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ABSTRACT

Context. The YORP effect is the thermal torque generated by radiation from the surface of an asteroid. The effect is sensitive to surface
topology, including small-scale roughness, boulders, and craters.
Aims. The aim of this paper is to develop a computationally efficient semi-analytical model for the crater-induced YORP (CYORP)
effect that can be used to investigate the functional dependence of this effect.
Methods. This study linearizes the thermal radiation term as a function of the temperature in the boundary condition of the heat con-
ductivity, and obtains the temperature field in a crater over a rotational period in the form of a Fourier series, accounting for the effects
of self-sheltering, self-radiation, and self-scattering. By comparison with a numerical model, we find that this semi-analytical model
for the CYORP effect works well for K > 0.1 W m−1 K−1. This semi-analytical model is computationally three-orders-of-magnitude
more efficient than the numerical approach.
Results. We obtain the temperature field of a crater, accounting for the thermal inertia, crater shape, and crater location. We then find
that the CYORP effect is negligible when the depth-to-diameter ratio is smaller than 0.05. In this case, it is reasonable to assume a
convex shape for YORP calculations. Varying the thermal conductivity yields a consistent value of approximately 0.01 for the spin
component of the CYORP coefficient, while the obliquity component is inversely related to thermal inertia, declining from 0.004 in
basalt to 0.001 in metal. The CYORP spin component peaks at an obliquity of 0◦, 90◦, or 180◦, while the obliquity component peaks
at an obliquity of around 45◦ or 135◦. For a z-axis symmetric shape, the CYORP spin component vanishes, while the obliquity compo-
nent persists. Our model confirms that the total YORP torque is damped by a few tens of percent by uniformly distributed small-scale
surface roughness. Furthermore, for the first time, we calculate the change in the YORP torque at each impact on the surface of an
asteroid explicitly and compute the resulting stochastic spin evolution more precisely.
Conclusions. This study shows that the CYORP effect due to small-scale surface roughness and impact craters is significant during
the history of asteroids. The semi-analytical method that we developed, which benefits from fast computation, offers new perspectives
for future investigations of the YORP modeling of real asteroids and for the complete rotational and orbital evolution of asteroids
accounting for collisions. Future research employing our CYORP model may explore the implications of space-varying roughness
distribution, roughness in binary systems, and the development of a comprehensive rotational evolution model for asteroid groups.

Key words. minor planets, asteroids: general

1. Introduction

The Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect is
a thermal torque that can alter the spin state of an aster-
oid over time (Rubincam 2000; Vokrouhlickỳ & Čapek 2002;
Vokrouhlicky et al. 2015), and is caused by the asymmetric
re-emission of solar radiation by the irregular surface of the
asteroid, resulting in a net torque that can spin up or spin down
the asteroid’s rotation. The absorption of solar radiation makes
no contributions to the YORP torque as it is averaged out over
the spin and orbital periods for any asteroid shapes (Nesvornỳ &
Vokrouhlickỳ 2008). So far, 11 asteroids showing time-varying
rotational periods have been detected (Lowry et al. 2007; Taylor
et al. 2007; Ďurech et al. 2022; Tian et al. 2022).

The YORP effect has important implications for an asteroid’s
long-term rotational evolution. This effect can either spin down
the asteroid to an extremely slow rotation, triggering a tumbling
motion (Pravec et al. 2005), or spin up the asteroid to its rotation
limit (e.g. rotational period of 2.2 h for rubble pile asteroids),
leading to resurfacing (Sánchez & Scheeres 2020) and rotation

disruption (Scheeres 2007; Fatka et al. 2020; Veras & Scheeres
2020). YORP-induced rotational disruption is supported by
the observed asteroid pairs (Vokrouhlickỳ & Nesvornỳ 2008;
Polishook 2014) and binary asteroids (Jacobson & Scheeres
2011; Delbo et al. 2011; Jacobson et al. 2013, 2016), including
contact-binary asteroids (Rożek et al. 2019; Zegmott et al. 2021)
and binary comets (Agarwal et al. 2020), which evolve under
tidal effects and the binary YORP (BYORP) effect after the
binary system is formed (Ćuk & Burns 2005; Steinberg & Sari
2011). Further potential observational evidence is the abnormal
spin distribution and the obliquity distribution of near-Earth
asteroids (Vokrouhlickỳ et al. 2003; Pravec et al. 2008; Rozitis
& Green 2013b; Lupishko & Tielieusova 2014) and main belt
asteroids (Lupishko et al. 2019), although a recent study points
out that collisions might reproduce the observed distribution
without the involvement of the YORP effect (Holsapple 2022).
The YORP effect can influence the orbital evolution through
the Yarkovsky effect, which is a thermal force that depends on
the rotational state of the asteroid (Vokrouhlickỳ et al. 2000;
Bottke et al. 2006). Therefore, understanding the YORP effect
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is important for correctly estimating the ages of asteroid families
based on how much time is needed for the Yarkovsky effect to
cause the observed orbital dispersion of their members from
the original orbit following the disruption of their parent bodies
(Vokrouhlickỳ et al. 2006; Ćuk et al. 2015; Carruba et al. 2014,
2015, 2016; Lowry et al. 2020; Marzari et al. 2020).

However, accurately calculating the YORP effect on a real
asteroid remains a challenge, as it has been demonstrated to be
highly sensitive to surface topology (Statler 2009; Breiter et al.
2009), such as uniform small-scale roughness (Rozitis & Green
2012), boulders (Golubov & Krugly 2012; Golubov et al. 2014,
2021; Ševeček et al. 2015; Golubov 2017; Golubov & Scheeres
2019; Golubov & Lipatova 2022), and craters (Zhou et al. 2022).
Although the YORP torque caused by boulders and the tan-
gential radiative force has been well studied, the YORP effect
caused by concave structures has not yet been fully explored.
More specifically, there are two kinds of concave structures on
asteroid surfaces. The first one corresponds to craters, which
result from impacts that an asteroid’s surface undergoes dur-
ing its history and which can cover a large size range and be
distributed in various ways. The second corresponds to surface
roughness, which corresponds to uniformly distributed small-
scale concave features that originate from the continuous effect
of various processes that take place at the surface, such as ther-
mal fatigue and space weathering. In our study, we consider
both craters and surface roughness. While a pioneering study by
Rozitis & Green (2012) used numerical simulations to investigate
the effect of roughness, the high computational expense of such
simulations prevents a comprehensive exploration of the func-
tional dependence of this effect and its application to the global
spin evolution of asteroid populations.

In addition to the precise calculation of the complete YORP
effect, the long-term evolution of asteroids needs to account for
stochastic collisions that affect this evolution, because each colli-
sion introduces a YORP torque due to the resulting crater. Bottke
et al. (2015) performed a first study of the YORP effect account-
ing for craters caused by collisions, finding strong implications in
the age estimate of asteroid families. However, their introduction
of the concept of the stochastic YORP effect due to collisions
assumed an arbitrary reset timescale for the YORP cycle. In real-
ity, this reset timescale depends on the actual occurrence of each
impact causing a crater on the asteroid’s surface and the result-
ing change in the YORP effect. In summary, collisions and the
YORP and Yarkovsky effects are all coupled with each other in
a way that is so far not well understood.

To account explicitly for the YORP torque caused by rough-
ness and craters, Zhou et al. (2022) developed a semi-analytical
model that is computationally efficient for the crater-induced
YORP (CYORP) torque. The CYORP torque is defined as the
torque difference between the crater and the flat ground:

TCYORP = Tcrater − Tground. (1)

In general, it takes the form of the following scaling rule with
the radius of the crater R0 and of the asteroid radius Rast:

TCYORP = W
Φ

c
R2

0Rast, (2)

where Φ is the flux of solar radiation at the asteroid’s semimajor
axis, and W is the CYORP coefficient, which in turn depends on
the obliquity and irregularity of the asteroid, and the depth-to-
diameter ratio, location, thermal inertia, and albedo of the crater.
As a first step, this model assumed a zero thermal conductivity.

Zhou et al. (2022) found that roughness or craters that cover 10%
of the asteroid’s surface area could produce a CYORP torque
comparable to the normal YORP (NYORP) torque, which arises
from the macroscopic shape, with ignorance of the fine surface
structure. Based on this number, which assumes that all craters
have a depth-to-diameter ratio of 0.16, the reset of the YORP
torque by the CYORP torque could be as short as 0.4 Myr.

However, the effects of finite thermal conductivity, self-
radiation, and self-scattering were not considered in Zhou et al.
(2022). In the present paper, we propose a semi-analytical model
that accounts for the effects of self-sheltering, self-radiation,
self-scattering, and non-zero thermal conductivity. This new
model allows a more general exploration of the functional depen-
dence of the CYORP effect. Moreover, as this semi-analytical
model is much more efficient than a purely numerical one, it can
be used to study the combined influence of the YORP effect, col-
lisions, and the Yarkovsky effect by incorporating the CYORP
effect into the standard evolution model of asteroid families. We
assume that the craters considered in this work are on a con-
vex asteroid. It is possible to apply the model derived in this
work to a moderately concave asteroid by approximating con-
cave structures as craters, but this is beyond the scope of this
paper.

In this paper, we describe our analytical model for the tem-
perature field in a crater in Sect. 2. In Sect. 3, we introduce the
numerical model that we developed to validate the analytical
model. The main results are shown in Sects. 4 and 5. In Sect. 4,
we analyse the effects of self-sheltering, self-radiation, and self-
scattering of the crater, and in Sect. 5 we show the results of the
calculation of the CYORP torque as a function of different vari-
ables. For the purpose of illustration, in Sect. 6 we provide an
example of the analysis of CYORP considering a specific real
asteroid shape and its surface roughness as well as the conse-
quential rotational evolution. In Sect. 7, we summarise our main
findings and draw conclusions.

2. Analytical model

2.1. Calculation of temperature distribution in a crater

2.1.1. Linearized analytical solution

The temperature u for the surface and the layer beneath is
governed by

∂u
∂t
=

K
Cρ
∂2u
∂z2 , (3)

with two boundary conditions,

K
∂u
∂z

∣∣∣z=0 = F(t) − eσu4|z=0, (4)

K
∂u
∂z
|z→∞ = 0, (5)

and a periodic condition,

u|t=2π/ω = u|t=0, (6)

where t is the time, z is the depth of the crater, ω is the angu-
lar velocity, K is the thermal conductivity, C is the specific heat
capacity, ρ is the bulk density of the asteroid, e is the emissivity,
and σ is the Stefan-Boltzmann constant. In the following, we use
the spin angle β = ωt to replace time for simplicity. The effect of
the seasonal wave is marginal and is ignored in this work.
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Fig. 1. Three coordinate systems in this paper: coordinate system oxyz for calculating the illuminated domain in the crater, PABC for calculating
the effective radiative force of an arbitrary surface element, and OXYZ for averaging the YORP torque over the spin and orbital motion.

While the one-dimensional heat diffusion equation with the
boundary condition of radiation has no complete analytical solu-
tion, it could be solved by linearizing the fourth power of the
temperature, with the assumption that the temperature does not
change significantly during a rotational period. For an arbitrary
point in the hemispherical crater surface, the location of which
is described by the polar angle θ and the azimuthal angle ϕ, the
solution of the temperature is the real part of the expression

u(θ, ϕ, β) = u0(θ, ϕ) +
∞∑

n=1

un(θ, ϕ)einβ, (7)

with

u0(θ, ϕ) =
(

F0(θ, ϕ)
eσ

)1/4

, (8)

un(θ, ϕ) =
Fn(θ, ϕ)

4eσu0(θ, ϕ)3

eiJn√
2Θ2

n + 2Θn + 1
, (9)

where

ln =
√

nω
2M
, (10)

Θn =
Kln

4eσu3
0

, (11)

tan Jn = −
Θn

Θn + 1
, (12)

with M = K/ρC. The function Fn is the nth-order of the Fourier
series of the absorbed radiation flux F, which is expressed as

F(θ, ϕ) =
∞∑

n=0

Fn(θ, ϕ)einβ. (13)

We see that the only unknown variable is the absorbed radiation
flux F. The absorbed radiation on a surface element contains

three parts: solar radiation E(θ, ϕ, β), radiation from the crater
itself H(θ, ϕ, β), and the scattering flux from the crater G(θ, ϕ, β),
which leads us to

F(θ, ϕ) = (1 − A)(E(θ, ϕ) + H(θ, ϕ) +G(θ, ϕ))

= (1 − A)
∞∑

n=0

(En(θ, ϕ) + Hn(θ, ϕ) +Gn(θ, ϕ))einβ,
(14)

where En(θ, ϕ, β) and Hn(θ, ϕ, β) denote the nth-order Fourier
modes of E(θ, ϕ, t) and H(θ, ϕ, t), respectively. Here the albedo
A is assumed to be 0.1 for these three flux components for the
sake of simplicity, although the albedo at the thermal-infrared
wavelengths is almost zero. Following Eqs. (8), (9), and (14), we
obtain

u0(θ, ϕ) =
(

(1 − A)(E0(θ, ϕ) + H0(θ, ϕ) +G0(θ, ϕ))
eσ

)1/4

, (15)

un(θ, ϕ) =
(1 − A)(En(θ, ϕ) + Hn(θ, ϕ) +Gn(θ, ϕ))

4eσu0(θ, ϕ)3

eiJn√
2Θ2

n + 2Θn + 1
.

(16)

Therefore, to solve the temperature u(θ, ϕ, β), we need to obtain
the Fourier series of E(θ, ϕ, β), H(θ, ϕ, β), and G(θ, ϕ, β).

2.1.2. Coordinate systems

We use three coordinate systems to calculate the radiation and
the force received by the crater, as shown in Fig. 1. The coor-
dinate system OXYZ is an inertial frame used to calculate the
averaged YORP torque over the spin and orbital motion. Based
on the axis OZ, we define the coordinate system oxyz fixed with
the crater to calculate the instant solar flux. Finally, based on the
axis oz, we define the coordinate system PABC to calculate the
self-sheltering effect of the crater. The self-sheltering effect for
a point in the crater refers to the non-working moment of the
photons reabsorbed by the shelter (i.e. the crater itself), which
leads to the effective radiation force of the surface being tilted
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relative to the surface normal with a modified magnitude. This
self-sheltering effect on the point P depends on the geometry of
the surrounding shelter. We adopt a simple sphere with a radius
of R1 to depict the crater shape.

In the coordinate system OXYZ, OZ points along the rotation
axis and OXY is the equatorial plane. The axis OY is chosen such
that the normal vector of the orbit plane lies in the plane OYZ.
The axis OX follows the right-hand rule. There are three crucial
vectors determining the CYORP torque expressed in polar coor-
dinates in the coordinate system OXYZ: the crater position vector
r0 (denoted by α and β), the crater normal vector n0 (described
by α, β, δ, and ∆), and the solar position s (described byϵ and
η), as shown in the right panel of Fig. 1. As the polar angle is
between 0◦ and 180◦ by definition, we limit 0◦ < α < 180◦ and
0◦ < α−∆ < 180◦ in our results.

The coordinate system oxyz with the origin o located at the
sphere centre is fixed with the crater in order to simplify the cal-
culation of the solar flux on the crater. The axis oz points in the
opposite direction to the surface normal vector n0, which is also
the symmetry axis of the spherical crater. The direction of axis
oy is along eOZ × eoz and ox follows the right-hand rule. In this
coordinate system, a crater with a depth of h can be defined as

Z B {(x, y, z) ∈ R3|x2 + y2 + z2 = R1, z ≥ R1 cos θ0}, (17)

with cos θ0 = (R1 − h)/R1.
The coordinate system PABC with the origin P at a cho-

sen point on the crater is used to calculate the self-sheltering
effect. The axis PC is along the direction of Po, PA points in
the direction of eoz × ePC , and PB follows the right-hand rule. In
our code, the effective force felt by the point P is calculated first
in the coordinate system PABC for simplicity and this is then
transformed to the coordinate system oxyz by a rotation matrix.

2.1.3. Solar radiation E

In this section, we show how we derive the solar radiation
received by an arbitrary point P in the crater, whose coordinates
in oxyz system are rP = (sin θ cos ϕ, sin θ sin ϕ, cos θ). The unit
position vector of the Sun in the coordinate system OXYZ is
described by

sOXYZ = (cos η, cos ϵ sin η, sin ϵ sin η), (18)

where ϵ is the obliquity and η is the angle of orbital motion.
The transform matrix between the coordinate systems oxyz and
OXYZ is set to

R =

 cosα cos β cosα sin β − sinα
sin β − cos β 0

− cos β sinα − sinα sin β − cosα

 . (19)

Therefore, the coordinates of the vector s in the coordinate
system oxyz is

soxyz =

− sinα sin ϵ sin η + cosα cos β cos η + cosα sin β cos ϵ sin η
sin β cos η − cos β cos ϵ sin η

− sinα cos β cos η − sinα sin β cos ϵ sin η − cosα sin ϵ sin η

 .
(20)

On the other hand, we can use the angle λ and ϕ′ to represent
soxyz:

soxyz = (sin λ cos ϕ′, sin λ sin ϕ′,− cos λ), (21)

such that

cos λ = sinα cos β cos η+ sinα sin β cos ϵ sin η+cosα sin ϵ sin η,
(22)

and

tan ϕ′ =
sinα sin ϵ sin η − cosα cos β cos η − cosα sin β cos ϵ sin η

sin β cos η + cos β cos ϵ sin η
.

(23)

The absorbed radiation flux is

E(θ, ϕ) = (1 − A)ΦH(cos λ)H(w)(−rP · s)
= (1 − A)ΦH(cos λ)H(w) · [m1 cos(β − β1) + m2]

(24)

where

w = cos 2λ cos θ + sin θ0 − sin 2λ sin θ cos(ϕ − ϕ′), (25)

tan β1 =
(sinα cos θ − cosα sin θ cos ϕ) cos ϵ sin η − sin θ sin ϕ cos η
(sinα cos θ − cosα sin θ cos ϕ) cos η + cos ϵ sin η sin θ sin ϕ

,

(26)

m1 = (cos2 η + cos2 ϵ sin2 η)1/2

· (cos2 θ sin2 α −
cos ϕ sin 2α sin 2θ

2
+ (cos2 α cos2 ϕ + sin2 ϕ) sin2 θ)1/2,

(27)

m2 = cosα cos θ sin ϵ sin η + cos ϕ sinα sin ϵ sin η sin θ. (28)

Here, H is the Heaviside function defined by

H(x) B
{

1, x > 0
0, else.

(29)

Using the substitution β′ = β − β1, the absorbed radiation flux
has the form

E(θ, ϕ) =
{

(1 − A)Φ(m1 cos β′ + m2), β′min < β < β
′
max

0, else.
(30)

Expanding Eq. (30) in Fourier series, we obtain

E(θ, ϕ) = E0 +
(1 − A)Φ
π

∞∑
n=1

[
Cn cos(nβ′) + S n sin(nβ′)

]
, (31)

with

E0 =
(1 − A)Φ

2π
(m1 sin β + m2β)

∣∣∣∣β′max
β′min
, (32)

Cn =

∫ β′min

β′
(m1 cos β′max + m2) cos(nβ′)dβ′

=


(

m1 sin 2β′ + 2m1β
′

4
+ m2 sin β

) ∣∣∣∣β′max
β′min
, n = 1(

m1n cos β′ sin nβ′ − m1 cos nβ′ sin β′

n2 − 1
+

m2 sin(nβ′)
n

) ∣∣∣∣β′max
β′min
, n > 1,

(33)
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and

S n =

∫ β′min

β′
(m1 cos β′max + m2) sin(nβ′)dβ′

=


−

(
m1 cos β′2

2
+ m2 cos β′

) ∣∣∣∣β′max
β′min
, n = 1(

m1n cos β′ cos nβ′ + m1 sin β′ sin nβ′

1 − n2 −
m2 cos nβ′

n

) ∣∣∣∣β′max
β′min
, n > 1.

(34)

The nth coefficient of the Fourier series of E(θ, ϕ) is

En =

√
C2

n + S 2
n · e

iΦn , (35)

with

tanΦn = −
S n

Cn
. (36)

2.1.4. Self-heating effect

Due to the concave structure of the crater, the surface element in
the crater also receives photons emitted by the crater itself, which
is a process referred to as ‘self-heating’. In this section, we derive
the self-radiation H and the self-scattering G as a function of the
position in the crater.

Let us consider a surface element dS 1 receiving the radiation
from another surface element dS 2. In the reference frame oxyz,
the positions of dS 1 and dS 2 are

r1 = R1(sin θ1 cos ϕ1, sin θ1 sin ϕ1, cos θ1), (37)
r2 = R1(sin θ2 cos ϕ2, sin θ2 sin ϕ2, cos θ2). (38)

The displacement from dS 1 to dS 2 is

r1,2 = r2 − r1. (39)

The incident angle ζ1 and the emission angle ζ2 are defined as

cos ζ1 = −r1 · r1,2/R1r1,2, (40)
cos ζ2 = r2 · r1,2/R1r1,2, (41)

respectively. The radiation flux at the location of dS 1 produced
by the thermal radiation of dS 2 is

H1,2 =
eσu4

2

π

cos ζ1 cos ζ2
r2

1,2

dS 2. (42)

Substituting Eqs. (37)–(41) into Eq. (42), we obtain

H1,2 =
eσu4

2

4πR2
1

dS 2. (43)

For an arbitrary point, the radiation flux caused by the whole
crater is

H(θ, ϕ) =
∫
Z

eσu(θ′, ϕ′)4

4π
sin θ′dθ′dϕ′, (44)

whereZ is the crater surface, and is defined as

Z B {(x, y, z) ∈ R3|r = R1, θ ∈ (0, π/2 − θ0), ϕ ∈ (0, 2π)}. (45)

Similarly, we obtain the self-scattering term:

G(θ, ϕ) =
∫
Z

AE(θ′, ϕ′)
4π

sin θ′dθ′dϕ′. (46)

Therefore, both H(θ, ϕ) and G(θ, ϕ) can be expressed in terms
of u(θ, ϕ) and E(θ, ϕ). As E(θ, ϕ) is derived in Sect. 2.1.3, the
only unknown variable is the temperature u(θ, ϕ), the solution
for which is discussed in the following section.

2.2. Solution for temperature

We obtained the Fourier series of the solar radiation flux
(Sect. 2.1.3) and the radiation flux produced by the crater
(Sect. 2.1.4), which allows us to return to Eq. (14) to solve the
temperature distribution u(θ, ϕ). We note that the self-radiation
term H contains the unknown temperature distribution that is to
be solved.

The Fourier coefficients of the temperature of the crater
follow

σu4
0(θ, ϕ) = (1 − A)(E0(θ, ϕ) +G0(θ, ϕ) + H0(θ, ϕ))

σun(θ, ϕ)u3
0(θ, ϕ)

2
√

2Θ2
n + 2Θn + 1

(1 − A)eiJn
= En(θ, ϕ) +Gn(θ, ϕ) + Hn(θ, ϕ),

(47)

with

Gn(θ, ϕ) =
∫
Z

AEn(θ′, ϕ′)
4π

sin θ′dθ′dϕ′,

H0(θ, ϕ) =
∫
Z

eσu0(θ′, ϕ′)4

4π
sin θ′dθ′dϕ′,

Hn(θ, ϕ) =
∫
Z

eσu0(θ′, ϕ′)3un(θ′, ϕ′)
π

sin θ′dθ′dϕ′.

(48)

Here, terms G and H are the scattering flux and self-radiation
flux, respectively.

2.2.1. Solution of a general form

Equation (47) have a general form:

f (θ, ϕ) = g(θ, ϕ) +C
∫
Z

f (θ′, ϕ′) sin θ′dθ′dϕ′. (49)

By setting

k =
∫
Z

f (θ′, ϕ′) sin θ′dθ′dϕ′, (50)

we have

f (θ, ϕ) = g(θ, ϕ) +C · k. (51)

Substituting Eq. (51) into Eq. (50), we obtain

k =
∫
Z

(g(θ′, ϕ′) +C · k) sin θ′dθ′dϕ′. (52)

Rearranging Eq. (52), we find k is

k =

∫
Z
g(θ′, ϕ′) sin θ′dθ′dϕ′

1 −C
∫
Z

sin θ′dθ′dϕ′
, (53)

with which f (θ, ϕ) is solved out by Eq. (51).

2.2.2. Solution for temperature

In the case of u0,

f (θ, ϕ) = eσu4
0/(1 − A), (54)

g(θ, ϕ) = E0(θ, ϕ) +G0(θ, ϕ), (55)

C =
1

4π
, (56)
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and in the case of un,

f (θ, ϕ) = eσu3
0un

2
√

2Θ2
n + 2Θn + 1

(1 − A)eiJn
, (57)

g(θ, ϕ) = En(θ, ϕ) +Gn(θ, ϕ), (58)

C =
eiJn

2π
√

2Θ2
n + 2Θn + 1

. (59)

2.3. The CYORP torque

The CYORP torque is defined as the YORP torque difference
between the crater and the flat ground:

TCYORP = Tcrater − Tground. (60)

2.3.1. The YORP torque of the crater

The average radiative torque produced by the crater should be
calculated in the inertial frame OXYZ:

Tcrater = r0,OXYZ × fOXYZ . (61)

Here, fOXYZ is the radiative force, and

fOXYZ =

∫
W

eσT (θ, ϕ)4

c
nf (θ, ϕ)dS , (62)

where nf is the corrected force direction vector for each surface
element. If there is no shelter around the surface element, nf is
equal to the surface unit normal vector n0. However, the surface
element in a crater has a sky sheltered by other elements, result-
ing in the reabsorption of the emitted photons along the direction
of the shelter.

For the surface element dS(θ, ϕ), the radiative force is

f = −
∫
H

Φ

πc
cos θ′


sin θ′ cos ϕ′

sin θ′ sin ϕ′

cos θ′

 sin θ′dθ′dϕ′. (63)

Without sheltering (e.g. for convex asteroids), H is replaced by
the hemisphere (i.e. θ ∈ (0, π/2), ϕ ∈ (0, 2π)). In this case, the
force is reduced to 2Φn0/3c.

2.3.2. The YORP torque of the flat portion of the surface

The absorbed radiation flux for a flat ground with the normal
vector n0 is

Eground = (1 − A)ΦH(cos λ) cos λ

=

{
(1 − A)Φ(m1 cos β′ + m2), β′min < β

′ < β′max

0, else.
(64)

Here, β′ = β − β1, with

tan β1 =
sinα cos ϵ sin η

sinα cos η
, (65)

m1 = (sin2 α(cos2 η + cos2 ϵ sin2 η))1/2, (66)
m2 = cosα sin ϵ sin η, (67)

and βmin and βmax are the negative and positive values of
arccos(−m2/m1), respectively.

3. Numerical model for examination

In the above analytical method, we adopted the assumption of
a “small” temperature variation during a rotation period, which
allows us to linearize the biquadrate of the temperature (i.e. u4 ∼

u3
0
∑

uneβni). This assumption is equivalent to a high value of the
thermal parameter, which is defined as

Γ =

√
Cρωκ

(ϵσ)1/4(1 − A)3/4Φ3/4 . (68)

In the case of a low thermal parameter, the analytical model
should be used with caution. To examine the appropriate range
of the thermal inertia for which our analytical model is valid,
we built a one-dimensional thermophysical numerical model to
perform cross-validation.

3.1. Numerical model

We used a finite difference numerical method to solve Eq. (3)
with the second-order Crank-Nicholson scheme:

cnui, j+1,k+1 − (2cn + 1)ui, j,k+1 + cnui, j−1,k+1 =

−cnui, j+1,k + (2cn − 1)ui, j,k − cnui, j−1,k.
(69)

Here, ui, j,k represents the temperature at the depth of ( j − 1)δz
below the ith facet at the kth time step, where i, j, and k are inte-
grals starting from 1 to imax, jmax, and kmax. The coefficient cn is

cn =
aδt

2(δx)2 . (70)

The value of cn should be smaller than 0.5 for the convergence
of the iteration.

The surface temperature is determined by the first boundary
condition (Eq. (4)):

(1 − A)(Ei,k + Hi,k + S i,k) − σu4
i,1,k+1 = K

ui,1,k+1 − ui,2,k

δz
, (71)

which can be solved by a Newtonian-Raphson iterative method.
The solar flux Ei,k on the ith facet at the kth time step is

Ei,k =

{
Φ0ni · skH(ni · sk), unsheltered
0, sheltered,

(72)

where Φ0 is 1364 W m−2 at the distance of 1 au to the Sun. Here,
ni is the normal vector of the ith facet and sk is the unit solar
position vector at the kth time step. Whether or not the facet is
sheltered is judged according to the projections of other facets on
the plane of the ith facet along the solar position vector sk. The
self-radiation term Hi,k is the sum of radiation from other facets:

Hi,k =
∑
i′,i

eσu4
i′,1,k
−(ni · ri,i′ )(ni′ · ri,i′ )

πr2
i,i′

S i′ , (73)

where ri,i′ is the vector from the centre of the ith facet to the cen-
tre of i′th facet, and S i′ is the area of the ith facet. The scattering
term S i,k is given by

S i,k =
∑
i′,i

AEi′
−(ni · ri,i′ )(ni′ · ri,i′ )

πr2
i,i′

S i′ . (74)
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Fig. 2. Radiative force of the total crater averaged over a rotational period (8 h by default) obtained from the analytical method (solid lines) and the
numerical method (dashed lines), as a function of the crater colatitude α for K = 2.65 W m−1 K−1 (left panel) and K = 0.1 W m−1 K−1 (right panel).
The x, y, and z components of the radiative force are shown in blue, red, and green, respectively. The distance of the crater here is 1 au from the
Sun.

The second boundary condition (Eq. (5)) translates into

ui, jmax,k+1 = ui, jmax−1,k+1. (75)

Combining Eqs. (69), (71), and (75), we can obtain the solu-
tion for the temperature in the next time step ui, j,k+1 based on
the temperature in the current time step ui, j,k. We adopted an ini-
tial temperature of ui, j,0 = 280 K. The maximum depth is set to
be a few thermal skin depths

√
K/Cρω and the total number of

layers is set as jmax = 50. In order to make sure that the surface
temperature is in an equilibrium state, we set the total time as
kmaxδt ∼ 20 spin periods. We divided the considered crater into
about 1000 facets and solve the temperature for each facet using
the above method.

3.2. Comparison with the analytical model

The thermal parameters of asteroids can vary widely depend-
ing on their composition and structure. For example, the thermal
conductivity of a porous material is much lower than that of a
dense metal. The thermal conductivity of stony asteroids, which
are made mostly of silicates, can range from about 0.1 W mK−1

to 1 W mK−1, while the thermal conductivity of metallic aster-
oids is generally much higher, in the range of 20–50 W mK−1.
Asteroids that are composed of a mixture of rock and metal will
have thermal conductivity values between those of pure rock and
pure metal.

Here, we test three typical types of asteroid materials:
regolith, solid basalt, and metal, whose properties are shown in
Table 1. We calculate the radiative force of the total crater aver-
aged over a rotational period (8 h by default), as a function of the
colatitude of the crater. The craters in the test are placed at 1 au
from the Sun. For simplicity, we set the obliquity to ϵ = 0. The
results computed from the analytical method and the numerical
method are shown in Fig. 2. We can see that the analytical result
is consistent with the numerical result to a high degree, while
a large discrepancy shows up when the thermal conductivity

Table 1. Thermal parameter for three typical materials on asteroids,
taken from Farinella et al. (1998).

ρ (kg m−3) K (W m−1 K−1) C (J kg−1 K−1)

Regolith 1500 0.0015 680
Solid basalt 3500 2.65 680
Solid iron 8000 40 500

decreases to 0.1 W m−1 K−1. This coincides with our prerequi-
site of the application of our analytical method, which is that the
temperature variation should be small. Therefore, our method is
appropriate for solid basalt and metal materials.

Regarding regolith material, with a thermal conductivity of
as low as 0.001 W m−1 K−1, we test the model described in Zhou
et al. (2022), where zero thermal conductivity is assumed. The
result is shown in Fig. 3, which indicates that this latter model
works well for regolith materials. Therefore, for three materi-
als representing asteroid surfaces, our two methods, namely the
one in the present work and that described in Zhou et al. (2022),
behave well in modelling the YORP effect.

4. Discussion on self-modification effects

For a concave structure, there are three self-modification effects:
the self-sheltering, self-radiation, and self-scattering effect. The
first one refers to the radiative force modification on the surface
element due to the re-absorption of photons by the crater. The
second and third ones refer to the temperature increase due to the
emitted photons and scattered photons from the crater itself. Pre-
vious research shows that these self-modification effects could
be important for the YORP torque of the crater (Statler 2009;
Rozitis & Green 2012, 2013a), but a quantitative description is
still lacking. For example, it is not clear how deep the crater
needs to be so that these self-modification effects can no longer
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Fig. 3. Same as Fig. 2 but for K = 0 W m−1 K−1 in the analytical model
and K = 0.001 W m−1 K−1 in the numerical model.
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Fig. 4. Ratio of the radiative force including self-modification effects to
that without self-modification effects, as a function of crater depth-to-
diameter ratio and accounting for different self-modification effects.

be ignored. This is crucial to the validity of the commonly made
assumption that the asteroid can be considered as a moderately
convex shape with the craters being overlooked when evalu-
ating the YORP torque. An essential metric in this respect is
the depth-to-diameter ratio of the crater. We explore the radia-
tive force (leading to the YORP torque) of a crater based on
its depth-to-diameter ratio under varying conditions – one for
each self-modification effect. Figure 4 shows our findings, sit-
uating the craters at the equator (α = π/2) with a spin axis of
zero-degree obliquity.

Our analysis reveals that both self-radiation and self-
scattering amplify the force, raising the temperature by as much
as 50% when the crater mirrors a hemisphere. In contrast, self-
sheltering diminishes the force by up to 30%. Notably, the impact
of self-scattering remains negligible for typical asteroid sur-
face albedos ranging between 0.1 and 0.2. When integrating all
self-modification effects, the radiative force increases by 15%.

Our result also shows that when the depth-to-diameter ratio
h/D0 < 0.05, the force increase is less than 1%. Therefore, for
those shallow concave structures with h/D0 < 0.05, no self-
modification effects are needed in the YORP model for it to
remain accurate. These can then be efficiently approximated as
flat surfaces.

5. Analysis of the CYORP torque

As shown in a previous work (Zhou et al. 2022), the CYORP
torque depends on many factors, including the depth-to-diameter
ratio and location (or the colatitude α for example) of the crater
as well as the obliquity and thermal parameter of the asteroid. In
this section, we discuss the dependence of the CYORP torque on
these factors. In the following, except for in Sect. 5.1, we assume
the depth-to-diameter ratio to be ∼0.16.

5.1. Depth-to-diameter ratio

Asteroid craters exhibit a range of distinct features in size and
shape, with diameters ranging from a few centimetres to several
kilometres for large asteroids. These craters generally display
bowl-shaped structures, containing central peaks and terraced
walls when produced in the gravity regime. To simplify the mod-
elling, a semi-sphere approximation is often used to represent the
shape of craters.

According to the definition of CYORP torque, if the depth-to-
diameter ratio reaches zero, the CYORP torque is zero (Eq. (60)).
Figure 5 shows the CYORP torques generated by craters with
various depth-to-diameter ratios. The parameters δ = ∆ = π/6,
K = 2.65 W m−1 K−1, and α = π/2 are used. Higher depth-
to-diameter ratios correspond to larger spin components of the
CYORP torque. A crater with h/D0 < 0.05 produces an insignif-
icant CYORP torque, which may be disregarded. Furthermore,
the depth-to-diameter ratio also impacts the obliquity compo-
nent, influencing both the torque magnitude and shape of the
torque curve. For instance, when the depth-to-diameter ratio is
low, the asymptotic obliquity is 90◦, while for higher depth-to-
diameter ratios, new asymptotic obliquities arise around 0◦ and
180◦.

5.2. Crater latitude α and asteroid obliquity ϵ

Figure 6 displays the CYORP torque components as a func-
tion of the crater latitude and asteroid obliquity. The values
of the parameters δ and ∆ are set to a representative value of
π/4. The spin component Wz exhibits symmetry about the axis
ϵ = 90◦, while the obliquity component Wϵ is anti-symmetric.
The minimum and maximum values of the torque occur when the
obliquity is 0◦ or 90◦, with the absolute value of these extrema
reaching up to 0.02. The coefficient of the obliquity component
of the CYORP torque is considerably smaller, with a maximum
value of 0.004.

For comparison, the typical value of the normal YORP spin
coefficient is 0.005 for type I/II and <0.001 for type III/IV aster-
oids1. The ratio of the CYORP torque to the normal YORP
torque scales as

TCYORP

TNYORP
=

WCYORPS crater

WYORPS asteroid
. (76)

1 See the definition by Vokrouhlickỳ & Čapek (2002).
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Fig. 5. Spin component (left panel) and the obliquity component (right panel) of the CYORP coefficient as a function of the asteroid obliquity ϵ,
accounting for different depth-to-diameter ratios, which are denoted by different colours.

Fig. 6. Spin component (left panel) and the obliquity component (right panel) of the CYORP coefficient as a function of the asteroid obliquity ϵ
and the crater colatitude α(> ∆), for K = 2.65W m−1 K−1. Here, d/D0 = 0.16 and δ = ∆ = π/4.

Setting the ratio to 1, we find that the total area of concave struc-
tures needs to be as large as 1/4 and 1/20 of the asteroid surface
area for type I/II and type III/IV asteroids, respectively.

5.3. Thermal parameter

When the asteroid rotates quickly and has high heat conductiv-
ity, a higher value of the thermal parameter arises, resulting in a
smaller variation in temperature. To explore the role of the ther-
mal parameter, we employ the same parameters as in Sect. 5.2,
but with K = 40 W m−1 K−1 for metal materials, and the result-
ing CYORP torques are depicted in Fig. 7. The comparison
with Fig. 6 reveals that the spin component remains relatively
unchanged, while the obliquity component displays significant
variation. This observation aligns with the prior assertion that
the thermal parameter mainly impacts the obliquity component

(Vokrouhlickỳ & Čapek 2002). In the regime of high thermal
conductivity, the obliquity component diminishes as the thermal
conductivity increases.

5.4. Irregularity δ and ∆

The angular parameters δ and ∆ are used to describe the irreg-
ularity of the asteroid, where δ = 0 and ∆ = 0 correspond to a
perfect sphere. We explore the CYORP torque as a function of δ
and ∆ with fixed asteroid obliquity and crater colatitude of π/4.
The results are presented in Fig. 8. We can see that for the spin
component, δ controls the torque magnitude while ∆ controls the
torque direction.

Zhou et al. (2022) demonstrates that the CYORP torque van-
ishes for δ = 0. However, in the presence of finite thermal inertia,
the obliquity component of the CYORP torque arises while
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Fig. 7. Same as Fig. 6 but for K = 40 W m−1 K−1.

Fig. 8. Spin component (left panel) and the obliquity component (right panel) of the CYORP coefficient as a function of ∆(<α) and δ, for
K = 2.65 W m−1 K−1. Here, d/D0 = 0.16 and α = ϵ = π/6.

the spin component remains negligible. Figure 9 illustrates the
variation of the CYORP obliquity component with the asteroid
obliquity and the crater colatitude when δ and ∆ are both zero.
The CYORP torque has a tendency to lead the asteroid obliq-
uity to 90◦ when the crater is near the poles, while it leads to an
asymptotic obliquity of 0◦ or 180◦ when the crater is near the
equator.

6. Application of the CYORP effect on a real
asteroid

6.1. Roughness

The surface roughness of asteroids is produced by several
processes, including micrometeorite impacts, thermal fatigue,
ejecta, or outgassing. It was found that the YORP torque
is extremely sensitive to the small-scale surface structures

(Statler 2009; Breiter et al. 2009). The microscopic beaming
effect of regolith grain-size-scale roughness (<1 mm) was shown
– using the Hapke reflectance and emissivity model (Breiter &
Vokrouhlickỳ 2011) – to have a marginal influence on the YORP
effect. The transverse heat conduction across thermal skin depth
(∼1 cm) causes an asymmetric thermal emission of the east
and west sides of a boulder, giving rise to a systematic positive
YORP torque (Golubov & Krugly 2012; Golubov & Lipatova
2022). The importance of the various self-modification effects
of a concave feature on the surface was considered gradually
and numerical approaches were taken to study it (Statler 2009;
Rozitis & Green 2012, 2013a). It was found that the concave fea-
ture of surface roughness could dampen the YORP torque by
tens of percent. While the pioneering studies by Rozitis & Green
(2012) shed light on the effects of roughness, the computational
expense and difficulty in studying the functional dependence
means that there are severe limitations to the numerical method.
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Fig. 9. Obliquity component (right panel) of the CYORP coefficient
as a function of the asteroid obliquity ϵ and the crater colatitude α for
K = 2.65 W m−1 K−1. Here, d/D0 = 0.16 and δ = ∆ = 0.

In contrast, the analytical method that we introduce in the present
study, and its computational efficiency, simplify the application
of roughness-induced YORP effects to real asteroids or binary
systems. Given the objective of our semi-analytical method to
provide a rapid assessment of the impact of surface roughness,
it is particularly well-suited for models of asteroids with rough
convex shapes derived from light-curve observations. However,
when dealing with high-resolution shape models, especially
those that possess a resolution of a few centimetres (the scale
of the thermal skin), a 3D thermal model becomes essential for
accurate calculations, owing to the presence of the tangential
YORP (TYORP) effect, which accounts for the transverse heat
conduction inside a boulder.

For illustrative purposes, to demonstrate the application
of our method, we randomly selected the main belt asteroid
(272) Antonia as an example. This choice is representative of
the majority of asteroids lacking detailed information obtained
through in situ observations. We used the shape model obtained
from Hanuš et al. (2013). To optimise the performance of our
model, we assume a relatively high thermal conductivity of
1 W m−1 K−1. We uniformly distributed the roughness across
the asteroid’s surface and investigated the total YORP torque
(NYORP + CYORP). To do so, we input the normal vector and
position vector of surface elements in the shape model to our
CYORP model to obtain the CYORP torque coefficient of each
surface element. We then used the area of each surface ele-
ment to calculate the CYORP torque and sum up all CYORP
torques generated by all surface elements. The depth-to-diameter
is assumed to be 0.5, following the assumption made by Rozitis
& Green (2012). This has been compared with the sole NYORP
torque. The result is depicted in Fig. 10. Our findings confirm
that the roughness-induced CYORP torque damps the normal
YORP torque. Specifically, for the asteroid (272) Antonia, the
spin component of the torque experiences a damping effect of
approximately 35%, while the obliquity component is damped
by approximately 64%.

6.2. Rotational evolution

The rotational dynamics of asteroids are primarily governed
by two key processes: collisions and the YORP effect. The
timescale for reorientation of the spin axis resulting from angular

momentum transfer during a collision can be expressed as
(Farinella et al. 1998)

τimp,re−ori = 746
( Rast

1 km

)4/3 (
ω

3 × 10−4 s−1

)5/6
Myr. (77)

On the other hand, the typical timescale associated with the
YORP effect is approximately given by:

τYORP ∼ 4
( Rast

1 km

)2 (
ω

3 × 10−4 s−1

)
Myr. (78)

Clearly, the YORP timescale is shorter than τimp,re−ori, although
its specific value exhibits considerable variation across differ-
ent asteroids. Consequently, it is widely accepted that the YORP
effect primarily governs the rotational evolution of small objects,
while collisions play a dominant role in larger objects. The clas-
sic static YORP model – which assumes an invariable YORP
torque until the asteroid spins up to disruption or spins down to
a quasi-static rotation – has been used to study the long-term
rotational evolution of asteroids (Rubincam 2000; Pravec et al.
2005; Bottke et al. 2015). A more intricate model, referred to
as the ‘stochastic YORP model’ (Bottke et al. 2015), takes into
account the resetting of the YORP torque caused by collisions,
which arises from the high sensitivity of the YORP effect to sur-
face morphology. Although a suggested timescale of 1 Myr has
been proposed for YORP reset (Bottke et al. 2015), a quantita-
tive assessment of the torque changes resulting from craters is
yet to be explored. The CYORP effect offers a powerful tool for
investigating the stochastic YORP effect. While a comprehensive
examination of the stochastic YORP effect is beyond the scope
of this paper, we present an example of integrating the CYORP
effect into the static YORP model.

In our simulation, a random YORP coefficient is assigned
within the range of –0.005 to 0.005, with the coefficient’s sign
matching that of the torque. The CYORP torque is introduced
specifically when a collision event takes place. The timescale for
the impact by an asteroid with the size Rimp is

τimp =
1

PiπR2
Antonia∆N(R > Rimp)

, (79)

where

N(R > Rimp) = CR

(
Rimp

1 km

)−bR

. (80)

Here, Pi = 2.85 × 10−18 km−2 yr−1 is the intrinsic collision prob-
ability, CR = 6 × 105, and bR = 2.2 (Holsapple 2022). In the
strength regime formulation, the crater produced by an impactor
with the size of Rimp has a size of

Rcrater = 1.306Rimp

(
ρimp

ρast

0.4
) (

Y
ρvimp

)−0.205

, (81)

with Y = 100 Pa and vimp = 5.3 km s−1. In the gravity regime,

Rcrater = 0.59
(
ρast

mimp

)−1/3 (
ρast

ρimp

)0.00138 (
gastRast

vimp

)−0.17

, (82)

where gast is the surface gravity of the asteroid. In each time
step (∼103 yr), we calculate the numbers of impact craters of
different sizes, according to Eqs. (79) and (81). We then assign
each crater with a random surface element of the polyhedron
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CYORP Coefficient

Fig. 10. YORP torque damped by the CYORP effect in the case of asteroid (272) Antonia. The spin component and the obliquity component are
shown in the left and middle panels, respectively. The right panel shows the CYORP coefficient distribution over the asteroid’s surface.
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Fig. 11. Evolution of the spin rate (left panel) and the obliquity (right panel) of a 10 km synthetic asteroid. In the presence of the static YORP
torque (blue line), the asteroid gradually decelerates until it reaches a quasi-non-rotational state. Subsequently, we impose a new rotational state
on the asteroid by assigning random values of rotational speed and obliquity. Conversely, when incorporating the CYORP torque (red line), the
asteroid follows a different path, exhibiting random fluctuations in its spin rate due to the occurrence of impacts, creating new craters that lead to
changes in the CYORP torque. As a result, the asteroid experiences intermittent transitions between spin up and spin down.

model of the asteroid Antonia, after which we can calculate
the CYORP torque. Finally, we add the CYORP torque to
the normal YORP torque directly calculated from the shape
model in order to obtain the total YORP torque. The spin rate
evolves following

ω̇ =
Tz

I
, (83)

with I being the maximum moment of inertia and Tz being
the torque component that is along a spin vector. The obliquity
evolves according to

ϵ̇ =
Tϵ
Iω
, (84)

where Tϵ is the torque component that changes the obliquity.
There exist two possible end states in a YORP cycle: either

the asteroid’s rotation slows down until it reaches a quasi-
non-rotational state, or it accelerates to the spin threshold for
shape change or disruption with a period of approximately 2.2 h.

Upon completing a YORP cycle, the asteroid’s rotational state
is updated by assigning a new random rotational speed and
obliquity. The impact of introducing CYORP torques can be
observed in the evolution of a 10 km asteroid, as depicted in
Fig. 11. Notably, significant differences arise when considering
the inclusion of CYORP torques.

Nonetheless, the rotational evolution of asteroids currently
lacks a standardised model. Some models propose that after spin-
ning down to a non-rotational state, the asteroid’s spin rate is
assigned a new random value within a specified range (Hanuš
et al. 2011; Bottke et al. 2015), while some assume it con-
tinues to spin up under the YORP effect (Pravec et al. 2008;
Marzari et al. 2020). By selecting an initial spin rate for a new
rotational state, Holsapple (2022) reproduces the spin evolu-
tion without the YORP effect. Hence, rather than attempting to
address the entire complexity of the problem, our objective in
this study is to present an illustrative example of the interaction
between CYORP and the conventional YORP effect. Further-
more, we underscore the significance of the CYORP effect in
the long-term rotational evolution of asteroids. A comprehensive
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investigation of the rotational evolution of asteroid groups is left
for future research.

7. Summary and conclusions

The YORP effect is a thermal torque produced by radiation
from the irregular surface of the asteroid. It has been demon-
strated that this effect is highly sensitive to surface topology
(Statler 2009; Breiter et al. 2009), including small-scale rough-
ness (Rozitis & Green 2012), boulders (Golubov & Krugly 2012),
and craters (Zhou et al. 2022). In this study, we developed
a semi-analytical model for calculating the temperature field
of a crater, which accounts for the effects of self-sheltering,
self-radiation, self-scattering, and non-zero thermal conduc-
tivity. Using this model, we investigated the crater-induced
YORP (CYORP) effect in a computationally efficient man-
ner (about three orders of magnitude faster than the numeri-
cal method), allowing for a comprehensive exploration of the
functional dependence of the CYORP effect and its incorpora-
tion into the rotational and orbital evolution of asteroids. The
main results and conclusions of this study can be summarised
as follows.

Our semi-analytical model for the CYORP effect is valid
in the high-thermal-conductivity regime (K > 0.1 W m−1 K−1).
This suggests that the model is suitable for application to materi-
als such as solid basalt and metal, which are usually beneath the
regolith on asteroid surfaces but may be exposed to sunlight due
to the formation of deep craters.

The CYORP effect is significant when the crater depth-to-
diameter ratio is greater than 0.05. The self-modification effects
of a concave structure, including the self-sheltering effect, self-
radiation effect, and self-scattering effect, are stronger with a
higher depth-to-diameter ratio. For concave structures with a
depth-to-diameter ratio of smaller than 0.05, the surface can be
treated as a convex shape without introducing significant inaccu-
racies. The typical value of the CYORP coefficient for the spin
component is 0.01, which is insensitive to the thermal param-
eter, while the obliquity component decreases from 0.004 for
basalt to 0.001 for metal. For a z-axis symmetric shape (e.g. a
spinning top shape), the spin component of the CYORP torque
vanishes while the obliquity component survives, which implies
that the spin acceleration of such symmetric shapes does not
change significantly under the effect of crater formation.

Using our semi-analytical method, we confirm that the
YORP torque can be damped by the surface roughness, which
was first discovered by Rozitis & Green (2012). The fast compu-
tation of our semi-analytical model allows us to consider more
flexible configurations of surface roughness, such as a space-
varying roughness distribution, roughness on components of
binary asteroids, and so on.

The magnitude and directional change of the YORP coef-
ficient at each impact are assessed for the first time using our
CYORP model. While a complete investigation of the spin evo-
lution of asteroids is left for future work, we show that rotational
evolution can be severely affected by collisions.
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Vokrouhlickỳ, D., Nesvornỳ, D., & Bottke, W. F. 2003, Nature, 425, 147
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