Multi-sequence learning for multiple sclerosis lesion segmentation in spinal cord MRI

Ricky Walsh 1 , Malo Gaubert 1,2 , Cédric Meurée 1 , Burhan Rashid Hussein 1 , Anne Kerbra $\dot{\mathsf{t}}^{1,3}$, Romain Casey 4 , Benoit Combès 1,† , Francesca Galassi 1,†

> ¹Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn, Rennes, France ²Department of Neuroradiology, Rennes University Hospital, Rennes, France ³Department of Neurology, Rennes University Hospital, Rennes, France ⁴Univ Lyon, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Fondation EDMUS, OFSEP, Centre de Recherche en Neurosciences de Lyon, Lyon, France

Introduction

Motivation

Spinal cord lesions in Multiple Sclerosis (MS) have prognostic value.

Detecting spinal MS lesions is a *challenging task* for clinicians.

Multiple imaging protocols are used, and not every sequence is available for each patient.

How can we use all available data for training and inference despite missing sequences?

- 1. Pre-processing pipeline to deal with varying fields of view and intersequence misalignments.
- 2. Analysis of improvement of multi-sequence training for singlesequence inference.
- 3. Latent feature augmentation for single-sequence training.

Method

Multiple acquisitions from 247 subjects.

Sagittal T2w (247 subjects), sagittal STIR (137), axial T2*w (119), T1w (63), axial T2w (52), MP2RAGE (36).

Pre-process all sequences for patient to common space. Crop and centre around spinal cord [2].

No non-linear registration to avoid introducing artifacts.

One encoder per sequence and concatenate features at bottleneck. **Mean Imputation**: When a *sequence is missing*, replace its features with the mean across the available sequences [3].

Feature Augmentation: Apply noise at the bottleneck while training single-sequence model.

Frozen Encoder: Freeze T2Sag baseline encoder and train the rest of the multi-sequence model.

1. Preprocessing

2. Method

3. Example Output

Sagittal T2w **Ground Truth** Prediction Not detected with sagittal T2w alone Axial T2*w Detected when combined with axial T2*w

Multi-sequence training improves single-sequence inference.

Results

Table 1: Results for two test cohorts, \mathcal{D}_A and \mathcal{D}_C . Significance levels for Wilcoxon test vs. T2Sag Baseline: * 0.1; ** 0.05.

	Sequences at Inference			Lesion F1		Dice		
Model	T2Sag	T2*Ax	T2Ax	T1	\mathcal{D}_A	\mathcal{D}_C	\mathcal{D}_A	\mathcal{D}_C
T2Sag Baseline	•	0	0	\circ	0.593	0.583	0.452	0.469
Mean Imputation	•	\circ	0	\circ	0.641**	0.606	0.466*	0.493**
	•	•	\bigcirc	•	_	0.622	_	0.518**
	•	•	•	\bigcirc	0.650**	_	0.480**	_

Table 2: Results using only T2Sag at inference (mean \pm std. dev.).

Method	Lesion F1	Dice
T2Sag Baseline	0.564 ± 0.031	0.441 ± 0.011
T2Sag – Feature Augmentation	0.586 ± 0.026 **	0.446 ± 0.014 *
Mean Imputation – Frozen Encoder	0.591 ± 0.022 **	0.448 ± 0.015 *
Mean Imputation	$0.603 \pm 0.025 **$	$\textbf{0.457} \pm 0.013 \ **$

Conclusion

Mean Imputation implicitly regularises both the encoder and decoder.

Latent **feature augmentation** can achieve a similar regularisation effect.

Multiple sequences at inference leads to some modest improvements, especially with axial T2*w.

Future work: pre-train single sequence models to better capture the sequencespecific information.

[1] R. Walsh et al., MICCAI 2024, https://hal.science/hal-04668565 [2] C. Gros et al., NeuroImage 2019, DOI: 10.1016/j.neuroimage.2018.09.081 [3] H. Wang et al., MICCAI 2023, DOI: 10.1007/978-3-031-43901-8_21

Acknowledgements

This work was supported by the following grants managed by the French Agence Nationale de la Recherche (ANR): ANR-20-THIA-0018, ANR-21-RHUS-0014, ANR-10-COHO-002 OFSEP.

