(r) and the cumulative distribution function S(x). It bridges
the classical domain of probability theory with the rank domain described
with rank-size distribution. For that purpose, let us consider an ordered
sample x(1) ⩾ x(2) ⩾ · · · ⩾ x(N) of size N drawn from the indepen-
dent identically distributed (Xi ∼ X, i = 1, . . . , N) random variables
XN = (X1, X2, . . . XN). Let us define the expected rank function RN for
the variables XN of the variable x from the support of variable X given with
the formula

RN(x) = E (r(XN)) ,

i.e. it is expected value of the rank for the observation of value x drawing
from the variables XN . In the following steps we derive the formula for RN

and then connect it with the empirical ranks r(xi).
Let us consider firstly the probability that an item of value x is on the

i-th place in the ordered sample drawn from XN , i.e.:

P
(
X(N) ≤ · · · ≤ X(i+1) ≤ x ≤ X(i−1) ≤ · · · ≤ X(1)

)
= (△), (A.1)

where X(1), . . . , X(N) are order statistics of variables X1, . . . , XN . One can
further express Eq. (A.1) as follows:

(△) =P
(
∃k1,...,ki−1

Xk1 , . . . , Xki−1
≥ x ∧ ∀l /∈{k1,...,ki−1} x ≥ Xl

)
=∑

σ∈SN−1

P
(
Y (i)
σ(1)

≥ . . . Y (i)
σ(i−1)

≥ x ≥ Y (i)
σ(i)

≥ · · · ≥ Y (i)
σ(N−1)

)
=(

N − 1

i− 1

)
Pi−1 (X ≥ x)PN−i (X ≤ x) =

(
N − 1

i− 1

)S(x) + P(X = x)︸ ︷︷ ︸
u(x)


i−11− S(x)︸ ︷︷ ︸

v(x)


N−i

=

(
N − 1

i− 1

)
ui−1(x)vN−i(x),

where we expand the sum over all possible permutations of the considered
sample (with the notion Y

(i)
ℓ = Xℓ for ℓ < i and Y

(i)
ℓ = Xℓ+1 for ℓ > i), but,
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since the probabilities under the sum are independent, it could be further
simplified with the notionn of u(x) = S(x)+P(X = x) and v(x) = 1−S(x).

Expected value respect to the above probabilities gives desired expected
rank function RN (for brevity we skip argument writing u and v instead of
u(x) and v(x)):

RN(x) =
N∑
i=1

i

(
N − 1

i− 1

)
ui−1vN−i =

N−1∑
j=0

(j + 1)

(
N − 1

j

)
ujvN−j−1 =

N−1∑
j=1

(N − 1)!

(j − 1)!(N − j)!
ujvN−j−1 +

N−1∑
j=0

(
N − 1

j

)
ujvN−j−1 =

N−2∑
k=0

(N − 1)!

k!(N − k − 2)!
uk+1vN−k−2 + (u+ v)N−1 =

u(N − 1)(u+ v)N−2 + (u+ v)N−1 = (uN + v)(u+ v)N−2.

For continuous random variables, where P (X = x) = 0 holds, one obtains:

RN(x) = (N − 1)S(x) + 1,

which could be further inverted into the formula for x in terms of its expected
rank: RN

x = S−1

(
RN − 1

N − 1

)
.

The question remains: can we replace the expected rank RN with an empiri-
cal rank function obtained from the sample we observe {x(1), x(2), . . . , x(N)}?
The answer to this question is positive if the observed sample is large enough.
This asymptotics can be argued in various ways: starting from the Law of
Large Numbers (for empirical ranks), Glivenko–Cantelli theorem (note that
the rank function is the inverse of the survival function, and, therefore, related
to the cumulative distribution function) or, more in the style of physicists,
replacing the appropriate integrals their maximum values, just like [45]. So
finally we can assume that r(x) ≈ RN(x) which gives desired relationship
between the empirical rank function and its expected probabilistic version,

x = S−1

(
r − 1

N − 1

)
,

which also establishes the expected relationship between empirical ranks and
the inversion of the survival function.
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Appendix B. Selected properties of DGBD

In this section, we derive two selected DGBD properties - limitations of
the parameters’ values and the convex-concave analysis.

Appendix B.1. Boundaries for the parameters
Every rank-size distribution (in particular DGBD) must, by definition, be

non-decreasing. However, not all functional forms of rank-size distributions
should be monotonic for every set of parameters. Therefore, before any anal-
ysis, it is essential to determine the parameter set for which the mentioned
functions are non-decreasing. To ensure this, it suffices to demonstrate when
the first derivative is non-positive. So, let us differentiate Eq. (4):

dx(r)

dr
=

(N − r + 1)β−1

rα+1
(−βr − α (N − r + 1)) . (B.1)

For the monotonicity, one requires that DGBD satisfies x′(r) ≤ 0 for r ∈
[1, N ]. The fraction in (B.1) is always positive, so the expression in brackets
needs to be negative and thus:

r(α− β)− α(N + 1) ≤ 0. (B.2)

The left-hand side of the above inequality is an affine function of r. To ensure
the distribution’s monotonicity, it is enough to satisfy the inequality for the
endpoints of the interval, i.e., for r = 1 and r = N , which gives us:{

Nα + β ≥ 0,
α +Nβ ≥ 0.

(B.3)

The conclusion drawn from Eq. (B.3) is crucial, considering that α and β can
potentially assume negative values. However, it is essential to emphasize that
their negativity is limited due to stringent constraints. The absolute values
of α and β (for negative values) must remain small, mainly when dealing
with large sample sizes N .

Appendix B.2. The convex-concave analysis
We demonstrate that DGBD can serve as an effective model only when

data exhibit concavity (i.e., curved or rounded inward) in a double log scale.
To illustrate this, let us express the second derivative of DGBD in logarithmic
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terms, using variables y = log x(r), z = log r. Logarithms of DGBD (4) takes
the following form:

y(z) = logC − αz + β log (N − ez + 1). (B.4)

Second derivative is:

d2y

dz2
= −β(N + 1)

ez

(N − ez + 1)2
. (B.5)

Analysis of Eq. (B.5) concludes that DGBD exhibits convexity when β < 0
and concavity when β > 0. However, it is essential to note that the latter case
is minimal due to the previously derived boundaries (B.3). The minimum
value for β is β = − α

N
, which restricts its use as a suitable choice for fitting

data that appears convex on a double log scale.

Appendix C. Maximum likelihood estimation

In this section, we derive maximum likelihood estimators (MLE) for
BGBD. Usually, MLE is based on the probability density function, so we
must extend the typical approach to the rank-size distributions. Let us as-
sume that the rank distribution is given with the general formula:

x(r) = CfΘ(r), (C.1)

where C−1 =
∑N

k=1 fΘ(r) and fΘ(r) is a frequency of ranks, possibly depends
on some parameters Θ = (θ1, θ2, . . . , θp). We aim to estimate the parameters,
knowing the data xN and assuming the form of the frequency distribution
fΘ. Introduced setup results in the following form of the likelihood function:

LR(x1, x2, . . . , xN ; θ1, . . . , θp) =
N∏
r=1

(fΘ(r))
x(r) , (C.2)

which simplifies after taking logarithm:

log (LR(x1, x2, . . . , xN ; θ1, . . . , θp)) =
N∑
r=1

x(r) log (fΘ(r)) . (C.3)
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We aim to look for the parameters Θ, which maximizes LR with given ranked
data xN . For DGBD there are two parameters (i.e. Θ = (α, β)) and the
formula for the rank-size distribution is given with:

fα, β(r) =
1

HN(α, β)

(N + 1− r)β

rα
(C.4)

where we define notion of HN , similar to harmonic number, for the case of
two parameters:

HN(α, β) =
N∑
r=1

(N + 1− r)β

rα
.

Thus log(LR) takes the following form:

log (LR(x1, . . . , xN ; α, β))

=
N∑
r=1

x(r) (β log(N + 1− r)− α log(r)− log(HN(α, β))) =

= −
N∑
r=1

x(r)︸ ︷︷ ︸
=C

log[HN(α, β)]− α
N∑
r=1

x(r) log(r) + β
N∑
r=1

x(r) log(N + 1− r).

The derivation respect to the α and β gives:

∂ log(LR)

∂α
=

−C

HN(α, β)

∂HN(α, β)

∂α
−

N∑
r=1

x(r) log(r),

∂ log(LR)

∂β
=

−C

HN(α, β)

∂HN(α, β)

∂β
+

N∑
r=1

x(r) log(N + 1− r).

We set both derivatives to zero, which gives the following implicit equations
for α and β:∑N

r=1 log(r)r
−α(N − r + 1)β∑N

r=1 r
−α(N − r + 1)β

=
1

C

N∑
r=1

x(r) log(r), (C.5)

∑N
r=1 log(N − r + 1)r−α(N − r + 1)β∑N

r=1 r
−α(N − r + 1)β

=
1

C

N∑
r=1

x(r) log(N − r + 1). (C.6)

There is no analytical solution for the above system of equations for α and
β, so we solve them numerically using Powell hybrid method.
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