
HAL Id: hal-04668759
https://hal.science/hal-04668759v1

Preprint submitted on 7 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of block low rank preconditioners for primal
domain decomposition methods

Christophe Bovet, Théodore Gauthier, Pierre Gosselet

To cite this version:
Christophe Bovet, Théodore Gauthier, Pierre Gosselet. On the use of block low rank preconditioners
for primal domain decomposition methods. 2024. �hal-04668759�

https://hal.science/hal-04668759v1
https://hal.archives-ouvertes.fr

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

R E S E A R C H A R T I C L E

On the use of block low rank preconditioners for primal domain
decomposition methods

Christophe Bovet1 Théodore Gauthier1,2 Pierre Gosselet2

1Onera – The French Aerospace Lab, F-92322
Châtillon, France

2LaMcube, Univ. Lille / CNRS / Centrale Lille,
F-59000, Lille, France

Correspondence
Christophe Bovet.
Email: christophe.bovet@onera.fr

Summary
This article investigates the use of the block low rank (BLR) factorization, recently proposed in the MUMPS
solver, to define efficient and cheap preconditioners for primal domain decomposition methods, such as
the Balancing Domain Decomposition method (BDD) and its adaptive multipreconditioned variant. To be
scalable, these methods are equipped with an augmentation projector built from the local preconditioners
nullspaces. The determination of these nullspaces is a complex task in the case of ill conditioned system,
the use of block low rank compression makes this task even more complex as MUMPS’ automatic detec-
tion no longer works properly. Two alternatives based on incomplete factorization with a well-chosen Schur
complement are proposed. Also, the first massively parallel implementation of the adaptive multiprecondi-
tioned BDD solver (AMPBDD) is introduced. The performance of the methods is assessed with two weak
scalability studies on problems up to 24576 cores and about 790 millions of unknowns, on the Sator and
Topaze supercomputers. BLR preconditioning proves to be an interesting strategy both in terms of memory
usage and time to solution for reasonably conditioned problems.

K E Y W O R D S
Domain decomposition, adaptive multipreconditioning, block low rank factorizations

1 INTRODUCTION

In the last decade, non-overlapping domain decomposition methods have reached a high level of maturity, with
sophisticated robustification techniques, and high performance implementations. Even though these questions are
still the object of intense research, another question of interest is the ability to derive less numerically demanding
variants of the methods which result in better performance in practice on sufficiently regular problems.

Dual methods (FETI1, AMPFETI2,3,4) provide a zoology of preconditioners with variable quality and computa-
tional cost, allowing them to adapt to the conditioning of the system to be solved. However, they are less suited for
the simulation of fracture problems, such as damage and crack propagation, due to their high sensitivity to the com-
putation of the nullspace of local stiffness operators. A wrong estimation of these kernels leads to the divergence of
the Krylov solver and/or the FETI system not being equivalent to the initial one anymore. The FETI-DP method5

only partially solves this issue. Indeed, this approach enforces the continuity between subdomains of certain (gener-
alized) degrees of freedom (like corner nodes or averages on faces/edges), leading to all Neumann problems being
well-posed, without local nullspaces. But in the presence of propagating cracks, subdomains may split into several
pieces which may generate internal mechanism not eliminated by the kinematic constraints.

Regarding this point, primal methods (BDD6, BDDC7) exhibit greater robustness because their operator is based
on Dirichlet interface condition. Initially, they only propose a Neumann preconditioner that in general use the full
factorization of local Schur complements. The memory footprint of these factorizations can be a limiting factor to
exploit modern supercomputers since the memory-per-core tends to decrease. For instance, the Milan nodes of the

;:0–22 wileyonlinelibrary.com/journal/ © Copyright Holder Name 0

2

new supercomputer, “Topaze”, at TGCC (one french very large computational center), provide only 2Go of RAM
per core.

In recent years, direct solvers such as MUMPS and Pastix have introduced compression techniques to reduce the
memory footprint of factorization. For example, MUMPS utilizes low-rank blocks (BLR) to perform approximate
solutions, thereby expediting the factorization and substitution steps. These new features offer the possibility of
creating cost-effective preconditioners for the BDD method. However, a balance must be found between the com-
pression ratio and the convergence speed of the iterative solver. The question of inexact preconditioners for domain
decomposition methods has been investigated for a long time8,9,10,11, in particular in the BDDC context12,13. As
Dohrmann showed12, inexact solves, made at the subdomain level or at the coarse grid level, must preserve the local
operator nullspace to remain scalable.

The coarse problem of the BDD method is based on the nullspace of the local Neumann operator. The exact
estimation of the nullspace is not mandatory for BDD since it comes into play at the preconditioner level. Nevertheless,
the approximation caused by the compression process may remove the local nullspace and thus prevent scalability.
Alternative coarse grid mechanisms have to be proposed in order to compensate this loss such as multipreconditioning
and/or low energy modes.

The paper is structured as follows: the block low rank factorization is briefly introduced in Section 2. The primal
domain decomposition is reminded in Section 3 and the use of BLR factorization to build the preconditioner is
emphasized. The specific point of nullspace and generalized inverse computation is discussed in Section 4, then
Section 5 provides scalability results on academic examples. Section 6 concludes the paper.

2 BLOCK LOW-RANK METHODS IN A NUTSHELL

This section briefly introduces multifrontal sparse direct solvers14 and block low-rank factorization15 (BLR). In the
context of domain decomposition methods, sparse direct solvers are used to solve local linear systems, i.e. linear
systems defined at the subdomains level. The BLR factorization is only used for the preconditioner, in order to
reduce the memory footprint of these local factorizations (see section 3.2).

For simplicity, we will consider the Cholesky factorization L⊤L of a symmetric positive definite matrix A = (aij).
The general method is illustrated on the small matrix proposed by Liu14:

A =

a11

a22

a33

a42 a44 sym.
a53 a55

a62 a65 a66

a71 a77

a81 a83 a84 a85 a87 a88

a91 a94 a96 a97 a99

, L =

ℓ11
ℓ22

ℓ33
ℓ42 ℓ44

ℓ53 ℓ55
ℓ62 ℓ64 ℓ65 ℓ66

ℓ71 ℓ77
ℓ81 ℓ83 ℓ84 ℓ85 ℓ86 ℓ87 ℓ88
ℓ91 ℓ94 ℓ96 ℓ97 ℓ98 ℓ99

.

First, a symbolic Gaussian elimination is performed to obtain the structure of L accounting for the fill-in but not
the lucky cancellations (filled-in entries appeared in red in the matrix L). This structure is then used to build the
Elimination Tree whose vertices are pivots to be eliminated (grouped together in practice but not in Figure 1 for
simplicity). To each node n of the elimination tree is associated a dense Frontal Matrix or Front Fn constructed
by assembling the entries of A corresponding to the future non zero-entries of L for the rows of the current pivots
with the contributions of the previously eliminated pivots thanks to Update Matrices (Um) of the children (m) of n
and an add-extension operation ←

→←→. Then a partial factorization is realized to obtain the final entries of L = (ℓij)

corresponding to the pivots of the current node and their contribution as an Update Matrix to the Frontal Matrices
in the upper nodes. The tree is parsed from bottom to top and the factorization is complete once the root has been
reached and treated.

These multifrontal methods have several advantages:

3

1

3 2

5 4

67

8

9

F4 =

a44 0 a48 a49
0 0 0 0

a84 0 0 0
a94 0 0 0

 ←
→←→U2

facto.→

ℓ44 ℓ46 ℓ48 ℓ49

ℓ64

ℓ84

ℓ94

U4

F6 =

 a66 0 a69
0 0 0

a96 0 0

←
→←→U4 ←
→←→U5

facto.→ …
Update

F I G U R E 1 Following Liu14, a case of a L⊤L factorization denoting L = (ℓij), the tree is explored in parallel from bottom to top.

• Different branches of a tree are independent, making it possible to handle computations in parallel.
• Frontal Matrices are dense which allows optimized dense factorization kernels.
• Update Matrix can be stored and applied at different steps allowing various strategies to manage memory.
• Sparsity of data can be further exploited by compressing the Front in low-rank format as explained below.

Before explaining block low-rank formats, low-rank matrices are defined. Let ϵp be a strictly positive threshold.
Let n and k be non-negative integers such that k ⩽ n. Let M be a n× n matrix. The numerical rank of M at precision
ϵp is k if and only if k is the lowest integer such that there exist XM and YM, n× k rectangle matrices, such that:∥∥M – XMY⊤

M
∥∥
2
≤ ϵp

with ∥·∥2 the matrix norm induced by the Euclidean norm. The matrix M is said to be low-rank for a given accuracy ϵp

when storing XM and YM requires less memory rather than M. Thus, M is low-rank whenever the following inequality
holds:

k (n + m) ≤ mn.

If so, the low-rank approximation M̃ = XMY⊤
M of M is stored as (XM, YM). In practice XM and YM are obtained

directly through Singular Values Decomposition or Rank Revealing QR (RRQR) factorization of M in which case X
is orthogonal. As well as reducing memory requirements, the low-rank format reduces the complexity of algebraic
operations. Indeed, operations on and between two low-rank matrices M̃ and Ñ can be achieved directly – exactly or
approximately – on XM, YM, XN and YN with reduced complexities. These operations include multiplication, addition,
row or column swap, etc. Further explanations and computations of complexities regarding these operations can be
readily found in the introduction of Bebendorf16 or in Théo Mary15.

Obviously, global finite element matrices are not low-rank, but some extradiagonal subblocks representing long-
range interactions may be. Thus, a block low-rank (BLR) factorization of A is obtained by putting some of these
off-diagonal blocks into low-rank format or “compressing” them whenever the expected gains are greater than the
overhead of doing so. In practice, a graph based analysis is done as to decide which blocks will be compressed or
not, rather than doing unnecessary RRQR factorizations to obtain the numerical rank. It permits assessing with a
purely algebraic criterion the geometric distance between the nodes considered (see admissibility condition in Théo
Mary15) as one should expect the rank to decrease exponentially with reasonable hypothesis made and on elliptical
partial differential equations16.

Low-rank factorization consists in compressing the Frontal Matrices in block low-rank format to carry on the partial
factorization with reduced complexity and memory footprint. For this work, we have chosen to use the MUMPS
library. The user has control on several parameters:

• the precision ϵBLR which differs from ϵp previously mentioned only to a scaling;
• the ordering of some operations, leading to two variants: UCFS and UFSC.

4

Let us explain the last two denominations. During the factorization of a given Front F, a loop is done on its blocks.
Data are accessed as late as possible within the Front F, and its blocks are Updated (i.e. the contribution from pivots
within the front are applied, step (U)) just before we start to treat them. Step (F) corresponds to the Factorization
of the diagonal block before carrying out division by the unitary lower triangular matrix obtained on blocks below -
the Solve step (S). To make numerical pivoting possible, it is needed to merge the Factor and Solve steps together,
which requires Compression (C) to take place either before or after the Factor+Solve (FS) step. In either case, UCFS
and UFSC make pivoting possible. The variant UCFS should reduce even more the complexity but at the cost of
degraded numerical pivoting because it is done in low-rank, whereas UFSC should be more precise but will not
benefit from early compression. It is stated in Théo Mary15 that the downside of UCFS is barely noticeable as a
degraded solution could quickly be improved through cheap iterative refinement steps. We have used both variants in
the current work to investigate if any differences could be highlighted either way. Regarding the iterative refinement
process, our numerical tests have shown little interest in our case, it will not be used in the following.

Finally, one should note that there are other methods exploiting numerical ranks in the literature. One might
be interested in the brief review of some of these methods in Théo Mary15, which states for instance that BLR
factorization should be preferred for solving systems repeatedly while Hierarchically Semi-Separable matrices (HSS)16

should be used for aggressive preconditioning. Since our goal is to build a cheap preconditioner which approximates
precisely enough the action of some generalized inverse repeatedly, this advocates for the use of BLR factorization.

3 PRIMAL DOMAIN DECOMPOSITION METHODS

This section briefly recalls the Balancing domain decomposition method (BDD6), its coupling with Adaptive
Multipreconditioning (AMP17), and the use of inexact solvers.

3.1 Balancing Domain Decomposition method in a nutshell

We consider a linear(ized) elasticity problem set on a domain Ω and discretized with the finite element method. This
results in a large sparse linear system of equations of the form Ku = f where u is the vector of unknowns and f the
right-hand side. The operator K (stiffness matrix) is assumed to be symmetric positive definite.

Let (Ωs)1⩽s⩽Nd
be a non overlapping partition of Ω such that: Ω̄ =

⋃Nd
s=1 Ω̄

s and Ωs ⋂Ωp = ∅, ∀s ̸= p. The interface
between the subdomains Ωs and Ωp is denoted by Υsp = Ω̄s ⋂ Ω̄p, the union of all the interfaces of the subdomain Ωs is
denoted by Υs, and the union of the interfaces of all subdomains is denoted by Υ. In the substructured formulations,
only local quantities (e.g. restricted to one subdomain) are assembled such as the matrices Ks and the right-hand-side
fs. The global system is equivalent to the substructured formulation:

Ksus = fs + Ts⊤λs
b ∀ 1 ⩽ s ⩽ Nd, (1)

Nd∑
s=1

BsTsus = 0, (2)

Nd∑
s=1

Asλs
b = 0, (3)

where Ts : Ωs → Υs is the trace operator, As and Bs are primal and dual assembly operators respectively (see18

for their definition). The Lagrange multiplier field λs
b enforces the continuity of the primal unknown across the

subdomains interfaces. From a mechanical point of view, equations (1) are the equilibrium of all subdomains, (2)
corresponds to the continuity of the displacement across interfaces and (3) expresses the equilibrium of the interface
(action-reaction principle).

All unknowns can be separated between internal unknowns (denoted with subscript i) and boundary ones (denoted
with subscript b). Internal degrees of freedom can be eliminated in order to express (1)-(3) only in terms of boundary

5

unknowns

Ssus
b = f̂

s
b + λs

b ∀ 1 ⩽ s ⩽ Nd, (4)
Nd∑

s=1

Bsus
b = 0, (5)

Nd∑
s=1

Asλs
b = 0, (6)

where Ss and f̂
s
b are primal Schur complements and condensed right-hand sides. The vector us

b is the trace of the
displacement at the boundary.

Ss = Ks
bb – Ks

biKs–1

ii Ks
ib, (7)

f̂
s
b = fs

b – Ks
biKs–1

ii fs
i . (8)

Finally, we would like to point out that assembly operators are orthogonal in the following sense:

Nd∑
s=1

BsAs⊤ = 0, (9)

which means that any local interface vector us
b can be uniquely defined as a combination of a balanced vector and a

continuous one us
b = Bs⊤ud + As⊤up.

The BDD method writes the interface problem in terms of one unique primal global unknown up such that local
interface vectors are given by us

b = As⊤up and (5) is satisfied by construction thanks to the orthogonality property
of assembly operators (9). Few algebraic manipulations lead to the primal formulation:

Nd∑
s=1

AsSsAs⊤

︸ ︷︷ ︸
S

up –
Nd∑

s=1

Asf̂
s
b︸ ︷︷ ︸

fp

=

Nd∑
s=1

Asλs
b = 0. (10)

The global primal Schur complement S =
∑Nd

s=1 AsSsAs⊤ is never built explicitly. Since this system is solved using a
Krylov iterative solver, only the result of a multiplication by S is needed. This computation is well suited to parallel
computers since S is a sum of local contributions. Also, in the present implementation, no Schur complements are
explicitly computed, the action of these Schur operators are evaluated implicitly.

3.1.1 Preconditioner

The BDD preconditionner M–1
BDD mimics the additive structure of S, it is chosen as a scaled sum of generalized inverse

of primal Schur complements defined by

M–1
BDD =

Nd∑
s=1

Ã
s
Ss†Ã

s⊤
, (11)

where Ã
s

are scaled primal assembly operators such that
∑

s AsÃ
s⊤

= IΥ, and the superscript Ss† denotes for
a generalized inverse of Ss. Classical scaling operators are multiplicity scaling and stiffness scaling (often called
k-scaling)19.

The action of Ss† is obtained by solving a local problem with Neumann boundary conditions. Depending on the
natural boundary conditions of the problem, Ss may be singular. Corresponding subdomains are commonly qualified
as “floating subdomains”.

6

3.1.2 Coarse problem

The BDD preconditioner is applied to the residual of the Krylov solver z = M–1
BDDr. For floating subdomains, local

right-hand-sides must lie inside the image of Ss which leads to the solvability conditions:

Rs⊤
b Ã

s⊤
r = 0, ∀s, (12)

where Rs
b is the nullspace of Ss. We rewrite this condition as C⊤r = 0 with

C =
(

Ã
1
R1

b | . . . | Ã
Nd RNd

b

)
. (13)

These conditions provide an additional coarse problem which is enforced using an augmented Krylov solver. An
augmentation projector ΠC such that C⊤SΠC = 0 is defined, and the solution is sought as:

up = u0 +ΠCũ, (14)

with u0 = C(C⊤SC)–1C⊤fp, (15)

ΠC = I – C(C⊤SC)–1C⊤S. (16)

The system to be solved by the Krylov solver is finally:

SΠCũ =
(
fp – Su0

)
. (17)

This coarse problem provides a mechanism for rapidly propagating the mechanical load information to all the
subdomains which is essential to build a scalable method.

3.2 Block low rank BDD Preconditioner

In order to build a cheap preconditioner with a small memory footprint for the BDD method, the basic idea is to
replace the full-rank resolution of local problems with a compressed resolution. The BLR BDD Preconditioner M–1

BLR
can be written as:

M–1
BLR =

Nd∑
s=1

Ã
s
Ss†

BLRÃ
s⊤

, (18)

where Ss†
BLR stands for a resolution with a BLR factorization. Available choices for the scaling remain unchanged.

The compression threshold ϵBLR and the variants (UCFS, UFSC) are parameters of the preconditioner. The former
offers real flexibility in terms of the cost and quality of the preconditioner. For simplicity, all subdomains use the
same threshold and variant. Mumps proposes an iterative refinement process when using compressed factorization.
This iterative refinement is not used in the following since it represents a significant additional cost and there is no
guarantee that the solution will be improved.

The main disadvantage of the compressed preconditioner concerns the floating subdomains and the coarse problem.
Indeed, depending on the compression level, the nullspace of local operator of floating subdomains may be lost or
Mumps may be not able to compute it correctly, thus leading to a degraded scalability. To overcome this problem,
other ways of constructing the coarse problem are examined in Section 4. Another possibility to recover a coarse
grid mechanism is to rely on multipreconditioning and not on local operators nullspace.

3.3 Adaptive Multipreconditioning

Multipreconditioning was proposed for iterative solvers20 and adapted to domain decomposition methods2. It is a
strategy which exploits the additive structure of the preconditioner in order to generate as many search directions as
subdomains. In the preconditioning step of conjugate gradient, instead of computing the preconditioned residual as
zi =

∑Nd
s=1 Ã

s
Ss†Ã

s⊤
ri, the following block of vectors is generated: Zi =

(
. . . Ã

s
Ss†Ã

s⊤
ri . . .

)
. Of course the classical

7

direction writes zi = Zi1, where 1 is the vector filled with ones. The idea of multipreconditioning is to let the
algorithm find the optimal combination of directions under the form zi = Ziαi, where αi is the unknown vector of
subdomains’ magnitude of contribution.

Multipreconditioning must be used in conjunction with full reorthogonalization, and it is a numerically expensive
option. Nevertheless, it proved to be an efficient cure to FETI and BDD’s bad conditioning situations. Indeed, it was
proved21 that multipreconditioning is a technique to approximate on the fly the bad modes that would be detected
and eliminated by GENEO coarse spaces22.

In order to limit the numerical costs of multipreconditioning, a clever adaptation strategy was proposed by
Spillane17 where the effectiveness of each direction is predicted based on a costless criterion, making it possible to
accumulate directions which contribute weakly to the decrease of the error and limit the memory and CPU foot-
print. A large-scale assessment of this approach has been carried out for the FETI method3. The method was further
improved with more sophisticated aggregation of search directions depending on the subdomains’ connectivity4.

As mentioned in previous subsection, BLR-preconditioning may cause the disappearance of nullspace modes and
BDD-coarse space may not be a numerical necessity to preserve the well-posedness of Neumann problems. Even
though there is a mechanical urge to preserve rigid body motions coarse space in order to comply with Saint-Venant’s
principle, we wish to evaluate the ability of multipreconditioning to naturally bring out this information and ensure
scalability.

4 COARSE PROBLEM COMPUTATION: NULLSPACE AND GENERALIZED INVERSES

The coarse problem of the BDD method relies on the computation local preconditioner nullspace and generalized
inverses. The exact computation of these kernels is not mandatory since it plays at the preconditioning level. However,
it still impacts the rate of convergence. In this section we propose three different methods to evaluate the defect ks,
the nullspace of Ks and its generalized inverse. For readability, we drop the exponent s of the local operator Ks.

4.1 Mumps automatic nullspace detection (M)

The first method is simply to use Mumps’ capabilities to evaluate the operator nullspace and null pivots. There are
two user defined parameters for the detection of the kernel dimension in Mumps, CNTL(1) and CNTL(3). The control
parameter CNTL(1) is a relative threshold for numerical pivoting. The default value CNTL(1) = 10–2 is used in this
work. The second control parameter CNTL(3) is a threshold to detect null pivots. According to the documentation,
a pivot is considered to be null if the infinite norm of its row/column is smaller than a threshold thres. The default
value of CNTL(3) = 0 provides an automatic process to determines this threshold, thres = ε × 10–5 × ∥Apre∥ where
Apre is the preprocessed matrix to be factorized and ε is machine precision. A positive value of CNTL(3) leads to the
user defined threshold thres = CNTL(3)× ∥Apre∥.

As shown in a previous work23, the automatic kernel detection can be put on severe test when dealing with ill-
conditioned systems. Often, the automatic threshold does not detect the right kernel size. It is however possible
to recover the right kernel with a user defined threshold, but the admissible range for CNTL(3) becomes narrow.
If Mumps allows both BLR compression and nullspace calculation to be enabled, we expect the estimation of the
correct nullspace to be even more complex in those cases.

4.2 Incomplete factorization and fixing-nodes framework

The other two methods reuse the graph based approach proposed in a previous work23. This framework is briefly
reminded here, we refer to the original paper and the references herein for more details. The overall methodology
relies on the partial factorization of the operator and on the analysis of a well-chosen Schur complement. Let c be a

8

nonempty subset of {1, . . . n}, called fixing variables, the incomplete LL⊤ factorization is:

K =

[
Kcc Kcc

Kcc Kcc

]
=

[
Lcc 0

Lcc I

] [
L⊤

cc L⊤
cc

0 Scc

]
. (19)

The construction of c in the paper23, based on graph centrality measures, not only ensures that Kcc remain full-rank,
but it minimizes its condition number, which is an important feature when dealing with large ill conditioned systems.
A generalized inverse K+ of K is given by

K+ =

[
L–⊤

cc –L–⊤
cc L⊤

ccS†
cc

0 S†
cc

] [
L–1

cc 0

–LccL–1
cc I

]
. (20)

Since the Schur complement Scc is a small dense matrix, the use of the Moore-Penrose generalized inverse, obtained by
SVD, is reliable and affordable here. From a practical point of view, once the fixing variables have been selected, the
partial factorization is performed with the Mumps library. The fact that Mumps can activate both BLR compression
and partial factorization is a very interesting opportunity here.

What remains to be done is to choose a criterion to determine Moore-Penrose generalized inverse of Scc, and a
way to compute a basis of the nullspace.

4.2.1 Low energy modes (E)

With this method, a relative criterion σj ≤ ϵ σmax is used to estimate the “null” singular values. The singular value
decomposition of Scc also provides the nullspace of the Schur complement Rc and the nullspace of the full matrix is
deduced from Rc

R =

[
–K–1

cc KccRc

Rc

]
(21)

where K–1
cc makes use of the BLR compression. Here both the coarse space C and the coarse projector ΠC take into

account the BLR compression.

4.2.2 Hybrid geometric–algebraic detection (G)

In our experiments, it appeared that BLR compression may have a strong impact on the estimation of the defect
(size of the nullspace) and on the basis input in the coarse problem, while Saint-Venant’s principle urges us to
preserve actual rigid body motions for the coarse problem. Thus, we propose another strategy inspired by the hybrid
geometric–algebraic approach of Farhat and Géradin24.

The method requires knowing the nullspace in the case of a totally floating subdomain. Let Ru be a basis of this
totally unrestrained nullspace. In 3D elastostatics on connected domains, Ru is made of the six rigid body modes (3
translations and 3 rotations). The method of Farhat and Géradin24 permits to calculate the combinations of rigid
body motions which are not precluded by the Dirichlet conditions. These combination form the actual nullspace R
of the subdomain.

Once the dimension k of the nullspace is known, the generalized inverse is computed using Equation (20) where the
Moore-Penrose generalized inverse S†

cc considers that the k-smallest singular values are zero. This treatment differs
from the original paper of Farhat and Géradin24 where exactly k fixing nodes were deduced from the knowledge of
the nullspace.

The hybrid geometric–algebraic method leads to coarse space C and projector ΠC being the same as those
constructed without compression. Only the generalized inverse is impacted by the BLR compression.

9

5 NUMERICAL EXPERIMENTS

5.1 Remarks on the implementation and dependencies

The proposed methods have been implemented in the finite element suite Z-Set 9.1†. In all configurations, the
local direct solves are performed with the MUMPS library (version 5.5.1)25. MUMPS is linked with the BLAS
library provided by Intel MKL. The coarse problem is solved with the Pardiso direct solver. The Eigen library‡ is
used for dense linear algebra. Communication are handled by the MPI protocol. The MPI library depends on the
supercomputer used.

5.2 Description of the weak scaling test case

For nc ∈ {4, .., 16}, we consider a set of three-dimensional heterogeneous cubes made of n3
c identical sub-cubes (see

Figure 2). Each sub-cube is discretized with the same ruled mesh made of 110, 592 eight-node brick elements (c3d8),
leading to a total number of approximately n3

c × 206, 763 degrees of freedom. With this setup, the H/h ratio equals
40 where h is the diameter of the finite elements and H that of the subdomains.

The cube is clamped on one face and subjected to a prescribed unitary displacement in the three space directions on
the opposite face, all other faces being traction-free. The material behavior is isotropic linear elastic, with a Poisson’s
coefficient of 0.3 and two values of Young’s modulus assigned following a checkerboard pattern in order to obtain
a coefficient jump Er/Eb between two adjacent sub-cubes. Three ratios of Young’s modulus are used: 100, 102 and
104. Finally, an unstructured decomposition in Nd = n3

c subdomains is obtained with a graph partitioning software
which leads to interfaces not aligned with the heterogeneity. For a given number of subdomains, the partitioning is
computed once and reused for all solvers configurations and for both coefficient jumps. The choice Nd = n3

c , combined
with the use of an automatic graph partitioning software leads to a lot of traversing heterogeneities that are known
to strongly deteriorate the convergence of domain decomposition methods. Such a configuration is represented in
Figure 2 for nc = 6.

(a) Checkerboard cube. Red and blue areas
correspond to the two different materials.

(b) Automatic decomposition. Each color rep-
resents a different subdomain.

F I G U R E 2 Heterogeneous cube (configuration with Nd = 216, nc = 6).

† http://www.zset-software.com/
‡ http://eigen.tuxfamily.org/

http://www.zset-software.com/
http://eigen.tuxfamily.org/

10

nc Nd #DOFs total #cores
4 64 12.52M 384
6 216 41.99M 1,296
8 512 99.22M 3,072
10 1000 193.44M 6,000
16 4096 790.12M 24,576

T A B L E 1 Checkerboard cube, weak parallel scalability: configurations.

All preconditioners make use of the stiffness scaling, they differ by the local operator Ss† (with or without BLR
compression) and the way to construct the coarse space C. To make it easier to identify the method used to build
the coarse problem, each method is assigned a letter (see the column Kernel in Table 2 for instance):

• M refers to the Mumps automatic nullspace detection (Section 4.1),
• G stands for the geometric–algebraic detection (Section 4.2.2),
• E corresponds to the low energy modes (Section 4.2.1).

The convergence is triggered when ∥ri∥/∥r0∥ ≤ ϵ = 10–6. When AMPCG is used, the number of aggregates is 32 and
the τ -test threshold is set to 10–2.

Six cores are allocated to each subdomain, a shared memory parallelism is used at several steps including (but
not limited to) local operators and coarse problem factorization. The study starts from 64 subdomains and goes up
to 4096 subdomains which corresponds to a total number of 24,576 cores and 790.12 millions unknowns. Table 1
summarizes the different configurations.

5.3 Weak scalability study on the Sator supercomputer

5.3.1 Presentation of the hardware

Sator is Onera’s in-house supercomputer. It is a parallel scalar cluster with 43,600 cores supplied by NEC. Thanks
to three groups of computing nodes (Broadwell, Skylake and Cascade Lake), the Linpack performance of Sator is
1.8 PFlop/s. In this work, only the Cascade Lake partition has been used. It is made of 400 compute nodes with
Intel Xeon “Cascade Lake 6240R” bi-processors (19,200 cores). Each node has 2× 24 cores at 2.4 GHz and 192 GB
of RAM (4GB RAM per core). The interconnection network is based on an Intel Omnipath 100Gbps fabric, in a
Fat-tree topology. Communications are handled with Intel MPI 22.2.0. Since the largest queue in Sator is limited,
the weak scalability only goes up to 3,072 cores in this section.

5.3.2 Focus on a small test case (Nd = 64)

In order to reduce the number of calculations and select only the most promising configurations, the focus is made
on the smallest test case with 64 subdomains and 384 cores. Several counters and timers are provided to compare
the results:

• The size of the coarse problem is shown in column #C.
• The column t(s) represents the total time of the simulation, including the construction and the factorization of

the local operators, the computation of the coarse problem and the time spent in the iterations.
• The column Ss+(Go) shows the memory footprint of the local preconditioner.
• For AMPCG, the number of search directions is given in column #s.dir. (for CG it equals the number of iterations

since we use full reorthogonalization).

11

Heterogeneity Er/Eb = 100 Solver CG Solver AMPCG
BLR ϵBLR Kernel #C #iter t(s) Ss+(Go) #iter t(s) Ss+(Go) #s.dir.

M 192 65 72 2.5 59 71 2.5 90
UCFS 10–1 M 0 169 109 1.4 168 112 1.4 199
UCFS 10–3 M 0 120 90 1.8 115 93 1.7 146
UCFS 10–5 M 0 257 165 2.1 58 77 2.1 358
UFSC 10–1 M 0 168 108 1.4 168 112 1.4 199
UFSC 10–3 M 0 115 89 1.8 120 94 1.7 151
UFSC 10–5 M 0 257 167 2.1 62 79 2.1 347

G 192 65 79 2.5 59 77 2.5 90
UCFS 10–1 G 192 98 89 1.4 97 90 1.4 128
UCFS 10–3 G 192 61 72 1.8 58 72 1.8 89
UCFS 10–5 G 192 65 77 2.1 59 76 2.1 90
UFSC 10–1 G 192 98 88 1.4 97 91 1.4 128
UFSC 10–3 G 192 61 72 1.8 59 73 1.7 90
UFSC 10–5 G 192 65 77 2.2 59 75 2.1 90

E 192 65 81 2.4 59 78 2.4 90
UCFS 10–1 E 192 165 125 1.3 151 122 1.3 182
UCFS 10–3 E 192 66 75 1.6 63 76 1.6 94
UCFS 10–5 E 192 65 77 2.0 59 76 2.0 90
UFSC 10–1 E 192 151 119 1.3 151 121 1.3 182
UFSC 10–3 E 192 66 75 1.7 63 76 1.6 94
UFSC 10–5 E 192 65 78 2.0 59 76 2.0 90

T A B L E 2 Small checkerboard cube, summary of the results with Er/Eb = 100 (homogeneous case)

5.3.2.1 Homogeneous probem
The results of the homogeneous test case are summarized in Table 2. This test case being well conditioned, all
variants converge in less than 500 iterations. As expected, the convergence is strongly degraded when Mumps looses
the nullspace due to the BLR compression. AMPCG is able to compensate for this loss for ϵBLR = 10–5, at the cost
of a much larger search space. However, the multipreconditioning does not improve the convergence for moderate
and large compression.

The geometric–algebraic (G) and the low energy mode (E) provide similar and much better convergence rates.
They differ only for the highest level of compression where the geometric–algebraic method performs better. The low
energy modes probably drift away from the original operator’s nullspace for the highest compression. A degraded
convergence is expected in this situation as shown by Dohrmann12.

The BLR compression significantly reduces the memory footprint of the local preconditioner. The gain is about 40%
for ϵBLR = 10–1, 27% for a moderate compression (ϵBLR = 10–3) and 20% for a small one (ϵBLR = 10–5). Interestingly,
moderate and low compression improve both resolution time and memory footprint here (for both CG and AMPCG).
Also, the geometric–algebraic method with high compression leads to the same total time than the uncompressed
results while reducing the memory footprint of the preconditioner of 40%. Finally, the two BLR variants UCFS and
UFSC lead to very similar results.

5.3.2.2 Moderate heterogeneity
The results obtained with Er/Eb = 102 are summarized in Table 3. Again, the convergence is strongly degraded
when Mumps does not detect the correct nullspace. The (G) method performs better, especially for moderate
and high compression. It is the only one that reaches convergence with CG for a high BLR compression. The
multipreconditioning clearly improves the convergence and time to solution. However, both (M) and (E) do not reach
convergence with a high compression. Regarding the difference between the two BLR variants, no clear trend can be
identified. Finally, the memory gain provided by the compression seems not affected by the material heterogeneity.

5.3.2.3 High heterogeneity
The results obtained with Er/Eb = 104 are summarized in Table 4. The system is ill-conditioned due to the high
heterogeneity. Mumps does not compute the correct coarse space even without BLR compression and very few
configurations with the CG converge in less than 500 iterations.

12

Heterogeneity Er/Eb = 102 Solver CG Solver AMPCG
BLR ϵBLR Kernel #C #iter t(s) Ss+(Go) #iter t(s) Ss+(Go) #s.dir.

M 192 142 115 2.5 102 102 2.5 288
UCFS 10–1 M 0 >500 1.4 >500 1.4
UCFS 10–3 M 0 345 204 1.8 232 168 1.8 515
UCFS 10–5 M 0 335 209 2.2 124 120 2.1 572
UFSC 10–1 M 0 >500 1.4 >500 1.4
UFSC 10–3 M 0 353 206 1.7 240 173 1.8 537
UFSC 10–5 M 0 335 210 2.1 158 137 2.2 548

G 192 142 125 2.5 102 110 2.5 288
UCFS 10–1 G 192 320 209 1.4 308 211 1.4 370
UCFS 10–3 G 192 208 153 1.7 138 125 1.8 324
UCFS 10–5 G 192 142 120 2.1 106 108 2.1 261
UFSC 10–1 G 192 323 211 1.4 319 215 1.4 350
UFSC 10–3 G 192 221 160 1.7 147 129 1.8 333
UFSC 10–5 G 192 142 120 2.1 107 110 2.1 262

E 192 142 126 2.4 102 112 2.4 288
UCFS 10–1 E 192 >500 1.3 >500 1.3
UCFS 10–3 E 192 297 206 1.6 215 174 1.6 399
UCFS 10–5 E 192 142 122 2.0 106 109 2.0 261
UFSC 10–1 E 192 >500 1.3 >500 1.3
UFSC 10–3 E 192 259 186 1.7 216 175 1.7 433
UFSC 10–5 E 192 142 123 2.0 106 110 2.0 261

T A B L E 3 Small checkerboard cube, summary of the results with Er/Eb = 102 (moderate heterogeneity)

Heterogeneity Er/Eb = 104 Solver CG Solver AMPCG
BLR ϵBLR Kernel #C #iter t(s) Ss+(Go) #iter t(s) Ss+(Go) #s.dir.

M 149 >500 2.5 >500 2.5
UCFS 10–1 M 0 >500 1.4 >500 1.4
UCFS 10–3 M 0 >500 1.7 313 267 1.7 1189
UCFS 10–5 M 0 >500 2.1 183 186 2.1 1122
UFSC 10–1 M 0 >500 1.4 >500 1.4
UFSC 10–3 M 0 >500 1.7 286 254 1.8 1198
UFSC 10–5 M 0 >500 2.1 >500 2.1

G 192 393 291 2.5 108 141 2.5 851
UCFS 10–1 G 192 >500 1.4 393 308 1.4 877
UCFS 10–3 G 192 >500 1.8 275 256 1.8 1046
UCFS 10–5 G 192 393 276 2.1 108 140 2.1 895
UFSC 10–1 G 192 >500 1.4 335 276 1.4 904
UFSC 10–3 G 192 >500 1.8 229 222 1.7 1034
UFSC 10–5 G 192 393 273 2.1 108 140 2.1 922

E 192 393 288 2.4 108 143 2.4 851
UCFS 10–1 E 192 >500 1.3 >500 1.3
UCFS 10–3 E 192 >500 1.6 327 301 1.6 1097
UCFS 10–5 E 192 >500 2.0 223 232 2.0 1036
UFSC 10–1 E 192 >500 1.3 >500 1.3
UFSC 10–3 E 192 >500 1.6 377 351 1.6 1213
UFSC 10–5 E 192 >500 2.0 208 221 2.0 1056

T A B L E 4 Small checkerboard cube, summary of the results with Er/Eb = 104 (high heterogeneity)

Multipreconditioning is essential for convergence but only the (G) method provides satisfactory results with
compression. The best results are obtained with a small compression where both the memory footprint and the
total time are improved. For a larger level of compression, the number of iterations and the total time significantly
increase, despite a larger search space.

13

5.3.3 Weak scalability results

After analysing the previous results and in order to reduce the number of data, only the best configurations are
shown in the following. Multipreconditioning is only considered for the moderate and high heterogeneity. The level
of BLR compression is adapted to the heterogeneity of the material, the higher the heterogeneity, the lower the level
of compression. Also, since the two variants UCFS and UFCS lead to very similar results, only UCFS is used in the
following.

5.3.3.1 Homogeneous probem
The parallel performance of the homogeneous test case are shown in Figure 3. The trends observed in Section 5.3.2
are confirmed. Moderate and low BLR compression do not significantly penalize the rate of convergence. As in
section 5.3.2, (G) with a moderate compression ratio (ϵBLR = 10–3) converges faster, both in terms of total time
and number of iterations. It sounds surprizing, but somehow the compressed preconditioner works better than the
classic one. With a high compression ratio ϵBLR = 10–1, the convergence rate of (G) is slowed down significantly.
The purpose of a such a configuration is mainly to reduce the memory footprint of the preconditioner. Variants (E)
slightly increase the solution time due to a higher number of iterations and/or due to the overhead caused by the
partial factorization (as observed in a previous work23).

5.3.3.2 Moderate heterogeneity
For the moderate heterogeneity test case, fives curves are considered: the CG solver without and with a low com-
pression ratio, and the MPCG solver with a low compression ratio. Both (G) and (E) are considered when using
compression. The parallel performance with Er/Eb = 102 are shown in Figure 4. As before, a constant number of
iterations is not expected due to the automatic domain decomposition. Also, the larger the problem, the larger is
the condition number due to material heterogeneity. As expected, multipreconditioned solvers tend to be faster to
converge thanks to an enlarged search space. The convergence rate of the CG solver is quite satisfactory and remains
competitive in terms of time to solution. Both (G) and (E) give similar results in terms of number of iterations and
search space size. However, the time to solution is much shorter for the (G) method, a closer look at the internal
timers suggests that the time spent in backward and forward substitutions is faster with this method.

5.3.3.3 High heterogeneity
Only two curves are shown for the highly heterogeneous test case: MPCG solver with geometric–algebraic nullspace
detection, without and with low compression ratio. The MPCG solver with (E) without compression leads to the
same convergence as with (G). The MPCG with (E) and BLR compression does not converge in less than 500
iterations for the test case with 3,072 cores. The parallel performance with Er/Eb = 104 are shown in Figure 5. For
this ill-conditioned test case, BLR compression slightly degrades the convergence rate but the time to solution and
the search space size remain similar.

14

4 6 8

N
1/3
d

80

100

120

T
ot

al
ti

m
e

[s
]

CG G UCFS 10−1

CG G UCFS 10−3

CG M

CG E UCFS 10−3

CG E UCFS 10−5

384 1296 3072
Number of cores

(a) Total wall time.

4 6 8

N
1/3
d

60

80

100

120

140

It
er

at
io

n
s

CG G UCFS 10−1

CG G UCFS 10−3

CG M

CG E UCFS 10−3

CG E UCFS 10−5

384 1296 3072
Number of cores

(b) Number of iterations.

FIGURE 3 Checkerboard cube, weak parallel scalability (homogeneous case Er/Eb = 100): total time and number
of iterations (the minimization space size is equal to the number of iterations for CG). Sator supercomputer.

15

4 6 8

N
1/3
d

150

200

250
T

o
ta

l
ti

m
e

[s
]

CG G

CG G UCFS 10−5

CG E UCFS 10−5

MPCG G UCFS 10−5

MPCG E UCFS 10−5

384 1296 3072
Number of cores

(a) Total wall time.

4 6 8

N
1/3
d

120

140

160

180

200

It
er

at
io

n
s

CG G

CG G UCFS 10−5

CG E UCFS 10−5

MPCG G UCFS 10−5

MPCG E UCFS 10−5

384 1296 3072
Number of cores

(b) Number of iterations.

4 6 8

N
1/3
d

200

300

400

500

600

S
ea

rc
h

sp
ac

e
si

ze

CG G

CG G UCFS 10−5

CG E UCFS 10−5

MPCG G UCFS 10−5

MPCG E UCFS 10−5

384 1296 3072
Number of cores

(c) Minimization space size.

FIGURE 4 Checkerboard cube, weak parallel scalability (moderate heterogeneity Er/Eb = 102): total time, num-
ber of iterations and minimization space size. Sator supercomputer.

16

4 6 8

N
1/3
d

200

300

400
T

o
ta

l
ti

m
e

[s
]

MPCG G MPCG G UCFS 10−5

384 1296 3072
Number of cores

(a) Total wall time.

4 6 8

N
1/3
d

120

140

160

180

200

It
er

at
io

n
s

MPCG G MPCG G UCFS 10−5

384 1296 3072
Number of cores

(b) Number of iterations.

4 6 8

N
1/3
d

1000

2000

3000

S
ea

rc
h

sp
ac

e
si

ze

MPCG G MPCG G UCFS 10−5

384 1296 3072
Number of cores

(c) Minimization space size.

FIGURE 5 Checkerboard cube, weak parallel scalability (high heterogeneity Er/Eb = 104): total time, number of
iterations and minimization space size. Sator supercomputer.

17

5.4 Weak scalability study on the Topaze supercomputer

This section presents the scalability study carried out on the Topaze supercomputer. The main interest here is that
the available memory per core is only 2 GB, which initially motivated the use of BLR compression. Also, the compute
nodes use AMD processors and it is the first time that our implementation is benchmarked on such an architecture.

5.4.1 Presentation of the Topaze supercomputer

The Topaze supercomputer is managed by the french Computing Center for Research and Technology (CCRT,
http://www-ccrt.cea.fr). It is made of 864 nodes, 2.45GHz AMD Milan bi-socket with 64 cores per socket. With 864
compute nodes (111,592 cores) and a theoretical Peak performance of 4.34 PFlop/s, Topaze is ranked 238 in the
TOP500 (list from Nov. 2023). One specificity of Topaze is that the RAM per core is only 2GB which motivates
the use of compression techniques. Compute nodes are connected through a EDR InfiniBand network in a pruned
Fat-tree topology. The communication are handled with OpenMPI 4.1.4.

5.4.2 Weak scaling results

5.4.2.1 Homogeneous probem
For the homogeneous test case and in order to reduce the number of simulations, only the CG solver is used with
or without BLR compression. The weak scaling results are shown in Figure 6. Whatever the solver is, the number
of iterations slightly increases with the size of the problem due to the automatic subdomain decomposition. Again,
the configuration with a moderate compression provides the best performance, both in terms of iterations and time
to solution. For the largest test case with 24,576 cores and 790.12M dofs, the time to solution is about 300s which
represents a gain of about 40%. Also, the configuration with high compression provides the same time to solution
than the uncompressed one, despite a greater number of iterations.

5.4.2.2 Moderate heterogeneity
For the moderate heterogeneity test case, only three curves are considered: the CG solver with (G) nullspace without
and with a low compression ratio, and the MPCG solver with a low compression ratio. The results are shown in
Figure 7. Once again, the CG solver performs well with low BLR compression, the convergence rate is the same as
without compression and the time to solution is reduced. Due to the larger search space, the MPCG solver with low
BLR compression gives the best convergence rate. However, the cost of orthogonalising this search space tends to
dominate the computation time for large problems (≥ 6, 000 cores).

5.4.2.3 High heterogeneity
The weak scaling results obtained with Er/Eb = 104 are shown in Figure 8. Here only MPCG without compression is
able to converge in less than 500 iterations for large problems. The test case with 24,756 cores ran out of memory.
Multipreconditioning provides robustness at the cost of a large search space: the number of iterations is only doubled
between 384 and 6,000 cores. For this type of problem, a restart of the MPCG solver should be implemented, in the
same spirit as, for example, the GMREs-DR algorithm26. This is however out of the scope of the present study.

http://www-ccrt.cea.fr

18

4 6 8 10 16

N
1/3
d

100

200

300

400

500

T
ot

al
ti

m
e

[s
]

CG G UCFS 10−1

CG G UCFS 10−3

CG M

384 1296 3072 6000 24576
Number of cores

(a) Total wall time.

4 6 8 10 16

N
1/3
d

100

150

200

It
er

at
io

n
s

CG G UCFS 10−1

CG G UCFS 10−3

CG M

384 1296 3072 6000 24576
Number of cores

(b) Number of iterations.

FIGURE 6 Checkerboard cube, weak parallel scalability (homogeneous case Er/Eb = 100): wall time, number of
iterations and minimization space size. Topaze supercomputer.

19

4 6 8 10 16

N
1/3
d

200

400

600

800
T

o
ta

l
ti

m
e

[s
]

CG G

CG G UCFS 10−5

MPCG G UCFS 10−5

384 1296 3072 6000 24576
Number of cores

(a) Total wall time.

4 6 8 10 16

N
1/3
d

100

150

200

250

300

It
er

at
io

n
s

CG G

CG G UCFS 10−5

MPCG G UCFS 10−5

384 1296 3072 6000 24576
Number of cores

(b) Number of iterations.

4 6 8 10 16

N
1/3
d

500

1000

1500

2000

2500

S
ea

rc
h

sp
ac

e
si

ze

CG G

CG G UCFS 10−5

MPCG G UCFS 10−5

384 1296 3072 6000 24576
Number of cores

(c) Minimization space size.

FIGURE 7 Checkerboard cube, weak parallel scalability (moderate heterogeneity Er/Eb = 102): wall time, number
of iterations and minimization space size. Topaze supercomputer.

20

4 6 8 10

N
1/3
d

200

400

600

800

1000

1200
T

o
ta

l
ti

m
e

[s
]

MPCG G MPCG E

384 1296 3072 6000
Number of cores

(a) Total wall time.

4 6 8 10

N
1/3
d

125

150

175

200

225

It
er

at
io

n
s

MPCG G MPCG E

384 1296 3072 6000
Number of cores

(b) Number of iterations.

4 6 8 10

N
1/3
d

1000

2000

3000

4000

5000

S
ea

rc
h

sp
ac

e
si

ze

MPCG G MPCG E

384 1296 3072 6000
Number of cores

(c) Minimization space size.

FIGURE 8 Checkerboard cube, weak parallel scalability (high heterogeneity Er/Eb = 104): wall time, number of
iterations and minimization space size. Topaze supercomputer.

21

6 CONCLUSION AND PERSPECTIVES

In order to adapt to modern supercomputer designs where the available memory per core is constantly decreasing,
this paper proposes to use block low-rank factorization methods to equip primal domain decomposition methods
with low memory footprint preconditioner. The BLR compression makes it difficult for the Mumps solver to detect
the correct kernel to use. The nullspace is often not detected and the BDD method falls back to the Neumann-
Neumann method: scalability is lost. Two alternative strategies have been tested: the hybrid geometric–algebraic
approach and the low energy modes. The former makes the coarse problem independent of BLR compression, but
requires the knowledge of the nullspace in the case of a completely floating subdomain. The latter is fully algebraic
and takes compression into account, but numerical results suggest that the hybrid geometric–algebraic approach is
preferable whenever available. Indeed, low energy modes seem to drift away from the original operator’s nullspace
for a high level of compression, which significantly degrades the convergence rate12. The BLR preconditioner has
also been combined with adaptive multipreconditioning in order to increase the robustness of the solver with respect
to material heterogeneity.

Weak scalability studies were presented using two supercomputers (Sator and Topaze) and three heterogeneity
ratios. Numerical results show that BLR compression can improve both memory and solution time. It is especially
interesting for reasonably well conditioned problems. For the largest homogeneous test case with 24,576 cores and
790.12M dofs, the time to solution is about 300s, which represents a 40% gain over the uncompressed preconditioner,
while the memory footprint of the preconditioner is reduced by 20%.

The results also show that AMPBDD is robust with respect to material heterogeneity but generates a large
search space. Unfortunately, multipreconditioning is unable to compensate for the loss of the correct coarse space
in most situations. The largest ill-conditioned test case has approximately 200 million of unknowns and runs on
6,000 cores. Block low rank factorization is not sufficient here, and a GMRES-DR-style restart procedure will need
to be investigated in the near future. However, this is the first large-scale evaluation of this solver. AMPBDD is
particularly useful for simulating crack propagation problems because the nullspace computation only plays at the
preconditioner level. One prospect of this work is the extension of AMPBDD phase field fracture27 to larger scale
problems solved on low memory supercomputers.

DATA AVAILABILITY STATEMENT

Data will be made available on request for the benchmarks presented in Section 5. The data that support the findings
of this study are available from the corresponding author upon reasonable request.

References

1. Farhat C, Roux FX. The dual Schur complement method with well-posed local Neumann problems. Contemporary Mathematics.
1994;157:193. doi: 10.1137/0914047

2. Gosselet P, Rixen D, Roux FX, Spillane N. Simultaneous FETI and block FETI: Robust domain decomposition with multiple search
directions. International Journal for Numerical Methods in Engineering. 2015;104(10):905–927. nme.4946doi: 10.1002/nme.4946

3. Bovet C, Parret-Fréaud A, Spillane N, Gosselet P. Adaptive multipreconditioned FETI: Scalability results and robustness assessment.
Computers & Structures. 2017:1–20. doi: 10.1016/j.compstruc.2017.07.010

4. Bovet C, Parret-Fréaud A, Gosselet P. Two-level adaptation for Adaptive Multipreconditioned FETI. Advances in Engineering
Software. 2021;152:102952. doi: 10.1016/j.advengsoft.2020.102952

5. Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D. FETI-DP: a Dual-Primal Unified FETI Method - Part I: a Faster Alternative to
the Two-Level FETI Method. International Journal for Numerical Methods in Engineering. 2001;50(7):1523–1544. doi: 10.1002/nme.76

6. Mandel J. Balancing domain decomposition. Communications in Numerical Methods in Engineering. 1993;9(3):233. doi:
10.1002/cnm.1640090307

7. Dohrmann CR. A preconditionner for substructuring based on constrained energy minimization. SIAM Journal for Scientific
Computing. 2003;25:246. doi: 10.1137/s1064827502412887

http://dx.doi.org/10.1137/0914047
http://dx.doi.org/10.1002/nme.4946
http://dx.doi.org/10.1016/j.compstruc.2017.07.010
http://dx.doi.org/10.1016/j.advengsoft.2020.102952
http://dx.doi.org/10.1002/nme.76
http://dx.doi.org/10.1002/cnm.1640090307
http://dx.doi.org/10.1002/cnm.1640090307
http://dx.doi.org/10.1137/s1064827502412887

22

8. Bramble JH, Pasciak JE, Vassilev AT. Analysis of non-overlapping domain decomposition algorithms with inexact solves. Math.
Comput.. 1998;67(221):119. doi: 10.1090/S0025-5718-98-00879-5

9. Börgers C. The Neumann-Dirichlet domain decomposition method with inexact solvers on the subdomains. Numerische Mathematik.
1989;55(2):123–136. doi: 10.1007/BF01406510

10. Haase G, Langer U, Meyer A. The approximate Dirichlet Domain Decomposition method. Part I: An algebraic approach. Computing.
1991;47(2):137–151. doi: 10.1007/BF02253431

11. Haase G, Langer U, Meyer A. The approximate Dirichlet Domain Decomposition method. Part II: Applications to 2nd-order Elliptic
B.V.P.s. Computing. 1991;47(2):153–167. doi: 10.1007/BF02253432

12. Dohrmann CR. An approximate BDDC preconditioner. Numerical Linear Algebra with Applications. 2007;14(2):149–168. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.514doi: 10.1002/nla.514

13. Li J, Widlund OB. On the use of inexact subdomain solvers for BDDC algorithms. Computer Methods in Applied Mechanics and
Engineering. 2007;196(8):1415–1428. doi: 10.1016/j.cma.2006.03.011

14. Liu JW. The multifrontal method for sparse matrix solution: Theory and practice. SIAM review. 1992;34(1):82–109.

15. Mary T. Block Low-Rank multifrontal solvers: complexity, performance, and scalability. PhD thesis. Université Paul Sabatier-Toulouse
III, ; 2017.

16. Bebendorf M. Hierarchical matrices. Springer, 2008.

17. Spillane N. An Adaptive Multipreconditioned Conjugate Gradient Algorithm. SIAM J. Sci. Comput.. 2016;38(3):A1896–A1918. doi:
10.1137/15M1028534

18. Gosselet P, Rey C. Non-overlapping domain decomposition methods in structural mechanics. Archives of Computational Methods in
Engineering. 2006;13(4):515–572.

19. Rixen DJ, Farhat C. A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural
mechanics problems. International Journal for Numerical Methods in Engineering. 1999;44(4):489–516. doi: 10.1002/(SICI)1097-
0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z

20. Bridson R, Greif C. A multipreconditioned conjugate gradient algorithm. SIAM J. Matrix Anal. Appl.. 2006;27(4):1056–1068
(electronic). doi: 10.1137/040620047

21. Leistner MC, Gosselet P, Rixen DJ. Recycling of Solution Spaces in Multi-Preconditioned FETI Methods Applied to Structural
Dynamics. International Journal for Numerical Methods in Engineering. 2018. doi: 10.1002/nme.5918

22. Spillane N, Rixen DJ. Automatic spectral coarse spaces for robust FETI and BDD algorithms. International Journal for Numerical
Methods in Engineering. 2013;95(11):953–990. doi: 10.1002/nme.4534

23. Bovet C. On the use of graph centralities to compute generalized inverse of singular finite element operators: Applications to
the analysis of floating substructures. International Journal for Numerical Methods in Engineering. 2022;124(9):1933–1964. doi:
10.1002/nme.7193

24. Farhat C, Géradin M. On the general solution by a direct method of a large scale singular system of linear equations: applica-
tion to the analysis of floating structures. International Journal for Numerical Methods in Engineering. 1998;41(4):675–696. doi:
10.1002/(SICI)1097-0207(19980228)41:4<675::AID-NME305>3.0.CO;2-8

25. Amestoy PR, Duff IS, Koster J, L’Excellent JY. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling.
SIAM Journal on Matrix Analysis and Applications. 2001;23(1):15–41. doi: 10.1137/S0895479899358194

26. Morgan RB. GMRES with Deflated Restarting. SIAM Journal on Scientific Computing. 2002;24(1):20–37. doi: 10/cdk9g4

27. Rannou J, Bovet C. Domain decomposition methods and acceleration techniques for the phase field fracture staggered solver.
International Journal for Numerical Methods in Engineering. 2024:e7544. doi: 10.1002/nme.7544

http://dx.doi.org/10.1090/S0025-5718-98-00879-5
http://dx.doi.org/10.1007/BF01406510
http://dx.doi.org/10.1007/BF02253431
http://dx.doi.org/10.1007/BF02253432
http://dx.doi.org/ 10.1002/nla.514
http://dx.doi.org/10.1016/j.cma.2006.03.011
http://dx.doi.org/10.1137/15M1028534
http://dx.doi.org/10.1137/15M1028534
http://dx.doi.org/ 10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z
http://dx.doi.org/ 10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z
http://dx.doi.org/10.1137/040620047
http://dx.doi.org/10.1002/nme.5918
http://dx.doi.org/10.1002/nme.4534
http://dx.doi.org/10.1002/nme.7193
http://dx.doi.org/10.1002/nme.7193
http://dx.doi.org/ 10.1002/(SICI)1097-0207(19980228)41:4<675::AID-NME305>3.0.CO;2-8
http://dx.doi.org/ 10.1002/(SICI)1097-0207(19980228)41:4<675::AID-NME305>3.0.CO;2-8
http://dx.doi.org/10.1137/S0895479899358194
http://dx.doi.org/10/cdk9g4
http://dx.doi.org/10.1002/nme.7544

	 On the use of block low rank preconditioners for primal domain decomposition methods
	Abstract
	Introduction
	Block low-rank methods in a nutshell
	Primal domain decomposition methods
	Balancing Domain Decomposition method in a nutshell
	Preconditioner
	Coarse problem

	Block low rank BDD Preconditioner
	Adaptive Multipreconditioning

	Coarse problem computation: nullspace and generalized inverses
	Mumps automatic nullspace detection (M)
	Incomplete factorization and fixing-nodes framework
	Low energy modes (E)
	Hybrid geometric–algebraic detection (G)

	Numerical experiments
	Remarks on the implementation and dependencies
	Description of the weak scaling test case
	Weak scalability study on the Sator supercomputer
	Presentation of the hardware
	Focus on a small test case
	Weak scalability results

	Weak scalability study on the Topaze supercomputer
	Presentation of the Topaze supercomputer
	Weak scaling results

	Conclusion and perspectives
	Data availability statement
	References

