Experimental Comparison of Metaheuristics for Feature Selection in Machine Learning in the Medical Context - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Experimental Comparison of Metaheuristics for Feature Selection in Machine Learning in the Medical Context

Résumé

We explore in this paper the use of metaheuristics to select features from a dataset in order to improve the prediction performance of models build with different machine learning methods. To this end, we compare the performances of 5 learning methods: Logistic Regression (LR), K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), Support Vector Machine (SVM) and Random Forest (RF) on 4 heterogeneous datasets in the number of data and features, for different feature selection methods (metaheuristics or statistical filters).The results obtained show that feature selection by improving a metaheuristic derived from the genetic algorithm leads to much better performances no matter the learning method used compared to without feature selection on the same dataset.
Fichier principal
Vignette du fichier
534967_1_En_17_Chapter.pdf (455.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04668638 , version 1 (07-08-2024)

Licence

Identifiants

Citer

Thibault Anani, Francois Delbot, Jean-François Pradat-Peyre. Experimental Comparison of Metaheuristics for Feature Selection in Machine Learning in the Medical Context. 18th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Jun 2022, Hersonissos, Greece. pp.194-205, ⟨10.1007/978-3-031-08337-2_17⟩. ⟨hal-04668638⟩
69 Consultations
4 Téléchargements

Altmetric

Partager

More