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Abstract

Application Performance Monitoring (APM) is key for ensuring computer systems perform well. While most APM tools target
servers and networking infrastructure, here we focus on APM for devices with strict resource constraints: extremely limited in terms
of power, memory and bandwidth. We tailor this article to be both a survey and a tutorial. In the survey part, we investigate APM
approaches for low-power wireless networks, with a particular focus on Time Synchronized Channel Hopping solutions, as they
are well-suited for critical industrial applications. We survey performance metrics characterizing the network health condition and
show how, to capture the health of a network universally, it is important to constantly monitor hardware-related, network-related
and network-wide metrics. We present a collection of metrics that serves as a checklist for the design of an APM system, describe
related work on APM concepts suitable for low-power wireless system, and provide core concepts for collecting, exporting and
processing performance metrics. The tutorial part consists of a hands-on example of running commercial APM and networking
solutions. We use the active APM framework from Memfault, which periodically creates heartbeats including the performance
metrics. We run this framework on top of the SmartMesh IP protocol stack, a commercial product by Analog Devices that offers
wired-like high reliability and a decade of battery lifetime, and integrate it with the Zephyr operating systems. This tutorial allows
the readership to experiment with a complete ready-to-deploy mote-to-cloud APM chain.

2018 The Korean Institute of Communications and Information Sciences. Publishing Services by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction topic for more advanced IoT device classes [2]. When speak-
ing of advanced device classes, we mean full-fledged micro-
computers like, e.g., a Raspberry Pi. However, in the diverse ar-
ray of IoT networks, ultra low-power wireless systems have gar-
nered particular attention, too. These systems commonly rely
on battery-driven devices with resource-constrained Microcon-
troller Unit (MCU) architectures such as the 32 bit ARM Cortex
family. These devices are designed for efficiency and longevity
while causing only small costs. At the same time, high require-
ments in terms of reliability are demanded in Industrial Inter-
net of Things (IloT) environments. Wireless Sensor Networks
(WSNs) are an example for such low-power wireless systems
and are widely deployed in industrial environments to ensure
a flawless operation of all the entities in a factory. It is there-
fore crucial to install a system that the user can count on. In
fact, according to a survey published by the International Soci-
ety of Automation (ISA), the overwhelming majority of people
talks about reliability when asked for the most important fea-
tures in a WSN [3]. Obviously, low-power wireless systems

The increase in Internet of Things (IoT) devices continues
unabated and is expected to reach an amount of 16.7 billion
endpoints by the end of 2023 [1]. This massive number com-
prises a large variety of different device classes, ranging from
the smallest sensors to complex industrial machinery and every-
thing in between. These devices have the capability to collect,
transmit, and process data in real-time, forming the backbone
of the modern connected world. To maintain such a network
of devices, Application Performance Monitoring (APM) is es-
sential. Monitoring IoT applications has become indispensable
due to several reasons. IoT devices often operate in dynamic
and challenging environments, making them susceptible to var-
ious operational and connectivity issues. APM is the key in
identifying and resolving these issues in real-time, ensuring un-
interrupted data flow and functionality. Moreover, the insights
gained from APM can optimize device performance, ensure re-
liability and reduce operational costs. Observability goes be-

yond APM and is a commonly addressed and well-understood
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only offer limited amounts of battery lifetime. This might be an
explanation for the tendency of vendors to neglect APM capa-
bilities in such constrained devices. In our opinion, this seems
inconsistent when recalling that reliability is the most important
feature from a customer’s point of view. APM allows retriev-



ing the health condition of not only a single device, but of the
overall system. Having a platform where all important perfor-
mance metrics are collected, processed and visualized makes it
possible to detect critical trends or bottlenecks. A broad range
of metrics is also essential for detecting the impact of external
events or, e.g., a critical firmware upgrade with negative con-
sequences on the overall system. But also, in case of sporadic
failures or in case of a connection-loss, APM provides valuable
insights to identify the bug and saves the user from laborious
hardware debugging or error reconstruction. Although there has
been limited effort in the academic community towards APM
tools and metrics for these low-power wireless systems, many
research topics remain open and unexplored.

This work aims to bridge this gap by offering the following
contributions:

e Conducting a comprehensive survey on performance met-
rics that may serve as a checklist for developers of low-
power wireless systems on what parameters they should
consider for their APM implementation.

e Presenting a novel comparison of Real-Time Operating
System (RTOS) for constrained IoT devices in terms of
in-built performance metrics and APM features.

e Providing a survey and taxonomy of state-of-the-art APM
frameworks covering the steps of collecting, exporting and
processing performance metrics.

e Demonstrating the practical usability and performance of
an APM platform in a low-power wireless system based on
SmartMesh IP as part of an in-depth step-by-step tutorial.

This article is organized as both a survey (Sections 2—4)
and a tutorial (Section 5). Specifically, Section 2 starts with
an introduction about the technical background of low-power
wireless systems. We compare different standards in the IloT
and present the IPv6 over the TSCH mode of IEEE 802.15.4e
(6TiSCH) protocol stack promising high reliability and low-
power consumption at the same time. Section 3 contains an
exhaustive list of performance metrics delivering a detailed and
complete picture of the system’s health status. Section 4 deals
with the results of our literature research on state-of-the-art
methods of collecting metrics and exporting them out of the
system. Additionally, some strategies for processing the data
on the network edge are presented. Section 5 is the tutorial part
of this work and shows an approach of monitoring a Zephyr [4]
application that uses SmartMesh IP [5] for networking.

2. Technical Background

Before diving into the topic of APM in low-power wire-
less systems, we present a set of standards widely used in
this type of networks. Besides WiFi (IEEE 802.11) or Blue-
tooth (IEEE 802.15.1), another standard dominates the IIoT
world, namely Low-Rate Wireless Personal Area Networks
(LR-WPAN), or simply IEEE 802.15.4 [6]. In general, it is
not as power-hungry as WiFi [7] and the mesh topology of

IEEE 802.15.4 allows to cover much larger areas compared
to other low-power solutions such as Bluetooth Low Energy
(BLE) [8, 9]. In 2012, Time-Slotted Channel Hopping (TSCH)
was first proposed as an enhancement of IEEE 802.15.4 (known
as IEEE 802.15.4¢) [10, 11] and in 2015 it was included in the
related standard specification [12]. TSCH deals with external
interference and multi-path fading at the Medium Access Con-
trol (MAC) layer. When two neighbor nodes exchange frames,
they send subsequent frames at different frequencies, resulting
in channel hopping. The idea is that, if external interference or
multi-path fading causes the transmission of a frame to fail, the
retransmission happens at a different frequency, and therefore
has a higher chance of succeeding than if retransmitted on the
same frequency [13]. For that reason, TSCH makes the stan-
dard more robust and suited for industrial environments [14].
As IEEE 802.15.4 defines the characteristics of the PHY and
MAC layer in the Open Systems Interconnection (OSI) model,
there are several standards building up on IEEE 802.15.4 in
the upper layers. Zigbee [15], Thread [16] and Matter [17]
are popular examples that target mainly smart-home applica-
tions. Industrial solutions mostly rely on WirelessHART [18]
and ISA-100.11a [19] which both employ TSCH. Besides the
mentioned technologies, the Internet Engineering Task Force
(IETF) has put effort in defining protocols for the integration
of constrained devices, such as sensors, into the Internet. These
protocols include IPv6 over Low-Power Wireless Personal Area
Networks (WPAN) (6LoWPAN) [20], Routing Protocol for
Low-power and Lossy Networks (RPL) [21] and Constrained
Application Protocol (CoAP) [22]. The IETF 6TiSCH Working
Group (WG) [23] was founded to create a standard that enables
the use of them on top of the IEEE 802.15.4-2015 TSCH link
layer [12]. The resulting 6TiSCH stack is fully implemented in
at least 4 open source projects [24]: OpenWSN [25], Contiki(-
NG) [26], RIOT OS [27] and TinyOS [28]. Analog Devices’
SmartMesh IP product line [5] also implements a pre-6TiSCH
protocol stack. The technical overview of SmartMesh IP [29]
and the results of 6TiSCH performance evaluations [30, 31] in-
dicate that this standard may fulfill our ambitious requirements
in terms of reliability. Since we consider reliability as the major
Key Performance Indicator (KPI) of our system, the 6TiSCH ar-
chitecture is chosen as the underlying model in the remainder
of this work.

3. Performance Metrics in Low-Power Wireless Systems

The goal of this section is to give a broad overview about
what metrics are worth monitoring, in order to capture the
health condition of a low-power wireless system. Furthermore,
we want to clearly define certain terms which are tending to be
mixed up or misinterpreted in the academic community. The
following collection of metrics is based on a thorough literature
survey.

“A survey on the metrics that matter” was already given by
Yuan et al. [32]. All the metrics from this survey can be found
in our presented overview, too. However, we do not only want
to extend this collection of metrics, but also take a different
approach for clustering the metrics in different groups. Yuan et



al. arrange the metrics in a matrix-like structure. One dimension
rates the metrics as node-centric, hop-centric, path-centric, end-
to-end or network-centric. The other dimension classifies the
metrics in terms of the layers of the OSI model.

Recently, Ojeda et al. [33] published a review “On Wireless
Sensor Network Models: A Cross-Layer Systematic Review”.
The authors cover different methods of modelling WSNs. In
this context, they propose a set of metrics, which are relevant to
estimate the performance of the system model. The metrics are
once again clustered based on the OSI model.

Another important source in our survey are the metrics con-
tained in the health reports of SmartMesh IP [34, Chapter 5.4].
The concept of health reports, also called heartbeats [35], is
explained in detail in Section 4. We include all these health
report metrics in our overview, as well as the aggregated met-
rics used for monitoring the health condition of a SmartMesh IP
network [36, Chapter 6].

After an extensive literature study, we identified three main
groups of metrics: device metrics (covering both Hardware
(HW) and Software (SW)), node-centric networking metrics
and system-wide networking metrics. In the following, we do
not simply list these metrics, but also show the relevance of
monitoring them, provide practical guidance on acquiring and
discuss the associated costs.

3.1. Device HW Metrics

This first set of metrics is summarized in Table 2 and focuses
on indicators that inform the user about potential HW defects
of their device, bugs in software that either become visible just
after long time of operation or which are caused by erroneous
software updates and harmful physical impacts from the sur-
rounding. This set can once again be divided in HW and SW
metrics, respectively.

An important KPI in low-power systems is battery lifetime.
Thus, keeping accurately track of power consumption is cru-
cial [37]. Battery Voltage and Charge Consumption are the
most important metrics to determine the State-of-Charge (SoC)
of the battery and to detect aging problems [38]. To determine
the SoC precisely, a fuel gauge Integrated Circuits (ICs) such
as the MAX17048 [39] and high-resolution Analog-to-Digital
Converters (ADCs) can be used. A Coulomb-counter is a wide-
spread method to determine the lifetime charge consumption of
the battery [40]. Measuring the Energy Consumption of spe-
cific atomic operations may be very useful in estimating the
impact of certain events related to the energy performance of
the device. Nevertheless, complex on-board instruments are the
reason why capturing these metrics appears not be very popu-
lar and why most scenarios measurements are restricted to an
ADC sampling the battery voltage [41]. Temperature is another
physical metric that also has strong influence on the battery life-
time and the device’s overall performance in general. We dif-
ferentiate between the metrics Core Temperature and Ambient
Temperature. The core temperature is measured at a location
close to the Central Processing Unit (CPU) to detect overheat-
ing of the chip. The ESP32-S2 for instance, has a built-in tem-
perature sensor designed for this monitoring use case [42]. To

detect harmful external influences in the environment, captur-
ing the temperature in the surrounding of the mote is essential.
For this purpose, a Digital Humidity Temperature (DHT) sensor
can be connected to the pins of the mote. However, a common
DHT 11 sensor consumes about 2.5 mA during the sampling
process [43], whereas capturing the other mentioned HW met-
rics just consumes current in the yA range. Therefore, ambi-
ent temperature shall just be reported in reasonable intervals or
even on demand.

We also recommend monitoring metrics related to the crys-
tal. It is a central component in a 6TiSCH device since time-
synchronization among all motes is the basis of TSCH [44].
The observation of the Clock Skew cannot just be used to draw
conclusions on potential HW issues, but also to calculate the
Experimental Clock Drift. However, floating-point operations
and the collection of drift samples require additional memory,
which is typically limited in low-power wireless systems [45].
Nonetheless, the Experimental Clock Drift is a valuable param-
eter for the rejoin process of the mote helping to save time and
energy by sticking to a low Radio Duty Cycle (RDC) [46].

In wireless systems, motes are naturally equipped with a ra-
dio which is another key element that wants to be monitored
and delivers useful insights. Although the metric Radio Duty
Cycle (RDC) is listed in the radio statistics list, anomalies usu-
ally indicate errors in software. Since the strict schedule in
6TiSCH networks allows the motes to turn off their radio most
of the time, high RDC values warn the user in case of unwanted
behavior of the mote resulting in higher power consumption.
Besides that, there are several different metrics which allow
to draw conclusions about the quality of a wireless link. We
present the Receive Signal Strength Indicator (RSSI), Idle Re-
ceive Signal Strength Indicator (RSSI), Link Quality Indicator
(LQI) and Signal to Interference plus Noise Ratio (SINR) in the
following.

RSSI is one of the most commonly monitored metrics in a
wireless system and is measured separately for each incoming
link at the mote. In the SmartMesh IP health reports [34] it
is also proposed to monitor a metric called Idle RSSI, which
is not captured per link, but per channel. In TSCH networks,
motes turn their radio on and off according to a fixed schedule.
The Scheduling Function (SF) determines when and on which
channel the radio should be turned on for listening or receiv-
ing. Thus, motes have receive links during which they wake up
but their neighbor has no packet to transmit on the link. From
the receiver’s perspective, we call this event an idle listen. At
the end of every idle listen, the mote takes a quick low-power
measurement of the RSSI on the channel it was listening to.
There should be no traffic from the network on the channel at
this time [36]. Thus, the Idle RSSI metric is used to detect in-
terference near the mote on a particular channel.

LQI is abstractly defined by the IEEE 802.15.4 standard [6]
as a characterization of the strength and/or quality of a received
packet and it is intended be reported as an integer ranging from
0to 255 [32]. The LQI is based on the quality of the first 8 sym-
bols after the Start-of-Frame Delimiter (SFD) and therefore de-
termined by a different strategy compared to the RSSI. Con-
sequently, we also propose to monitor the LQI in order to get



a more complete and meaningful picture of the quality of the
wireless links. Sample values of LQI and RSS! are captured
during the frame receive process by default and easily acces-
sible via HW-registers on most MCU platforms with RF ele-
ments.

Signal to Noise Ratio (SNR) is a central parameter in com-
munications engineering and used in formulas computing the
channel capacity and Bit Error Rate (BER) of theoretical chan-
nel models like the Additive White Gaussian Noise (AWGN)
channel. SNR is defined as the ratio between the signal power
Py and the background noise power Py. In reality, the wireless
link is not just disturbed by the background noise, but also by
interference and thus the Signal to Interference plus Noise Ratio
(SINR) is commonly used to determine the quality of the wire-
less link. SINR is computed similarly to the SNR, but the the
power of the interfering signals is added up on the background
noise power, resulting in Py, x. In general, measuring SINR is a
non-trivial task. Qin et al. [47] present a method estimating the
SNR based on the RSSI and a Kalman filter. Additionally, they
introduced the term Effective SNR which combines the metrics
SNR and LQI again in a Kalman filter operation.

Lastly, the metrics Angle of Arrival (AoA) and Energy De-
tection (ED) are listed among the radio statistics. Angle of
Arrival (AoA) is a technique of estimating the angle at which
the signal arrives at the receiver. Obviously, not all types of
motes allow the calculations of the AoA, since the receiver
needs to be equipped with an antenna array, where the dis-
tance between adjacent antennas is less than half of the sig-
nal’s wavelength [48, 49]. However, if possible, monitoring the
AoA is recommended to detect potentially interfering objects
on the transmission path. Many chips that additionally sup-
port Carrier-Sense Multiple Access with Collision Avoidance
(CSMA/CA) based protocols have a Clear Channel Assess-
ment (CCA) algorithm implemented. This algorithm is used in
CSMA/CA to decide for transmission or waiting. The decision
is based on an Energy Detection (ED) threshold used to detect
any other type of interfering RF transmissions. Chips such as
the CC2420 [50] and the nRF52840-DK [51] provide the ED
value in a dedicated register. Besides its use for CSMA/CA,
ED also turns out to be helpful for WiFi interference quantifi-
cation [52] and jamming detection [53, 54].

3.2. Device Application Metrics

The list of SW metrics includes various statistics on the state
of the running application and can easily be fetched via coun-
ters and timers. A central element of a wireless sensor node
is the message queue containing the packets that are either
generated by the mote itself or need to be forwarded. The
SmartMesh IP health reports [34] propose to periodically send
the Current/Average Occupancy of the queue, as well as the
number of Queue Overflows, i.e., the mote has experienced con-
gestion. Constantly reported congestion events indicate to the
user that there is a need to either enlarge the message queue
size or check the routing paths to detect critical bottlenecks.
Another commonly proposed performance metric is the Com-
putation Time [32, 55, 33]. Assume a homogeneous network,
i.e., all the nodes are based on the same HW and experience

the same computational load, then the computation time for a
certain task reveals the mote’s capacity of executing additional
workload that may be shared among the motes in the network.
Thus, this metric is not necessarily relevant for extremely con-
strained systems, but for networks employing task allocation in
order to collaboratively execute IoT applications [56]. More
application related performance metrics [35] were proposed in
the context of Memfault [57], a commercial monitoring solu-
tion which is explained more in detail in Section 4. These met-
rics include important counters for the total number of bytes
sent and received by the mote and a connectivity counter that
keeps track of connect/disconnect events to certain neighbors.
Furthermore, timers are proposed for measuring the duration
of interactions over peripheral buses (e.g., SPI, I2C, ...) and
the time that a display or LED was switched on. Monitoring
the reboot causes is another procedure, which can be listed in
the group of application metrics. The idea is to save the reboot
cause to flash memory if an unplanned reboot occurs and report
it to the monitoring platform once the mote is up and running
again [35]. Lastly it is also recommended to keep track of the
uptime of the device, i.e., keep the user informed of the time
since the last reboot [35, 58].

3.3. RTOS Runtime Metrics

The next group of metrics on RTOS performance metrics
even goes beyond the previously discussed application metrics.
This group of metrics is particularly helpful for debugging pur-
poses in the RTOS design phase. While it may seem superflu-
ous at first glance to constantly keep track of these RTOS met-
rics at runtime, we present reasonable arguments that motivate
to monitor them continuously. In Section 3.3.1, we explain each
RTOS metric, highlight the purpose of monitoring it and give
practical implementation hints. In Section 3.3.2, we list Oper-
ating Systems (OSs) that provide in-built functionality of cap-
turing these metrics. We have observed that this topic has just
been scarcely addressed in literature, yet. Although, numerous
surveys and comparisons between RTOSs exist [59, 60, 61, 62],
which all focus on performance and timing, there is no work
which compares state-of-the-art RTOSs in terms of APM fea-
tures. This is where we aim to contribute in the following.

3.3.1. Collection of RTOS Metrics

As the complexity of IIoT applications rises, the concept of a
super-loop that periodically calls function modules reaches its
limits. There is the need for splitting the work into tasks, which
are sometimes also called threads. On a single CPU, only one
task executes at any given time [63]. It is the job of the sched-
uler in an RTOS to invoke, suspend and resume tasks based
on their assigned priorities. Besides the priority, the user must
reserve a certain amount of bytes in Random-Access Memory
(RAM) for the task stack when initialising the task. Since this
value is fixed, an uncontrolled growth of the stack may result
in a stack overflow, one of the most common SW issues in
RTOSs. To prevent this from happening, numerous authors in
literature recommend monitoring the Task Stack Size continu-
ously [60, 64, 65, 63, 35, 55]. This is usually done by initializ-
ing the allocated stack memory with a certain pattern [66] and



then identify the “watermark level” by searching for the lowest
memory address which violates this pattern, assuming that the
stack grows from high to low memory addresses [63, Section 5].

Another important metric when it comes to task monitoring
is the Task Utilization. Reporting a detailed overview to the
user on how much time the RTOS has spent in a certain task, is
extremely beneficial for checking if the system behaves as in-
tended. In many IIoT scenarios, battery-powered devices are
forced to save energy wherever it is feasible. Therefore, in
such environments it is an established design pattern for RTOSs
to achieve a high percentage of time spent in “sleep” mode,
i.e., the idle task, where the CPU activity is brought to a min-
imum [55]. The system is woken up again based on an event-
driven premise, e.g., when a timer expires.

How to practically implement measuring the CPU Utilization
is studied in [67, 55]. Grabbing CPU Utilization at run-time and
reporting it constantly is an important step to better understand
the power consumption of your mote [60, 65, 35, 68]. On top
of that, the measured CPU Utilization can be compared with
the estimated CPU workload calculated during the system de-
sign phase. When designing an RTOS, an analysis technique
to determine if all tasks can be scheduled to run and meet their
deadlines is essential. Such an analysis is obviously dependent
on the priority assignment of the tasks. Although there has been
considerable research on this topic [69], the most commonly
used technique is still the Rate Monotonic Analysis (RMA)
which was introduced by Liu and Layland in their seminal pa-
per [70]. They estimate the CPU utilization U by

n
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Where E| is the worst-case execution time for the task and 7T
the period that the task will run. z is defined as the total number
of tasks and used to derive an upper bound for CPU utilization.
A key feature of the RMA is the ability to prove a priori that
a given set of tasks will always meet its deadlines, even during
periods of transient overload [71]. It is essential to recognize
RMA as a sanity check and in many cases as a model that is not
calculated once, but tested using our initial assumptions and
then periodically updated based on real-world measurements
and refined assumptions as the system is built [55, Section 4].

The next metric in Table 2 is called Memory Usage. This
term needs to be defined more precisely since there are differ-
ent types of memory on the nodes of such a low-power wireless
system. In general, we differentiate between the program Read-
Only Memory (ROM), RAM and the external storage [32]. The
memory usage of the program ROM is determined during com-
pile time. Thus, it is constant and does not need to be moni-
tored. The monitoring of the RAM usage is already captured
by the metric Task Stack Size. The remaining memory unit
whose size needs to be tracked during runtime is the external
storage, which can either be another flash memory or even an
SD card [32]. These forms of external storage are often used to
store logs and therefore monitoring the remaining free memory
space is essential to adapt the logging verbosity or being aware
of the fact that logs might get lost.

At this point, we have covered the RTOS related metrics
which occur the most in APM-related literature. However, there
are many other metrics mainly proposed by Labrosse [63] and
Hoftman [35]. Both propose to keep track of the heap size by
monitoring the metric Heap bytes usedffree. Tasks can allocate
stack space from the heap by calling malloc (). However, if
the allocated space is not set free again, this can cause the heap
to fragment, which is not desirable in embedded systems [63].
Whereas heap and stack are located on the RAM, Hoffman [35]
also proposes to monitor interactions with the flash memory. In
particular, we include the metrics Flash Operation Time, Flash
Bytes Written and Flash Sector Erase in Table 2. The goal is to
get a detect errors related to flash aging effects caused by a large
number of Program/Erase (P/E) cycles [72, 73]. Besides an in-
creasing BER at P/E cycles, HW fingerprinting techniques rely-
ing on Physical Unclonable Functions (PUFs) may suffer under
decreasing accuracy due to flash aging problems, too [74].

The remaining metrics in the RTOS runtime statistics sub-
set in Table 2 deal with kernel objects. A Mutual Exclusion
Semaphores (Mutex) is such an object and prevents multiple
tasks from accessing the same shared resource simultaneously.
Since Mutexs are used to protect critical global variables or
message queues, monitoring Mutex Lock Failures, i.e., how of-
ten a certain Mutex lock function call failed, and the Mutex
Waiting Time, i.e., the time spent waiting for a certain blocked
Mutex, is proposed [63, 35]. Further RTOS metrics introduced
by [63] are Task Context Switches, Nested Interrupt Counter,
Max. Interrupt Disable Time, Interrupt Queue Length and In-
terrupt Queue Overflows. Task Context Switches is a counter
which tracks the total number of performed task switches. As a
stand-alone number this metric has little significance, but when
comparing it across the whole system it helps to detect anoma-
lies. The Nested Interrupt Counter contains the interrupt nest-
ing level. Level 1 means servicing the first level of interrupt
nesting, level 2 means the interrupt was interrupted by another
interrupt. This metric is useful to spot SW issues and saves the
user from time-consuming debug sessions. The Maximum In-
terrupt Disable Time can be tracked globally or on a per-task
basis. This metric shows how each task affects interrupt la-
tency. By disabling interrupts, e.g., check and set operations
happen without any other Interrupt Service Routine (ISR) hav-
ing the chance to execute in between. Monitoring the Interrupt
Queue Length shows the user how many calls the interrupt han-
dler has put in the queue. Again, this is a metric which has more
significance when regarded in comparison to the reference val-
ues reported by the other motes. Lastly, the metric Interrupt
Queue Overflows is listed. It indicates how many times an in-
terrupt was not being able to be serviced by its corresponding
task because the queue was not large enough. If the value is
non-zero it indicates the user to redesign the queue size or that
the processor was not fast enough.

3.3.2. APM Features in State-of-the-Art OSs

The previously presented concepts make it possible to im-
plement the proposed metrics regardless of the used OS. Nev-
ertheless, we provide a survey on different popular OSs and
their in-built monitoring functionalities in the following. The



intention is to simplify the task of designing the APM mod-
ule of such a constrained device by leaning back to these fea-
tures offered out of the box. The OSs covered in this section
include Free-RTOS [75], Zephyr [4], Contiki-NG [76], RIOT
OS [77], Mbed OS [78] and uC/OS-1II [63]. According to
a recent survey by the Eclipse Foundation, FreeRTOS is still
the most widespread RTOS used on MCUs [79]. The rea-
son therefore is its small and simple kernel and the portability
to a large range of different MCU HW architectures. Zephyr
is an RTOS developed by the Linux Foundation and offers a
small kernel, the west configuration and build system and a
broad set of protocol stacks for [Pv4 and IPv6, CoAP, Mes-
sage Queue Telemetry Transport (MQTT), IEEE 802.15.4 [6],
Thread [16] or BLE. Especially due to its advanced security
features, Zephyr has recently become also one of the most pop-
ular choices for an RTOS. Although Contiki-NG is designed
for resource-constrained IoT devices, it is not an RTOS but
a common OS. Furthermore, Contiki-NG provides a 6TiSCH
stack implementation and is popular in the research commu-
nity thanks to the supplied “Cooja” simulator [80], which is
able to imitate the behavior of a WSN consisting of multiple
nodes running Contiki-NG. RIOT OS is an RTOS designed to
fit on IoT devices equipped with just minimal memory in the
order of ~10kByte [27]. Additionally, RIOT OS comes with a
native implementation of the 6TiSCH stack and offers the pos-
sibility to run OpenWSN in an own “thread”, the term used
for a task in RIOT OS [81]. According to [79], Mbed OS is
another RTOS which is especially popular among developers
using ARM Cortex-M platforms. Mbed OS supports 6LoW-
PAN mesh architectures and the ARM TrustZone, a technology
reducing the potential for attack by isolating the critical security
firmware, assets and private information from the rest of the ap-
plication [82]. In the end, we also want to mention uC/OS-III,
a kernel which shines through its clean and slim architecture.
UC/OS-III manages a nearly unlimited number of application
tasks, priority levels and features an interrupt disable time close
to zero [63]. On top of that, uC/OS-III is famous for its various
monitoring features.

Once again, as in Section 3.3.1, we now go through the corre-
sponding metrics of Table 2 and name different OS implemen-
tations that support monitoring these metrics out of the box. To
the end of this section the presented OSs and their APM func-
tionalities are summarized in Table 1.

The first metric of the RTOS runtime statistics group
in Table 2 is Task Stack Size. Free-RTOS comes with
the uxTaskGetStackHighWaterMark function returning the
amount of stack that remained unused when the task stack was
at its greatest (deepest) value [83]. In Zephyr, the compiler flag
-DCONFIG_THREAD_ANALYZER=y needs to be set. Then call-
ing the function thread_analyzer_run() prints out the stack
usage for each “thread”, which is the term used for a task in
Zephyr. Contiki-NG offers the Stack checker library includ-
ing a stack_check_init function which initializes the stack
area with a known pattern and the stack_check _get_usage
function to calculate the maximal stack usage so far. Also
RIOT OS implements a flag THREAD_CREATE_STACKTEST that
can be used after a thread creation for measuring the stack’s

memory usage. In Mbed OS a macro has to be set, which
is called MBED_STACK_STATS_ENABLED=1. uC/OS-III already
provides variables StkUsed and StkFree for each task.

Following the order of the metrics in Table 2, the next
ones are Task Utilization and CPU Utilization. Since these
metrics are closely linked, whereas CPU Utilization just in-
cludes measuring the time spent in the “Idle” task, we cover
both metrics together in the following. In Free-RTOS there
is an Application Programming Interface (API) function call
vTaskGetRunTimeStats() which returns the absolute time
as well as percentage time values for each task (including
the Idle Task) in a tabular format. In the case of using
Zephyr, the same information (also including the time spent
in the Idle Task) is again contained in the output of calling
the thread_analyzer_run() function. Since Contiki-NG is
not an RTOS relying on a task based architecture, there is no
list showing the metric Task Utilization. However, Contiki-
NG has an own module called energest for monitoring CPU
Utilization. There are five predefined energest states, in-
dicating whether the CPU is active, in low-power mode or
deep low-power mode and whether the radio is in transmit-
ting or listening mode. Periodically reporting information
about the time spent in these states is extremely useful, since
the states can directly be translated in current consumption
and ultimately energy consumption based on the datasheets of
some HW platforms, such as the Zolertia Z1 [84]. Threads in
RIOT OS contain a “struct” called schedstat_t if the mod-
ule schedstatistics.h is included. schedstat_t contains
a timestamp of the thread’s last start time, how often the thread
was scheduled to run and the total runtime of the thread. For
Mbed OS there is no in-built method to monitor the CPU us-
age. uC/OS-III offers the variable CPUUsage on a per-task basis
and the variable 0SStatTaskCPUUsage for the whole RTOS.
0SStatTaskCPUUsage shows to the user the percentage the
CPU was active and not idle. CPUUsage expresses the CPU
usage of a certain task as a percentage of the total CPU usage,
i.e., 0SStatTaskCPUUsage. However, there is not a detailed
overview on how much time was spent in a certain task and its
fraction of the total runtime.

In Section 3.3.1, we define Memory Usage as a metric mon-
itoring the external storage like another flash memory. Since
this metric is rather highly dependent on the used HW platform
than on the OS there are no specific implementations available
and we do not include it Table 1.

The next metric in the list is Heap bytes used/free and
can be monitored in FreeRTOS using the function call
xPortGetFreeHeapSize(), depending on the used mem-
ory allocation implementation. FreeRTOS actually offers
five different options (heap_1.c, ..., heap_5.c) for heap
memory allocation. heap-1.c and heap_2.c allow mon-
itoring the amount of heap space that remains unallocated
via the API function call xPortGetFreeHeapSize (). How-
ever, this function is not available when using heap_3.c.
The remaining heap_4.c and heap_5. c both support the use
of xPortGetFreeHeapSize() again and additionally pro-
vide the xPortGetMinimumEverFreeHeapSize() function
which returns the lowest amount of free heap space that



has existed since the FreeRTOS application has booted. At
this point it might be worth mentioning that the Espres-
sif 32 IoT Development Framework (ESP 32-IDF) [85] of-
fers an even more verbose set of methods for monitoring
the heap size on an ESP 32 HW using FreeRTOS. Zephyr
and Contiki-NG currently do not offer an in-built functional-
ity for heap memory monitoring. In RIOT OS, the function
memarray-available() returns the number of blocks avail-
able in the memarray pool, the concept used in RIOT OS for al-
locating heap memory. Similarly to the stack monitoring func-
tionality, Mbed OS comes with a macro that needs to be setto 1,
i.e., MBED_HEAP_STATS_ENABLED=1, to enable heap size moni-
toring. By calling mbed_stats_heap_get () detailed informa-
tion is reported on currently and maximum allocated bytes, on
the sum of bytes ever allocated and on the number of failed
allocations. To avoid memory fragmentation uC/OS-III comes
with an alternative to the common heap memory concept, which
is based on malloc() and free() commands. This alterna-
tive is the use of memory blocks, all having the same size.
Memory blocks are again part of a partition, which are cre-
ated by the function 0SMemCreate (). There are multiple parti-
tions possible and the memory blocks of different partitions are
also allowed to have different sizes. The RTOS runtime statis-
tics related to the memory blocks in pC/OS-III are the vari-
able 0SMemQty containing the number of partitions created and
for each partition the variables B1kSize, NbrMax and NbrFree
holding information about the partition’s block size, the maxi-
mum number of blocks and the number of free blocks, respec-
tively.

Following the order of metrics in Table 2, the next ones
would be related to flash memory monitoring. Similarly to
Memory Usage these metrics monitoring the flash memory are
not included into Table 1 due to their strong correlation with the
used HW platform.

All the remaining metrics are be summarized under the term
Kernel Objects. puC/OS-III is basically the only RTOS which
provides such a detailed monitoring functionality for Mutexs,
Task Context Switches, Nested Interrupt Counter, Max. Inter-
rupt Disable Time, Interrupt Queue Length, Interrupt Queue
Overflows and many more.

Table 1
Comparison between APM functionalities in (RT)OS implementations.

oS Task Stack Task CPU Heap bytes  Kernel
Size Utilization  Utilization  used/free  Objects
FreeRTOS [75] v v v v
Zephyr [4] v v v
Contiki-NG [76] v v
RIOT OS [77] v v v v
Mbed OS [78] v v v v
#C/OS-111 [63] v v v v

3.4. Networking Metrics (node-centric)

The second set of metrics in Table 3 lists all the statistics that
we consider as important to monitor the mote’s reliability in
terms of networking and to identify the problem when packet
losses occur. Motes in 6TiSCH based systems are arranged

in a mesh topology. Thus, all motes have at least one neigh-
bor node. Neighbors may be other motes or the network man-
ager, which is also called Border Router (BR). The first subset
of metrics comprises packet statistics characterize the path to
the mote’s neighbors. Therefore, a constantly updated list of
neighbors should be reported to the monitoring platform [34].
The counters Neighbor Transmitted Packets, Neighbor Trans-
mit Failures, Neighbor Retransmissions and Neighbor Received
Packets are straight forward and build the basis for calculat-
ing the metrics Expected Transmission Count (ETX) [95], Mote
Packet Delivery Ratio (PDR) and Mote Packet Retransmission
Ratio (PRetR). The formulas are given in Table 3. We have ob-
served that in literature different terms and definitions for the
metric Packet Delivery Ratio (PDR) are used. We also agree on
the following definition of these terms [32, Section 4.2.2].

PDRj = PRRp =1 — PLRy 2)

The equation expresses the relationship between PDR,
Packet Reception Rate (PRR) and Packet Loss Ratio (PLR).
The PDR of mote A for its link to mote B is equal to the Packet
Reception Rate (PRR) of mote B for its link to mote A. The
complement of PDR is called Packet Loss Ratio (PLR).

Further neighbor metrics are the hop depth and the S-factor
[32]. The hop depth is defined as the number of motes that
lie on the path of a message from the mote to the manager.
A changing hop depth indicates a dynamic in terms of lost
neighbors or new routing paths. The B-factor measures the
link burstiness and allows to reason about how long a proto-
col should pause after encountering a packet failure to reduce
its transmission cost [96].

Besides the mentioned mesh topology, TSCH is a main char-
acteristic of 6TiSCH networks. The concept of TSCH consists
in iteratively changing between the available frequency chan-
nels according to a fixed schedule. The SmartMesh IP health
reports [34] propose to monitor the number of total Unicast At-
tempts and Unicast Failures for each of the channels. The re-
sulting complement ratio is called Channel Stability and usually
shows the presence of interference and multi-path fading when
comparing the values across the different channels [13, 91, 92].

The following subset of metrics in Table 3 is subsumed under
the term Mote Scheduling Statistics and deals with node-centric
networking statistics related to the employed scheduling algo-
rithm. In TSCH networks time is cut in timeslots which typi-
cally have a duration of 10ms [11]. Since the frequency band
is also cut in 16 different channels for communication, a matrix
structure arises. Each cell of this matrix is characterized by a
time- and channel-offset, respectively. The task of the SF is to
assign a cell to each communication link between two neigh-
bors. Thus, the motes know exactly at which time to transmit,
receive or sleep. The Average Time between Transmits is listed
as one of the KPIs in 6TiSCH networks [88]. This metric is
used to check the fairness of the SF. Another metric closely
linked to the SF is bandwidth [5]. We differentiate between
Assigned and Needed Bandwidth, respectively. Based on these
values, it can be evaluated if the used SF is still suited for the
ongoing traffic at each mote in the system [94]. Another KPI of



Table 2

Overview of Device HW and SW Metrics

Metric Unit Explanation References
Device HW Metrics
Physical Metrics
Battery Voltage A\ Voltage measured with a fuel gauge IC or high-res. ADCs to estimate battery SoC [34, 38]
Charge Consumption mC Lifetime charge consumption measured with Coulomb counters to detect aging problems  [34, 40, 14, 38,
68]
Energy Consumption J Instantaneous amount of energy required for certain operations captured by on-board  [14, 86, 26, 32,
instrument-based measurement 33]
Core Temperature °C Temperature measured near CPU core to detect overheating issues [42]
Ambient Temperature °C Temperature measured in environment to detect harmful external influences [34]
Crystal Metrics
Resynchronization Time S Time elapsed since last synchronization (A7) in TSCH network [45, 87, 44, 46]
Clock skew/Time Offset S Desynchronization/offset € to time master measured at each resynchronization [45, 87, 44, 46,
32]
Experimental Clock Drift ppm The experimental clock drift rate rexp is defined as rexp = ﬁ [45, 87, 44, 46,
33]
Radio Statistics
Radio Duty Cycle (RDC) % Ratio between the cumulative time that the radio chip is powered and the measurement  [88, 60, 8, 26, 32,
period 35]
Receive Signal Strength Indi- dBm RSSI is a metric which is captured for each neighbor-link individually [34, 89, 31, 90,
cator (RSSI) 91,32,92,93,53,
33]
Idle RSSI dBm Idle RSSI is measured during Idle listens for each channel individually in TSCH networks ~ [34]
Link Quality Indicator (LQI) - LQI is abstractly defined by the IEEE 802.15.4 standard as a characterization of the  [32, 33, 6]
strength and/or quality of a received packet
Signal to Interference plus dB SINR is defined as SINR = % ,where Pg is the power of the signal and P,y is the  [47, 32]
Noise Ratio (SINR) power of the interference plus background noise
Angle of Arrival (AoA) ° AoA is used for localization and detection of external influences on the signal paths [48]
Energy Detection (ED) J ED is used to measure the level of energy in the frequency band [32, 52, 53]
Device Application Metrics
Message Queue Occupancy % Latest occupancy of the message queue [34]
Avg. Message Queue Occ. % Average occupancy of the message queue over a certain time interval [34, 60]
Message Queue Congestion - Counter of message queue overflows [34, 94]
Computation Time S Duration for the CPU to complete a certain piece of computation [32, 55, 33]
Bytes sent/received bytes Counter for bits sent/received via the communication module [35]
Connectivity Counter - Counter of connect/disconnect events [35]
Peripheral Interaction Timer s Timer for how long the interaction to certain peripheral devices such as sensor, flash  [35]
storage, etc. via communication buses (SPI, I2C) has taken
Display/LED Timer S Timer for how long a display or LED of the device was on [35]
Reboot Cause + Counter - Counter and root cause of reboot events [35]
Device Uptime d Time for how long the device is up and running since last reboot [35, 58]
RTOS Runtime Metrics
Task Stack Size % Percentage indicating how much size of the initially allocated task stack size is already  [83, 60, 64, 65,
occupied in order to detect the danger of stack overflows 63, 35, 55]
Task Utilization S Timer for how long the OS has spent time in certain task [35, 55]
CPU Utilization % Percentage of time that RTOS not spends in idle task [67, 60, 65, 63,
35, 55]
Memory Usage % Monitoring of HW that provide external memory rescources concerning free disk space [60, 90, 64, 65,
32, 35]
Heap bytes used/free % Amount of heap memory used/free [63, 35]
Flash Operation Time S Time spent in flash operations (P/E-Cycles) [35]
Flash bytes written bytes Counter for bytes written to flash memory [35]
Flash sector erase - Counter for how often sectors in flash have been erased [35]
Mutex Lock Failures - Counter for how often a certain Mutex lock function call failed [63, 35]
Mutex Waiting Time s Time spent waiting for a certain Mutex [63, 35]
Task Context Switches - Variable that accumulates the number of context switches performed [63]
Nested Interrupt Counter - Variable containing the interrupt nesting level. [63]
Max. Interrupt Disable Time s Timer for capturing the maximum interrupt disable time [63]
Interrupt Queue Length - Variable indicating the current number of entries in the interrupt handler queue [63]
Interrupt Queue Overflows - Counter for how often an interrupt was not being able to be serviced [63]
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every communication system is obviously the data rate which
is also closely linked to the time between transmit cells allo-
cated by the SF. Yuan et al. [32] propose to measure the data
rate at the link-layer and define it as the amount of link-layer
payload (excluding link-layer header) per certain unit of time.
Furthermore,the authors [32] present the Next Hop Switch Rate
metric in order to have an indicator for the routing stability.
The routing topology, i.e., the set of links a message crosses
from a mote through the mesh to the manager, is determined by
the RPL. The motes lying on this path are called parent nodes.
High values of the Next Hop Switch Rate might be a sign for
dynamics in the network caused by moving objects or decreas-
ing link quality, which influences the Objective Function (OF)
of the RPL. This means the routing topology keeps changing
with the radio environment even when the number of nodes in
the network do not change [97]. Of course, the RPL topology
also varies with nodes leaving or joining the network. Thus, we
recommend tracking the number of Network Joining Events of
the mote [5, 98]. This value becomes essential when comparing
it to the Reboot Counter introduced in Section 3.1. If the num-
bers do not match, this may be an indicator for a connection
loss due to SW issues or external disturbances of the wireless
link.

The next subset of metrics contains general Mote Packet
Statistics and consists exclusively of counters and ratios built
from these counters. At first glance it may seem a bit petty to
implement so many counters, but it turns out to be worth the
effort when it comes to finding the reason for packet losses.
Since we have already introduced the counters for success-
ful and failed packet transmissions to certain neighbors of the
mote, it is obvious to sum over all neighbors and obtain the
total number of packets transmitted and transmission failures,
respectively. The Packets Dropped at the MAC Layer due to
exceeded retry count, aging or no route are tracked as a sub-
set of transmit failures [S] . Furthermore, Retransmissions are
essential to be monitored [90, 92]. They form a sub-quantity
of the transmitted packets. Analogous to the neighbor packet
statistics, we can also calculate the PDR and the PRetR of the
mote according to the formulas in Table 3. Yuan et al. [32] listed
the metric Information fan-out as the ratio of received packets
over transmitted packets over a short period of time at an in-
termediate node. This metric is useful for congestion detection
and requires a counter for received packets, which is simply
the sum of all received packets over all neighbor links of the
mote. The next counters listed in Table 3 are called Transmit
Ready Packets and Transmit Errors. Both are implemented in
the health reports of SmartMesh IP [5] and describe the border
from the NET layer to the MAC layer in the OSI model. Trans-
mit Ready Packets counts the packets handed successfully from
the network to the MAC layer and thus are ready to be sent.
Contradicting are the Transmit Errors, i.e., packets that were
not sent and dropped due to congestion and timeouts. These
two counters are used for the calculation of the Mote Availabil-
ity [94]. To determine the reliability of a mote we need to track
the number of packets correctly received by the manager from
this mote as well as the number of packets lost on the way to
the manager from this mote. We denote by these metrics Pack-

ets received Mote — Manager and Packets lost Mote — Man-
ager, respectively. Consequently, the mote’s reliability can be
computed according to the formula in Table 3.

The last subset of metrics in Table 3 is summarized under
the term Mote Packet Validation. The SmartMesh IP health re-
ports [5] have a counter for the number of packets that were dis-
carded due to validation errors. This quantity can even be subdi-
vided in counters, which specify the reason why validation has
failed. Validation may fail because of Decryption Errors which
are detected depending on the employed security concept. For
encryption, the 6TiSCH architecture, e.g., supports Object Se-
curity for Constrained RESTful Environments (OSCORE) [99],
an IETF standard compatible with CoAP. SmartMesh IP relies
on a concept of Pre-Shared Keyss (PSKs) [36]. These secu-
rity mechanisms are independent of IEEE 802.15.4, which also
comes with an own in-built encryption algorithm based on Ad-
vanced Encryption Standard (AES) in order to achieve data in-
tegrity through a Message Integrity Code (MIC). If the check
of this Message Integrity Code (MIC) fails, the Authentication
Error counter is incremented. Additionally, there is a counter
for Cyclic Redundancy Check (CRC) Errors. For each message,
a Cyclic Redundancy Check (CRC) code is computed and ap-
pended to the message as redundancy, which gets validated at
the receiver’s side. In our literature survey, we found that dif-
ferent authors [5, 32, 33] propose to count the number of CRC
errors in order to detect the presence of unusual traffic or jam-
ming that is interfering with the network [100, 101]. Based
on the CRC error counter and the previously introduced Re-
ceived Packets counter, i.e., packets that have passed the pream-
ble and SFD check, one can compute the Packet Corruption
Rate (PCR). The Packet Corruption Rate (PCR) is not neces-
sarily a measure for the detection of harmful attacks but also
for co-existing, interfering networks, respectively.

3.5. Networking Metrics (global)

Finally, Table 4 shows a collection of metrics that cannot be
monitored on a single device, since system-wide knowledge is
required. Typically these metrics can be obtained at the network
manager, i.e., the Low-Power and Lossy Network (LLN)-BR
in 6TiSCH networks [23]. The first two metrics Network Effi-
ciency and Network Fairness were defined by Hull et al. [104]
and are also included in the survey of Yuan et al. [32]. The
definition of Network Efficiency n [104] relies on a variable U
which quantifies the set of “useful packets”. If we define every
packet as useful in our 6TiSCH scenario, 7 is simply the inverse
metric of PRetR averaged over the whole network and thus
forms an important metric for energy consumption estimations.
Network Fairness is an indicator whether the packets arriving at
the manager are fairly shared among the motes in the network.
In 6TiSCH networks that are based on the RPL and relying on
a fixed schedule, this metric’s significance is minor, since it is
clearly dependent on the SF. Network Throughput [32, 33] is
another global metric and is defined as the total amount of data
received at the collection points, i.e., the manager, over a cer-
tain period of time (e.g., the health-report/heartbeat interval).
Anomalies in the Network Throughput over time indicate cru-
cial events such as joining motes, connection-losses or unusual



Table 3

Overview of node-centric Networking Metrics

Metric Unit Explanation References
Networking (node-centric)
Neighbors (Mesh)
Neighbor (Nbr.) ID List - A list of all registered neighbor device names/IDs/MAC addresses [34]
Nbr. Transmitted Packets - Counter for packets transmitted to a certain neighbor [34]
Nbr. Transmit Failures - Counter for failed transmissions to a certain neighbor [34]
Nbr. Retransmissions - Counter for packets retransmitted to a certain neighbor [90]
Nbr. Received Packets - Counter for packets received from a certain neighbor [34]
Nbr. Packet Delivery Ratio % PDR of a link to a certain neighbor: PDRyp,. = 100 - (1 - %) [34, 94, 36, 91,
(PDR)/Nbr. Path Stability 26, 32]
Nbr. Packet Retransmission % PRetR of a link to a certain neighbor: PRetRp,, = 100 - ( %) [90, 26]
Ratio (PRetR)
Hop Depth - Number of hops to the manager [34, 32]
B-factor % Characterization of the burstiness of a wireless link [32]
Channel Statistics (TSCH)
Channel (Ch.) Number Hz A list of all available channels and their corresponding frequency [34]
Ch. Unicast Attempts - Counter for Unicast attempts over a certain channel [34]
Ch. Unicast Failures - Counter for missed Acknowledgements (ACKs) over a certain channel [34]
Ch. Stability % Stability over a certain channel: Stabilitycy, = 100 - (1 — Si-yuictfalures ) [31,91,92]
Scheduling Statistics (Mesh)
Avg. Time between Tx S Time interval between two transmit slots of a mote according to schedule [88]
Assigned Bandwidth ms Bandwidth assigned to the mote according to the schedule [94, 36]
Needed Bandwidth ms Total bandwidth needed by the mote to cope with the traffic [94, 36]
Data Rate bystcs Amount of link-layer payload (excluding link-layer header) per unit of time [8, 32]
Next Hop Switch Rate % Rate of routing change events affecting the destination paths of the mote [32]
Number of Joining Events - Counter of network join events to detect mobility and undesired reboots [94, 98]
Packet Statistics
Transmitted Packets - Counter for total number of packets (to all N neighbors including the manager) transmit-  [94]
ted: Zfl | (Nbr. Transmitted Packets);
Transmit Failures - Counter for total number of packets packets (to all N neighbors including the manager)  [94]
that did not reach their destination correctly: 3;’, (Nbr. Transmit Failures);
Pkts Dropped MAC Layer - Number of packets dropped by MAC Layer (subset of Transmit Failures) [34]
Retransmissions - Counter for total number of packets packets (to all N neighbors including the manager)  [90, 92]
retransmitted: Zfi  (Nbr. Retransmissions);
Mote PDR % PDR over all links of the mote: PDRyore = 100 - (1 — %) [94]
Mote PRetR % PRetR over all links of the mote: RetRyore = 100 - ( pacirinsmissions ) [90]
Mote ETX - The Expected Transmission Count (ETX) of a link is the predicted number of data trans-  [95, 102, 103]
missions required to send a packet over that link, including retransmissions.
Received Packets - Counter for total number of packets packets (from all N neighbors including the manager)  [94]
received Z?L (Nbr. Received Packets);
Information fan-out % It is defined as the ratio 100 - (%) and used for congestion detection [32]
Transmit Ready Packets - Counter for packets handed from NET to MAC layer and ready to be sent [34]
Transmit Errors - Counter for packets that were not sent and dropped due to congestion and timeouts [34]
Mote Availability % Avail. of a mote is defined as Availvoie = 100 - (1 — s R prrors) [94, 36]
Pkts. rec. Mote — Manager - Counter for total number of packets received by the manager from the mote [5]
Pkts. lost Mote — Manager - Counter for total number of packets sent by the mote and lost on the way to the manager [5]
Mote Reliability % The rel. of the mote is defined as Relvoe = 100+ (1 — proimes e Momoboers; ) (32, 89]
Packet Validation
Received Invalid Packets - Number of packets discarded by NET layer due to due to validation errors [34]
Decryption Errors - Packets that fail in the decryption process [34]
Authentication Error - Message Integrity Code (MIC) failed due to authentication error [34]
CRC Errors - Number of incoming packets with MAC-layer Cyclic Redundancy Check (CRC) errors  [34, 32, 100, 101]
to indicate the presence of unusual traffic or jamming that is interfering with the network
Mote PCR % Packet Corruption Rate (PCR) defines the ratio of of the received corrupted packets over  [32, 33]

the received packets (passing the preamble and SFD check)
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traffic patterns. The «-factor is a metric originally defined by
Srinivasan et al. [105] and also mentioned in the collection of
Yuan et al. [32]. « impartially captures to what degree packet
reception on different links is correlated. This means that « is
not a global metric for the whole network, but one that com-
pares two links which share the same transmitter. Since the
required information to compute « goes beyond the knowledge
of a single mote, this metric is listed under system-wide met-
rics in Table 4. The «-factor is not trivial to compute, however,
it can deliver information about the protocol performance. The
following counters in Table 4 are called Total Transmit Packets
Ready, Total Transmit Errors, Total Packets Generated and To-
tal Packets Lost. They are simply obtained by summing over the
corresponding node-centric metric in Table 3 for all motes [94].
Similarly as in Section 3.4, one can compute the Network Avail-
ability and the Network Reliability, which is considered as the
most important KPI by most papers included in this survey.

The last subset of global metrics is summarized under the
term Timing. The Network Lifetime is a timer which falls into
this group. It is captured at the network manager and starts
at the moment at which motes are allowed to join the network.
The metric is also listed by Yuan et al. [32] and Ojeda et al. [33]
as a useful metric for the detection of aging problems. An-
other timer metric is called Network Formation Time [88]. It is
measured once at the initial phase when the network is forming
and refers to the end of the secure joining phase of the net-
work. The Network Formation Time becomes interesting when
running multiple different, but comparable, deployments. All
the remaining timing metrics are different forms of the KPI La-
tency. Besides reliability, latency is the metric that appeared
the most when it comes to most important metrics in a wireless
system. However, when talking about latency, most authors ac-
tually refer to the metric Network Upstream Latency. It is usu-
ally defined as the Upstream Mote Latency averaged over all
motes in the network, where Upstream Mote Latency is the av-
erage time taken for packets generated at a certain mote to reach
the manager. Obviously, the same timers exist for downstream
direction, i.e., from the manager to the mote, and for point-to-
point directions. Point-to-Point Mote Latency can be stored in
form of a dictionary with neighbors (keys) and corresponding
average time taken for packets to reach this neighbor (values).
It is worth mentioning that the manager is not part of this neigh-
bor list, since the value would correspond to the Upstream Mote
Latency in this case.

4. Application Performance Monitoring Frameworks
for Low-Power Wireless Systems

In the last section, we covered what metrics we consider as
important to monitor in low-power wireless systems. In this
section, we want to shift our focus on APM frameworks, which
may be used for this purpose. We begin with a literature survey
on APM frameworks in constrained, wireless systems in Sec-
tion 4.1. In the following Section 4.2 we discuss to what extent
the metrics from Section 3 are taken into account in each of
the frameworks. Eventually, we describe how metrics find their
way from the device to the user’s APM platform in an active
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monitoring system. Thus, we cover the steps of metric collec-
tion on the device in Section 4.3, exporting in Section 4.4 and
processing on receiver side in Section 4.5.

4.1. Related Work

There are numerous APM techniques for IoT addressing dif-
ferent network architectures and technologies. We cluster these
techniques in 6 different groups. After explaining the core con-
cept of each group, we spend a subsection on each of them to
list corresponding frameworks in literature. The first group is
called active monitoring and often referred to as “traditional
monitoring”, i.e., the metrics make their way to the user by
being sent in packets dedicated for health monitoring. In ac-
tive monitoring, nodes periodically send out health information
in form of additional packets, called health reports, heartbeats
or snapshots, depending on the project. These terms are inter-
changeable and describe the same contextual concept. Clearly,
active monitoring means an additional overhead on top of the
actual application resulting in performance degradation of the
system in terms of energy consumption, bandwidth and device
resources, i.e., additional storage and CPU load, respectively.
Passive monitoring systems do not penalize neither the opera-
tion nor the performance of the system. The approach relies
on spying the communications among the motes and inferring
on the health condition. However, such passive tools may de-
liver insufficient information for a complete analysis. The third
group covers hybrid approaches trying to combine the advan-
tages of the afore-mentioned two groups. Group 4 contains
“Piggyback” Methods for APM. In order to mitigate the draw-
backs arising with active monitoring, the piggyback method
aims to enrich the packets generated by the actual application
with metrics in the frame’s payload and Information Element
(IE) field. The fifth group of network monitoring techniques
is called Alternate Marking Performance Measurement (AM-
PM). The idea is that every packet of the monitored flow in
the downstream, i.e., from the manager to the mote, carries one
or two marking bits used for signaling and coordinating mea-
surement events across the measurement points. In upstream
communication, these marking bits are used for monitoring. In
contrast to active monitoring or piggybacking, AM-PM brings
no extra overhead on the monitored packets because AM-PM
makes use of already existing bits in the IEEE 802.15.4 header.
In the last group we present In-Band Network Telemetry (INT),
which forms an alternative to the traditional monitoring tech-
niques. INT is proposed as a framework allowing the collec-
tion and reporting of network state, by collecting metrics per-
hop and per-frame as packets traverse the network. Recently,
the INT approach was also adapted to be compatible with the
6TiSCH stack.

4.1.1. Active Monitoring

Two early active APM frameworks are “Sympathy” [106]
and “Memento” [107], which both provide failure detection
and symptom alert service. In 2010, a poller-pollee concept
for monitoring a distributed wireless system, not yet relying on
the RPL, was introduced [108]. Later, Liu et al. [109] present a



Table 4

Overview of System-wide/ Global Networking Metrics

Metric Unit Explanation References
Networking (global)
Packet Statistics (global)
Network Efficiency % Network efficiency measures the average fraction of transmissions in a data collection that ~ [32, 104]
contributes to a packet’s eventual delivery at the sink
Network Fairness % Network fairness measures whether the packets received by the sink are fairly shared  [32, 104]
among all source nodes
Network Throughput '%“ Throughput is defined as the total amount of data received at the collection points (man-  [32, 33]
ager) over a certain period of time (e.g., the network lifetime)
k-factor % Inter-link reception correlation is defined as the normalized correlation coefficient be-  [32, 105]
tween the packet receptions of two links that share the same transmitter
Total Pkts. Transmit Ready - System-wide number of packets sent from NET to MAC layer and ready to be sent of all ~ [94, 36]
M motes: Z?;I | (Transmit Ready Packets);
Total Transmit Errors - System-wide number of packets packets that were not sent and dropped due to congestion  [94, 36]
and timeouts of all M motes: Zﬁ‘;’ 1 (Transmit Errors);
Network Avaﬂability % Availabilit}'Network =100- (1 " Total Packets T;E%ﬁil’il;rﬁl;?;;%%&rlsﬁansmit Errors) [94’ 36]
Total Packets Generated - System-wide number of packets generated by all M motes: Z,I-Z (Received Packets); [94, 36]
Total Packets Lost - System-wide number of packets lost by all M motes: 3;7,(Packets lost Mote —  [94, 36]
Manager);
Network Reliability % The network reliability is the portion of the packets injected into the network that were  [94, 36, 88, 98,
received by their final destination. Relneqwork = 100 - (%W) 89, 14, 8, 32]
Timing
Network Lifetime d Time span elapsed since the deployment of a network [32, 33]
Network Formation Time s Duration of the initial phase until the secure join process of all motes is finished [88]
Upstream Mote Latency ms Average time taken for packets generated at a certain mote to reach the manager [34, 94, 88, 98,
89, 14, 8, 26, 32,
33]
Downstream Mote Latency ms Average time taken for packets generated at the manager to reach a certain mote [88, 89, 32]
Network Upstream Latency ms Upstream Mote Latency averaged over all N motes % Zﬁ | Upstream Mote Latency; [34, 88, 89, 8, 32]
Network Downstream La- ms Downstream Mote Latency averaged over all N motes Al, Zﬁ  Downst. Mote Latency; [88, 98, 89, 8, 32]

tency

Point-to-Point Mote Latency ms
reach this neighbor (values)

Point-to-Point Network La- ms

tency

Dictionary with neighbors (keys) and corresponding average time taken for packets to

P2P Mote Latency averaged over all N motes Al, Zﬁ 1 P2P Mote Latency; - Latency of
traffic among motes excluding the manager

[88, 89]

[88, 89, 8]

self-diagnosis concept for large-scale WSNs. The authors even
refined this concept by designing fault detectors based on Finite
State Machiness (FSMs) [110] . For industrial environments,
an active monitoring framework is presented by Raposo et
al. [111]. The authors provide a survey on IloT standards such
as WirelessHART and ISA 100.11a and propose a monitoring
structure evaluated on a WirelessHART testbed. In 2017, the
IETF has standardized the Representational State Transfer Con-
figuration Protocol (RESTCONF) protocol [112] which uses
structured data (Extensible Markup Language (XML) [113]
or JavaScript Object Notation (JSON) [114]) and Yet Another
Next Generation (YANG) [115] to provide a REST-like API
enabling the programmatic access to different network devices.
However, the RESTCONF APIs use Hypertext Transfer Pro-
tocol (HTTP) methods. Therefore, a similar approach for a
management interface for CoAP instead of HTTP, was de-
signed. The first initiative was called CoAP Management Inter-
face (CoMI) [116] and later referred to as CORECONF [117].
Recently a study on RESTCONF, CORECONF and their per-
formance in constrained IIoT environments has been pub-
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lished [118]. Although CORECONF is frequently proposed as
an option for active monitoring [119], it has not yet been con-
sidered in recent work because at the time of writing, CORE-
CONF does not have a production-ready implementation [120].
In Section 3, we have already presented a large number of
metrics contained in the health reports of SmartMesh IP [5].
These health reports are sent in fixed intervals and thus can
also be categorized as an active monitoring framework. A Net-
workHealthAnalyzer.py [94] Python script is also part of this
active monitoring framework for SmartMesh IP. The script is
part of the SmartMesh Software Development Kit (SDK), a set
of Python applications interacting with the serial API of the
SmartMesh IP devices. The NetworkHealthAnalyzer.py script is
motivated by practical concepts on monitoring the health con-
dition of a SmartMesh IP network [36, Chapter 6]. The goal is
to aggregate and combine different metrics of the health reports
and interpret them in order to track the status of the network. In
the book “Embedded Software Design” [55], Beningo names
two other tools for active monitoring of WSNs: the Percepio
Tracealyzer [121] and the reliability platform Memfault [57].



The Percepio Tracealyzer is a tool for runtime monitoring opti-
mized for FreeRTOS-based applications. Besides the streaming
mode which requires a wired connection just like with a HW de-
bugger, there is the snapshot mode, where the desired metrics
are stored in a buffer, that needs to be transferred to the com-
puter running the Tracealyzer SW [122]. Memfault is a com-
pany offering an IoT reliability platform supporting the design
of more robust devices via performance monitoring, debugging
and Over-the-Air (OTA) updates. The framework offered by
Memfault comprises the whole chain starting from data collec-
tion inside the OS running on the device, up to a cloud including
a front-end for visualization and analysis of the collected met-
rics. The concept of Memfault is to pack metrics in so-called
heartbeats and send them periodically via the communication
interface of your device to an edge device where the heartbeat
“chunks” are pushed to the Memfault cloud.

4.1.2. Passive Monitoring

The concept of passive WSN monitoring was introduced by
Ringwald et al. [123] in form of a tool called Sensor Network
Inspection Framework (SNIF). In contrast to active approaches,
SNIF does not require additional bandwidth for the monitoring
traffic. The idea of SNIF is to install a Deployment Support Net-
work (DSN) alongside the actual WSN. The algorithms used by
the SNIF tool for packet sniffing, packet decoding and the “Path
Analyzer” are later formalized by the same authors [124]. Pas-
sive Distributed Assertions (PDA) [125] and “Pimoto” [126]
are examples for other passive monitoring mechanism based
on packet sniffing. Both rely on Bluetooth nodes for sending
the sniffed data in the DSN. For more passive and also active
monitoring techniques, the interested reader is referred to the
survey paper on “Diagnostic Tools for Wireless Sensor Net-
works” [127].

4.1.3. Hybrid Approaches

Another survey on active and passive APM methods is given
by Mendoza et al. [128]. However, the authors also present
hybrid monitoring solutions which try to combine both, active
and passive approaches, to realize greater observability of the
monitored system. Additionally, they come up with the Hybrid
Monitoring Platform (HMP), a new hybrid approach harvest-
ing the information both actively, i.e., directly from the sensor
nodes, and passively, i.e., by means of messages captured from
the wireless system, causing a very low intrusion in the net-
work. In 2013, Keller et al. [129] introduced the first hybrid
health monitoring system. It utilizes passively reconstructed
packet information while only adding one bit of extra informa-
tion to improve the failure detection accuracy. Although the so-
lution offered by the company Sternum IoT [58] has parallels to
the active monitoring platform Memfault, we put it in the group
of hybrid approaches. Sternum IoT comes with an observabil-
ity SDK promising continuous monitoring and an end-to-end
platform for device manufacturers, offering built-in security,
granular remote visibility, and valuable business insights. The
company has a strong focus on security and enhances Zephyr’s
in-built security features. Due to their offered on-board device
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exploitation prevention to detect dangers, threats and attacks,
the classification as hybrid approach seems valid.

4.1.4. Piggyback Method

Based on the results of Dunkels et al. [130], the motivation
for piggybacking has arised. Actually, the authors showed that
piggybacking multiple beacons in a single transmission sig-
nificantly reduces energy costs compared to the generation of
new packets. Soon, Dressler et al. [102] have adopted the pig-
gybacking concept for energy-efficient monitoring of WSNs.
At that time, the concept of piggybacking has also been intro-
duced for 6LoWPAN and the RPL [131]. Hereby, it is counted
on the underlying APM concept based on a poller-pollee ap-
proach similar to the one in the group of active monitoring ap-
proaches [108]. Fanucchi et al. [103] set up on this work and
present piggybacking for IEEE 802.15.4e networks by defining
a method exploiting the IE. The IE is part of a IEEE 802.15.4
frame and defined by the standard [10]. Finally, Gaillard et
al. [132] extend the idea of piggybacking the IE also to 6TiSCH
networks.

4.1.5. Alternate-Marking Performance Measurement (AM-
PM)

Alternate Marking is a monitoring method which goes back
to the idea of “traffic coloring” which first has come up in
2011 as an approach by Telecom Italia for measuring packet
loss [133]. In the following years, efforts in standardizing have
resulted in AM-PM, a method for packet loss, delay, and jitter
measurements on live traffic [134]. Thus, AM-PM has become
an efficient measurement method for monitoring network flows,
i.e., loss and delay measurements, with low overhead, namely
at the cost of one or two bits per data packet. Experimental
results for the evaluation of the impact of AM-PM on large de-
ployments with wired cellular networks, have been published,
too [135, 136]. Karaagac et al. [137] are the first and only ones,
who integrate the AM-PM method in low-power wireless sys-
tems. They provide an AM-PM extension to the 6TiSCH stack,
which comprises an adapted IEEE 802.15.4 frame format with
certain bits reserved for AM-PM and a network monitoring ap-
plication used to collect and analyze AM-PM telemetry data at
each hop. Although AM-PM is the monitoring method with
the least impact on the system performance, it is not compat-
ible with transferring verbose information, such as a large set
of metrics. Liu et al. [138] earlier proposed an APM tech-
nique called Passive Diagnosis (PAD). They declared PAD as a
passive monitoring approach used for inferring the root causes
of abnormal phenomena in a WSN. However, PAD employs a
packet marking and packet parsing algorithm, respectively. The
inferred model is capable of reasoning root causes based on pas-
sively observed symptoms, which has also been evaluated in a
sea monitoring testbed. Just like AM-PM, PAD does not incur
additional traffic overhead for collecting desired information in
contrast to the active approaches. Due to the similarities of PAD
to AM-PM, we decided to put the APM frameworks into the
same group.



4.1.6. In-Band Network Telemetry (INT)

The idea of INT has been born in 2015 during the efforts for
practical applications of the P4 language [139]. As a result,
an approach to gather so-called telemetry metadata for packets
traversing network segments has been presented [140]. Soon,
the P4 Language Consortium has adopted the concept [141] and
paved the way for recent research related to INT. Gulenko et
al. [142] for instance demonstrate the use of INT in a virtual
switch. The core idea is to attach monitoring information di-
rectly to application traffic flowing through the different net-
work devices. The host or device that generates the traffic of in-
terest initiates the data collection by attaching INT commands
to the outgoing traffic. In general, INT differs from piggy-
backing in the fact that monitoring data can be appended at
each intermediate hop that the message traverses from source
to the sink. Gaillard et al. [132] present in their paper on pig-
gybacking the concept of “shared” and “exclusive” containers.
Shared containers in this context actually defines the same as
INT just under a different name, because the term INT has been
restricted to wired applications in the beginning. But recently
there has also been considerable efforts in the wireless field,
too [143]. In 2020, Karaagac et al. [119] have adopted the
INT concept to 6TiSCH networks. They prove that the INT
technique enables ultra-efficient network monitoring operations
without any effect on the network behavior and performance.
Very recently, an analytical traffic model of 6TiSCH using INT
has been derived [144]. The presented model can calculate the
network traffic overhead in a 6TiSCH network, using INT to
predict the number of transmitted and received bytes.

4.2. Comparison of Metrics used in APM Frameworks

The literature reviewed on APM frameworks in Section 4.1
emphasizes methodology over the specific metrics utilized.
However, the types of metrics discussed in these literature
sources illustrate the distinct characteristics of each framework
class. Consequently, we have checked the literature on these
frameworks for the surveyed metrics presented in Section 3.
The result is shown in Table 5. We can draw multiple conclu-
sions from this comparison. Firstly, no framework captures the
entire set of metrics proposed in Section 3. We also observe,
that the group of node-centric networking metrics is mentioned
the most in the context of the reviewed frameworks. The reason
for this is that most of the frameworks focus on the networking
aspects and do not define the “health status” of the low-power
wireless network by monitoring all groups of metrics in their
entirety. Additionally, we observe that passive monitoring ap-
proaches exclusively deliver information on networking statis-
tics, since the sniffed messages do not reveal any insights on the
device HW and SW metrics, respectively. Among the passive
monitoring frameworks, only the PDA strategy [125] allows to
draw conclusions on the mote resynchronization time intervals,
as well as on the device uptime. Furthermore, Table 5 shows
that the group of active monitoring approaches aims to deliver
a more verbose set of metrics, whereas AM-PM is driven by
keeping the impact on the network as low as possible. Finally,
we also want to remark that the group of application-related SW
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metrics and RTOS runtime statistics is quite rarely taken into
consideration by the surveyed literature on APM frameworks.
The explanation for this fact is that developers of APM solu-
tions may see the constant monitoring of these metrics as super-
fluous and rather put their focus on a small set of performance
metrics, which results in a smaller overhead in terms of traffic,
resources and energy consumption. However, in Section 3.2
and Section 3.3 we have already provided compelling reasons
why monitoring these groups of metrics makes sense, thereby
contradicting the aforementioned assertion of being “superflu-

2

ous .

4.3. Collecting Metrics

In this section, we focus on concepts dealing with the collec-
tion of metrics on the device. Traces and logs give an in-depth
timeline view of what happened on a single device and allow
to spot issues as long as you know what you are looking for.
The amount of data collected by tracing and logging tools is
immense and most of the data does not get used or processed.
Additionally, the data in its raw form, which is usually a string,
is hard to compress or aggregate [35]. Therefore, we focus on
the collection of metrics instead of traces or logs in this work.
The values of the metrics are usually stored in the APM engine,
a SW block which runs in the OS on the device. Conceptually,
there are two approaches for collecting the values for the APM
engine: on-demand and continuously. On-demand means that
the value of each metric is gathered at the moment when it is
needed, e.g., when the timer indicating the end of a heartbeat
interval expires, if we stick to the concept of Memfault. Col-
lecting data continuously describes a concept where we call a
function to update the metric in the APM engine each time a
code block which modifies the metric has been passed. The an-
swer to the question on which approach for collecting to choose
is as too often: It depends. If a certain metric tends to change
at an extremely high frequency, it is advantageous to query the
value at the end of each heartbeat interval, i.e., gather the metric
value on demand.

4.4. Exporting Metrics

By “exporting”, we mean the process of serializing and send-
ing the metrics at the end of the heartbeat interval. Serialization
defines the process of converting an object into a byte-stream
for saving it in a file or database or for sending it via a com-
munication module. Common text formats for serialization are
XML [113], JSON [114] and YAML [145]. XML is probably
the most wide-spread format and offers much more than the ca-
pability to serialize objects, since it is a mark-up language and
thus also comes with a significant overhead. JSON and YAML
are very easy to read compared to XML, whereas YAML is even
more minimalistic than JSON, since YAML does not require
the use of brackets, rather line indentation. In general, JSON is
preferred for data exchange, whereas YAML is more popular in
configuration files. To transmit the payload as part of an User
Datagram Protocol (UDP) packet in an IEEE 802.15.4 frame,
the data must not be in text format, but binary. By default, the
aforementioned serialization formats can be converted into a bi-
nary representation by using e.g., UTF-8 encoding. However,
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Comparison of literature on Application Performance Monitoring frameworks and the metrics used in these frameworks.
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we focus on ultra low-power wireless systems where every bit
counts in terms of energy consumption. Thus, in the follow-
ing we highlight some binary serialization formats which are
more efficient than a binary representation of a text serializa-
tion format such as JSON. MessagePack [146] is an efficient
binary serialization format which offers encoders for JSON in
many different programming languages. Since small integers
are encoded into a single byte and typical short strings require
only one extra byte in addition to the strings themselves, Mes-
sagePack promises to be faster and smaller than JSON. Another
binary serialization format is Binary JSON (BSON), which has
been developed for the storage of JSON objects in the Mon-
goDB database [147]. BSON can be compared to binary inter-
change formats, like Protocol Buffers (Protobufs) [148]. BSON
is more “‘schema-less” than Protobuf. This may be beneficial in
terms of flexibility but when it comes to space efficiency, Pro-
tobuf outperforms BSON, because BSON has an overhead for
key names within the serialized data. With Protobuf, key names
are encoded with an integer “field number” and like in Mes-
sagePack integers are encoded using a variable length scheme
so that small integer numbers can be represented in very few
bytes [149]. Another fallback solution with a very low result-
ing payload size is the use of packed C structures. However,
there are strong arguments why packed C structures should not
be considered for serialization [149]. The main reason is that
value encoding is not standardized and is architecture depen-
dent which quickly results in endianness issues and manual en-
coding/decoding algorithms. To this end we present Concise
Binary Object Representation (CBOR) [150], which is a binary
data serialization format based on JSON. CBOR was built to
be able to represent all JSON data types and the most com-
mon data formats in Internet standards without any ambiguity,
while maintaining a compact encoder/decoder structure. Fur-
thermore, data must be able to be decoded without a schema
description and the serialization must be reasonably compact.
CBOR is designed to be implemented on constrained nodes and
that its format is extensible.

In Fig. 1 we show the results of a simulation of an active
monitoring system, which is based on heartbeats with an ex-
ample payload containing a small set of metrics [149]. The
source code for reproducing the results is publicly available on
GitHub [151]. In the simulation, we compute the overall trans-
mitted payload size of the heartbeat packets over time. We com-
pare the resulting accumulated payload bytes for different heart-
beat interval lengths and different serialization formats, respec-
tively. Fig. 1 shows that choosing a more compact serialization
format allows much more verbose heartbeat information. In
general, the advantage in terms of a smaller payload when us-
ing Protobuf, packed C structure or CBOR is huge compared
to JSON and MessagePack. When comparing the performance
of JSON and MessagePack for a heartbeat interval length of
60 min to the compact representations like CBOR with an in-
terval length of 30 min, i.e., double heartbeat frequency, the
resulting payload size for CBOR is still smaller. It is true that
sending a larger data payload increases power consumption, but
it is more efficient to send fewer large payloads than it is to send
more small payloads. Since there is a fixed overhead for all
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Figure 1. Comparison of serialization formats.

packets in IEEE 802.15.4, sending a big payload does not cost
much more than sending a small payload [36]. Nevertheless,
the simulation shows that implementing CBOR as serialization
format in such constrained systems is crucial, since it allows
much verbose monitoring due to the possibility of including a
larger set of metric into the heartbeat.

4.5. Processing Metrics

In this section, we highlight some state-of-the-art concepts in
terms of further processing of the metrics on the network edge.
We locate the network manager at the network edge, i.e., the
LLN-BR in 6TiSCH networks [23]. The manager needs to im-
plement the application protocol of the network, e.g., MQTT
or HTTP when the system relies on the Transmission Con-
trol Protocol (TCP) or CoAP when relying on UDP as used
in 6TiSCH. Node-Red [152] is a flow-based tool which is com-
monly used to extract the payload of the incoming notifications
at the manager, apply functions to it and forward it to higher-
level protocols [153]. The next steps are usually to grab the
received data, store it in a database and visualize it on a dash-
board. A widespread solution covering all the mentioned steps
is the so-called Telegraf, InfluxDB, Grafana (TIG) stack. Tele-
graf [154] is a server-based agent for collecting and sending all
metrics from a large variety of systems and protocols into In-
fluxDB [155]. Thus, Telegraf offers the possibility to specify
parsers in its configuration file in order to convert the metrics to
InfluxDB Line Protocol. InfluxDB is an open-source time se-
ries database used for storage and retrieval of time series data.
The tool is optimized for storing application metrics, [oT sen-
sor data, and real-time analytics. For visualization of time se-
ries, Grafana [156] is a charming solution as it allows fast and
flexible creation of different kinds of graphs and promises easy
interoperability with InfluxDB. It is worth mentioning that all
parts of the TIG stack can be run as Docker containers and thus,
the TIG solution can simply be deployed in different OSs.



To conclude this section, we present some different ap-
proaches for metrics processing presented in literature. Capod-
iferro et al. [157] address the problem of data visualization in
IoT and also come up with the TIG stack as the most flex-
ible solution for metrics processing. A different monitoring
solution based on MQTT and “Zabbix” [158] for 6TiSCH
networks running Contiki-NG as OS has been presented by
Gajica et al. [159]. In contrast to the traditional 6TiSCH ar-
chitecture relying on UDP at the transport layer and CoAP at
the application layer, the authors chose TCP and MQTT, re-
spectively. An MQTT broker is installed at the network edge.
The 6TiSCH nodes publish their messages to this broker and
the Zabbix network monitoring software subscribes to it, stores
the readings in a database and offers the possibility for visu-
alization. Lastly, we also want to present a metrics process-
ing solution for SmartMesh IP. For user-friendly operation of
SmartMesh IP networks, the developers provide a set of tools
in the SmartMesh SDK, such as the JsonServerpy applica-
tion [160]. The JsonServer connects to one or more embed-
ded SmartMesh IP Managers and acts as a command-line tool
that turns the SmartMesh IP Manager serial API into an JSON-
based HTTP API. Subsequently, Node-Red, MQTT and the
TIG stack can be used for further processing.

5. Tutorial: Monitoring a Zephyr Application that uses
SmartMesh IP

In this last section, we present a practical hands-on tutorial
demonstrating a simple monitoring solution of an TSCH based
IEEE 802.15.4 network relying on SmartMesh IP. The source
code used in this section is publicly available on GitHub [161].

As part of this tutorial, we build up a low-power wireless
network. It consists of a SmartMesh IP network manager and
an arbitrary amount of motes. We use the Zephyr RTOS for
implementing the application running on the mote. The ac-
tual application is just a Real-time Clock (RTC) incrementing a
counter variable. Besides that, we install an active monitoring
approach, where the motes send a set of performance metrics
in certain heartbeat intervals. For this, we use the framework
provided by Memfault [57]. Thus, we do not use the fixed set
of metrics implemented in SmartMesh IP, the so-called Health
Reports [5, Section 5.4], but create an own customized group of
metrics. The SmartMesh IP protocol stack runs on the LTC5800
chip [162]. We show in this tutorial how SmartMesh IP can be
used in combination with another monitoring framework, such
as Memfault, by using the SmartMesh IP C-Library. This li-
brary is publicly available on GitHub [163] and provides an in-
terface, which establishes a Universal Asynchronous Receiver
Transmitter (UART) connection to the LTC5800 chip. In the
remainder, we refer to the SmartMesh IP LTC5800 chip as the
networking chip. The other HW platform’s chip is called appli-
cation chip in the following.

The application chip runs the Zephyr RTOS [4] in this tu-
torial. In Zephyr, we do not need to care about the network-
ing stack but implement exclusively the actual application and
the monitoring framework Memfault. The Memfault SDK col-
lects the metrics and periodically puts them into packets. The
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Figure 2. Way of the performance metrics from a Zephyr application to the
Memfault cloud using SmartMesh IP.

application chip sends these packets via UART to the net-
working chip by handing them to the transmit function of the
SmartMesh IP C-Library. The networking chip sends the mon-
itoring data to the SmartMesh IP manager, which is connected
via USB to an Edge Device. On the Edge Device, we run a
Python script which turns the SmartMesh IP Manager serial
API into an JSON-based HTTP API. Another Python script on
the Edge Device posts these HTTP messages to the Memfault
cloud, where the metrics are finally stored in a database and
ready for visualization and analysis. A block diagram for all the
previously described steps of this tutorial is shown in Fig. 2.

Section 5.1 explains the HW setup in detail. Section 5.2 fo-
cuses on the port of the SmartMesh IP C-Library in order to be
used in combination with Zephyr. Section 5.3 deals with the
questions on how to integrate Memfault into the Zephyr appli-
cation and how to transfer the heartbeat packets, the so-called
“chunks” up to the Memfault cloud. Section 5.4 concludes this
tutorial with a performance analysis of the presented solution
in this tutorial.

5.1. Hardware Setup

As described in the beginning of this section, we use a HW
setup which comprises a SmartMesh IP manager connected to
a computer with Internet connection, and a number of motes
forming a wireless network based on a mesh topology. The
motes consist of a networking chip (LTC5800) [162] and an ap-
plication chip. Although the choice of the application chip is
up to the user, we show two different setups based on Nordic’s
nRF chips. While the used nRFs have a basic radio functional-
ity, we do not use it in this tutorial and count on the network-
ing capabilities of the LTC5800. Using the Nordic Connect
SDK (NCS) [164] offers easy programmability of the applica-
tion chip via the nrf jprog Command Line Interface (CLI) and
natively supports the use of Zephyr. The two setups shown in
Fig. 3 are almost technically identical, but they vary in terms
of programming/debugging process, battery voltage supply and
size.

On the left hand side in Fig. 3a, a picture of an nRF52840-
DK [51] and a SmartMesh IP mote (DC9003A-B) is shown.



(a) nRF52840DK + SmartMesh IP mote

(b) AIOT Play

Figure 3. The used hardware setups.

They are connected via jumper wires to establish the UART
connection and provide a power supply for the LTC5800, if de-
sired. In general, both boards run on coin cell batteries. Table 6
shows a list of pins on both boards to which the jumper wires
need to be connected.

Table 6
Wiring between the Application Chip and Networking Chip for Setup A.

Application Chip (nRF52840DK) | Networking Chip (LTC5800)
GND GND
VCC VSUPPLY
UART1 Tx Pin RX
UART1 Rx Pin TX
GND TX CTSn
vVcC RX RTSn

The advantage of this solution is that the nRF52840-DK
comes with an on-board SEGGER J-Link debug chip, which
allows to program it simply via USB. The SmartMesh IP mote
needs to be set into “tail” mode. Switching between head and
tail mode is possible by connecting the SmartMesh IP mote
to the Eterna Interface Card (DC9006A). This operation only
needs to be done once.

Obviously, this hardware setup is large, fragile and cumber-
some. The Inria-AIO team has therefore designed the “AIOT
Play” board [165], shown in Fig. 3b. The two core elements
are still the LTC5800 as networking chip and an nRF as appli-
cation chip. The major difference to the first setup is that both
chips and their connections are already soldered on a common
Printed Circuit Board (PCB). In contrast to the nRF52840DK
from the first setup, the AIOT comes with a BC833M mod-
ule containing an nRF52833, which is also based on a 64 MHz
ARM Cortex-M4 micro-controller. Another difference between
the setups is the fact that the AIOT relies on 2XAA batteries as
its voltage supply. Additionally, an nRF JTAG connector is part
of the board and allows to program the BC833M module via
an external J-Link debugger or even via another nRF Develop-
ment Kit (DK) with an on-board debug chip. The AIOT Play
is designed to easily set up and deploy custom applications by
making use of the prototyping area, which contains a bread-
board, allowing you to build circuits without needing to solder.
On top of that, the AIOT Play is also well suited for teaching
purposes [166], motivated by concepts for academic courses on
6TiSCH [167]. The source code used on the AIOT Play is pub-

18

lished on GitHub [168].

5.2. SmartMesh IP C-Library

As mentioned in the beginning of this section, the
SmartMesh IP C-Library is an essential part of the SW run-
ning on the application chip. It handles the communication
via between the application chip and the networking mod-
ule via UART. The C-Library is open-source and available on
GitHub [163]. It can simply be included in the project by drop-
ping the directory sm_clib into your application and add it
to the build configuration, i.e., to CMakeLists.txt in case of
Zephyr, which relies on CMake.

Depending on the HW platform of the application chip, a port
of the library needs to be done. At most, three files, namely,
dn_uart.h, dn_lock.h and dn_endianness.h, need to be
modified. The functions in dn_uart.h allow the SmartMesh IP
C Library to send bytes over the serial port and receive bytes
from the serial port. A “flush” function is provided in case the
UART driver of the platform is buffer-oriented rather than byte-
oriented, e.g., if the serial port is driven through a Direct Mem-
ory Access (DMA) module. The SmartMesh C Library doesn’t
handle flow control. However, the networking chip does not
need incoming flow control (TX CTSn, RX RTSn) when the ap-
plication chip is sending. If the application chip cannot wake
up on data, monitoring the UART flow control pins is required.
In case of the used nRF in the presented HW setup this is not
the case and we can connect the flow control lines to GND and
VCC, respectively. The dn_lock.h file contains functions al-
lowing the library to operate in a multi-threaded environment
by defining Mutexs. Lastly, dn_endianness.h provides func-
tions for byte swapping operations. Although the LTC5800 on
the networking chip is a little-endian processor, all communi-
cation in the network is carried out in big-endian order accord-
ing to the TCP/UDP convention. If the used application chip
is based on a little-endian processor, the byte-swap functions
found in dn_endianness. c need to be used [163].

In this tutorial, we use the Zephyr RTOS which builds up on
the device tree concept which makes the port to different HW
platforms very easy, because it manages the configuration of
the Hardware Abstraction Layer (HAL) and driver functions. In
the device tree overlay file, we just need to activate the UART
module which we aim to use. When using the AIOT, PO. 09 for
Tx and PO. 10 for Rx of the application chip are connected to
the network chip. Therefore, these pins need to be assigned to
a UART device object in Zephyr’s device tree and afterwards
just set to active. Thus, in dn_uart.c we only need to fill
the dn_uart_init() and dn_uart_txByte() with the corre-
sponding UART functions provided by Zephyr. Furthermore an
ISR for the reception of bytes via the UART interface needs to
be defined.

To make the mote join the network spanned up by the
SmartMesh IP manager, we just need to kick off the FSM of the
library. Therefore, we may take over the concept of AIOT sam-
ple applications [168] where a file called ntw. c was created to
handle the interaction with the FSM. In Zephyr’s main () func-
tion we just need to call ntw_init () from ntw. c to initialize a
timer and schedule the first event in the FSM. At first, the UART



interface is initialized and a check if the SmartMesh IP mote
has booted is performed. The dn_ipmt_init() function then
issues a getParameter<moteStatus> command. If the net-
work chip is idle, i.e., the mote has just booted, the FSM keeps
on asking for the status until the mote is in operational mode.
Then the command getServiceInfo is sent. The library sets a
500 ms serial response timeout for the mote to respond, which is
rather conservative, as commands are expected to be answered
within 125 ms. Either a reply arrives, canceling the timer and
scheduling the next event, or it times out and the FSM returns
to the starting state. At the lower levels, each API call results in
a command buffer being constructed and passed to the function
dn_serial mt_sendRequest (), which in turn calls a series
of High-Level Data Link Control (HDLC) functions, which ul-
timately call the UART send function in dn_uart. c. After that,
the dn_ipmt_join() function transmits a join command to the
network chip. As soon as a reply arrives, the FSM moves to the
next state, otherwise it times out and the FSM restarts. Note
that it can take 10-20 seconds between the join command and
the mote becoming operational depending on the conditions.
So polling the state every second instead of instant reset may
be an option, too. Although this seems less efficient, it does not
have a large impact on the energy consumption, since joining
is an infrequent activity in general. When the SmartMesh IP
mote has reached the operational state, packets can be sent via
the dn_ipmt functions, which offer the possibility to open and
bind a communication socket and ultimately also send packets
via this socket. To obtain networking metrics such as the ones
in Table 3, dn_ipmt . c also offers a series of API calls.

The entire joining process is handled under the hood once
the FSM got started, so that simply calling the functions from
ntw.c inside the main application is sufficient to initiate the
joining process.

5.3. Integration of Memfault

In this section, we highlight the necessary steps to integrate
Memfault as monitoring framework into our described setup.

5.3.1. Including Memfault into Zephyr Project

Memfault can be included in Zephyr by editing the
west.yml file. “west” acts as a configuration and build sys-
tem for Zephyr and thus also manages the integration of differ-
ent Git repositories into the project. Therefore, the GitHub-
URL of the Memfault Firmware (FW) SDK [169] just has
to be provided in west.yml. When creating a new project
in the Memfault cloud, the generated project key needs to be
pasted in the prj . conf file behind the corresponding identifier
CONFIG_MEMFAULT _NCS_PROJECT_KEY when using the NCS.

5.3.2. Custom Settings for Metrics Collection

In the next step, we need to configure the process of
metrics collection. The NCS offers a small set of met-
rics out of the box which are collected in a default heart-
beat interval length of 1 hour. Obviously, we want to
add custom metrics and adjust the interval length. There-
fore, a config directory in the root folder can be cre-
ated. It may contain a memfault_platform config.h
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file for setting a heartbeat interval length by using the de-
fine MEMFAULT _METRICS_HEARTBEAT_INTERVAL_SECS. Addi-
tionally, in a memfault_metrics_heartbeat_ config.def
file, we can define custom metrics via the command
MEMFAULT METRICS KEY DEFINE(), which takes the met-
ric name and its corresponding type as arguments. Af-
ter that, we can place the corresponding Memfault heart-
beat functions for metric collection, i.e., for counters,
timers or gauges, at the appropriate places of the ap-
plication source code. The metrics intended to be col-
lected at end of the heartbeat interval must be sampled in
the memfault_metrics_heartbeat_collect_data function,
which is invoked when the heartbeat interval timer expires.

5.3.3. Data Packetizer

The data packetizer is the Memfault module that handles
the transformation of the collected metrics into a Memfault
chunk, which is then handed to the send function. A func-
tion template showing the usage of the data packetizer is avail-
able in the Memfault documentation [170]. The function is
called send memfault_data multi_part. In the beginning
the function checks if there is data available. This is the case
when metrics are ready to be sent due to the elapsed timer
of the heartbeat interval. Thus, the function can be theoreti-
cally called at any time since new data is just available when a
heartbeat interval is over. Therefore, it is recommended to call
the function immediately after the end of an interval. If met-
rics are available, a data buffer is created. The buffer should
have a size which fits into the payload element of the network
frame. IEEE 802.15.4 frames have a length of 127 B. How-
ever, due to the header and multiple control fields, the size is
significantly smaller and depends on the used protocol archi-
tecture [24]. In our setup based on SmartMesh IP, a payload
of up to 90 B is supported [171]. The buffer is handed to
the packetizer, which grabs the available metrics and enriches
them with some additional meta data and heartbeat informa-
tion. Additionally, a header is appended before the payload and
a CRC of the payload is computed and appended. The rest of
the provided buffer is filled with a certain pattern. The com-
plete structure of a Memfault chunk is shown in Fig. 4. In this
tutorial we try to keep the Memfault chunk as minimalistic as
possible to find out the smallest size a single chunk can have.
It turns out that there are several metrics that Memfault and
the NCS report by default. For testing purposes, we disable
them by setting CONFIG_MEMFAULT_METRICS_DEFAULT_SET
_ENABLE = n and CONFIG_MEMFAULT _NCS_STACK _METRICS
n in Zephyr’s proj.conf file. Furthermore, we define a
test metric, which is a simple gauge metric incremented by
a periodic timer. We end up with a metrics section consist-
ing of just 7 B. The “Metric Values” fields in our example
just consist of 1 timer metric (4 B), 2 counter metrics (1 B
each) and 1 gauge metric (1 B), i.e, in total 4 metrics (7 B).
In total, the Memfault chunk in Fig. 4 has a payload size of
43 B, from which 39 B are the actual payload. Besides the
metrics, Metadata and Heartbeat Information fills the payload
block. These values have a fixed size in general, but we can
specify the Device Version Info fields, where we chose “aiot”
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Figure 4. Structure of a minimalistic Memfault chunk.

as CONFIG_MEMFAULT_NCS_FW_TYPE. Since this information is
transmitted with every chunk, choosing short device version in-
formation is desirable in scenarios, where every byte counts.

In the following step, the packetizer serializes the the Mem-
fault chunk using CBOR and finally writes the chunk into the
buffer. After that, the buffer and the length of the chunk are
passed into send function, i.e, ntw_transmit from ntw. c call-
ing the send function of the the SmartMesh IP library. In the
library’s dn_serial mt_sendRequest function, the buffer is
copied into the UART buffer up to the chunk length, so that the
random pattern is not transmitted. Then the packet arrives via
UART at the networking chip, where it is ultimately sent out
via the chip’s radio into the network.

5.3.4. Network Edge

At the network edge, i.e, the BR in 6TiSCH networks, the
network manager is connected to an edge device with an inter-
net connection. In our setup the network edge consists of the
SmartMesh IP manager which is connected via USB to a com-
puter. From this point on, several options are possible to ensure
a reliable transfer of the Memfault chunks into the Memfault
cloud. In this tutorial we decide to run the JsonServer.py ap-
plication from the SmartMesh SDK [160] as explained in Sec-
tion 4.5. JsonServer.py connects to the SmartMesh IP Man-
ager serial API and converts the incoming notifications into
JSON-based HTTP messages. As part of this tutorial, we also
provide a second Python script, smip_to_memfault_exporter.py
[161]. This script takes the HTTP messages and pushes the
payload via the Memfault CLI [172] to the cloud. The Mem-
fault CLI is a tool, which acts as a client to Memfault’s HTTP
API and can be installed as Python package via pip3 install
memfault-cli. The CLI contains a post-chunk command,
which takes the Memfault chunk in hexadecimal format and the
project key as arguments.
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5.3.5. Memfault Cloud

The Memfault chunks finally arrive in the Memfault cloud,
where they need to be decoded. Therefore, one always needs
to upload the compiled FW file, e.g., zephyr.elf, which cur-
rently runs on the application chip. Based on the FW file, Mem-
fault parses the names of the metrics and combines them with
the meta data and values of the received Memfault chunk to
write the metrics into a database and visualize them properly.
In general, the Memfault cloud also stores older FW images
and thus is able to automatically assign older chunks to their
corresponding FW file based on a matching build_id, which
is part of the chunk’s metadata.

5.4. Performance Analysis

We conclude this tutorial section with a performance analy-
sis of the proposed monitoring solution in terms of power con-
sumption, security and efficiency. Furthermore, we propose im-
provement concepts, which may serve as ground for research in
future work.

5.4.1. Power Consumption

For estimating the current consumption of the motes in the
network, we rely on the SmartMesh IP Power and Performance
Estimator [173]. The tool is publicly available and estimates the
power consumption of a SmartMesh IP network based on differ-
ent parameters, such as payload size, reporting interval, number
of motes, hop-depths, temperature, etc. On top of that, it allows
to draw conclusions on the battery lifetime based on the calcu-
lated average current draw [36, Section 24]. In order to use the
estimator for our HW setup we need to make some assumptions
on the network. First of all we assume that the power consump-
tion of the application chip is comparatively small in contrast
to the radio activity at the networking chip. Furthermore, a
constant neighbor link PDR/path stability of 80% is presumed.
The resulting simulation to estimate the average current draw
of each mote is done based on a network consisting of 20 motes
in total and a maximum hop-depth of 4. We assume that the
motes are split up equally along the hops, i.e., 5 motes on each
hop-depth. Further simulation parameters are a temperature of
25 C and a constant payload size of 80 B. In the simulation, the
average current draw is calculated based on varying heartbeat
intervals. It is not the aim to show the overhead of the monitor-
ing solution on the actual system performance, but to demon-
strate the impact on power consumption of increasing reporting
interval lengths. Thus, we simply assume that the transmission
rate of the actual application increases proportionally with the
heartbeat rate and that the application payload is already part of
the simulated payload.

The results of the Power and Performance Estimator based
on the described setup are shown in Fig. 5.

We observe that the motes consume less when having a larger
hop-depth. Obviously, these hops have less children than for in-
stance the 1-hop motes, which need to forward the traffic from
the deeper motes in the mesh. Furthermore, the simulation
shows a high slope in current draw for the 1-hop, 2-hop and
3-hop motes when shortening the heartbeat interval lengths. In
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Figure 5. Estimated average current draw of the networking chip for
increasing heartbeat interval lengths.

contrast to that, a saturation is visible for almost all hop-depths
when the interval is greater than 10s. There is a minimum re-
port rate below which the impact on power consumption is neg-
ligible. The reason is that in a SmartMesh IP network, there
is some quantity of radio traffic needed to maintain time syn-
chronization across the network [36]. Although, many assump-
tions have been made, the simulation clearly shows the costs in
power consumption related to an increasing heartbeat interval
duration.

5.4.2. Security Considerations

According to the survey [3] in Section 1, security in IIoT
WSNs is the most important feature behind reliability. Thus,
we want to evaluate the monitoring solution proposed in this
tutorial in terms of security. Memfault provides a framework
for collecting and packetizing performance metrics on the de-
vice, as well as a cloud platform with a HTTP APIL It is the
responsibility of the user that the packets make their way from
the device to the Memfault cloud reliably and securely.

Security already starts at the mote, i.e., the application chip
and the networking chip. Therefore, concepts like the Arm
TrustZone [82] and secure boot mechanisms are in the focus
of current research [174]. However, the broad range of topics
related to security on IoT devices is out of scope of this work
and we look towards security in the mesh network.

Anyone can theoretically eavesdrop wireless packets trans-
mitted through the air. Indeed, there are so-called packet snif-
fers that can listen to all 16 channels in the IEEE 802.15.4 spec-
trum of the 2.4 GHz ISM band at the same time. Thus, TSCH
alone is not sufficient to protect data from outside listeners [36].
The goal of security protocols is that attackers, who manage to
grab the raw bits of every single packet still cannot decrypt the
information. Consequently, in this tutorial the security features
implemented in SmartMesh IP [36] are used and thus, the net-
work is secured in terms of:
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e Message Integrity: two 32-bit MICs are used at the link
layer and network layer, respectively. The goal is to guar-
antee that the packet is not altered at any hop on its path
and to decrypt and authenticate the packet at the destina-
tion.

e Access Control: A mote can only join the network by pre-
senting a correct 128-bit join key.

e Confidentiality: The message payload is encrypted with a
Counter with Cipher Block Chaining Message Authenti-
cation Code (CCM) stream cipher based on 128-bit AES.

e Replay Protection and Denial of Service (DoS) resistance:
A monotonically increasing 32-bit nonce counter is used in
the encryption process to avoid the sending of duplicates,
for instance by a third party.

In general, 6TiSCH networks rely on the OSCORE proto-
col [99] for providing end-to-end security between two CoAP
endpoints. The IETF Lightweight Authenticated Key Exchange
(LAKE) WG recently proposes the Ephemeral Diffie-Hellman
Over COSE (EDHOC) protocol as a standard which provides
a compact handshake implementation and supplies the session
keys to OSCORE [175]. Due to EDHOCs efficiency regarding
message footprints, it becomes a charming alternative to the es-
tablished Datagram Transport Layer Security (DTLS) solution
for protecting UDP messages [176].

Coming back to our tutorial and looking at the edge device,
we observe that the heartbeat messages are vulnerable for man-
in-the-middle attacks, as they need to find their way from the
SmartMesh IP manager API to the Memfault cloud. Since, the
messages may be manipulated or bugged at this point, a security
concept is part of future work. CBOR Object Signing and En-
cryption (COSE) [177] is an IETF standard for CBOR encryp-
tion, which is also used in EDHOC. Therefore, COSE may be
an obvious solution to secure the Memfault chunks, which are
already serialized with CBOR. In this case, the chunks would be
decrypted immediately before calling the Memfault CLI, which
sends the chunks to the cloud. On the way to the Memfault
cloud, the data is again secured by Hypertext Transfer Protocol
Secure (HTTPS).

5.4.3. Efficiency Considerations

Lastly, we analyze the performance of the monitoring solu-
tion presented in this tutorial regarding efficiency. When an-
alyzing the structure of the Memfault chunks from Fig. 4, we
have observed that the majority of the fields did not change.
In particular, only the metric values and consequently the CRC
change with each heartbeat interval. Thus, we obviously carry
a significant overhead in each heartbeat message. To post the
complete chunk to the Memfault cloud is certainly necessary,
since the metadata and heartbeat info fields serve for storing
the metric values correctly in the cloud database. However, the
question arises if there are methods to reduce this overhead in
each heartbeat message and what is the resulting gain in terms
of lowering the power consumption.



This problem has been extensively addressed in literature un-
der the topic of data aggregation and data compression. Data
aggregation describes the process of reducing the packet size
by combining the payload of packets when traversing through
the hops in the mesh network. The goal is to remove redundant
parts by manipulating some extracted features and statistics of
the data sets collected from sensor nodes like the minimum,
maximum and/or mean [178]. Data compression is a method-
ology which has its roots in information theory and finds ap-
plication in all kinds of communications engineering. A recent
literature survey on data compression in constrained networks
is given by Nassra et al. [179]. They sorted the presented com-
pression algorithms in two groups, namely lossy and lossless
data compression. However, we just consider lossless data com-
pression algorithms for our use case of reducing the message
size of the monitoring information. Massey et al. [180] have
presented a lossless packet compression algorithm for WSNs
based on a dictionary approach. Their approach relies on the
distribution of the same dictionary to all the motes, so that ev-
ery mote can compress data by searching for data patterns in the
payload, which is already stored in the dictionary. If the pattern
is included in the dictionary, the mote sends a much smaller key
instead of the original data. Since we observe that the vast ma-
jority of the fields in the Memfault chunks remains identical,
the proposed algorithm [180] delivers a simple and charming
solution to this problem.

In Fig. 5 we have seen the increase in current draw of the
networking chip, when choosing a smaller heartbeat interval
length, i.e., sending more packets. The current draw of motes
in wireless systems based on IEEE 802.15.4 is indeed domi-
nated by the number of packets and not so much by the packet
size [36, 130]. This means it is more efficient to put more pay-
load in one packet instead of splitting it up on two packets. Nev-
ertheless, there is still an increase in power consumption with
growing packet size. To analyze the impact of a larger packet
size on the power consumption, we set up another simulation,
which still relies on the same network parameters as for the
simulation results in Fig. 5. However, we now fix the heart-
beat reporting interval length to 20 s and vary the transmitted
payload size. The average current draw of the SmartMesh IP
LTC5800 networking chip is shown in Fig. 6.

When comparing the difference in terms of average current
draw between a payload size of 5 B and a payload size of 90 B,
we observe values of 10uA for the 1-hop motes and only 2uA
for the 4-hop motes. Obviously, the amount of energy saved by
choosing smaller heartbeat interval lengths is an order of mag-
nitude higher than the saving by smaller payload sizes achieved
through data aggregation and data compression. Nevertheless,
especially in ultra low-power wireless systems, every possibil-
ity of saving energy must be exploited in order to extend the
battery lifetime of the motes. Consequently, a task for future
work is to develop and analyze methods for data aggregation
and data compression in the context of APM.

We conclude this tutorial section by discussing the benefits
brought by the presented APM framework in contrast to the
introduced overhead in terms of power consumption. We have
highlighted that choosing a reasonable heartbeat interval length,
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Figure 6. Estimated average current draw of the networking chip for
increasing packet sizes.

i.e., not smaller than 10s, as well as an efficient way of com-
pressing the payload containing the metrics and the correspond-
ing meta-information, is the key to tipping the balance in favor
of the benefits. However, the remaining space in the message
frame can be filled with a larger number of metrics, since Mem-
fault is highly scalable thanks to an efficient strategy avoiding
sending the metric identifiers in each packet. The insights gath-
ered by such a broad set of performance metrics clearly help to
identify application dependent bottlenecks, aging related prob-
lems, networking issues and the performance of the entire net-
work. Moreover, many SW bugs remain undiscovered during
the testing process and just become visible once deployed in
the field under harsh conditions and after a significant runtime.
Implementing an active monitoring framework as in this tuto-
rial, which stores these metric values in a time series database
is essential to give the developer the opportunity to detect these
bugs and fix them as part of a SW update.

6. Conclusion

This article is both a survey and a tutorial.

In the survey part, we address the challenge of designing
APM solutions for low-power wireless systems. We survey per-
formance metrics from a broad set of literature sources. The
resulting overview of metrics forms the basis for designing a
strong APM framework. For each metric, we have defined
a motivation for continuously monitoring it during the oper-
ational phase of the system. The goal is to obtain a com-
plete and meaningful picture of the system’s health condition.
Additionally, we have highlighted performance metrics of an
RTOS, which is at the core of each mote in the network. To
the best of our knowledge, this work is the first comparing dif-
ferent RTOS implementations in terms of their in-built APM
features. Furthermore, we give practical implementation hints
for these RTOS metrics. The survey part of this article further



contains a section on state-of-the-art APM approaches in wire-
less systems. We cluster these approaches in different groups
and evaluate them based on verbosity and impact on the sys-
tem performance. In the remainder of this article, we analyze
active APM solutions and introduce common concepts for col-
lecting, exporting and processing the metrics. For the prob-
lem of exporting the metrics, comparing different serialization
strategies confirms that CBOR is the most desirable solution for
low-power systems, where a small reduction in terms of pay-
load size directly translates into a crucial power consumption
enhancement.

In the tutorial part, we provide a hands-on tutorial showing
a Proof of Concept (PoC) that the active monitoring frame-
work Memfault can be used inside a low-power wireless sys-
tem. SmartMesh IP is used to build up a network based on
IEEE 802.15.4. The source code for this tutorial is available
on GitHub [161] and comprises the FW running on the applica-
tion chip of the mote and a Python script running on the Edge
Device. Two possible HW setups for the motes are presented.
Both HW setups consist of an application chip and a networking
chip. In the first setup, the UART connection between the two
chips is realized by jumper wires, whereas the second setup, the
so-called AIOT, has both chips and their connection already sol-
dered on a common PCB. The FW of the application chip also
includes a version of the SmartMesh IP C-Library. This library
has been ported to Zephyr as part of this work and handles the
UART communication between the two chips. We guide the
reader through the integration of the APM solution Memfault
step-by-step. In the performance analysis of the tutorial, we
show that it is advantageous in terms of power consumption to
pack more metrics into one frame instead of splitting them up
on multiple frames. The Memfault monitoring framework de-
livers helpful tools for metric collection and exporting on the
device and for visualization in the cloud. We emphasize that
it is the responsibility of the system architect to ensure that the
Memfault heartbeats reliably make their way from the device to
the cloud. We propose methods for future work to enhance the
presented APM solution in terms of security and compression.
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