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A DEPTH-AVERAGED MODEL FOR GRANULAR FLOW

CONSISTENT WITH THE INCOMPRESSIBLE µ(I) RHEOLOGY

ÉMILE DELÉAGE1,2 AND GAËL L. RICHARD2

Abstract. We derive a depth-averaged model consistent with the µ(I) rheolo-
gy for an incompressible granular flow down an inclined plane. The first two

variables of the model are the depth and the depth-averaged velocity. The

shear is also taken into account via a third variable called enstrophy. The
obtained system is a hyperbolic system of conservation laws, with an additional

equation for the energy. The system is derived from an asymptotic expansion
of the flow variables in powers of the shallow-water parameter. This method

ensures that the model is fully consistent with the rheology. The velocity

profile is a Bagnold profile at leading order and the first-order correction to this
profile can be calculated for flows that are not steady uniform. The first-order

correction to the classical granular friction law is also consistently written. As

a consequence, the instability threshold of the steady uniform flow is the same
for the depth-averaged model and for the governing equations. In addition,

a higher-order version that contains diffusive terms is also presented. The

spatial growth rate, the phase velocity and the cutoff frequency of the version
with diffusion are in good agreement with the experimental data and with the

theoretical predictions for the rheology. The mathematical structure of the

equations enables to use well-known and stable numerical solvers. Numerical
simulations of granular roll waves are presented. The model has the same

limitations as the µ(I) rheology, in particular for the solid/ liquid and liquid/gas

transitions, and needs therefore a regularization for these transitions.

1. Introduction

The concept of granular fluid can be used in order to model the flow of a large
quantity of solid particles (see Andreotti et al. (2013)). In dense regimes, the
particles tend to stay in contact with each other and a macroscopic behaviour can
be observed. This kind of flow can be found in many geophysical contexts, for
which, in the presence of topography, the flow is driven by gravity. Two examples
are landslides or dry snow avalanches. Modelling the flow of granular media with
a good accuracy is thus of crucial importance in a large range of applications.

Granular flows exhibit complex behaviours that are distinct from more “classical”
flows. In the context of flow down an inclined plane, a way to model these
particular aspects is to use an adequate friction law. Granular friction laws were
first introduced at the depth-averaged level. A first model was made in 1989 by
Savage and Hutter (1989). More recently, an empirical approach was used by
Pouliquen (1999) and refined by Pouliquen and Forterre (2002) to derive a friction
law based on experimental observations, still at the depth-averaged level. In this
law, the friction coefficient µ is a function of the dimensionless parameter I, called
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inertial number. The inertial number is interpreted as a ratio between two time-
scales related to the microscopic structure of the granular media (GDR MiDi, 2004).
This µ(I) rheology was then generalized into a constitutive law at the bulk level,
for two-dimensional (2D) flows (GDR MiDi, 2004; Pouliquen et al., 2005; Jop et al.,
2005) and three-dimensional (3D) flows (Jop et al., 2006; Forterre, 2006).

For numerical applications, depth-averaged models present the advantage of a
reduced computation time. Various depth-averaged models have been derived, for
instance by Pouliquen and Forterre (2002), Forterre and Pouliquen (2003), Forterre
(2006), Gray and Edwards (2014). We also mention the work by Mangeney-
Castelnau et al. (2003), Mangeney-Castelnau et al. (2005) and Mangeney et al.
(2007), for numerical simulations of such depth-averaged models. In the case of thin
layers, depth-averaged models can be derived by introducing a small parameter ε,
which is a ratio between a vertical and a horizontal length scale, and by using an
asymptotic method with a systematic expansion of the equations as power series of
the parameter ε. The leading order, or zeroth order in ε, governs the steady uniform
flows. For flows that are not steady uniform, it is important to ensure consistency
up to the first order in ε. This method was already used to derive consistent depth-
averaged models for Newtonian fluids (Ruyer-Quil and Manneville, 2000; Richard
et al., 2016) and viscoplastic flows (Denisenko et al., 2023), but no depth-averaged
model of dense granular flow consistent with the incompressible µ(I) rheology has
been derived. As a consequence, the instability threshold of steady uniform flows
of the existing models is different from the theoretical one that was obtained by
Forterre (2006) with the µ(I) rheology.

The formation of roll waves for dense granular flows was experimentally observed
by Forterre and Pouliquen (2003) above a critical Froude number. They also
measured the phase velocity and the spatial growth rate. They showed the existence
of a cut-off frequency, above which the instability disappears. This cut-off frequency
does not appear in models that only take into account friction effects. For such
models, the roll wave instability occurs above a critical Froude number for a
perturbation with an arbitrarily large frequency, whereas the experiments show that
there is no instability above the cut-off frequency. However, this cut-off frequency
was successfully obtained with more complete models that also include diffusive
effects, which are of second order in ε. This is the case of the models of Forterre
(2006) and Gray and Edwards (2014) for instance. Although the expressions of the
diffusive terms proposed in these models are different from each other, they both
predict a cut-off frequency in agreement with the experimental data of Forterre and
Pouliquen (2003), and they also predict efficiently the spatial growth rate. Hence
the inclusion of diffusion is important for modelling roll-waves in dense granular
flows.

If a no-slip condition is assumed at the bottom, the flow is strongly sheared
and shear effects cannot be consistently neglected in the depth-averaged model. A
first approach that has been used by Forterre and Pouliquen (2003) and Gray and
Edwards (2014) is to introduce a parameter α, called shape factor, which depends
on the velocity profile. For a sheared flow, the shape factor is always greater
than 1. In the case of steady and uniform granular flows, the velocity profile is
a Bagnold profile (Andreotti et al., 2013) and the shape factor is equal to 5/4.
However, if a shape factor α ̸= 1 is used in a shallow-water model, there is no
energy balance equation for the system. It is usually better to use α = 1, thus
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loosing the consistency for a sheared flow. Another approach, which was initiated
by Teshukov (2007) and developed by Richard and Gavrilyuk (2012), is to take the
shear into account with an additional variable, which was called enstrophy because
it is related to the square of the vorticity. The depth-averaged model is thus a
system of three variables. The first two variables, which are the depth of the flow
and the depth-averaged velocity, are the usual variables for shallow-water equations.
The third variable is the enstrophy. In one dimension (1D), the obtained model
is a hyperbolic system of conservation laws analogous to the compressible Euler
equations. This enables to use well-known reliable and stable numerical schemes.
This approach is quite general and has been used to derive depth-averaged models
in various contexts, see for instance Richard et al. (2016), Denisenko et al. (2023),
Richard (2024).

In this paper, we derive a depth-averaged model from the bulk µ(I) rheology.
Our first goal in this work is to obtain a fully consistent model, up to order 1 in ε.
The paper is organized as follows: in §2, we present the equations that govern the
motion of the granular medium, as well as their dimensionless form in the long-wave
asymptotic. In §3, we derive explicitly the asymptotic expansions at orders 0 and 1
in ε. In §4, the depth-averaged model is derived. The model is analysed in §5 and is
compared with experimental data of Forterre and Pouliquen (2003). An extended
version of the model, that takes into account diffusive effects, is given in §5.4. The
need for a regularized model is explained in §6.

2. Governing equations

2.1. Constitutive equations. We study the flow of a granular fluid, which is
described by its density ρ and its velocity v. We assume that the fluid is made of
solid particles. Hence the density is proportional to ϕ the volume fraction of the
beads and is written

(2.1) ρ = ρpϕ,

where the constant ρp is the density of the beads. We also suppose that the volume
fraction ϕ is constant, which implies that the flow is incompressible. We assume
that the fluid is flowing down an inclined plane that makes an angle θ with the
horizontal. The motion of the fluid is described by the Navier-Stokes equations,
which read in the incompressible case with constant density

(2.2)

∂ρv

∂t
+ div (ρv ⊗ v) = divσ + ρg,

div v = 0,

ϕ = ϕc constant.

The second order tensor σ is called the Cauchy stress tensor and can be written

(2.3) σ = −pId + τ ,

where Id is the identity tensor. The quantity p is the pressure and τ is the deviatoric
stress tensor. It is given by the constitutive law

(2.4) τ = ηeγ̇,

where

(2.5) γ̇ = gradv + (gradv)
T
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Figure 1. Definition sketch.

is the strain-rate tensor and ηe is an effective viscosity. In the isotropic case, ηe is
a scalar. In order to define the effective viscosity, we introduce the inertial number
I, which is a dimensionless parameter given by the relation (GDR MiDi, 2004)

(2.6) I =
|γ̇|d√
p/ρp

.

The quantity d is the diameter of a bead, and |γ̇| is the norm of the second order
tensor γ̇, defined by

(2.7) |γ̇| =
√

γ̇ : γ̇

2
.

We also introduce the friction coefficient µ(I), which depends only on I. The
dependence is experimentally determined with three constants µ1, µ2 and Im as
(Jop et al., 2006)

(2.8) µ(I) = µ1 +
µ2 − µ1

1 + Im/I
.

The two constants µ1 and µ2 are limit cases: the value µ2 is the maximal value
of µ(I), obtained when I → ∞, the value µ1 is the minimal value, obtained when
I = 0, and the granular fluid only flows when |τ | > µ1p. Note that this relation
can be inverted to write

(2.9) I = Im
µ− µ1

µ2 − µ

The expression of the effective viscosity is then

(2.10) ηe = µ(I)
p

|γ̇|
.

We denote by z the coordinate in the direction normal to the inclined plane and by
x the coordinate in the direction parallel to the inclined plane (see Figure 1). The
components of the velocity v are u and w in the x-direction and in the z-direction
respectively.

The system (2.2) admits an energy balance equation. The mechanical energy
density E of the fluid is equal to the sum of the kinetic energy density and the
gravitational potential energy density:

(2.11) E =
1

2
ρ|v|2 − ρgx sin θ + ρgz cos θ.
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The energy balance equation is then

(2.12)
∂E

∂t
+ div (Ev) = div (σ · v)− σ : γ̇

2
.

Using the incompressibility condition, Equation (2.12) can also be written

(2.13)
∂E

∂t
+ div [(E + p)v] = div (τ · v)− τ : γ̇

2
.

The granular fluid is assumed to be delimited downwards by the inclined plane
at z = 0, and a free surface upwards at z = h. The field h is a function of (t, x). For
any field f depending on the variable z, we write f(0) := f |z=0, and f(h) := f |z=h.
We denote by n(t, x) the unit vector normal to the free surface and pointing outward
the flow. It is given by

(2.14) n =
1√

1 + |∂h/∂x|2

(
−∂h
∂x
, 1

)T

.

We can now define the boundary conditions satisfied by the velocity:

– At z = 0, we assume a non-penetration condition given by

(2.15) w(0) = 0,

as well as a no-slip condition, given by

(2.16) u(0) = 0.

– At z = h, the velocity drives the evolution of the free surface via the
kinematic boundary condition

(2.17)
∂h

∂t
+ u(h)

∂h

∂x
= w(h).

The dynamic boundary condition states that the normal stresses are continuous
across the free surface. The normal stress above the free surface is given by the
atmospheric pressure patm. Without loss of generality, this constant can be taken
equal to zero. This leads to the equation

(2.18) σ(h) · n = 0,

which expands as 
τxz(h) + p(h)

∂h

∂x
− τxx(h)

∂h

∂x
= 0,(2.19a)

τzz(h)− p(h)− τxz(h)
∂h

∂x
= 0.(2.19b)

2.2. Dimensionless form of the equations. We write here all equations in a
non-dimensional form. In order to do so, we denote, for any field f , a corresponding
dimensionless field by f̃ .

We assume here that the flow occurs at a typical horizontal scale L0, and a
typical vertical scale h0, such that ε = h0/L0 ≪ 1 is a small parameter. We also
assume that the horizontal velocity is of order u0, such that the Froude number

(2.20) F =
u0√
gh0
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is of O(1), as it is the case for instance in the experiments performed by Pouliquen
(1999) and Forterre and Pouliquen (2003). We introduce the following dimensionless
variables:

(2.21) x̃ =
x

L0
, z̃ =

z

h0
, h̃ =

h

h0
.

The time and velocity are scaled according to the usual shallow-water scaling as

(2.22) t̃ = t
u0
L0
, ũ =

u

u0
, w̃ =

w

εu0
,

The dimensionless pressure, density and size of the beads are found by

(2.23) p̃ =
p

ρpgh0
, ρ̃ =

ρ

ρp
= ϕ, d̃ =

d

h0
.

We also scale the deviatoric stress tensor as

(2.24) τ̃xx =
τxx

ερpgh0
, τ̃zz =

τzz
ερpgh0

, τ̃xz =
τxz
ρpgh0

and the strain-rate tensor and energy as

(2.25) |˜̇γ| = |γ̇|h0
u0
, Ẽ =

E

ρpu20
.

We obtain

(2.26) τ̃xx = 2µ(I)
p̃

|˜̇γ|
∂ũ

∂x̃
, τ̃zz = 2µ(I)

p̃

|˜̇γ|
∂w̃

∂z̃
, τ̃xz = µ(I)

p̃

|˜̇γ|

(
∂ũ

∂z̃
+ ε2

∂w̃

∂x̃

)
.

with

(2.27) I =
|˜̇γ|d̃√
p̃
F,

and

(2.28) |˜̇γ| =

[(
∂ũ

∂z̃
+ ε2

∂w̃

∂x̃

)2

+ 2ε2
(
∂ũ

∂x̃

)2

+ 2ε2
(
∂w̃

∂z̃

)2
]1/2

.

The dimensionless energy reads

(2.29) Ẽ =
1

2
ϕ
(
ũ2 + ε2w̃2

)
− ϕ sin θ

εF 2
x̃+

ϕ cos θ

F 2
z̃.

The divergence-free condition stays true for the new variables:

(2.30)
∂ũ

∂x̃
+
∂w̃

∂z̃
= 0.

The momentum equation in the x-direction becomes

(2.31)
∂ϕũ

∂t̃
+
∂ϕũ2

∂x̃
+
∂ϕũw̃

∂z̃
=
ϕ sin θ

εF 2
− 1

F 2

∂p̃

∂x̃
+

ε

F 2

∂τ̃xx
∂x̃

+
1

εF 2

∂τ̃xz
∂z̃

.

In the z-direction, we obtain

(2.32) ε2
(
∂ϕw̃

∂t̃
+
∂ϕũw̃

∂x̃
+
∂ϕw̃2

∂z̃

)
= −ϕ cos θ

F 2
− 1

F 2

∂p̃

∂z̃
+

ε

F 2

∂τ̃xz
∂x̃

+
ε

F 2

∂τ̃zz
∂z̃

.

The energy equation (2.13) gives

∂Ẽ

∂t̃
+ div

[(
Ẽ +

p̃

F 2

)
ṽ

]
=

1

F 2

[
ũ

(
ε
∂τ̃xx
∂x̃

+
1

ε

∂τ̃xz
∂z̃

)
+ εw̃

(
∂τ̃xz
∂x̃

+
∂τ̃zz
∂z̃

)]
,

(2.33)
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where we denoted by ṽ the dimensionless velocity field.
Finally, we can rewrite the boundary conditions. For the velocity, we obtain

(2.34) ũ(0) = 0, w̃(0) = 0,
∂h

∂t
+ ũ(h̃)

∂h̃

∂x̃
= w̃(h̃).

Equations (2.19) become in the new variables
τ̃xz(h̃) + εp̃(h̃)

∂h̃

∂x̃
− ε2τ̃xx(h̃)

∂h̃

∂x̃
= 0,(2.35a)

ετ̃zz(h̃)− p̃(h̃)− ετ̃xz(h̃)
∂h̃

∂x̃
= 0.(2.35b)

3. Asymptotic expansion up to the first order

We now make the hypothesis that every variable f of the problem admits an
asymptotic expansion as

(3.1) f = f (0) + εf (1) +O(ε2).

We thus write such an expansion for every dimensionless variable of the problem.
Injecting these expansions into the mass conservation law (2.30), the momentum
balance equations (2.31)–(2.32) and the constitutive law (2.26), taking into account
the boundary conditions, we can compute explicitly all terms in the expansions up
to order 1.

3.1. Order 0. At leading order, we obtain from Equations (2.31), (2.32), (2.35)
the following relations:

0 =
ϕ sin θ

F 2
+

1

F 2

∂τ̃
(0)
xz

∂z̃
,(3.2)

0 = −ϕ cos θ
F 2

− 1

F 2

∂p̃

∂z̃

(0)

(3.3)

0 = τ̃ (0)xz (h̃),(3.4)

0 = p̃(0)(h̃).(3.5)

We integrate the first two equations between z̃ and h̃ using the conditions at z̃ = h̃
to obtain

(3.6) τ̃ (0)xz = ϕ sin θ(h̃− z̃)

and

(3.7) p̃(0) = ϕ cos θ(h̃− z̃).

The pressure is thus hydrostatic at this order. Equation (2.27) gives, after using
the physical assumption that ∂ũ(0)/∂z̃ > 0,

(3.8) |˜̇γ|(0) = ∂ũ(0)

∂z̃
.

Equation (2.26) then gives

(3.9) τ̃ (0)xz = µ(0)p̃(0)

with µ(0) = µ(I(0)). We have µ(0) = τ
(0)
xz /p(0). This yields

(3.10) µ(0) = tan θ.
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At order 0, the friction coefficient has the same expression as in the case of a steady
uniform flow. The expression of the inertial number at order 0 is

(3.11) I(0) =
tan θ − µ1

µ2 − tan θ
Im

by (2.9). It follows from (3.8) and (2.27) that

(3.12)
∂ũ(0)

∂z̃
=
I(0)

d̃F

√
ϕ cos θ(h̃− z̃),

that we integrate using (2.34) to obtain

(3.13) ũ(0) =
2Ã

3

[
h̃3/2 −

(
h̃− z̃

)3/2]
,

where we defined

(3.14) Ã =
I(0)

d̃F

√
ϕ cos θ, and A =

I(0)
√
ϕg cos θ

d
.

At order 0, the velocity profile in the z-direction is a Bagnold profile, as expected
from the µ(I)-rheology. At this order, the depth-averaged velocity is Ũ (0) =

2Ãh̃3/2/5. If the characteristic velocity u0 and the vertical scale h0 are taken
equal respectively to the depth-averaged velocity and depth of the steady uniform
flow, then Ã = 5/2.

We deduce, using (2.30) ,

(3.15)
∂w̃

∂z̃

(0)

= Ã

[(
h̃− z̃

)1/2
− h̃1/2

]
∂h̃

∂x̃
,

which is integrated as

(3.16) w̃(0) = Ã

[
2

3
h̃3/2 − 2

3

(
h̃− z̃

)3/2
− z̃h̃1/2

]
∂h̃

∂x̃
.

Finally, we use (2.26) to obtain

(3.17) τ̃ (0)xx = −τ̃ (0)zz = 2ϕ sin θ

[
h̃1/2

(
h̃− z̃

)1/2
− h̃+ z̃

]
∂h̃

∂x̃
.

3.2. Order 1. We now investigate Equations (2.31), (2.32) and (2.35) at the first
order. At this order of accuracy, these equations become

∂ũ

∂t̃

(0)

+ ũ(0)
∂ũ

∂x̃

(0)

+ w̃(0) ∂ũ

∂z̃

(0)

= − 1

ϕF 2

∂p̃

∂x̃

(0)

+
1

ϕF 2

∂τ̃
(1)
xz

∂z̃
,(3.18)

0 = − 1

F 2

∂p̃

∂z̃

(1)

+
1

F 2

∂τ̃xz
∂x̃

(0)

+
1

F 2

∂τ̃zz
∂z̃

(0)

(3.19)

0 = τ̃ (1)xz (h̃) + p̃(0)(h̃)
∂h̃

∂x̃
,(3.20)

0 = τ̃ (0)zz (h̃)− p̃(1)(h̃)− τ̃ (0)xz (h̃)
∂h̃

∂x̃
.(3.21)

In view of the values of τ̃
(0)
xz (h̃), τ̃

(0)
zz (h̃) and p̃(0)(h̃) (see (3.6), (3.17) and (3.7)), we

obtain from the two last equations

(3.22) τ̃ (1)xz (h̃) = p̃(1)(h̃) = 0.
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We inject the values of ũ(0), w̃(0) and p̃(0), using Equation (2.34) to express ∂h̃/∂t̃

at the leading order as ∂h̃/∂t̃ = −Ãh̃3/2∂h̃/∂x̃, to obtain

(3.23)
∂τ̃

(1)
xz

∂z̃
= ϕ

∂h̃

∂x̃

[
cos θ +

F 2Ã2

3

(
h̃1/2(h̃− z̃)3/2 − h̃2

)]
.

This expression is integrated between z̃ and h̃ with the boundary condition. This
yields

(3.24) τ̃ (1)xz = ϕ
∂h̃

∂x̃

[
F 2Ã2

3

(
(h̃− z̃)h̃2 − 2

5
h̃1/2(h̃− z̃)5/2

)
− cos θ(h̃− z̃)

]
.

We now inject the values of τ̃
(0)
xz and τ̃

(0)
zz into the second equation. We find

(3.25)
∂p̃

∂z̃

(1)

= ϕ sin θ
∂h̃

∂x̃

 h̃1/2(
h̃− z̃

)1/2 − 1

 ,
which is integrated between z̃ and h̃ to calculate the expression of the first-order
correction to the pressure as

(3.26) p̃(1) = ϕ sin θ
∂h̃

∂x̃

[
h̃− z̃ − 2h̃1/2

(
h̃− z̃

)1/2]
.

We also obtain from (2.28)

(3.27)
∣∣∣˜̇γ∣∣∣(1) = ∂ũ

∂z̃

(1)

.

Hence, with (2.26), we can write τ̃
(1)
xz = µ(I)(1)p̃(0) + µ(I)(0)p̃(1). Therefore, the

first-order correction to the friction coefficient can be consistently written as µ(1) =

(τ̃
(1)
xz − µ(0)p̃(1))/p̃(0), which leads to the expression

(3.28)

µ(1) =
∂h̃

∂x̃

[
F 2Ã2

3 cos θ

(
h̃2 − 2

5
h̃1/2(h̃− z̃)3/2

)
− 1

cos2 θ
+ 2h̃1/2(h̃− z̃)−1/2 tan2 θ

]
.

We now deduce the expression of the first-order correction to the inertial number,
writing

(3.29) I(1) =
∂I

∂µ

∣∣∣∣
µ(0)

µ(1),

to find

(3.30) I(1) = Im
µ2 − µ1

(µ2 − tan θ)
2µ

(1).

We can write

(3.31) I(1) = B I(0)µ(1)

where B = (∂ ln I/∂µ)(µ = tan θ) or

(3.32) B =
µ2 − µ1

(µ2 − tan θ)(tan θ − µ1)
.
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At first order, the expansion of (2.27) gives

(3.33)
∣∣∣˜̇γ∣∣∣(1) = 1

d̃F

(
I(1)

√
p(0) +

I(0)p(1)

2
√
p(0)

)
.

Equations (3.26), (3.31), (3.27) and (3.7) can be used to obtain

(3.34)

∂ũ

∂z̃

(1)

= Ã
∂h̃

∂x̃

{
BF 2Ã2

3 cos θ

[
h̃2
(
h̃− z̃

)1/2
− 2

5
h̃1/2

(
h̃− z̃

)2]
−
B
(
h̃− z̃

)1/2
cos2 θ

+ 2Bh̃1/2 tan2 θ +
tan θ

2

(
h̃− z̃

)1/2
− h̃1/2 tan θ

}
.

The integration of this expression leads to

(3.35)

u(1) = Ã
∂h̃

∂x̃

{
2BF 2Ã2

9 cos θ

[
h̃2
(
h̃3/2 −

(
h̃− z̃

)3/2)
− h̃1/2

5

(
h̃3 −

(
h̃− z̃

)3)]

+

(
tan θ − 2B

cos2 θ

) h̃3/2 −
(
h̃− z̃

)
3

3/2

+ (2B tan θ − 1) h̃1/2z̃ tan θ

}
,

which is the consistent first-order correction to the Bagnold velocity profile.

4. Derivation of the depth-averaged equations

4.1. Averaged variables. We now define depth-averaged variables, and give an
explicit asymptotic expansion of these variables up to the first order.The average
over the depth of any quantity X is defined as

(4.1) ⟨X⟩ = 1

h

∫ h

0

X dz.

To lighten the notation, the depth-averaged velocity is denoted by U = ⟨u⟩. The

average velocity Ũ admits an asymptotic expansion given by

(4.2) Ũ = Ũ (0) + εŨ (1) +O(ε2),

where, by (3.13),

(4.3) Ũ (0) =
2

5
Ãh̃3/2,

and, from (3.35), after some computations,

Ũ (1) =
ÃB

10

∂h̃

∂x̃

[
F 2Ã2

cos θ
h̃7/2 +

(
6 tan2 θ − 4− 3 tan θ

B

)
h̃3/2

]
.(4.4)

Note that the first-order correction U (1) can be written

(4.5) Ũ (1) =
Ũ − Ũ (0)

ε
+O(ε) =

1

ε

(
Ũ − 2

5
Ãh̃3/2

)
+O(ε),
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To simplify the notations, we define C = tan θ(2 tan θ − 1/B), i.e.

(4.6) C = tan2 θ + tan θ

[
(tan θ − µ1)

2

µ2 − µ1
+ µ1

]
.

Note that C = C(θ) is a positive increasing function of θ. It takes values in the
interval [2µ 2

1 , 2µ
2
2 ] if θ ∈ [arctanµ1, arctanµ2]. With this new notation, the function

Ũ (1) can be written:

(4.7) Ũ (1) =
ÃB

10

∂h̃

∂x̃

[
F 2Ã2

cos θ
h̃7/2 + (3C − 4)h̃3/2

]
.

We also define a quantity, called enstrophy, as ψ =
〈
(u− U)2

〉
/h2. The enstrophy

takes into account shear effects. It is zero for a velocity constant in the depth and
positive otherwise. The enstrophy is scaled as ψ = ψ̃u20/h

2
0. With this definition,

h̃
〈
ũ2
〉
= h̃Ũ2 + h̃3ψ̃. Similarly, ψ̃ expands as ψ̃ = ψ̃(0) + εψ̃(1) +O(ε2), where

(4.8) ψ̃(0) =
Ã2h̃

25
is the consistent expression of the enstrophy for a Bagnold profile, and

(4.9) ψ̃(1) =
Ã2B

25

∂h̃

∂x̃

[
6F 2Ã2

11 cos θ
h̃3 +

(
13

7
C − 2

)
h̃

]
.

At leading order, the enstrophy and the depth-averaged velocity satisfy the relation

(4.10) ψ̃(0) =
(Ũ (0))2

4h̃2
.

Note that this expression gives at leading order h⟨(u(0))2⟩ = (5/4)h(U (0))2. This
is consistent with the shape factor 5/4 which is obtained for a Bagnold velocity
profile. However, using the additional quantity enstrophy and a three-equation
model instead of a shape factor and a two-equation model modifies and improves
the mathematical structure of the model. In particular, a three-equation model
admits an energy balance equation, which is not the case for a two-equation model
with a shape factor different from 1.

The relation (4.10) leads to the expansion

(4.11) ψ̃ − Ũ2

4h̃2
= ε

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
+O(ε2).

The leading term of (4.11) can be computed with Equations (4.9) and (4.7). We
obtain

(4.12) ψ̃(1) − ÃŨ (1)

5h̃1/2
=
Ã2B

10

∂h̃

∂x̃

(
F 2Ã2

55 cos θ
h̃3 +

C

7
h̃

)
.

This expression is useful to write consistently a relaxation term for the enstrophy.

4.2. Depth-averaged mass and momentum equations. We now want to derive
evolution equations for the depth-averaged variables. We first integrate the diver-
gence free condition (2.30) between 0 and h̃. Using the kinematic boundary condition
(2.34), we obtain the depth-averaged mass conservation equation

(4.13)
∂h̃

∂t̃
+
∂h̃Ũ

∂x̃
= 0.
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In order to derive an equation for Ũ , we integrate (2.31) between 0 and h̃ using the
boundary condition (2.34). This leads to a preliminary expression of the depth-
averaged momentum balance equation
(4.14)

∂h̃Ũ

∂t̃
+

∂

∂x̃

(
h̃Ũ2 + h̃3ψ̃ +

1

ϕF 2

∫ h̃

0

p̃dz̃

)
=

1

εϕF 2

(
ϕ sin θh̃− τ̃xz(0)

)
+O(ε).

We first compute the integral of the pressure p̃. By using the expression (3.7) of
p̃(0), we obtain ∫ h̃

0

p̃dz̃ =

∫ h̃

0

p̃(0)dz̃ +O(ε) =
ϕh̃2 cos θ

2
+O(ε).(4.15)

Equation (4.14) thus yields

(4.16)
∂h̃Ũ

∂t̃
+

∂

∂x̃

(
h̃Ũ2 + h̃3ψ̃ +

h̃2 cos θ

2F 2

)
=

1

εϕF 2

(
ϕ sin θh̃− τ̃xz(0)

)
+O(ε).

We now need to find an expression for the basal friction τ̃xz(0). The basal friction

for a granular flow can be written τ̃xz(0) = µbϕh̃ cos θ (Andreotti et al., 2013) where

(4.17) µb = µ1 +
µ2 − µ1

Im
2h̃3/2

√
ϕ cos θ

5d̃F Ũ
+ 1

.

This expression can be written

(4.18) µb = µ1 +
µ2 − µ1

Im
I(0)

Ũ (0)

Ũ
+ 1

which means that µb = µ(I = I(0)Ũ/Ũ (0)) such that µ
(0)
b = µ(0). This friction

law is thus consistent at order 0 with the µ(I) rheology, and it was successfully

used in several depth-averaged models. However, whereas τ̃
(0)
xz (0) = µ

(0)
b ϕh̃ cos θ, it

is important to stress that this relation is not satisfied at order 1 (i.e. τ̃
(1)
xz (0) ̸=

µ
(1)
b ϕh̃ cos θ), which implies that this friction law is not consistent at order 1 with

the rheology. The expansion of µb = µ(I = I(0)Ũ/Ũ (0)) gives

(4.19) µb = µ(0) + ε
∂µ

∂I

∣∣∣∣
I(0)

I(0)

Ũ (0)
Ũ (1) +O(ε2)

which can be written as

(4.20) µb = µ(0) + ε
Ũ (1)

BŨ (0)
+O(ε2).

Using Equations (3.6), (3.7) and (3.24), the shear stress at the bottom can be
written

(4.21) τ̃xz(0) = µ(0)ϕh̃ cos θ + εϕ
∂h̃

∂x̃

(
F 2Ã2

5
h̃3 − h̃ cos θ

)
+O(ε2).

Subtracting µbϕh̃ cos θ from τ̃xz(0) leads to the expression of the first-order correction
to the friction law

(4.22) τ̃xz(0)− µbϕh̃ cos θ = εϕR cos θ +O(ε2),
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where

(4.23) R = −∂h̃
∂x̃

(
F 2Ã2

20 cos θ
h̃3 +

3C

4
h̃

)
.

Equation (4.16) can then be written

(4.24)
∂h̃Ũ

∂t̃
+
∂

∂x̃

(
h̃Ũ2 + h̃3ψ̃ +

h̃2 cos θ

2F 2

)
=
h̃ cos θ

εF 2
(tan θ − µb)−R

cos θ

F 2
+O(ε).

In order to derive a model with a satisfactory mathematical structure, we now need
to find an expression for the first-order correction to the friction law, i.e. the term
−R cos θ/F 2. We choose to split R into two terms. The first term is written in
the left-hand side of Equation (4.24) as a flux, and the second term is written in
the right-hand side and is expressed as a relaxation term. More precisely, for any
λ ≥ 0, we can write consistently, using Equation (4.12)

(4.25) − cos θ

F 2
R = C

(
3

4
− λ

7

)
∂

∂x̃

(
h̃2 cos θ

2F 2

)
+

(
5

16
− 5λ

44

)
∂

∂x̃

(
h̃3ψ̃(0)

)
+ λ

10 cos θ

F 2Ã2B

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
.

The parameter λ can be freely chosen with no loss of consistency. There is thus an
infinite number of consistent models, which are all equivalent in the validity domain
of the asymptotic expansion, i.e. in the shallow-water approximation, but which
differ outside this domain. The arguments detailed in §5 lead us to choose

(4.26) λ =
847(4− 3C)

20(157C + 84)
.

We can now inject this expression of R into Equation (4.24). We obtain

∂h̃Ũ

∂t̃
+

∂

∂x̃

(
h̃Ũ2 + βh̃3ψ̃ +K

h̃2 cos θ

2F 2

)
=

cos θ

εF 2

[
h̃(tan θ − µb) +

10λ

Ã2B

(
ψ̃ − Ũ2

4h̃2

)]
+O(ε),

(4.27)

where

(4.28) β =
11

16
+

5λ

44
, and K = 1− 3C

4
+
λC

7
.

Equation (4.27) is consistent at the first order of accuracy. The first-order correction
to the usual granular friction law is written partly as a relaxation term in the
right-hand side and partly in the momentum flux as corrections to the hydrostatic
pressure term (K) and to the enstrophy term (β). The latter term also models
shearing effects in the granular flow. The structure of this equation is similar to
other models with enstrophy (Denisenko et al. (2023) for example) with an effective
enstrophy equal to βψ. There is also a factor K in the hydrostatic pressure term.

4.3. Depth-averaged energy equation. In order to close the system of equations
obtained for h̃ and Ũ in the previous section, we need to find an evolution equation
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for the variable ψ̃. Such an equation can be obtained from the equation of energy
(2.33). We first rewrite equation (2.33) as:

(4.29)
1

2

∂ũ2

∂t̃
+ div

[(
ũ2

2
− x̃ sin θ

εF 2
+
ϕz̃ cos θ + p̃

ϕF 2

)
ṽ

]
=

1

εϕF 2
ũ
∂τ̃xz
∂z̃

+O(ε).

The integration of Equation (4.29) between 0 and h̃, using the boundary conditions
(2.34) and (2.35b) and the incompressibility condition (2.30), gives

∂

∂t̃

(∫ h̃

0

ũ2

2
dz̃ +

h̃2

2F 2
cos θ

)
+

∂

∂x̃

∫ h̃

0

(
ũ3

2
+
ũ(p̃+ ϕz̃ cos θ)

ϕF 2

)
dz̃ − h̃Ũ

εF 2
sin θ

=
1

εϕF 2

∫ h̃

0

ũ
∂τ̃xz
∂z̃

dz̃ +O(ε).

(4.30)

As in the previous section, we have h
〈
u2
〉
= hU2 + h3ψ. Similarly, h

〈
u3
〉
can be

written as h
〈
u3
〉
= hU3 + 3Uh3ψ + h

〈
(u− U)3

〉
. In order to close the equations,

we need a formula for the third-order correlation
〈
(u− U)3

〉
. Since we neglect

second-order terms, it is consistent to replace this term by the leading term in the

asymptotic expansion, which is h
〈
(u− U)3

〉(0)
= −4Ã3h̃11/2/1375. Hence

∂

∂x̃

∫ h̃

0

1

2

(
ũ(0) − Ũ (0)

)3
dz̃ =− Ã3h̃9/2

125

∂h̃

∂x̃
.(4.31)

This term is written in the right-hand side of the equation in order to obtain a
model with a well-posed and simple mathematical structure. Equation (3.7) shows
that, at order 0, we can write

(4.32) p̃(0) + ϕz̃ cos θ = ϕh̃ cos θ.

We can use this relation to write

(4.33)

∫ h̃

0

ũ(p̃+ z̃ cos θ)

ϕF 2
dz̃ =

h̃2Ũ cos θ

F 2
+O(ε).

The technical details of the treatment of the right-hand side of Equation (4.30)
are given in Appendix A. The calculations are carried out to ensure compatibility
between the energy and momentum depth-averaged equations in order to obtain a
well-posed mathematical structure well suited to numerical resolution.

The final version of the energy equation can be written

(4.34)
∂

∂t̃

(
h̃
Ũ2

2
+
βh̃3ψ̃

2
+K

h̃2 cos θ

2F 2

)
+

∂

∂x̃

(
h̃Ũ3

2
+

3βh̃3Ũ ψ̃

2
+K

h̃2Ũ cos θ

F 2

)

=
Ũ cos θ

εF 2

[
h̃(tan θ − µb) +

βα̃1

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+

(
βα̃2 +

10λ

Ã2B

)(
ψ̃ − Ũ2

4h̃2

)]
+O(ε)

with

(4.35) α̃1 = − 33C

2ÃB(34C + 28)
,

and

(4.36) α̃2 =
77(9C − 12)

2Ã2B(34C + 28)
.



CONSISTENT MODEL FOR GRANULAR FLOWS 15

As in the momentum equation, the effective enstrophy in this energy equation is
βψ and there is the same factor K in the pressure term and in the potential energy.
The right-hand side of this energy equation includes the power of the weight and
of the usual granular friction law (4.17) but there are additional relaxation terms
to obtain consistency at order 1.

The evolution equation for the variable ψ̃ can now be derived. In order to do
this, the equation of momentum (4.27) is multiplied by Ũ and this new equation is
subtracted from the equation of energy (4.34). This leads to

(4.37)
∂h̃ψ̃

∂t̃
+
∂h̃Ũ ψ̃

∂x̃
=

2Ũ cos θ

εh̃2F 2

[
α̃1

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+ α̃2

(
ψ̃ − Ũ2

4h̃2

)]
+O(ε).

The evolution equation of the enstrophy is a transport equation with relaxation
source terms. The relaxation term on ψ is important and usual for an enstrophy
equation and the coefficient α̃2 must be negative for the system to be mathematically
well-posed (otherwise the enstrophy diverges exponentially). This gives the condition
C < 4/3, which is discussed below in §6. For a slope in the range [µ1, µ2], this

condition is automatically satisfied if µ2 <
√
2/3 ≃ 0.816 ≃ tan(39.2◦).

5. Model analysis

5.1. Hyperbolicity. In this section, we study some properties of the model obtained
in Section 4 and formed by the mass conservation equation (4.13), the momentum
balance equation (4.27) and the enstrophy equation (4.37). In dimensional form,
this system reads
(5.1)

∂h

∂t
+
∂hU

∂x
= 0,

∂hU

∂t
+

∂

∂x

(
hU2 + βh3ψ +K

gh2

2
cos θ

)
= g cos θ

[
h (tan θ − µb) +

10λ

A2B

(
ψ − U2

4h2

)]
,

∂hψ

∂t
+
∂hUψ

∂x
=

2gU cos θ

h2

[
α1

h1/2

(
U − 2

5
Ah3/2

)
+ α2

(
ψ − U2

4h2

)]
,

where the expressions of A, B, C, α1 and α2 are
(5.2)

A = Im
tan θ − µ1

µ2 − tan θ

√
ϕg cos θ

d
, B =

µ2 − µ1

(µ2 − tan θ)(tan θ − µ1)
, C = tan θ

(
2 tan θ − 1

B

)
,

(5.3) α1 = − 33C

2AB(34C + 28)
, α2 =

77(9C − 12)

2A2B(34C + 28)
.

The parameters λ, β and K are given by

(5.4) λ =
847(4− 3C)

20(157C + 84)
, β =

11

16
+

5λ

44
, K = 1− 3C

4
+
λC

7
,

and the basal friction µb is given by

(5.5) µb = µ1 +
µ2 − µ1

Im
2h3/2

√
ϕg cos θ

5dU
+ 1

.

The three characteristic velocities are

(5.6) λ0 = U, λ± = U ±
√
Kgh cos θ + 3βh2ψ.
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The system of equations (5.1) is hyperbolic if K > 0. It is in conservative form,
with relaxation source terms. For the final expression (4.26) of λ or for λ = 0, the
condition K > 0 is equivalent to the condition C < 4/3, which is also a condition
for a well-posed system (see above in §4.3) and which is discussed in §6. If K < 0,
the hyperbolicity is not guaranteed, which is not admissible.

The system admits the additional energy balance equation

(5.7)
∂he

∂t
+

∂

∂x
(hUe+ΠU)

= gU cos θ

[
h(tan θ − µb) +

βα1

h1/2

(
U − 2

5
Ah3/2

)
+

(
βα2 +

10λ

A2B

)(
ψ − U2

4h2

)]
where the specific energy is

(5.8) e =
U2

2
+
βh2ψ

2
+K

gh

2
cos θ

and

(5.9) Π = βh3ψ +K
gh2

2
cos θ.

The discontinuities that propagate at speed λ0 are called contact discontinuities,
while the two other are shocks (discontinuities). Across a shock, the quantities
m = h(U − λ±) (conservation of mass) and ψ (conservation of enstrophy) are
continuous. Furthermore, the jump of height h is constrained by the shock relation

(5.10) m2

[
1

h

]
+ βψ

[
h3
]
+
Kg cos θ

2

[
h2
]
= 0,

where the notation [f ] stands for the jump of the quantity f .
It is important to note that the third equation of the system is the enstrophy

equation and not the energy equation. This implies that, through a discontinuity,
the enstrophy is conserved and the energy is dissipated. In the framework of
hyperbolic systems of conservation laws, the energy is the mathematical entropy of
the system.

5.2. Reconstruction of the velocity field. Since the model is derived consistently
from the asymptotic expansions of the flow variables, it is possible to reconstruct
the 2D-fields and, in particular, the variations of the velocity in the depth, from
the values of the depth-averaged quantities calculated with the 1D-depth-averaged
model. These velocity profiles are calculated at the same accuracy as the model.
In the following, we show how to reconstruct in a consistent way the horizontal
velocity field from the solution of (5.1), i.e. from the triplet (h, U, ψ).

Reverting to the dimensionless quantities, the expressions of ũ(0) at equilibrium
(3.13) and of the averaged velocity Ũ (0) (4.3) lead to

(5.11) ũ(0) = f(z)Ũ (0),

where

(5.12) f(z) =
5

3

[
1−

(
1− z

h

)3/2]
is the renormalised Bagnold profile. From this relation, we deduce that an approxi-
mation of ũ at order 0 is given by ũ = f(z)Ũ + O(ε). In order to have an
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approximation of order 1, we expand

(5.13) ũ = f(z)Ũ + ε
(
ũ(1) − f(z)Ũ (1)

)
+O(ε2).

Thus we can obtain a consistent expression for ũ by expressing consistently ũ(1) −
f(z)Ũ (1) as a function of (h̃, Ũ , ψ̃). After using (3.35) and (4.7) and some computa-
tions, we obtain
(5.14)

ũ(1)−f(z)Ũ (1) = ÃB
∂h̃

∂x̃

[
F 2Ã2

25 cos θ
h̃7/2f(z)

(
2

5
f(z)− 1

2

)
+ Ch̃3/2

(
z̃

h̃
− 1

2
f(z)

)]
,

which yields, using (4.7) and (4.12),

(5.15) ũ(1) − f(z)Ũ (1) = f1(z)Ũ
(1) + f2(z)

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
,

where

(5.16) f1(z) =
2C

34C + 28

[
2f(z)

(
11

5
f(z) + 6

)
− 35

z

h

]
and
(5.17)

f2(z) =
55h̃1/2

A(17C/7 + 2)

[
5C

(
z

h
− 1

2
f(z)

)
− 1

5
(3C − 4)f(z)

(
2

5
f(z)− 1

2

)]
.

As we did before, we finally use (4.5) and (4.11) to replace the terms of first order
in the right-hand side of (5.15) and, together with (5.13), we obtain, reverting to
the dimensional quantities,

(5.18) u = f(z)U + f1(z)

(
U − 2A

5
h3/2

)
+ f2(z)

(
ψ − U2

4h2

)
.

This expression gives the velocity profile in the flow to the accuracy of the model,
i.e. to within terms of order 2.

5.3. Linear stability. We study here the linear stability of a steady uniform
solution of (5.1). In other words, we suppose that the solutions are sinusoidal

perturbations of the constant solution given by h̃ = 1, Ũ = Ũ (0) (see (4.3)) and

ψ̃ = ψ̃(0). The depth-averaged velocity can be scaled with its value in the constant
solution, which yields Ã = 5/2, Ũ (0) = 1 and ψ̃(0) = 1/4. We thus write h̃ = 1+h′,

Ũ = 1 + U ′, ψ̃ = 1/4 + ψ′, where (h′, U ′, ψ′) = (a1, a2, a3) exp[ik(x̃ − ct̃)]. The
amplitudes a1, a2, a3 are three constants, as well as the wave number k and the
phase velocity c. We obtain the following linearised system:

(5.19) M(ε) (h′, U ′, ψ′)
T
= 0, with M(ε) =

cos θ

F 2
R+ iεkL

where the matrix L comes from the conservative terms of the left-hand side of the
equations, and is given by

(5.20) L =

 1− c 1 0
3β
4 + K cos θ

F 2 1− c β
0 0 1− c

 ,
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and the matrix R comes from the right-hand side relaxation terms and is given by

R =

 0 0 0
− 3

2B − 4λ
5B

1
B + 4λ

5B − 8λ
5B

3α̃1 − α̃2 −2α̃1 + α̃2 −2α̃2

 .(5.21)

The dispersion relation is then obtained by imposing the condition det(M(ε)) =
0. In order to obtain an analytical stability threshold in the limit εk ≪ 1, we
expand c = c(0) + εc(1) + O(ε2), which leads to L = L(0) + εL(1) + O(ε2). We
then obtain a similar expansion for the determinant of M(ε), that we will denote
det(M(ε)) = δ(0) + εδ(1) + ε2δ(2) +O(ε3). We compute for the order 0 that δ(0) =
det(cos θR/F 2) = 0. For the first order in ε, we find, after calculations,

(5.22) δ(1) = ik
2 cos2 θ

BF 4

(
c(0) − 5

2

)(
α̃2 +

8λ

5
α̃1

)
.

Hence the condition δ(1) = 0 yields c(0) = 5/2. The matrix L(0) can thus be
rewritten

(5.23) L(0) =

 − 3
2 1 0

3β
4 + K cos θ

F 2 − 3
2 β

0 0 − 3
2

 .

For the order 2 in ε, we obtain

(5.24) δ(2) =

[
2ik cos2 θ

BF 4
c(1) − k2 cos θ

2F 2

(
−25

4
+

(4− 3C) cos θ

F 2

)](
α̃2 +

8λα̃1

5

)
.

Solving δ(2) = 0 then yields

c(1) = i
kB

4 cos θ

(
25

4
F 2 − (4− 3C) cos θ

)
.(5.25)

The condition of stability is Im(c(1)) < 0, which gives 25F 2/4 < (4− 3C) cos θ. A
consistent expression of the stability criterion for the µ(I) rheology was obtained
by Forterre (2006), using a slightly different Froude number F , defined as F2 =
F 2/ cos θ. With this definition of the Froude number, the obtained stability criterion
is exactly the same as found by Forterre (2006) and it reads
(5.26)

F < Fc =
4

5

√
1− 3C

4
=

4

5

√
1− 3

2
tan2 θ +

3

4

(µ2 − tan θ)(tan θ − µ1)

µ2 − µ1
tan θ.

The stability criteria are identical because the present depth-averaged model is
consistent up to order 1 in ε with the µ(I) rheology.

Note that the critical Froude number Fc is real if the condition C < 4/3 is
satisfied. This condition is also a condition for a well-posed enstrophy equation
(see §4.3 above) and to guarantee the hyperbolicity of the system (see §5.1). Since
this condition appears in the stability criterion of a steady uniform flow for the
µ(I) rheology, it is not specific to the model derived in this work. This condition
is discussed in §6.

The variation of the consistent critical Froude number (present model and Forterre
(2006)) as a function of the inclination is presented in Figure 2 (red curve) in the
case of glass beads, using the values µ1 = tan 20.9◦ and µ2 = tan 32.76◦ (Jop et al.,
2005), together with the experimental measurements of Forterre and Pouliquen
(2003) (black dots). The stability criterion obtained with a Saint-Venant model
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Figure 2. Critical Froude number as a function of the angle θ
for glass beads. Theoretical value obtained with the µ(I) rheology
(Forterre, 2006) and given by the present model (red curve). Saint-
Venant model with a shape factor of 1 (black line) and of 5/4 (blue
line) (Forterre and Pouliquen, 2003). Black dots: experimental
measurements of Forterre and Pouliquen (2003).

(Forterre and Pouliquen, 2003) is also shown, with a shape factor of 1 (velocity
constant over the depth) (black line), or with a shape factor of 5/4 (Bagnold velocity
profile) (blue line). These criteria differ from the criterion obtained with the µ(I)
rheology because these Saint-Venant models, both with a shape factor of 1 or 5/4,
are inconsistent approximations of the governing equations. The criterion obtained
with a constant velocity profile (Fc = 2/3) is closer to the consistent criterion but
the velocity profile of the steady uniform flows is not a Bagnold profile. With
a shape factor of 5/4, the velocity profile is a Bagnold profile but the value of
the critical Froude number (Fc = 0.89) is far from the consistent value, because
important terms were neglected in the derivation of the model. The systematic
asymptotic expansions used to derive the present model enables to obtain both a
consistent stability criterion and a Bagnold velocity profile for steady uniform flows
with its correction for flows in a non-equilibrium state.

Using the dispersion relation, it is also possible to express k = k(ω, F ), where
ω = ck. It is then possible to study the neutral stability curve defined by Im(ω) = 0.
Computations (not shown here) show that ∂Fc/∂ω|ω=0 = 0 and that ∂2Fc/∂ω

2|ω=0 =
f(λ), where λ is the parameter introduced in Section 4.2 and f(λ) is a complicated
function of λ which vanishes when λ has the value (4.26). For this value of λ, the
neutral stability curve F = F (ω) is obtained at a fixed value of the Froude number
independently of the frequency ω. This behaviour is typical of first-order models
in other rheologies. For this reason and for reasons discussed below, this particular
value of λ is the final choice for the model.
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5.4. Adding diffusive effects. First-order models such as the present model (5.1)
lead to some discrepancies due to the absence of diffusive terms (Forterre, 2006;
Andreotti et al., 2013; Gray and Edwards, 2014). The spatial growth rate in
particular is not accurate far from the long-wave limit and the stabilisation of high
frequencies is not predicted. Therefore it is important to add diffusive terms to the
model. These effects are of second order with respect to ε but, since the second-
order full consistency is very complicated and, moreover, does not yield well-posed
models, only the linear terms due to the stress gradient in the stream-wise direction
are considered. The integration of (2.31) can be written
(5.27)

∂h̃Ũ

∂t̃
+
∂

∂x̃

(
h̃Ũ2 + h̃3ψ̃

)
=

1

εϕF 2

(
ϕ sin θh̃− ε

∂

∂x̃

∫ h̃

0

p̃dz̃ − τ̃xz(0) + ε2
∫ h̃

0

∂τ̃xx
∂x̃

dz̃

)
.

In this equation, only the second-order terms given by the integral of ∂τ̃xx/∂x̃ are
kept.

Equation (3.17) yields
(5.28)

∂τ̃
(0)
xx

∂x̃
= ϕ sin θ


(
∂h̃

∂x̃

)2 [(
1− z̃

h̃

)1/2

+

(
1− z̃

h̃

)−1/2

− 2

]
+ 2

∂2h̃

∂x̃2

[
h̃1/2(h̃− z̃)1/2 − h̃+ z̃

] ,

which leads to

(5.29)

∫ h̃

0

∂τ̃
(0)
xx

∂x̃
dz̃ =

1

3
ϕ sin θ

∂

∂x̃

(
h̃2
∂h̃

∂x̃

)
.

Using the expression (4.3) of Ũ (0), this term can be written as a diffusive term∫ h̃

0

∂τ̃
(0)
xx

∂x̃
dz̃ = ϕF 2 ∂

∂x̃

(
ν̃eff h̃

∂Ũ (0)

∂x̃

)
,(5.30)

with an effective viscosity

(5.31) ν̃eff =
5 sin θ

9ÃF 2
h̃1/2.

Defining α̃ν by ν̃eff = α̃ν h̃
1/2, we can write the depth-averaged momentum balance

equation

∂h̃Ũ

∂t̃
+

∂

∂x̃

(
h̃Ũ2 + βh̃3ψ̃ +K

cos θh̃2

2F 2

)
=
cos θ

εF 2

[
h̃(tan θ − µb) +

10λ

Ã2B

(
ψ̃ − Ũ2

4h̃2

)](5.32)

+ ε
∂

∂x̃

(
α̃ν h̃

3/2 ∂Ũ

∂x̃

)
.(5.33)

The dimensionless effective viscosity obtained in Gray and Edwards (2014) is similar,
apart from a coefficient 1/F 2 which comes from a different scaling. The expression
of the effective viscosity in Forterre (2006) is different but it is consistent at order
0 with (5.31).

We now need to take the diffusion into account in the energy equation. Technical
details are given in Appendix B. Since we consider only linear terms, there is some
freedom of choice for non-linear terms that inevitably appear either in the enstrophy
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equation or in the energy equation or both. As for the first-order hyperbolic model,
we impose conservation of enstrophy and dissipation of energy. Therefore, the
enstrophy equation is written without non-linear terms, which implies dissipative
non-linear terms in the energy equation. The enstrophy balance equation is thus
written
(5.34)

∂h̃ψ̃

∂t̃
+
∂h̃Ũ ψ̃

∂x̃
=

2Ũ cos θ

εh̃2F 2

[
α̃1

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+ α̃2

(
ψ̃ − Ũ2

4h̃2

)]
+ε

∂

∂x̃

(
16α̃ν

7β
h̃3/2

∂ψ̃

∂x̃

)
.

The new depth-averaged energy balance equation is now found from the three
equations of the system and can be written

(5.35)
∂

∂t̃

(
h̃
Ũ2

2
+
βh̃3ψ̃

2
+K

h̃2 cos θ

2F 2

)
+

∂

∂x̃

(
h̃Ũ3

2
+

3βh̃3Ũ ψ̃

2
+K

h̃2Ũ cos θ

F 2

)

=
Ũ cos θ

εF 2

[
h̃(tan θ − µb) +

βα̃1

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+

(
βα̃2 +

10λ

Ã2B

)(
ψ̃ − Ũ2

4h̃2

)]

+ε
∂

∂x̃

(
α̃ν h̃

3/2Ũ
∂Ũ

∂x̃

)
+ε

∂

∂x̃

(
8α̃ν

7β
h̃7/2

∂ψ̃

∂x̃

)
−εα̃ν h̃

3/2

(
∂Ũ

∂x̃

)2

−ε16α̃ν

7β
h̃5/2

∂h̃

∂x̃

∂ψ̃

∂x̃
.

Reverting to the dimensional quantities, the system can be written

(5.36)
∂h

∂t
+
∂hU

∂x
= 0,

(5.37)
∂hU

∂t
+
∂

∂x

(
hU2 +Π

)
= g cos θ

[
h (tan θ − µb) +

10λ

A2B

(
ψ − U2

4h2

)]
+
∂

∂x

(
ανh

3/2 ∂U

∂x

)
,

(5.38)
∂hψ

∂t
+
∂hUψ

∂x
=

2gU cos θ

h2

[
α1

h1/2

(
U − 2

5
Ah3/2

)
+ α2

(
ψ − U2

4h2

)]
+
∂

∂x

(
16αν

7β
h3/2

∂ψ

∂x

)
,

with the expressions of A and B given in (5.2), of α1 and α2 in (5.3), of λ and K
in (5.4), of the basal friction µb in (5.5), with

(5.39) αν =
5g sin θ

9A

and with

(5.40) Π = βh3ψ +K
gh2

2
cos θ.

The system admits the energy balance equation

(5.41)
∂he

∂t
+

∂

∂x
(hUe+ΠU)

= gU cos θ

[
h(tan θ − µb) +

βα1

h1/2

(
U − 2

5
Ah3/2

)
+

(
βα2 +

10λ

A2B

)(
ψ − U2

4h2

)]
+

∂

∂x

(
ανh

3/2U
∂U

∂x

)
+

∂

∂x

(
8αν

7β
h7/2

∂ψ

∂x

)
−ανh

3/2

(
∂U

∂x

)2

− 16αν

7β
h5/2

∂h

∂x

∂ψ

∂x

with the specific energy e given by (5.8).
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Figure 3. Spatial dimensionless growth rate for θ = 29◦ and
F = 1.02 as a function of the dimensionless frequency. Black dots:
experimental measures of Forterre and Pouliquen (2003). Red solid
curve: present model with diffusion. Black curve : theoretical
result for the µ(I) rheology (Forterre, 2006). Saint-Venant model
(Forterre and Pouliquen, 2003) with a shape factor of 1 (blue solid
curve) and 5/4 (blue dashed curve). Red dashed curve: model of
Gray and Edwards (2014).

The dispersion relation is modified by the diffusive terms. Taking again sinusoidal
perturbations of the form h̃ = 1+h′, Ũ = Ũ (0)+U ′ and ψ̃ = ψ̃(0)+ψ′, the linearized
system now reads

(5.42) MV (ε)

h′U ′

ψ′

 = 0, with MV (ε) =
cos θ

F 2
R+ iεkL+ ε2k2α̃νV,

where R, L are defined in (5.21), (5.20) and V is the matrix of the linearized viscous
terms, given by

(5.43) V =

0 0 0
0 1 0
0 0 16

7β

 .

The new dispersion relation is det(MV ) = 0. We now suppose that ω = ck ∈ R
and that k is complex. The spatial growth rate is then given by σ = −Im(k). The
system is stable if and only if σ < 0.

The variations of the dimensionless spatial growth rate σ with the dimensionless
angular frequency is presented in Figure 3 for the present model with diffusion
(red solid curve) in the case of glass beads (µ1 = tan 20.9◦, µ2 = tan 32.76◦, Jop
et al. (2005)) and for θ = 29◦ and F = 1.02. The results are compared with the
theoretical results obtained for the µ(I) rheology by Forterre (2006) (black curve)
and with the experimental measures of Forterre (2006) (black dots). The Saint-
Venant models derived with a constant velocity profile (blue solid curve) and with
a Bagnold profile (blue dashed curve) are also presented together with the model
of (Gray and Edwards, 2014) with diffusion (red dashed curve).
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Figure 4. Dimensionless phase velocity for θ = 29◦ and F =
1.02 as a function of the dimensionless frequency. Black dots:
experimental measures of Forterre and Pouliquen (2003). Red solid
curve: present model with diffusion. Black curve : theoretical
result for the µ(I) rheology (Forterre, 2006). Saint-Venant model
(Forterre and Pouliquen, 2003) with a shape factor of 1 (blue solid
curve) and 5/4 (blue dashed curve). Red dashed curve: model of
Gray and Edwards (2014).

The curve obtained with the present model with diffusion is very close to the
curve obtained by (Gray and Edwards, 2014). Both models predict quite correctly
the stabilization of high frequencies, with a cutoff frequency, and are in reasonable
agreement with the experimental measures and with the theoretical result for the
µ(I) rheology. By contrast, the Saint-Venant models cannot predict the cutoff
frequency due to the absence of diffusive terms. These Saint-Venant models are
also inconsistent approximations of the governing equations but the inaccuracy is
much more important for the model with a shape factor of 5/4 (Bagnold profile).
The present model is also based on a Bagnold velocity profile at leading order but
it gives accurate results because of the consistent asymptotic expansions used in its
derivation.

The dimensionless phase velocity c is presented in Figure 4 (same conditions as
for Figure 3). The present model with diffusion (red curve) is in good agreement
with the theoretical result for the µ(I) rheology (black curve) and with the experimental
measures (Forterre, 2006). The model of Gray and Edwards (2014) (red dashed
curve) gives practically the same result as the Saint-Venant model with a flat
velocity profile (blue solid curve) (Forterre and Pouliquen, 2003), while the Saint-
Venant model with a Bagnold profile (α = 5/4) gives values clearly too large. In
this case again, the consistent derivation used for the present model improves the
accuracy of the predictions when a Bagnold velocity profile is considered for steady
uniform flows.

The variations of the dimensionless cutoff angular frequency ωc as a function of
the Froude number above criticality F −Fc is presented in Figure 5 for glass beads
and θ = 29◦. The effect of the parameter λ is shown with the model with diffusion
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Figure 5. Dimensionless cutoff frequency ωc of the instability as
a function of the Froude number above criticality F − Fc for θ =
29◦. Black dots: experimental measures of Forterre and Pouliquen
(2003). Present model with diffusion for λ given by (4.26) (red solid
curve), λ = 0 (blue curve) and λ = 11/4 (green curve). Red dashed
curve: present model without diffusion for λ given by (4.26). Black
curve: theoretical result for the µ(I) rheology (Forterre, 2006).

in three cases: λ is equal to the critical value (4.26) (red solid curve), λ = 0 (blue
curve) and λ = 11/4 (green curve). In the case λ = 0, there is no relaxation term
for the enstrophy in the momentum balance equation and the first-order correction
to the granular friction law is entirely written as terms in the momentum flux. In
the case λ = 11/4, we have β = 1, which means that there is no correction on
the shear term h3ψ in the momentum flux although, since K < 1, there is still a
correction on the pressure term of the momentum flux (the value of λ needed to
have K = 1 is 21/4, so even higher). In the final choice (4.26), part of the first-order
correction is written in the momentum flux, with a correction on both the enstrophy
and pressure terms, and another part as a relaxation term. This critical value of
λ is chosen to have a cutoff frequency independent of the Froude number for the
model without diffusion (red dashed line). All values of λ give the same result in
the validity domain of the shallow-water approximation, thus for small frequencies,
but this domain is quite small (ω̃ < 0.1 approximately). For larger frequencies,
the cutoff frequency is quite sensitive to the choice of λ. For the critical value of λ
(4.26), the agreement of the model with diffusion with the theoretical result for the
µ(I) rheology (black curve) and with the experimental results (black dots), both
obtained by Forterre (2006), is quite good. For smaller values of λ, and in particular
for λ = 0, there are unstable frequencies that are smaller than the cutoff at the
long-wave limit, which does not seem to be observed experimentally. For larger
values of λ, the cutoff frequency is too small. The diffusion is again important to
stabilize the high frequencies. Only the case θ = 29◦ is presented, but other values
of θ studied by Forterre (2006) and Gray and Edwards (2014) show the same trends.

5.5. Numerical resolution. In this subsection, we solve numerically the model
in order to study the roll waves instability. The numerical solution is calculated
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Figure 6. Profile of height for the roll-wave instability. In black:
System (5.1) (purely hyberbolic). In red: System (5.36)–(5.38)
(system with diffusion).

with a Godunov type scheme (HLLC Riemann solver). We solve system (5.1)
in the variables (h, U, ψ). In these variables, the total energy plays the role of a
mathematical entropy for the system. The relaxation source terms are implemented
explicitly. The second-order diffusion terms are approximated by centered finite
differences. We use the following parameters: µ1 = tan(20.9◦), µ2 = tan(32.76◦),
Im = 0.279 (see Jop et al. (2006)), d = 5× 10−4 m, θ = 25◦, ϕ = 0.6− 0.2 I(0) (see
(3.10)), g = 9.81 m/s, and h0 = 10−2 m. It follows that F ≈ 0.806 > Fc ≈ 0.666.

We initialize the system with a steady solution, that we perturb at the left of the
domain by imposing a sinusoidal boundary condition of small relative amplitude
for the function h. In the beginning, the amplitude of the perturbation increases
exponentially. After some time, the amplitude converges to a maximal value.
A stationary state is then reached and the solution becomes periodic. This is
illustrated by Figure 6 which shows the height of the flow, for the system (5.1)
(purely hyperbolic) and for the system (5.36)–(5.38) (with diffusion terms). The
depth profiles of the two system are similar. It can be seen that, in presence of
diffusion, the amplitude of the waves is slightly smaller and the propagation is
slightly slowed. As expected, the shock is steeper in the purely hyperbolic model.
However, the effects of the diffusive terms seem to have little overall impact on
the global shape of the solution. This is coherent with the fact that the diffusive
terms are of order ε2 in our asymptotic. Figure 7 shows the values taken by the
basal friction µb and the enstrophy ψ over a period, once the stationary state is
reached. The basal friction decreases when the depth increases, while the enstrophy
increases.

Finally, the horizontal velocity profile is reconstructed in Figure 8, with the help
of Equation (5.18). The reconstructions are presented for three different values of x.
The black curve is obtained by reconstruction of the velocity at the wave trough.
It is very close to a Bagnold profile (solution at equilibrium). The red curve is
obtained by reconstruction at the wave crest. The blue curve is obtained at an
intermediary state. As the height increases, the profile becomes more and more
curved. The first-order correction with respect to the leading-order velocity profile,
which represents the deviation of the velocity profile from the Bagnold profile, can
be visualized by the difference between a curve (red or blue) and the black curve.
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Figure 7. Profile of µb and of ψ for the roll-wave instability. In
black: System (5.1) (purely hyberbolic). In red: System (5.36)–
(5.38) (system with diffusion).

Figure 8. Reconstruction of the velocity profile for the numerical
simulation of Section 5.5. In black, profile at the minimal value
of the perturbation of the height (just after the shock). In red,
profile at the maximal value of the perturbation. In blue, profile
where the height of the perturbation reaches eighty percent of the
maximal height.

6. Need for model regularization

It is essential to regularize the model for certain values of the angle θ because
some quantities of the system (5.36)–(5.38) may change sign or become infinite,
resulting in a ill-posed model.

In order to understand why this can happen, let us recall some facts about the
µ(I) rheology. As mentioned in the first section, this rheology corresponds to a
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friction law, for which the friction coefficient is given by

(6.1) µ(I) = µ1 +
µ2 − µ1

1 + Im/I
.

The two parameters µ1 and µ2 are determined experimentally. They characterize
the angles for which steady uniform flows can be observed. These steady uniform
flows only exist when

(6.2) µ1 < tan θ < µ2.

Outside this range, there is no equilibrium and all the formulas that we obtained
previously do not make any sense a priori. We insist on the fact that the model
(5.36)–(5.38) is derived with an asymptotic method, under the hypotheses that θ
is constant and inside this range, so that the flow remains close to the uniform
stationary flow. However, for geophysical applications, the value of the slope may
not lie within the interval [µ1, µ2].

Recall that the expression of the inertial number I at leading order is

(6.3) I(0) = Im
tan θ − µ1

µ2 − tan θ
.

This expression is only valid when the condition (6.2) is verified and makes no sense
otherwise.

– In the limit tan θ → µ1, we have I(0) → 0. It follows that U (0) and
ψ(0) both converge to 0 and the flow should stop. This is called the
liquid/solid transition. In the right-hand side of the system (5.36)–(5.38),
the relaxation coefficients as well as the diffusion coefficients diverge to +∞,
which indicates that U and ψ should go to zero instantaneously. Given
that this is likely to cause problems for numerical resolution and that the
instantaneous stopping of an avalanche is not physical, these coefficients
need to be regularized.

– In the limit tan θ → µ2, I
(0) → +∞. The relaxation and diffusion coefficients

go to zero. This is the liquid/gas transition, after which the flow becomes
uniformly accelerated and enters a kinetic regime in which the volume
fraction decreases. For tan θ > µ2, the effective viscosity becomes negative,
requiring regularization.

– Finally, another singularity of the model can appear when the coefficient
µ2 is large. Indeed, recall that the stability criterion in the long wave limit
is

(6.4) F2 < F2
c =

16

25
(4− 3C),

where C = C(θ) is an increasing function of θ which is equal to 2µ2
2 when

tan θ = µ2. If µ2 <
√
2/3, the condition C < 4/3 is automatically satisfied

for a slope in the range [µ1, µ2]. If µ2 >
√

2/3 ≈ 0.816, there are some
values of θ which verify (6.2) for which every steady flow is unstable, even
when F = 0, because C > 4/3 (which gives F2

c < 0!). This phenomenon is
inherent to the µ(I) rheology since the stability criterion is the same for the
bulk equations, as shown by Forterre (2006). In the system (5.36)–(5.38),
it is materialised by the fact that the sign of the relaxation coefficient α2

changes when the critical Froude number is equal to zero (see §4.3 above),
as well as the sign of the coefficient K in front of the hydrostatic pressure
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and of the potential energy term in the expression (5.8) of the energy. In
particular, the enstrophy ψ grows exponentially in this case and the system
is ill-posed. Furthermore, the hyperbolicity of the system is not guaranteed
anymore when C > 4/3 (see §5.1). It is not clear whether this instability
effect has a real physical meaning or if it is only a default of the rheology.
In the literature, the value of µ2 is often lower than the critical value

√
2/3

(µ2 = tan 32.76◦ ≈ 0.643 in the paper of Jop et al. (2006) for instance).
However, the value of µ2 was µ2 = 1 for the experiments of Börzsönyi
and Ecke (2006). They observed steady flows only under a critical angle
tan θ ≈ 0.85, above which the flow becomes uniformly accelerated. With
their parameters, this corresponds to a value of C(θ) ≈ 1.36, which is close
to the theoretical value C = 4/3 ≈ 1.33 that we obtain for the instability
of the model. Further investigations need to be performed to see whether
this is a coincidence or a successful prediction of the µ(I) rheology. In any
case, this instability also requires regularization.

A regularized system should be usable for numerical simulations with any value
of the slope. However, the development of such a regularized model requires an in-
depth study of flow stopping, of accelerated flows and of granular avalanche fronts,
which is beyond the scope of this article and will be the subject of a future work.

7. Conclusion

In this work, we derive a new depth-averaged model for an incompressible
granular flow described by the µ(I) rheology. The derivation is made using a
consistent asymptotic method under the assumption of shallow flows. This method
implies that the model is consistent at the first order, with respect to the small
shallow-flow parameter, with the µ(I) rheology. In particular, the first-order correction
to the classical granular friction law is included in the model. The resulting three-
equation model is a hyperbolic system of conservation laws for the flow depth, the
depth-averaged velocity and an additional quantity, called enstrophy, which takes
into account shear effects. This system admits an exact energy balance equation.
For steady uniform flows, the model is consistent with a Bagnold velocity profile,
which is found at leading order. Otherwise the model includes the first-order
correction to this profile. The model is mathematically well-posed, with a classical
structure well-suited for numerical resolution. Since the model is consistent, it gives
the exact stability criterion of the µ(I) rheology in the long-wave limit as found by
Forterre (2006).

Thanks to the consistency of the asymptotic method used for the derivation, the
variation in the depth of the velocity can be reconstructed explicitly with the three
variables of the depth-averaged model. The deviations to the Bagnold profile can
thus be calculated for flows which are not steady and uniform, such as granular roll
waves.

This hyperbolic model is also extended to include diffusive effects. The spatial
growth rate and the phase velocity predicted by this extended model is in good
agreement with both the theoretical predictions of the µ(I) rheology and with the
experimental data of Forterre and Pouliquen (2003). In particular, the extended
model predicts successfully the stabilization of high frequencies and the variation of
the cutoff frequency with the Froude number. In this respect, it is important to note
that it is possible to derive an infinite number of consistent models, all of which are
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equivalent within the validity domain of the long-wave approximation, but differ
outside this domain. The variation of the cutoff frequency with the Froude number
was used to select the best variant among the different possible consistent models
according to its extrapolation capabilities outside the shallow-flow domain.

Numerical simulations of granular roll waves are presented, using classical finite-
volume schemes with an approximate Riemann solver. All depth-averaged quantities
can be calculated and the velocity profiles in the depth can be easily reconstructed.

The asymptotic method used to derive the model assumes that the flow remains
close to the steady uniform flow and therefore that such a steady uniform flow
exists. In the context of the µ(I) rheology, a steady uniform flow is only possible
within a certain range of the angle of inclination of the bottom with respect to the
horizontal. This range defines the model’s domain of validity. Outside this range,
certain model quantities become infinite or change sign, and the model becomes
mathematically ill-posed. This problem is related to the solid/liquid and liquid/gas
transitions, which are well-known limits of the µ(I) rheology. A regularization of
the model is therefore necessary for these transitions, based on the study of flow
stopping, accelerated flows and avalanche fronts, and will be the subject of a future
work.

The model has been derived under the assumption of incompressible flows,
but dilatancy phenomena can be significant in practice. A further development
of this work will be to take into account variations in volume fraction with the
inertial number according to the phenomenological expressions of the local rheology
proposed in the literature. A further development will concern granular flows on
smooth bottoms, for which a non-zero slip velocity on the bottom is possible and
can play an important role, in particular for granular jumps.
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Appendix A. Derivation of the depth-averaged energy equation

We compute the right-hand-side of (4.30). In order to do this, we use the
expansion (4.19) to keep track of the friction law (4.17). We first compute

∂τ̃xz
∂z̃

=
∂

∂z̃

(
τ̃ (0)xz + ετ̃ (1)xz

)
+O(ε2) = −µ(0)ϕ cos θ + ε

∂τ̃
(1)
xz

∂z̃
+O(ε2)

=− µbϕ cos θ + εϕ cos θ
Ũ (1)

BŨ (0)
+ ε

∂τ̃
(1)
xz

∂z̃
+O(ε2),(A.1)

where the last equality comes from (4.19). We obtain with (3.13) and (3.24)∫ h̃

0

ũ
∂τ̃xz
∂z̃

dz̃ =

∫ h̃

0

ũϕ cos θ

(
−µb + ε

Ũ (1)

B ˜U (0)

)
dz̃ + ε

∫ h̃

0

ũ(0)
∂τ̃

(1)
xz

∂z̃
dz̃ +O(ε2)

=ϕh̃ cos θ

[
−Ũµb + ε

Ũ (1)

B
+ εÃ

∂h̃

∂x̃

(
2

5
h̃3/2 − F 2Ã2h̃7/2

10 cos θ

)]
+O(ε2).(A.2)
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We compute

Ũ (1)

B
+ Ã

∂h̃

∂x̃

(
2

5
h̃3/2 − F 2Ã2

10 cos θ
h̃7/2

)
= Ã

∂h̃

∂x̃

3C

10
h̃3/2(A.3)

We thus obtain the following equation for the energy:

∂

∂t̃

(
h̃
Ũ2

2
+
h̃3ψ̃

2
+
h̃2 cos θ

2F 2

)
+

∂

∂x̃

(
h̃Ũ3

2
+

3

2
h̃3Ũ ψ̃ +

h̃2Ũ

F 2
cos θ

)

=
h̃Ũ cos θ

εF 2
(tan θ − µb) +

Ã3h̃9/2

125

∂h̃

∂x̃
+

3

10
ÃCh̃5/2

cos θ

F 2

∂h̃

∂x̃
+O(ε).(A.4)

To ensure compatibility between the energy equation and the momentum equation,
we need to modify the left-hand side of (A.4). We compute with (4.3), (4.8) and
(4.13)

(A.5)
1

2

∂h̃3ψ̃

∂t̃
+

3

2

∂h̃3Ũ ψ̃

∂x̃
=

13

250
Ã3h̃9/2

∂h̃

∂x̃
+O(ε).

Similarly,
(A.6)

C

(
3

4
− λ

7

)(
∂

∂t̃

h̃2 cos θ

2F 2
+

∂

∂x̃

h̃2Ũ cos θ

F 2

)
=

2C

5

(
3

4
− λ

7

)
Ãh̃5/2

cos θ

F 2

∂h̃

∂x̃
+O(ε).

We now subtract Equations (1− β)(A.5) + (A.6) from (A.4) to obtain

∂

∂t̃

(
h̃
Ũ2

2
+
βh̃3ψ̃

2
+K

h̃2 cos θ

2F 2

)
+

∂

∂x̃

(
h̃Ũ3

2
+

3βh̃3Ũ ψ̃

2
+K

h̃2Ũ cos θ

F 2

)

=
h̃Ũ cos θ

εF 2
(tan θ − µb) +

13β − 11

250
Ã3h̃9/2

∂h̃

∂x̃
+

2λ

35
ÃCh̃5/2

cos θ

F 2

∂h̃

∂x̃
+O(ε).

(A.7)

We recognize the work associated to the basal friction in the first term of the right-
hand side. We still need to find a suitable expression for the remaining terms. First,
it follows from the definition of β (4.28), the expression of Ũ (0) (4.3) and Equation
(4.12) that

13β − 11

250
Ã3h̃9/2

∂h̃

∂x̃
+

2λ

35

cos θ

F 2
Ã
∂h̃

∂x̃
h̃5/2

=− 3β

250
Ã3h̃9/2

∂h̃

∂x̃
+ λ

10

Ã2B

cos θ

F 2
Ũ (0) ∂h̃

∂x̃

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
.(A.8)

By using equations (4.3), (4.7) and (4.12), we get the following exact equality:

(A.9) − 3

250
Ã3h̃9/2

∂h̃

∂x̃
=

cos θ

F 2
Ũ (0)

(
α̃1(θ)

h̃1/2
Ũ (1) + α̃2(θ)

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

))
,

where

α1(θ) = − 33C

2AB(34C + 28)
, α̃1(θ) = − 33C

2ÃB(34C + 28)
,(A.10)
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and

α2(θ) =
77(9C − 12)

2A2B(34C + 28)
, α̃2(θ) =

77(9C − 12)

2Ã2B(34C + 28)
.(A.11)

Recall that Ũ (0) = Ũ +O(ε). Similarly, equation (4.2) can be written

(A.12) Ũ (1) =
Ũ − Ũ (0)

ε
+O(ε) =

1

ε

(
Ũ − 2

5
Ãh̃3/2

)
+O(ε),

and similarly for (4.11)

(A.13) ψ̃(1) − ÃŨ (1)

5h̃1/2
=

1

ε

(
ψ̃ − Ũ2

4h̃2

)
+O(ε).

We can thus modify (A.9) and obtain
(A.14)

− 3

250
Ã3h̃9/2

∂h̃

∂x̃
=
Ũ cos θ

εF 2

[
α̃1(θ)

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+ α̃2(θ)

(
ψ̃ − Ũ2

4h̃2

)]
+O(ε).

In a similar fashion, we have

(A.15) λ
10

Ã2B

cos θ

F 2
Ũ (0) ∂h̃

∂x̃

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
= λŨ

10 cos θ

εF 2Ã2B

(
ψ̃ − Ũ2

4h̃2

)
+O(ε).

Appendix B. Diffusive terms in the energy balance equation

Equation (3.13) yields

(B.1) ũ(0)
∂τ̃

(0)
xx

∂x̃
=

2Ã

3

(
h̃3/2 − (h̃− z̃)3/2

) ∂τ̃ (0)xx

∂x̃
.

From previous computations, we obtain

(B.2)

∫ h̃

0

h̃3/2
∂τ̃
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2

3
ϕ sin θ
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)2
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2
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We also compute with (5.28)∫ h̃
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Hence ∫ h̃

0

ũ(0)
∂τ̃

(0)
xx
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9
Ãϕ sin θ
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and

∫ h̃

0

ũ(0)
∂τ̃

(0)
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− ϕF 2 ∂
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ν̃eff h̃Ũ
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