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Improved Visual Saliency of Graph Clusters with Orderable
Node-Link Layouts

Nora Al-Naami , Nicolas Médoc , Matteo Magnani , Mohammad Ghoniem

Fig. 1: A 100-node synthetic network having three clusters with ‘low ’ within-cluster and ‘low ’ between-cluster link probability, laid out
from left to right according to the ‘Linlog’ layout, vanilla ‘arc diagram’, symmetric ‘arc diagram’ and ‘radial diagram’. The clusters are
indiscernible in the Linlog diagram, and clearly visible in the orderable layouts, where nodes are in the original graph generation order.

Abstract—Graphs are often used to model relationships between entities. The identification and visualization of clusters in graphs
enable insight discovery in many application areas, such as life sciences and social sciences. Force-directed graph layouts promote
the visual saliency of clusters, as they bring adjacent nodes closer together, and push non-adjacent nodes apart. At the same time,
matrices can effectively show clusters when a suitable row/column ordering is applied, but are less appealing to untrained users not
providing an intuitive node-link metaphor. It is thus worth exploring layouts combining the strengths of the node-link metaphor and node
ordering. In this work, we study the impact of node ordering on the visual saliency of clusters in orderable node-link diagrams, namely
radial diagrams, arc diagrams and symmetric arc diagrams. Through a crowdsourced controlled experiment, we show that users can
count clusters consistently more accurately, and to a large extent faster, with orderable node-link diagrams than with three state-of-the
art force-directed layout algorithms, i.e., ‘Linlog’, ‘Backbone’ and ‘sfdp’. The measured advantage is greater in case of low cluster
separability and/or low compactness. A free copy of this paper and all supplemental materials are available at https://osf.io/kc3dg/.

Index Terms—network visualization, arc diagrams, radial diagrams, cluster perception, graph seriation

1 INTRODUCTION

Graph visualization is widely used to support network analysis tasks
in various areas of science and engineering [43]. One popular network
analysis task consists in identifying locally dense subgraphs [54], often
called ‘clusters’, or ‘communities’ in social network analysis [10], or
‘modules’ in biological network analysis [14]. Indeed, graph clusters
correspond to meaningful sub-structures in many applications [84].
Hence, when asked to lay out a graph interactively, users tend to priori-
tize the formation of clusters over other aesthetic considerations [82].

Graph clusters are often visually identified by drawing the graph
using a force-directed node-link layout algorithm. This category of
algorithms uses physics-based models, whereby attraction forces place
adjacent nodes (see Section 2) closer to each other, and repulsive forces
place non-adjacent nodes farther apart [35, 48, 84]. Hence, when the
graph contains clusters, nodes belonging to the same cluster tend to
clump together in the 2D plane. This makes clusters visually salient in
virtue of the Gestalt rule of proximity [48], without using any additional
visual cues to denote cluster membership, such as node color. In a recent
comparison of many force-directed layouts, the LinLog layout [64,
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65] has consistently outperformed other alternatives [60]. The best
cluster separation is generally achieved when internal link density
within clusters is high, and external link density is low, i.e., relatively
fewer links exist between nodes sitting in distinct clusters [65].

Another approach uses adjacency matrices as a visual metaphor to
analyze graphs. Nodes are mapped to the rows and columns of a matrix,
while links appear as colored rectangles at the intersection of adjacent
(rows/columns) nodes. Besides being more readable for many low-level
perceptual tasks, for large and dense graphs [34], matrices are effective
at showing graph clusters when a suitable row/column ordering is
applied [41]. Following Bertin’s work on table seriation [12], much
work compared various methods for reordering matrix visualizations
to elicit structural properties [11, 30]. Matrices are yet a less popular
graph visualization, and are less appealing to untrained users [34].

In this work, we retain the node-link metaphor owing to its popularity
and intuitiveness and, we apply node ordering to elicit clusters, inspired
by the proven effectiveness of node ordering in matrix visualizations.
The node-link layouts where nodes can be ordered include the ones that
place nodes on a continuous non-self-intersecting topological curve,
e.g., a circle, an ellipse, a straight line or a space-filling curve. Nodes
can be ordered along such a curve, e.g., based on topological or attribute-
based criteria. In this paper, we will refer to such layouts, as ‘orderable
node-link layouts’. This category includes ‘arc diagrams’ [86] and
‘radial diagrams’ [51], which place the nodes along a straight line
and along a circle, respectively. Edges are drawn as half circles in arc
layouts , and as Bézier curves or straight lines in radial layouts .
Although radial and arc layouts are not new representations, we
lack user studies regarding their readability for perceptual tasks.

This paper raises the following research question: how do orderable
node-link layouts compare to force-directed layouts
and to one another regarding their ability to reveal node clusters in
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graphs? To do so, we contribute a crowdsourced empirical study whose
dependent variables are the accuracy and completion time of cluster
count judgement, under varying values of independent variables which
are cluster compactness, cluster separability, node ordering method,
graph size and graph layout. We elicit new insights regarding how three
popular orderable node-link diagrams (arc diagrams , symmetric
arc diagrams , radial diagrams ) compare to three competitive
force-directed layouts (Linlog, Backbone and sfdp). We also assess
the impact of two different node ordering methods (the optimal leaf
ordering and the cross reduction algorithms) on the effectiveness of
orderable layouts, in addition to the original node order provided by
the graph generator. Finally, we derive guidelines for the use of these
layouts based on graph characteristics and type of clusters.

2 RELATED WORK

Our work builds on previous research in the areas of graph visualization,
and graph seriation, as well as user studies related to these areas.

2.1 Graph Visualization

Graphs are commonly used to model relationships between entities.
They have been used to analyze complex phenomena in many appli-
cation fields, such as social sciences, biology, and transportation [84].
Formally, a graph G is defined as G = (V,E) where V is a set of vertices
and E ⊆V ×V is the set of edges connecting pairs of vertices in G. Two
vertices u ∈V and v ∈V are said to be adjacent, if ∃e ∈ E : e = (u,v).

The popularity of graphs has motivated much research on graph
drawing and network visualization [8, 25]. In node-link diagrams, ver-
tices are displayed as nodes, e.g., circles, and edges as links, e.g., curves.
Many algorithms produce such diagrams in 2D and 3D [35,43]. In their
survey, von Landesberger et al. [84] categorize node-link layouts into
force-directed, constraint-based [28], multiscale [49], layered [27] and
non-standard layouts, e.g., projection-based layouts [39].

Force-directed layouts adopt a physics-based model, e.g., springs
and masses, or electric particles, whose equilibrium determines the
position of nodes such that adjacent nodes are placed closer to each
other [40, 59]. They are hence well-suited for cluster visualization [35],
in virtue of the Gestalt proximity law [48]. The ‘Linlog’ energy models
improve the visual separation of clusters compared to prior force-
directed layouts [64, 65]. Meidiana et al. [60] used a quality metric
score to compare force-directed layouts (e.g., Fruchter-Reingold [31]),
multi-level layouts (e.g., FM3 [37], sfdp [29, 45]), multi-dimensional
scaling methods (e.g., MDS [80], pivot MDS [17]), stress-based layouts
(e.g., Stress Majorization [33]), spectral layouts (e.g., with graph
Laplacian) with other layouts designed for cluster discovery, such as
Backbone [69], tsNET [50] and Linlog [64]. They found that the Linlog
layout performed well across many graph data sets, and generally better
than competing algorithms [35], followed by Backbone and tsNET.

Other node-link layouts place nodes along a geometric locus. For
instance, radial layouts place nodes around a circle [26], whereas arc
diagrams [63,86] and BioFabric [32] place them along a straight line.
These layouts are special cases of constraint-based layouts [28], where
graph nodes are placed along the given locus, be it a circle, an ellipse, a
straight-line, or a space-filling curve, e.g., Hilbert curves [61,88]. Such
layouts are orderable, since nodes can be sorted along the underlying
geometric locus. User studies on the impact of node ordering on the
readability of radial or arc layouts are yet lacking.

When the vertices and edges of the graph have attributes attached to
them, distinct types of graphs and graph visualization problems arise.
This has given birth to specific lines of graph visualization research
including, for example, multivariate graphs [67], multipartite graphs [5],
dynamic graphs [9] and multilayer graphs [58]. Many attribute-based
techniques take a faceted layout approach to show subgraphs, e.g.,
parallel 1-D axes in PivotGraph [87], parallel 2-D planes (showing
edges on demand) as in Semantic Substrates [78] or NodeXL [79].

In this work, we focus on the perception of clusters in single-mode
unweighted unattributed graphs, without prior ground truth about clus-
ters. We compare three orderable node-link layouts to three
state-of-the-art force-directed layouts , i.e., Linlog, Backbone and
sfdp, in terms of visual cluster perception.

2.2 Graph Seriation
Graph seriation [56] is the arrangement of nodes and their edges in a
visualization to elicit hidden graph patterns, which reveal key properties
of the underlying network [11, 62]. Seriation was mainly applied to
tables and matrices [56,73,75]. In a network, node ordering algorithms
aim to reveal latent network patterns to the user [59]. They can be
divided into attribute-based algorithms, e.g., ordering nodes based on
their label and topology-based or seriation algorithms [56].

Focusing on adjacency matrices, Behrisch et al. [11] distinguish
seven families of ordering methods, based on common underlying re-
ordering concepts [11]: 1) Robinsonian methods, e.g., clustering-based
algorithms, including the Optimal Leaf Ordering [6] (OLO); 2) spec-
tral methods, e.g., rank-two ellipse seriation [19]; 3) dimensionality
reduction methods, e.g., multi-dimensional scaling [15]; 4) heuristic
methods, e.g., the crossing reduction heuristic (CR), also known as the
barycenter heuristic [57]; 5) graph-theoretic methods, e.g., based on the
Traveling Salesman Problem (TSP) [55]; 6) biclustering methods [22];
7) interactive reordering methods, e.g., the Bertifier [73]. They bench-
mark many seriation methods against many real and synthetic graphs, in
terms of execution time and quality of the resulting matrix visualization
using the minimum linear arrangement score [74]. They conclude that
cluster identification is better supported by clustering-based techniques.
They recommend the use of OLO, as it optimizes for cluster patterns at
the global and local levels, e.g., placing nodes at the boundary of their
cluster closer to their neighbors in other clusters.

In this empirical study, we take a user perception perspective on
node ordering, with three understudied orderable node-link layouts

. Our study considers the OLO order, as recommended by Berisch
et al. [11], and the CR order, which was also used by Oeke et al. [70] in
their cluster perception task, and in PivotGraph [87] to minimize edge
crossings between parallel 1-D axes. In this work, OLO is based on the
hierarchical clustering algorithm with average linkage. This puts this
work close to other studies using hierarchical clustering to order graph
nodes, e.g., by Abdelaal et al. [1] who do not mention using leaf order
optimization explicitly. With this empirical study, we compare the two
ordering methods systematically to one another when applied to

and also to three state-of-the-art force-directed layouts , i.e.,
Linlog, Backbone and sfdp, in terms of cluster perception.

2.3 User Studies on Cluster Perception in Graphs
Lee et al. categorize graph visualization tasks into topology-based,
attribute-based, browsing and overview tasks [54]. They consider
cluster identification as a topology-based task, and underscore that an
overview of the graph will usually help to find patterns, such as clusters,
if a suitable graph layout is used. This is typically what force-directed
node-link layouts aim to do, as well as matrix seriation methods, as
pointed out earlier. Vehlow et al. survey visual encodings of group
structure information in graph visualizations [83]. They deliberately
exclude the use of layout for this purpose from their scope, but mention
in passing the possibility to use 1-D layouts to implicitly encode group
information, where nodes are placed along a circle or a linear axis.
They focus on other visual encodings, like the use of node color or
hulls and contours for cluster membership. They categorize groups into
flat versus hierarchically structured, and disjoint versus overlapping.
They also position previous work based on the type of visual encoding
used to convey group membership information.

Many user studies on cluster perception in graph visualizations
compare force-directed layouts to adjacency matrices and cover various
graph visualization tasks such as path-related, attribute-based, overview
and memorability tasks. Okoe et al. [70] compare node-link layouts
generated using neato [29] and matrix visualizations ordered by the
crossing reduction method from Reorderjs [30]. Based on two real
graphs having 258 and 332 nodes, they show that matrices outperform
force-directed layouts for the perception of colored clusters. Nobre
et al. also confirmed the superiority of matrices for cluster perception in
multivariate networks, based on two real 75- and 25-node graphs [68].
Chen et al. also studied cluster perception using an interactive toroidal
layout, with automatic panning [21]. They used synthetic graphs of
variable density comprising 68 to 134 nodes and 3 to 8 clusters. They
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show that toroidal wrap layouts support faster and more accurate cluster
perception than ‘standard’ force-directed layouts. Several studies on
clustered graphs have used much larger graphs, though [24].

Other studies go beyond force-directed node-link layouts and adja-
cency matrices. For example, to solve path-related problems typical of
adjacency matrices, Henry-Riche et al. [42] compare the Linlog layout
to MatLink, a hybrid visualization composed of an arc diagram drawn
on the side of a matrix ordered by a TSP heuristic. Based on six open
data sets with less than 100 nodes with varying densities, they find
that MatLink outperforms force-directed layouts for the identification
of the largest cluster in the graph. Also, Abdelaal et al. [1] compare
force-directed layouts generated by d3-force, to a bipartite layout plac-
ing nodes along two (orderable) parallel axes with links in between
them and a matrix visualization. They assess user performance for
five tasks, including a cluster perception task, on graphs as large as
500 nodes. The bipartite layouts and the matrices were ordered using
an agglomerative hierarchical clustering algorithm. For the cluster
perception task, they report no significant difference between matrices
and force-directed layouts, whereas bipartite layouts are much worse.

While in prior studies the overall graph density is considered as a
factor affecting user performance, this study aims to determine to what
extent cluster perception is affected by link probability between clusters
and within clusters, across various network sizes and visualization
types, including three state-of-the-art force-directed layouts , i.e.,
Linlog, Backbone and sfdp and three orderable layouts . To
this end, we generated 60 different graph structures with a controlled
within- and between-cluster probability (two levels: ‘low’ and ‘high’
for both probabilities), a controlled number of clusters k ∈ [3..7] of
variable sizes, and a controlled network size in terms of number of
nodes (50, 100 and 300 nodes). Also, we assess the impact of the
node ordering method (CR and OLO) on the performance of orderable
layouts compared to the three force-directed node-link layouts. While
Linlog is close to the optimum in translating mathematical clusters into
a visual clustering [66], the interplay between within- and between-
cluster probability seems underexplored in network visualization. This
focus on graph cluster compactness and separability is inspired by
cluster validity indices [3, 23, 77] used in pattern mining research.
Finally, our study is purely perceptual to evaluate the layouts in their
own right, as navigation interactions may add more factors to control.

3 METHODS

In this section, we describe the key parameters we control to generate
the set of stimuli used in this user study. We also present our hypotheses
and their motivation, as well as the study design and procedure.

3.1 The Visual Stimuli
Network Size In this study, we generated synthetic data to better

control key network parameters. Compared to previous work surveyed
by Yoghourdjian et al. [90] where most studies use graphs with less
than 100 nodes, our study considers 50-, 100- and 300-node graphs.
By doing so, we aim to study both small and larger networks, without
the need to use interaction techniques. We also use large networks to
reduce the impact of random fluctuations during data generation.

Number of clusters and cluster size Since in real networks
clusters may vary in size, we use the Gaussian random partition graph
generator [16] of NetworkX [38] to create networks with k ∈ [3..7]
clusters, each drawn from a normal distribution with a mean cluster
size and variance of cluster size distribution. We did not go beyond
seven clusters because counting the clusters might become tedious
without adding insights concerning cluster perception.

Cluster compactness and separability We set the within- and
between-cluster link probability, pin and pout respectively, to control
cluster compactness and separability. A high value of pin corresponds
to compact clusters, while a low value leads to loose clusters. Likewise,
a high pout creates relatively many links between clusters, i.e., poor
cluster separation, whereas a low pout leads to better cluster separation.
To keep the duration of user sessions under one hour, we consider two
cluster compactness profiles pin ∈ {low = 0.3,high = 0.6} and two

Fig. 2: The four quandrants of cluster types.

cluster separability profiles pout ∈ {low = 0.3,high = 0.6} as shown in
Figure 2. In the rest of this paper, we will refer to clusters as separable
in the low pout condition, and as inseparable for high pout . Also, we
describe clusters as compact if they result from high pin, and loose oth-
erwise. For each network size, we generate four graph structures, one
in each quadrant. We use the following icons to denote these quadrants:

(loose, separable) clusters, (loose, inseparable) clusters,
(compact, separable) clusters, and (compact, inseparable) clusters.
An important concern regarding cluster compactness and separability
is to choose the so-called ‘low’ and ‘high’ values for pin and pout such
that the obtained graph clusters are meaningful. Determining the ab-
solute upper and lower bounds beyond which clusters cease to exist
is beyond the scope of this study. A pragmatic validation measure to
ensure the clustering tendency of the generated graphs consisted in
visually inspecting the corresponding adjacency matrices to verify the
presence of characteristic diagonal blocks. The rows and columns of
the matrix were ordered according the original node order provided
by the graph generator. In essence, such a visual approach to assess
clustering tendency is tantamount to the VAT method and its many
variants [52] which also look for diagonal blocks in matrices, albeit
originally for multivariate data in general. This approach also leverages
prior knowledge about the effectiveness of matrix visualizations in
showing clusters, subject to vertex seriation. Figure 3 shows such matri-
ces for the 50 node-graphs for all four cluster type conditions, retaining
the original node order provided by the graph generator. Clustering
tendency is at stake in the top three rows, where clusters are loose
and/or inseparable. Yet, we can see the right number of diagonal blocks
in all cases, the signal being admittedly faint in the top left case.

Visualization types and settings Meidiana et al. [60] showed
that Linlog is the best for cluster detection. Also, Jacomy et al. [46]
argue that Force Atlas2 with Linlog energy is faster and leads to a better
cluster definition than other layouts like Fruchterman-Reingold [31],
Yifan-Hu and Force Atlas2 without Linlog energy. We study Linlog,
Backbone and sfdp, three performant layouts from the study of Meid-
iana et al. We generated the Linlog layouts using Gephi [7] v. 0.10.1
based on its implementation of the Forceatlas2 algorithm with Lin-
log [64] mode on, and with the node overlap prevention mode on. We
increased the edge width in these diagrams to improve link visibil-
ity. The Backbone layout was generated using VisOne v. 2.26, with
backbone type = ‘Quadrilateral Simmelian’ (recommended in [69]),
backbone strength type = ‘redundancy’ and compared edge = ‘true’.
The sfdp layouts came from Graphviz v. 2.43.0 with the default parame-
ters. We also implemented three types of orderable node-link layouts in
D3, namely radial , arc and symmetric arc layouts. For each
graph, we applied two node ordering methods: the crossing reduction
method from Reorderjs [30] v. 2.2.4, i.e., the barycenter heuristic [57],
and the optimal leaf ordering method [6] with average linkage and
Jaccard distance from scipy v. 1.11.4. We also generated the stimuli
corresponding to the original node order provided by the graph gen-
erator (denoted as GEN hereafter). Finally, each stimulus is saved as
an SVG image which is scaled to occupy all the available canvas, with
no possible user interaction. To reduce digital eyestrain due to screen
brightness [89], the stimuli were rendered with white semi-transparent
links (and blue nodes) on a black background (as in Figure 6), whereas
most images in this paper use the reverse encoding to save ink. All
stimuli are provided in supplemental material. Digital eyestrain is yet a
complex phenomenon for which we still lack definitive guidelines.
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k = 3 k = 4 k = 5 k = 6 k = 7

Fig. 3: Visual assessment of clustering tendency based on the adjacency matrix of the 50-node graphs in their original node order.

3.2 Hypotheses
Below, we list our hypotheses about the visual saliency of clusters
in orderable and force-directed node-link layouts across the cluster
compactness and separability quadrants. Given the known ground truth
of the graph generation process, we use the users’ ability to count
clusters as a proxy of cluster visual saliency. We use the same accuracy
score as Okoe et al. [70], defined as: Acc=max(0,1− ∥PA−TA∥

∥TA∥ ), where
PA stands for participant answer and TA for the true answer.
■ H1 Graph clusters are more salient visually in orderable layouts

compared to force-directed layouts , for all combinations of
compactness and separability except for (compact, well-separated)
clusters, which is the ideal scenario for force-directed layouts.
Rationale: Prior studies [42, 68, 70] on various cluster perception tasks
suggest that ordered matrices improve the visual saliency of clusters
(which appear as dense blocks of links). We expect that node ordering in
arc , symmetric arc and radial layouts will also create locally
high link concentrations easing cluster perception, as in Figure 1.
■ H2 Graph clusters are more salient visually in orderable node-link
diagrams ordered by the optimal leaf ordering method (OLO) than the
layouts ordered by the crossing reduction method (CR).
Rationale: Based on the study by Behrisch et al. [11], OLO [6] which
is a clustering based method is preferable for cluster perception tasks
to other types of ordering methods, in this case CR [57]. In a sense, the
visual saliency of clusters resulting from CR is an indirect product of
reducing link crossings in a network. A good example of CR’s ability to
reveal clusters is provided in Figure 5. Yet, OLO is designed to reveal
clusters, and should consistently surpass CR for cluster perception.
■ H3 Graph clusters are more salient visually in symmetric arc dia-
grams than in plain arc diagrams .
Rationale: According to the Gestalt principles, the elements of symmet-
ric components tend to be seen as belonging together [48]. Also, sym-
metry preservation is a known aesthetic rule in graph drawing [8, 18].

Hence, the round disc-shaped clusters in symmetric arc layouts might
improve cluster perception as opposed to half discs in plain arc layouts.

3.3 Study Design
This user study combines between-subject and within-subject designs.
We adopted a between-subject approach at the level of network size.
That is, participants were exposed to a single network size only through-
out their session. Within a session, we adopted a within subject ap-
proach where we varied all other factors as detailed in Section 3.4. We
ran three pilot tests with a few users each to troubleshoot any usability
issues and validate our data collection procedure, our estimation of
task completion time and the total duration of each participant session.
We aimed to keep the total session duration under one hour. We used
Prolific to recruit English-speaking online participants, equipped with
a laptop or desktop computer. Like in similar user studies [1, 70], we
aimed for 40 to 50 participants for each condition. In total, we recruited
n = 139 participants, mainly between the ages of 18 and 34 (64%);
the remaining 36% were above 35. Among them, 57.24% declared to
be males, 44.27% females and the rest (0.76)% did not declare their
gender. Most participants were geographically located in the UK(27%),
South Africa (17%), the USA (9%) and Portugal (9%).

3.4 Study Procedure
After signing the informed consent form, each participant was trained
on scribbling on a drawing canvas using their mouse. This was needed
later in the procedure to validate their understanding of the cluster
identification task. Figure 4 gives an overview of the study procedure.
All participants were exposed to the four visualization types

in a random sequence. For each visualization type, participants
went through the following steps:
1. Training. They watched a one-minute video explaining how to read

the visualization, based on a social network scenario, presenting
nodes as people, edges as friendship relationships, and clusters
as friendship groups. The video showed a 51-node extract of the
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Fig. 4: Flowchart of the study procedure. Credit: video icon by Ilham Fitrotul Hayat from Noun Project (CC BY 3.0).

character co-occurrence network in Les Misérables novel [47] with
distinct clusters (see Figure 5). The network construction was
animated to ease comprehension. Users could replay the video.
Then, they took a training based on two sample networks: the
extract of Les Misérables again and the AUCS network [76]. They
chose the cluster count among multiple choices between 1 and 8.
The correct answer was displayed as an image with an overlay
outline of the individual clusters to teach them the visual signature
of clusters in the visual metaphor at hand.

2. Counting Task. For each visualization type, participants saw 60
stimuli in random order (4 cluster types × 5 cluster count values × 3
variants). The variants correspond either to the three node orderings
(GEN, OLO, CR), if applicable, or the three force-directed layouts
(Linlog, Backbone, sfdp). For each stimulus, users had to count the
friendship groups and to choose the right answer between [1..8] (for
ground truth k ∈ [3..7]). This task is used to test all three hypotheses.

3. Drawing Task. Finally, users drew an outline around clusters in the
100-node stimuli having four compact and separable clusters (those
in Figure 6). As we did not have direct access to online participants,
we needed concrete evidence that they individually understood the
task. This might be used typically to exclude anomalous participants,
which was not the case here.

After an optional 2-minute break, participants moved on to the next
visualization type and repeated the same steps. Hence, all participants
saw 240 stimuli in total (4 visualization types × 60 stimuli). We used
Mephisto [81] to create and deploy the study, and collect data. For each
stimulus, we recorded the cluster count and the response times.

4 RESULTS

In Figure 6, we overlay all the cluster outlines drawn by all study
participants in the cluster drawing task, for network size 100. It shows
that for all four layouts, participants had a good understanding of what
a cluster looked like. For this task, we deliberately chose easy stimuli
from the category. Choosing more ambiguous stimuli would have
complicated our assessment of whether participants understood the task.
This doubt being cleared, we can proceed with the analysis of results.

The Anderson-Darling test [2] showed that accuracy and task com-
pletion time are not normally distributed. Hence, we performed a
one-tailed Kruskal-Wallis test and Bonferroni correction to determine
whether the observed differences were statistically significant, with a
corrected threshold of p = 0.05. We discarded one single user who
systematically answered 1 or 8 clusters (the two extreme options).

4.1 Preliminary Remarks
Regarding force-directed layouts (see Figure 7), users counted clusters
faster and less accurately with sfdp than with Linlog and Backbone for
all combinations of cluster compactness and separability. Linlog leads
to consistently faster cluster count judgements than Backbone, while
being statistically significantly more accurate for compact separable
clusters and on par for other cluster types. Hence, all plots in this
section use Linlog as a baseline for comparison with orderable layouts.

In the rest of this section, all figures provided to verify the various
hypotheses always include a pair of plots, see Figure 8 for example.
On the left, a boxplot comparing the distribution of accuracy in all four
pin × pout quadrants , divided by visualization type

. On the right, a matrix visualization shows the p-values of
all pairwise comparisons with Bonferroni correction applied across all
16 combinations of layout type and cluster type. Dark cells correspond
to statistically significant differences (p ≤ 0.05). We focus on the four
4×4 diagonal blocks, outlined in red in the matrix, corresponding to
the quadrants. In the interest of space, the plots corresponding to task
completion time are provided in supplemental material, as well as plots
comparing Backbone or sfdp baselines to orderable layouts.

4.2 Hypothesis H1 (✓): Orderable Node-Link Layouts Im-
prove Cluster Saliency Over Linlog Layouts

Figure 8 shows that we can confirm H1 for loose and/or inseparable
clusters for GEN-ordered orderable layouts, i.e., when the
nodes are placed in the same order they were generated. In these three
cluster settings, participants using the three orderable layouts
achieve 100% median accuracy on cluster count judgements, whereas
Linlog lags significantly behind at 67% to 80%. Besides the 33%
median accuracy gains, the orderable layouts achieve a median time
up to 2 seconds (25%) shorter than Linlog (see supplemental material).
For compact separable clusters , Linlog and all orderable layouts

are equally excellent (median accuracy of 100% with little
variance). Except radial that has a median accuracy of 100% but
a slightly higher variance. In passing, Backbone and sfdp lag
clearly behind GEN-ordered orderable layouts even in the
case of compact separable clusters (see supplemental material).

The situation is more nuanced regarding user performance with the
CR and OLO ordering methods. With CR (see Figure 9), orderable
layouts lead to more accurate cluster count judgement for
inseparable clusters , and only partially for loose separable
clusters . In the case of compact separable clusters , Linlog wins,
although all layouts achieve 100% median accuracy. The CR-ordered
layouts show more variance than Linlog. Participants are
consistently statistically significantly slower with CR-ordered radial
layout than the other layouts, especially with respect to compact
clusters (see supplemental Figures 13–17). With Backbone and
sfdp, users are less accurate than with CR-ordered layouts in all four
quadrants (see supplemental Figure 20 and Figure 26).

In Figure 10, OLO-ordered layouts lead to more accurate
cluster counts than Linlog , in the case of loose clusters . They
are on par regarding compact inseparable clusters , and Linlog
wins comfortably in the case of compact separable clusters .

4.3 Hypothesis H2 (✗): OLO Beats CR at Cluster Saliency

H2 does not hold. Figure 11 and Figure 12 show that CR is equivalent
to OLO in most cluster settings, except for arc layouts in the case
of loose inseparable clusters and compact separable clusters
where CR is better. Both CR and OLO are behind GEN, the originally
generated node order, by much, across all four quadrants.

4.4 Hypothesis H3 (✗): Beats at Cluster Saliency

H3 does not hold. There is no statistically significant difference between
arc and symmetric arc layouts, for any cluster type, neither
in terms of accuracy (see Figure 8 and Figure 9), nor in terms of task
completion time (see supplemental Figure 13 and Figure 14).
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(a) Symmetric arc layout, OLO (b) Symmetric arc layout, CR (c) Radial layout, OLO (d) Radial layout, CR

(e) Linlog layout (f) Backbone layout (g) sfdp layout

Fig. 5: A 51-node extract from the co-occurrence network of the characters of Les Misérables, the novel of Victor Hugo.

(a) Linlog layout (b) Arc layout (c) Symmetric arc layout (d) Radial layout

Fig. 6: The 100-node network used in the drawing task. The cluster outlines show that the users understood the cluster identification task.

4.5 Additional Findings

Network size affects force-directed layouts Besides our hy-
potheses, we found that the accuracy of all three force-directed layouts

decreases as network size increases (see Table 1 in supplemental
material). The impact of network size on cluster count in orderable
layouts is more complex and requires further research.

Global patterns vs. local patterns. In Figure 6, the superposition
of cluster outlines drawn by the study participants reveals where they
have more often identified clusters. While there were four clusters in
the ground truth for this particular graph, the participants counted five
clusters based on Linlog , four based on the arc and symmetric
arc layouts and six with the radial layout . This suggests that
arc layouts might emphasize more the global cluster structure,
while Linlog and radial layouts might promote local structures.
This mere assumption requires experimental validation.

5 DISCUSSION

Based on our results, we discuss the performance of orderable layouts at
cluster detection, the limitations of this study and formulate guidelines
for the use of orderable layouts.

5.1 Cluster Detection in Orderable Layouts

In this study, we compared three orderable node-link layouts
to three force-directed node-link layouts , Linlog, Backbone and

sfdp. Our empirical results confirm previous findings that Linlog and
Backbone outperform sfdp for the cluster perception task, and that
Linlog is better or equivalent to Backbone [60].

Consistently with prior work on cluster perception in matrix visu-
alizations [41, 42, 68, 70], our results also show that the performance

of orderable layouts at the cluster detection task depends on the seri-
ation method. We extend this knowledge to understudied orderable
node-link layouts and provide an empirical validation across the cluster
compactness and separability quadrants. In our study, the original node
order (GEN) resulting from the graph generator leads to a much more
accurate and faster cluster count judgement than the node orders given
by CR and OLO (with Jaccard distance and average linkage). In a sense,
GEN is a very good reflection of the known ground truth. Both CR and
OLO achieve a high median accuracy from 75% to 85% for the hardest,
loose and/or inseparable cluster types . In the easy case of
compact separable clusters , both CR and OLO achieve a median
accuracy of 100%, with a statistically significant edge for CR which has
a smaller variance than OLO. In the absence of a known ground truth,
CR is hence an excellent seriation method for visual cluster detection.

Our results also show that, subject to a suitable node ordering, or-
derable node-link diagrams outperform Linlog , the best
force-directed node-link layout, for the cluster identification task, in
the case of inseparable clusters, both compact and loose , and
also in the case of separable loose clusters . This is the case of
GEN-ordered, CR-ordered and OLO-ordered orderable layouts (see
Figure 8, Figure 9 and Figure 10). Users achieve very high accuracies
with the GEN ordering of nodes, with median accuracy scores of 100%
in all quadrants, up to 33% better than Linlog. These new findings
suggest that orderable node-link layouts combined with a
suitable node ordering method can complement the analyst’s toolbox
for cluster identification beyond the pristine case of compact separable
clusters . For this latter case, we find that CR-ordered orderable
node-link layouts and the Linlog layout achieve 100% median accuracy
for the cluster identification task, while the orderable layouts are better
for the more challenging cluster types (see Figure 9).

Based on the computational benchmark of Behrisch et al. [11] for
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adjacency matrices, cluster perception is well served if the ordering
method is based on a clustering approach. This is confirmed empirically
by our observation that the orderable layouts ordered by OLO
achieve between 70% and 85% median accuracy (Figure 12). As long
as the analyst needs to identify clusters in an overview visualization,
any clustering-based order applied to nodes will induce the appearance
of clusters in orderable layouts . Since, among other aspects,
clusters may vary in shape, size, number and density, different clus-
tering methods will lead to more or less useful node orders/overview
visualizations. Similarly, different force-directed approaches lead to
more or less useful layouts. In our study, CR, a seriation method not
based on clustering, did better than OLO, which is based on agglom-
erative hierarchical clustering, with respect to arc diagrams with
compact separable clusters (Figure 12). A possible explanation is
that the Jaccard distance employed by OLO in this experiment did not
cope well with the many between-cluster links, while the objective to
reduce edge-crossings of CR is less sensitive to this type of noise. Be-
sides the global patterns revealed by clustering-based seriation methods,
some of these methods can also optimize for more local patterns, e.g.,
OLO optimizes node order locally. Local optimization might address
gaps identified by Noack, such as promoting the perception of missing
details concerning the internal structure of clusters and relationships
between clusters. Also, the different link shapes (arcs, symmetric arcs,
straight lines) and node positions inherent to each layout seem to have
different effects on the perception of (sub-)clusters, as shown by the
annotated cluster areas in Figure 6. A formal validation is still needed
for such sub-cluster level tasks, though.

Earlier user studies by Okoe et al. [70] and Nobre et al. [68] found
that ordered adjacency matrices outperform force-directed layouts, for
cluster identification. We introduce a new possibility, consisting in
using orderable node-link layouts for this task. To keep
the size of our experiment manageable, and the duration of participant
sessions reasonable, we left adjacency matrices out of the scope of
this study. Now that it has become clear that orderable layouts

can outperform by much some of the best force-directed node-
link layouts , subject to a suitable node order, a future user study
could compare them to similarly ordered matrices in terms of cluster
perception and explore a larger number of ordering methods. Yet,
adjacency matrices rely on a visual metaphor deemed unfamiliar by
most users who often prefer node-link diagrams [34]. The path
finding task is also challenging with matrix visualizations, due to the
duplication of nodes on the sides of the matrix. Whether this task is
better supported by orderable node-link layouts thanks to
the node-link metaphor is an open question. In general, more work is
needed on the evaluation of orderable node-link layouts to
determine which other graph analysis tasks they can effectively support.

For the cluster detection task, Abdelaal et al. [1] found that bipartite
diagrams ordered according to agglomerative hierarchical clustering
perform worse than force-directed node-link layouts and matrices, es-
pecially for sparse networks. Unlike previous work by Okoe et al. [70]

Fig. 7: Cluster count accuracy (top) and completion time (bottom) for
sizes=all, clusters=all, layouts={Linlog , Backbone , sfdp }.

and Nobre et al. [68], Abdelaal et al. [1] did not report any statistically
significant difference in terms of cluster perception between matrices
and node-link layouts generated by neato [29] (layout based on multi-
dimensional scaling). Such a disagreement between different studies
may usually be explained by differences in the experimental protocol.
This points to the importance of replication studies in the visualization
field, and the necessity to share openly as much information as possible,
including training materials, data sets etc. Towards this, we release in
supplementary material all the stimuli used in this user study, along
with the corresponding graph data sets, and the training material.

From a visual perception perspective, the saliency of clusters in force-
directed node-link layouts, e.g., Linlog , exploits two principles:
the Gestalt proximity principle entailing that nodes whose position is
close in the 2D plane tend to be seen as a cluster, and the difference
in luminosity induced by the locally high edge clutter within clusters
in contrast to the rather sparse link connectivity elsewhere, especially
in many real network data sets. In this experiment, we did our best to
enhance the readability of the stimuli resulting from Linlog , for
example, by increasing node size and link thickness in the larger 300-
node networks to compensate for the zoom out effect resulting from
fitting a larger drawing in a fixed-size display and, hence, to ensure a
good readability. In contrast, our study used a basic implementation
of orderable node-link layouts , where clusters are visually
characterized by edge concentrations only. Orderable layouts
could be further enhanced by exploiting the Gestalt proximity principle
too, i.e., by introducing gaps between clusters along the underlying
geometric locus, when the clusters are known. We expect such gaps to
improve the visual saliency of clusters in orderable layouts ,
which is supported by a prior qualitative study on graph layouts based
on space-filling curves [61]. One might also study the effect of edge
bundling on the cluster identification task. Edge bundling has initially
been applied on radial diagrams, given an overarching hierarchy [44]. It
has later been extended to preserve the perception of paths [85]. Since
edge bundling affects drastically the way edges are routed, and the
overall edge clutter, it might as well impact cluster perception. While
prior work has explored edge bundling for radial graphs and general 2D
graph layouts, work on edge bundling for arc diagrams is scarce. The
results of this study constitute a stepping stone in this direction, and a
baseline against which future work could compare cluster perception
for both edge-bundled orderable and force-directed node-link layouts.

Finally, an inconvenient of orderable layouts is their
relatively inefficient use of display space. Indeed, minimizing the
area of the drawing is a known graph drawing aesthetic rule [8]. In
this respect, vanilla arc diagrams obviously use half the area of
their symmetric variant , but much more than the equivalent radial
layout (it is easy to prove that arc diagrams use π2

2 ≈ 5 times
the area of equivalent radial diagrams ). This might matter when
integrating orderable layouts in a broader context, for example in a
multiple coordinated view setting with other visualizations. On the one
hand, arc diagrams can be easily displayed on the side of a matrix
view, like in MatLink [42]. But, in any case, their nodes may need to
be scaled up to ensure sufficient visibility. In this study, we scaled the
different layouts to use all the available display area, and ensured a
good visibility of the nodes and links in all layouts (see Section 3.1).

5.2 Limitations
Data generation Much research has gone into generating syn-

thetic graphs meeting certain requirements, e.g., structural patterns
characterized by common graph metrics such as degree distribution, or
clustering coefficient [13]. The use of synthetic graphs is of practical
value for large-scale benchmarking activities, for which it is difficult
to gather enough real graph data sets with comparable features, and
also to be able to control the key properties of graphs for a specific
investigation. Also, similar to Anscombe’s quartet, previous work by
Chen et al. has shown that very different graphs might share the same
summary statistics [20]. So, even when researchers use popular graph
generators, it is difficult in practice to control for everything, and there
is a large overhead associated with the preparation of graph data sets.

In this study, we used the Gaussian random partition graph genera-
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Fig. 8: Cluster count accuracy for sizes = all, clusters = all, order = GEN, baseline = Linlog. The dark matrix cells correspond to p ≤ 0.05.

Fig. 9: Cluster count accuracy for sizes = all, clusters = all, order = CR, baseline = Linlog. The dark matrix cells correspond to p ≤ 0.05

Fig. 10: Cluster count accuracy for sizes = all, clusters = all, order = OLO, baseline = Linlog. The dark matrix cells correspond to p ≤ 0.05

tor [16] of NetworkX [38], to control the number of nodes, the number
of clusters and the internal and external link probabilities of these clus-
ters. We wanted to have small and large clusters in the same network,
to better mimic real networks. Still, one limitation of our approach is
that, in any given graph, we have one cluster type . In
real graphs, a mix of compact and loose clusters exist, with more or
less coupling between them. An alternate data generation approach
could consist in creating the clusters separately with the desired mix of
inner link densities and cluster sizes, before injecting external links, as
needed. Yet, our experiment provides a good complement to existing
work on cluster perception, and a baseline for future inquiries.

Cluster validity When generating graphs with loose and/or insep-
arable clusters, given the stochastic nature of the generative process
some clusters may be so loose and inseparable not to qualify as clus-
ters. One would ideally have a measure of the clustering tendency of
the generated data, and only keep graphs with a sufficient clustering
tendency. This is however a complex task. Global measures associated
to the presence of clusters, such as clustering coefficient or maximum
modularity, are convenient, but they cannot tell whether individual
clusters are too loose or inseparable. Also, maximum modularity can
be very high even in random networks [36], a problem shared with
other descriptive methods for cluster detection [72].

A principled way to assess clustering tendency would be to compute
statistical significance [53], which is also a complex task with strong
assumptions. First, some work proposing significance testing for clus-
tering focus on the whole set of clusters, e.g., [91], where individual
non-significant clusters might occur within significant clusterings [72].
Recent work explores how to test individual clusters [71], but there is

no standard way of doing it yet, and these methods rely themselves
on assumptions such as the null model against which statistical signifi-
cance is computed. Since different cluster types may exist, and different
clustering methods are based on different definitions of what a cluster
is, we conclude that clustering tendency should rather be considered
while interpreting the results of the empirical study, rather than as a
hard filter to decide which stimuli should be included in the study. In
particular, if for some stimuli the participants fail to identify clusters for
all the tested layout methods, an explanation may be that those clusters
are too loose and inseparable to even qualify as clusters. If the correct
number of clusters is consistently identified using one method, it seems
reasonable to consider this as empirical evidence that the generated
clusters are valid. As this paper aims to compare different layouts,
and not to study the level of compactness/separability where specific
methods start failing, this evidence suffices to reach our conclusions.

Like in Figure 3, we used matrix visualizations to check the existence
of clusters in every generated graph. Future work may seek to determine
the frontiers of the cluster validity space empirically by generating many
graphs with decreasing cluster compactness and/or separability until
users cease to catch a signal in the stimuli. Such a principled approach
would provide useful insights, to guide graph generation for similar
studies on cluster perception. In this study, we have seen that GEN, the
node generation order, leads to significantly faster and more accurate
cluster count judgements, than OLO and CR. This may occur when
the clusters are generated one after the other. The 20% accuracy gap
between GEN and OLO/CR calls for more adapted clustering methods
for the relatively loose and/or inseparable clusters considered here.

Layout optimization Since the output of most graph layout algo-
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Fig. 11: Cluster count accuracy for sizes = all, clusters = loose, orders = { GEN , CR , OLO }. The dark matrix cells correspond to p ≤ 0.05

Fig. 12: Cluster count accuracy for sizes = all, clusters = compact, orders = { GEN , CR , OLO }. The dark matrix cells correspond to p ≤ 0.05

rithms depends on hyperparameter values, researchers should strive to
evaluate algorithms at their best. For example, a computational study
might seek to find the optimal hyperparameter values to refine each of
the three force-directed layouts for each of the 60 graphs included in
our study. This would yet require establishing which aesthetic rules
best capture cluster saliency, which is an open question. In this study,
we have relied on published best practice, e.g., the use of quadrilat-
eral Simmelian Backbone, and the fact that default settings are usually
chosen to give good results in general. Lastly, OLO and CR are both
linear seriation methods, which may be suboptimal for radial layouts

. Future work may consider circular seriation methods too [4].

Crowdsourcing One benefit of crowdsourced studies is the access
to a large and diverse participant sample. While the researcher has
limited control over the setup, e.g., software, hardware and ergonomic
aspects, we selected participants with a suitable display size: laptops
and desktop monitors, excluding all handheld devices. The high levels
of accuracy, and short task completion times, achieved by the study
participants make us believe that the experimental setting was suitable.
We were also keen to ensure that the participants understood the task
at hand, without being able to observe them directly. To mitigate any
issues, we had several iterations over the training material to make
the video tutorials as clear and as short as possible, prior to the study.
Ultimately, the short drawing task at the end of each stimulus batch,
i.e., for each visualization type, allowed us, post hoc, to quality control
and check for any major misunderstanding of the task.

5.3 Guidelines
Our study compared three force-directed layouts (ForceAtlas2 with
Linlog energy, Backbone and sfdp) to three orderable layouts
in terms of cluster perception in graphs having four different types of
clusters (summarized in Figure 2). The study revealed how,
depending on cluster type, certain visualizations outperform others.
Hence, we can formulate the following guidelines:
■ G1 When node clusters are of analytical interest, use an orderable
node-link layout to get an overview of the cluster structure. Obser-
vation: For graphs having loose and/or inseparable clusters ,
orderable layouts , subject to node order, can outperform the
best force-directed layouts . Therefore, only using e.g. a force-based
layout may lead to a wrong perception of the cluster structure.
■ G2 Check the agreement between force-directed and orderable node-
link layouts. Observation: When the graph has ideal clusters, i.e.,

compact and separable , all the tested layouts promote the emergence
of clusters. Therefore, if force-directed and orderable node-link layouts
show the same cluster structure, the choice of visualization can then be
based on additional tasks to be addressed.
■ G3 When an orderable node-link diagram is chosen as a visualization,
use CR or OLO. Observation: Both CR and OLO seriation algorithms
achieve good results in terms of cluster identification.

These guidelines are valid within the experimental conditions used
in our study. While our results cannot be generalized to all layout
algorithms under all choices of hyperparameters, the force-directed
layouts we used were informed by the literature and are commonly
used. We also note that each of our stimuli only contains a single type
of clusters, so that we could use this as an independent variable. While
we cannot generalize our results to cases with different types of clusters
in the same graph, we believe that observations about specific cluster
types will still apply to these cases.

6 CONCLUSION

Clusters are common and important network patterns. We presented
the first user study investigating the visual saliency of graph clus-
ters in orderable node-link layouts under varying conditions of cluster
compactness and separability. We found empirically that the use of
orderable node-link layouts with an appropriate node order-
ing algorithm achieves fast and accurate cluster detection, surpassing
significantly several force-directed layouts (Linlog, Backbone and
sfdp), when dealing with loose and/or inseparable clusters .
Only in the ideal case of compact and separable clusters , the Linlog
node-link layout is on par with or better than orderable node-links
diagrams . Moreover, the crossing reduction heuristic (i.e.,
the barycenter heuristic) outperforms the optimal leaf ordering seriation
method in the case of loose and/or inseparable clusters .

Future perceptual studies might explore other graph motifs, e.g.,
hubs, and other tasks like path finding to better understand the pros
and cons of orderable node-link layouts . One might also
extend the study to include synthetic data sets with overlapping clusters,
and real data sets with application-driven analytical goals. Finally, one
might investigate why the orderable layouts are good at showing clus-
ters. The rationale for H1 is that these layouts create locally high link
concentrations. Insights into the specific features associated to better
cluster perception with orderable layouts may lead to new methods,
e.g., to quantify layout quality for this task automatically.
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SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at https://osf.io/
kc3dg/, released under a CC BY 4.0 license. In particular, they include

1. A zip file containing I) the material used to train study partic-
ipants (video tutorials and training data sets). II) The stimuli
used in the user study in various formats (SVG, PDF), and III) All
graph data sets in GraphML format to support study replication.

2. Additional statistics including I) a comparison of cluster count
completion time between the Linlog layout and orderable lay-
outs (accuracy is already analyzed above), II) a comparison of
completion time between all orderable layouts across all cluster
types, III) a comparison of the accuracy and completion time of
backbone, respectively sfdp, to orderable layouts.
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APPENDICES

Task completion time of Linlog versus orderable layouts

Fig. 13: Overall task completion time for sizes = all, clusters = all, order = GEN, baseline = Linlog. On the right, the dark blue matrix cells correspond
to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. Linlog is significantly (up to 25%) slower than GEN-ordered Arc and Arc symmetric
in all quadrants, and slower than radial layouts for compact inseparable clusters.

Fig. 14: Overall task completion time for sizes = all, clusters = all, order = CR, baseline = Linlog. On the right, the dark blue matrix cells correspond
to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. Linlog is generally as fast as the CR-ordered orderable layouts, except for compact
inseparable clusters where arc does significantly better.

Fig. 15: Overall task completion time of cluster count for sizes = all, clusters = compact, order = OLO, baseline = Linlog. The dark matrix cells
correspond to Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. Linlog is not significantly different from OLO-ordered orderable layouts.
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Task completion time of orderable layouts for loose and compact clusters

Fig. 16: Task completion time for network sizes = all, clusters = loose, orders = { GEN , CR , OLO }. On the right, the dark blue matrix cells
correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. GEN-ordered orderable layouts lead to consistently faster cluster count
judgements compared to those ordered by OLO and CR with respect to loose clusters.

Fig. 17: Task completion time for network sizes = all, clusters = compact, orders = { GEN , CR , OLO }. On the right, the dark blue matrix
cells correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. OLO and CR are not statistically significantly different in any of the
compact cluster settings. GEN is faster than OLO when combined with arc and symmetric arc layouts. GEN beats CR occasionally with arc and
symmetric arc in some compact cluster settings. GEN, CR and OLO are on par when it comes to radial layouts.
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Comparison of backbone and orderable layouts

Fig. 18: Overall accuracy of cluster count judgments for sizes = all, clusters = all, order = GEN, baseline = backbone. On the right, the dark blue
matrix cells correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. GEN-ordered orderable layouts are significantly (up to
33%) more accurate than backbone for all cluster types. the orderable layouts achieve 100% accuracy, in almost all cluster settings. Radial layouts
have a greater variance than arc and arc symmetric.

Fig. 19: Task completion time for sizes = all, clusters = all, order = GEN, baseline = backbone. On the right, the dark blue matrix cells correspond
to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. The lack of accuracy of backbone seen in Figure 18 also translates into slower
cluster count judgments in all cluster settings. Likewise, radial is always slower than arc layouts.

Fig. 20: Overall accuracy of cluster count judgments for sizes = all, clusters = all, order = CR, baseline = backbone. On the right, the dark blue
matrix cells correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. Backbone is less accurate than the CR-ordered orderable
layouts in all cluster settings, except in the case compact inseparable clusters where it cannot be distinguished from radial.
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Fig. 21: Overall task completion time for sizes = all, clusters = all, order = CR, baseline = backbone. On the right, the dark blue matrix cells
correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. Backbone is significantly slower than CR-ordered orderable layouts for
compact clusters, and comparable in the case of loose clusters.

Fig. 22: Overall accuracy of cluster count judgments for sizes = all, clusters = all, order = OLO, baseline = backbone. On the right, the dark blue
matrix cells correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. Backbone is less accurate than the OLO-ordered orderable
layouts in all cluster settings, except in the case compact inseparable clusters where it cannot be distinguished from radial.

Fig. 23: Overall task completion time for sizes = all, clusters = all, order = OLO, baseline = backbone. On the right, the dark blue matrix cells
correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. Backbone is slower than OLO-ordered orderable layouts for compact
and separable clusters. It is comparable to orderable layouts in the other cluster types, except for loose separable and compact inseparable clusters
where arc layouts are significantly faster.
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Comparison of sfdp and orderable layouts

Fig. 24: Overall accuracy of cluster count judgments for sizes = all, clusters = all, order = GEN, baseline = sfdp. On the right, the dark blue
matrix cells correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. sfdp is significantly (up to 60%) slower than GEN-ordered
orderable layouts for all cluster settings. All orderable layouts achieve 100% median accuracy. Radial layouts have a greater variance than arc and
symmetric arc layouts.

Fig. 25: Overall task completion time for sizes = all, clusters = all, order = GEN, baseline = sfdp. On the right, the dark blue matrix cells correspond
to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. The poorer accuracy of sfdp observed in Figure 24 comes with short completion
time, indicating that the participants were discouraged by the relatively higher visual clutter in sfdp plots.

Fig. 26: Overall accuracy of cluster count judgments for sizes = all, clusters = all, order = CR, baseline = sfdp. On the right, the dark blue matrix
cells correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. sfdp is significantly (up to 46%) slower than CR-ordered orderable
layouts for all cluster settings. All orderable layouts achieve high median accuracy, betwen 75% and 100%.
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Fig. 27: Overall task completion time for sizes = all, clusters = all, order = CR, baseline = sfdp. On the right, the dark blue matrix cells correspond
to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. The poorer accuracy of sfdp observed in Figure 26 comes with short completion
time, indicating that the participants were discouraged by the relatively higher visual clutter in sfdp plots.

Fig. 28: Overall accuracy of cluster count judgments for sizes = all, clusters = all, order = OLO, baseline = sfdp. On the right, the dark blue
matrix cells correspond to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. sfdp is significantly (up to 43%) slower than OLO-ordered
orderable layouts for all cluster settings. All orderable layouts achieve high median accuracy, betwen 71% and 100%.

Fig. 29: Overall task completion time for sizes = all, clusters = all, order = OLO, baseline = sfdp. On the right, the dark blue matrix cells correspond
to the Bonferroni corrected p ≤ 0.05 for all pairwise comparisons. The poorer accuracy of sfdp observed in Figure 28 comes with short completion
time, indicating that the participants were discouraged by the relatively higher visual clutter in sfdp plots.

17

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


The Effect of Network Size on Cluster Count in Force-Directed Layouts

Layout Size p-value ∆ Median accuracy

Linlog

50*-100 < 0.001 8.33%
50*-300 < 0.001 8.33%
100*-300 0.11 0%

Backbone

50*-100 < 0.001 5%
50*-300 < 0.001 8.6%
100*-300 0.236 3.6%

SFDP

50*-100 < 0.001 15%
50*-300 < 0.001 32.1%
100*-300 < 0.001 17.1%

Table 1: The difference in median accuracies for cluster count judgements between pairs of network sizes. Bold-faced values are statistically
significant. A star * marks the network size with higher accuracy. For Linlog, Backbone and SFDP, the accuracy is always better for the smaller
network size.

Detailed p-value Tables

2e-84
1.4e-79 0.18
1.8e-51 5.1e-06 0.0007
1.4e-09 7.9e-51 5e-46 1.4e-24

8.9e-102 0.0092 4.9e-05 2.4e-12 2.7e-67
5.9e-90 0.13 0.0033 4e-09 2.4e-57 0.31

5e-72 0.087 0.69 0.0042 1.3e-40 1.8e-05 0.0014
1.5e-21 8.5e-30 3.5e-25 5.7e-11 5.7e-05 7.9e-44 2.4e-36 3.4e-22

1.6e-113 4.6e-08 4.6e-12 1.6e-21 2e-80 0.0022 7.3e-05 1.6e-12 3.5e-57
1.1e-102 0.00018 2.9e-07 2.2e-15 5.6e-69 0.18 0.022 7.5e-08 7.1e-47 0.11

3.6e-59 0.022 0.3 0.042 7e-32 3.6e-06 0.00034 0.52 3.1e-17 4.6e-13 9.6e-09
1.9e-126 3.9e-12 5.1e-17 8e-28 3.7e-92 5e-06 5.4e-08 1.3e-17 2.8e-67 0.16 0.0023 5.9e-18
1.2e-137 9.5e-21 6.9e-27 9.4e-39 6.8e-105 6.6e-13 1.8e-15 1.4e-27 2e-80 4.8e-05 2.1e-08 2.2e-27 0.0051
2.5e-128 1.2e-15 5e-21 4.7e-32 2e-95 6.6e-09 3.8e-11 1e-21 1e-71 0.0069 2.2e-05 7.5e-22 0.17 0.16

3.5e-85 0.028 0.0005 3.5e-10 2.5e-54 0.98 0.36 0.00012 1.1e-35 0.0039 0.18 2.5e-05 2.1e-05 1.6e-11 6.7e-08

Table 2: P-Values for cluster count accuracy for sizes = all, clusters = all, order = GEN, baseline = Linlog (see the corresponding matrix Fig. 8).
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7.4e-13
2.3e-10 0.21

1e-07 0.049 0.43
1.4e-09 0.15 0.74 0.58
7.2e-17 0.24 0.015 0.0018 0.0099
1.7e-19 0.065 0.0017 0.00014 0.00093 0.5

2e-11 0.83 0.34 0.1 0.29 0.16 0.038
1.5e-21 0.015 0.00014 8.6e-06 5.7e-05 0.19 0.49 0.0083
8.8e-53 4e-20 5.3e-27 2.8e-28 2.4e-26 1e-15 4.6e-14 1.3e-19 3e-12
2.1e-55 1.1e-20 1.2e-27 3.9e-29 3.1e-27 4.3e-16 2.6e-14 2.7e-20 1.8e-12 0.93

1e-34 7.1e-09 3e-13 1.4e-14 3e-13 3.5e-06 3.9e-05 7.7e-09 0.0004 0.00055 0.0006
1.9e-126 8.7e-83 2e-97 1.4e-96 3.7e-92 6.1e-73 3.3e-70 1.8e-78 2.8e-67 5.4e-27 2.6e-28 7.7e-45
2.5e-101 6.3e-61 2.8e-73 3.7e-73 4.4e-69 2.6e-52 6.6e-50 1.2e-57 1.7e-47 5.4e-15 9.8e-16 6.2e-29 0.003
2.9e-89 4.4e-50 3.6e-61 1.3e-61 1.1e-57 2.7e-42 5.2e-40 1.5e-47 9.6e-38 9.1e-10 3e-10 2.1e-21 3e-06 0.09
5.7e-74 8.5e-37 3.3e-46 6e-47 9.8e-44 3.3e-30 5.3e-28 5e-35 7.7e-26 0.00022 0.00011 9.4e-13 8.7e-13 3.1e-05 0.014

Table 3: P-Values for cluster count accuracy for sizes = all, clusters = all, order = CR, baseline = Linlog (see the corresponding matrix Fig. 9).

3.5e-05
5.8e-06 0.74

1e-06 0.47 0.66
1.4e-09 0.074 0.15 0.29
2.2e-28 1.7e-12 2.9e-12 1.9e-10 2.1e-08
7.2e-28 3.4e-12 7e-12 3.8e-10 5.2e-08 0.76
3.1e-22 7.7e-09 8.8e-09 3.4e-07 1.1e-05 0.35 0.54
1.5e-21 3.2e-08 5.4e-08 1.4e-06 5.7e-05 0.17 0.27 0.7
2.9e-42 3.1e-22 1.8e-22 1.5e-19 2.1e-17 0.0021 0.00058 8.4e-05 1.2e-05
9.3e-42 9.2e-22 4.9e-22 2.9e-19 5.1e-17 0.0024 0.0007 8.2e-05 1.4e-05 0.98
1.7e-28 5.4e-13 3.6e-13 4.7e-11 2.6e-09 0.36 0.2 0.064 0.03 0.049 0.046

1.9e-126 3.9e-96 1.5e-101 5.8e-94 3.7e-92 6e-62 1.3e-65 9e-66 2.8e-67 1.6e-44 1e-43 5.5e-52
4.2e-66 2.7e-43 7.5e-46 3.7e-41 1.2e-38 1.8e-19 2.8e-21 1.7e-22 4.3e-23 1.7e-10 3.1e-10 3.6e-15 1.8e-12
8.9e-65 1.7e-42 3.6e-45 1.9e-40 4e-38 1.5e-19 2e-21 1.9e-22 5.7e-23 1.5e-10 2.9e-10 4.2e-15 4.5e-12 0.96
1.3e-55 1.1e-34 1.6e-36 1.7e-32 4.1e-30 4.1e-13 1.6e-14 1.2e-15 3e-16 5.1e-06 6.9e-06 8.7e-10 4.5e-18 0.1 0.094

Table 4: P-Values for cluster count accuracy for sizes = all, clusters = all, order = OLO, baseline = Linlog (see the corresponding matrix Fig. 10).
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1.5e-11
3.1e-06 0.011
0.0026 0.00012 0.092

0.3 3.9e-10 6.9e-05 0.034
4.7e-13 0.7 0.0026 1.2e-05 1.4e-11
4.8e-09 0.2 0.19 0.0048 1.7e-07 0.088
0.0004 0.0014 0.4 0.53 0.0048 0.0003 0.043

0.49 5.5e-11 1.9e-05 0.013 0.74 1.5e-12 4.2e-08 0.0016
4e-13 0.69 0.0025 1e-05 8.5e-12 0.98 0.085 0.00027 1.2e-12

1.4e-08 0.085 0.33 0.01 5.3e-07 0.034 0.7 0.083 1e-07 0.028
0.00069 0.00041 0.24 0.66 0.009 6.8e-05 0.017 0.8 0.0036 5.9e-05 0.036
1.6e-08 0.11 0.31 0.0083 5.1e-07 0.044 0.76 0.07 1.1e-07 0.039 0.93 0.031
6.5e-24 0.00024 3.7e-10 1.9e-13 5.5e-23 0.00078 4.5e-07 2.6e-11 6.9e-24 0.00083 2.4e-08 1.6e-12 7.4e-08
1.4e-18 0.03 1.8e-06 1.5e-09 1.8e-17 0.069 0.00042 1.3e-07 2.2e-18 0.068 5e-05 1.4e-08 9.5e-05 0.13

8e-10 0.57 0.058 0.00087 2.2e-08 0.33 0.52 0.0088 3.8e-09 0.32 0.28 0.0034 0.36 2.9e-05 0.0062

Table 5: P-Values for overall task completion time for sizes = all, clusters = all, order = GEN, baseline = Linlog (see the corresponding matrix Fig. 13).

0.7
0.45 0.69
0.18 0.3 0.48
0.3 0.16 0.068 0.014

0.52 0.33 0.17 0.045 0.69
0.63 0.89 0.8 0.34 0.098 0.25

0.076 0.15 0.27 0.7 0.0033 0.013 0.16
0.49 0.29 0.15 0.037 0.74 0.94 0.2 0.0098

6.1e-05 1.6e-05 1.4e-06 1.5e-07 0.00095 0.00053 1.1e-06 7.6e-09 0.00027
0.0033 0.001 0.00015 1.5e-05 0.037 0.018 0.00016 1.3e-06 0.016 0.16

0.37 0.22 0.11 0.026 0.89 0.81 0.16 0.0073 0.86 0.0012 0.033
1.6e-08 1.9e-09 6.8e-11 4.9e-12 5.1e-07 2.2e-07 2.9e-11 7.4e-14 1.1e-07 0.18 0.0033 1e-06
2.9e-14 2e-15 2e-17 2.1e-18 7.2e-13 7.1e-13 3.6e-18 9.3e-21 1.1e-13 0.00038 1.7e-07 5.6e-12 0.015
3.5e-09 4.5e-10 1.3e-11 8e-13 9.7e-08 4.8e-08 3.4e-12 1.4e-14 1.7e-08 0.081 0.00078 2.4e-07 0.62 0.055
0.00013 3.6e-05 3.2e-06 2.6e-07 0.0024 0.0011 3.4e-06 1.6e-08 0.0008 0.68 0.33 0.0025 0.061 3.9e-05 0.021

Table 6: P-Values for overall task completion time for sizes = all, clusters = all, order = CR, baseline = Linlog (see the corresponding matrix Fig. 14).
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0.84
0.0098 0.0042

0.012 0.006 0.88
0.3 0.42 0.00012 0.00021

0.04 0.067 1.9e-06 5.6e-06 0.25
0.73 0.95 0.0019 0.0028 0.44 0.064
0.33 0.23 0.11 0.1 0.037 0.0025 0.17
0.49 0.68 0.00048 0.00088 0.74 0.14 0.69 0.081
0.04 0.075 8.5e-07 3.1e-06 0.28 0.89 0.065 0.0019 0.15

0.7 0.52 0.019 0.02 0.12 0.009 0.44 0.52 0.24 0.0092
0.56 0.79 0.0016 0.0022 0.62 0.13 0.82 0.12 0.87 0.12 0.36

1.6e-08 4.9e-08 3e-18 4.2e-16 5.1e-07 0.00033 1.1e-08 1.8e-11 1.1e-07 7.1e-05 7.1e-11 2.3e-07
1.7e-11 3.1e-11 2.1e-22 9.9e-20 4e-10 1.1e-06 5.3e-12 6.9e-15 4.9e-11 1.3e-07 1.3e-14 3.3e-10 0.12
1.4e-06 3.2e-06 9.5e-15 3.2e-13 4.1e-05 0.0055 1.6e-06 5.1e-09 1e-05 0.0024 2.2e-08 1.7e-05 0.42 0.024
2.5e-05 5.1e-05 1.9e-12 3e-11 0.00051 0.026 3.3e-05 1.9e-07 0.00016 0.014 7.1e-07 0.00023 0.19 0.0075 0.63

Table 7: P-Values for overall task completion time for sizes = all, clusters = all, order = OLO, baseline = Linlog (see the corresponding matrix Fig. 15).

2.2e-76
1.5e-71 0.18
4.2e-45 5.1e-06 0.0007

0.11 5e-68 2.6e-63 4.1e-38
3.6e-93 0.0092 4.9e-05 2.4e-12 1.6e-84
3.7e-82 0.13 0.0033 4e-09 8.7e-74 0.31

2e-64 0.087 0.69 0.0042 2.1e-56 1.8e-05 0.0014
1.2e-18 2.9e-24 7.1e-20 2.6e-08 5.7e-14 1.6e-36 5e-30 9.9e-18

6.7e-106 4.6e-08 4.6e-12 1.6e-21 4.5e-97 0.0022 7.3e-05 1.6e-12 1.3e-48
9.7e-95 0.00018 2.9e-07 2.2e-15 4.2e-86 0.18 0.022 7.5e-08 9.3e-40 0.11
5.6e-53 0.022 0.3 0.042 1.4e-45 3.6e-06 0.00034 0.52 1.3e-13 4.6e-13 9.6e-09
1.3e-41 3e-11 6.4e-08 0.084 5.4e-35 4.9e-21 3.1e-16 8.4e-07 2.3e-05 1.7e-32 2e-24 7.8e-05

3.5e-130 9.5e-21 6.9e-27 9.4e-39 5.4e-121 6.6e-13 1.8e-15 1.4e-27 1.1e-70 4.8e-05 2.1e-08 2.2e-27 1.3e-53
1.1e-120 1.2e-15 5e-21 4.7e-32 1.8e-111 6.6e-09 3.8e-11 1e-21 1.2e-62 0.0069 2.2e-05 7.5e-22 7.5e-46 0.16

1.8e-78 0.028 0.0005 3.5e-10 4.9e-70 0.98 0.36 0.00012 3.4e-30 0.0039 0.18 2.5e-05 3.4e-17 1.6e-11 6.7e-08

Table 8: P-Values for overall accuracy of cluster count judgments for sizes = all, clusters = all, order = GEN, baseline = backbone (see the
corresponding matrix Fig. 18).
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2.2e-18
3.8e-12 0.011
8.3e-08 0.00012 0.092

0.31 1.2e-16 3.1e-10 5.1e-06
9e-21 0.7 0.0026 1.2e-05 8.2e-19

1.3e-15 0.2 0.19 0.0048 1.2e-13 0.088
1e-08 0.0014 0.4 0.53 4.3e-07 0.0003 0.043
0.099 2.6e-15 4.3e-09 6e-05 0.49 2.3e-17 2.9e-12 4.8e-06

1.1e-20 0.69 0.0025 1e-05 6.8e-19 0.98 0.085 0.00027 1.8e-17
2.6e-15 0.085 0.33 0.01 2.8e-13 0.034 0.7 0.083 6.6e-12 0.028
1.4e-08 0.00041 0.24 0.66 7e-07 6.8e-05 0.017 0.8 9.2e-06 5.9e-05 0.036

0.037 3.2e-16 3.2e-09 0.00014 0.28 2.7e-18 7.9e-13 5.3e-06 0.69 1.3e-18 2.8e-12 1e-05
1.7e-32 0.00024 3.7e-10 1.9e-13 2.1e-31 0.00078 4.5e-07 2.6e-11 1e-29 0.00083 2.4e-08 1.6e-12 4e-32
5.8e-27 0.03 1.8e-06 1.5e-09 2.8e-25 0.069 0.00042 1.3e-07 6.1e-24 0.068 5e-05 1.4e-08 1.5e-25 0.13
1.3e-16 0.57 0.058 0.00087 1.1e-14 0.33 0.52 0.0088 2.7e-13 0.32 0.28 0.0034 8.6e-14 2.9e-05 0.0062

Table 9: P-Values for overall completion time for network sizes = all, clusters = all, order = GEN, baseline = backbone (see the corresponding matrix
Fig. 19).

1.3e-09
2.7e-07 0.21
2.4e-05 0.049 0.43

0.11 3.4e-06 0.00019 0.0052
5.3e-13 0.24 0.015 0.0018 6.1e-09
2.5e-15 0.065 0.0017 0.00014 6.3e-11 0.5
1.7e-08 0.83 0.34 0.1 2.7e-05 0.16 0.038
1.2e-18 0.0017 7e-06 4e-07 5.7e-14 0.047 0.16 0.0012
2.4e-46 4e-20 5.3e-27 2.8e-28 8.2e-40 1e-15 4.6e-14 1.3e-19 4.3e-09
1.7e-48 1.1e-20 1.2e-27 3.9e-29 1.4e-41 4.3e-16 2.6e-14 2.7e-20 2.8e-09 0.93
3.1e-29 7.1e-09 3e-13 1.4e-14 7e-24 3.5e-06 3.9e-05 7.7e-09 0.012 0.00055 0.0006
1.3e-41 8.7e-15 7e-21 1.7e-22 5.4e-35 5.1e-11 1.8e-09 1.2e-14 2.3e-05 0.031 0.037 0.13
7.6e-94 6.3e-61 2.8e-73 3.7e-73 3.6e-85 2.6e-52 6.6e-50 1.2e-57 3.9e-40 5.4e-15 9.8e-16 6.2e-29 3.3e-25
4.2e-82 4.4e-50 3.6e-61 1.3e-61 1.5e-73 2.7e-42 5.2e-40 1.5e-47 2.2e-31 9.1e-10 3e-10 2.1e-21 8.6e-18 0.09
1.3e-66 8.5e-37 3.3e-46 6e-47 6.8e-59 3.3e-30 5.3e-28 5e-35 4.4e-21 0.00022 0.00011 9.4e-13 1.1e-09 3.1e-05 0.014

Table 10: P-Values for overall accuracy of cluster count judgments for sizes = all, clusters = all, order = CR, baseline = backbone (see the
corresponding matrix Fig. 20).
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0.043
0.082 0.69

0.3 0.3 0.48
0.31 0.27 0.45 0.92

0.0025 0.33 0.17 0.045 0.033
0.041 0.89 0.8 0.34 0.29 0.25

0.53 0.15 0.27 0.7 0.72 0.013 0.16
0.099 0.6 0.9 0.56 0.49 0.13 0.7 0.31

8.8e-10 1.6e-05 1.4e-06 1.5e-07 4e-08 0.00053 1.1e-06 7.6e-09 4.6e-07
1e-07 0.001 0.00015 1.5e-05 4.7e-06 0.018 0.00016 1.3e-06 5.3e-05 0.16

0.00084 0.22 0.11 0.026 0.016 0.81 0.16 0.0073 0.077 0.0012 0.033
0.037 0.88 0.78 0.33 0.28 0.22 0.98 0.15 0.69 3.5e-07 8e-05 0.14

5.5e-22 2e-15 2e-17 2.1e-18 3.8e-20 7.1e-13 3.6e-18 9.3e-21 1.3e-18 0.00038 1.7e-07 5.6e-12 8.8e-20
8.2e-16 4.5e-10 1.3e-11 8e-13 4.9e-14 4.8e-08 3.4e-12 1.4e-14 1.3e-12 0.081 0.00078 2.4e-07 3.6e-13 0.055
1.1e-09 3.6e-05 3.2e-06 2.6e-07 6.5e-08 0.0011 3.4e-06 1.6e-08 1e-06 0.68 0.33 0.0025 1.4e-06 3.9e-05 0.021

Table 11: P-Values for overall completion time for network sizes = all, clusters = all, order = CR, baseline = backbone (see the corresponding matrix
Fig. 21).

0.0027
0.00084 0.74
0.00021 0.47 0.66

0.11 0.13 0.057 0.025
3.5e-23 1.7e-12 2.9e-12 1.9e-10 3.7e-18
1.2e-22 3.4e-12 7e-12 3.8e-10 8.5e-18 0.76
6.8e-18 7.7e-09 8.8e-09 3.4e-07 1.5e-13 0.35 0.54
1.2e-18 3.1e-09 2.8e-09 1.5e-07 5.7e-14 0.67 0.91 0.56
5.4e-36 3.1e-22 1.8e-22 1.5e-19 7.4e-30 0.0021 0.00058 8.4e-05 0.001
1.6e-35 9.2e-22 4.9e-22 2.9e-19 3.6e-29 0.0024 0.0007 8.2e-05 0.00097 0.98
1.1e-23 5.4e-13 3.6e-13 4.7e-11 1.5e-18 0.36 0.2 0.064 0.22 0.049 0.046
1.3e-41 2.1e-26 4.3e-27 2e-23 5.4e-35 4.6e-05 8.5e-06 7.1e-07 2.3e-05 0.32 0.36 0.0034
6.9e-60 2.7e-43 7.5e-46 3.7e-41 2.9e-52 1.8e-19 2.8e-21 1.7e-22 8.3e-19 1.7e-10 3.1e-10 3.6e-15 1.2e-08
6.6e-59 1.7e-42 3.6e-45 1.9e-40 2e-51 1.5e-19 2e-21 1.9e-22 1.4e-18 1.5e-10 2.9e-10 4.2e-15 1.2e-08 0.96
7.1e-50 1.1e-34 1.6e-36 1.7e-32 7.1e-43 4.1e-13 1.6e-14 1.2e-15 9.9e-13 5.1e-06 6.9e-06 8.7e-10 0.00014 0.1 0.094

Table 12: P-Values for overall accuracy of cluster count judgments for sizes = all, clusters = all, order = OLO, baseline = backbone (see the
corresponding matrix Fig. 22).
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0.011
0.99 0.0042
0.91 0.006 0.88
0.31 0.096 0.29 0.25

1.6e-05 0.067 1.9e-06 5.6e-06 0.00042
0.0048 0.95 0.0019 0.0028 0.057 0.064

0.14 0.23 0.11 0.1 0.6 0.0025 0.17
0.099 0.27 0.069 0.07 0.49 0.0027 0.21 0.89
7e-06 0.075 8.5e-07 3.1e-06 0.00027 0.89 0.065 0.0019 0.0021
0.034 0.52 0.019 0.02 0.25 0.009 0.44 0.52 0.63 0.0092

0.0029 0.79 0.0016 0.0022 0.04 0.13 0.82 0.12 0.15 0.12 0.36
0.037 0.4 0.021 0.023 0.28 0.004 0.35 0.58 0.69 0.0041 0.87 0.28

1.1e-18 3.1e-11 2.1e-22 9.9e-20 8.5e-17 1.1e-06 5.3e-12 6.9e-15 1.8e-15 1.3e-07 1.3e-14 3.3e-10 2.8e-16
2.3e-12 3.2e-06 9.5e-15 3.2e-13 1.4e-10 0.0055 1.6e-06 5.1e-09 3.5e-09 0.0024 2.2e-08 1.7e-05 1.9e-09 0.024
1.7e-10 5.1e-05 1.9e-12 3e-11 9.5e-09 0.026 3.3e-05 1.9e-07 1.3e-07 0.014 7.1e-07 0.00023 1.3e-07 0.0075 0.63

Table 13: P-Values for overall completion time for network sizes = all, clusters = all, order = OLO, baseline = backbone (see the corresponding matrix
Fig. 23).

2.5e-127
1e-123 0.18

1.6e-94 5.1e-06 0.0007
1.2e-13 6.3e-90 6.3e-86 1.4e-58

7.3e-141 0.0092 4.9e-05 2.4e-12 4.7e-104
1.7e-129 0.13 0.0033 4e-09 1.5e-92 0.31
3.9e-115 0.087 0.69 0.0042 1.2e-77 1.8e-05 0.0014

0.22 1.2e-132 7.3e-129 1.7e-99 1.4e-17 3.3e-147 8.5e-136 1e-120
2.8e-150 4.6e-08 4.6e-12 1.6e-21 2.3e-113 0.0022 7.3e-05 1.6e-12 1.4e-157
2.2e-141 0.00018 2.9e-07 2.2e-15 2.3e-105 0.18 0.022 7.5e-08 1.5e-147 0.11
1.6e-100 0.022 0.3 0.042 7e-64 3.6e-06 0.00034 0.52 1e-106 4.6e-13 9.6e-09
1.5e-74 7.7e-28 2.8e-23 3.9e-09 1.5e-38 2.3e-42 7.9e-35 4.1e-20 1.9e-78 1.6e-56 2.3e-45 2.5e-15

1.7e-168 9.5e-21 6.9e-27 9.4e-39 5.8e-136 6.6e-13 1.8e-15 1.4e-27 1.8e-175 4.8e-05 2.1e-08 2.2e-27 8e-81
8.5e-161 1.2e-15 5e-21 4.7e-32 2.6e-127 6.6e-09 3.8e-11 1e-21 6e-168 0.0069 2.2e-05 7.5e-22 1.9e-71 0.16
1.1e-123 0.028 0.0005 3.5e-10 8.7e-89 0.98 0.36 0.00012 1.4e-129 0.0039 0.18 2.5e-05 4.3e-34 1.6e-11 6.7e-08

Table 14: P-Values for overall accuracy of cluster count judgments for sizes = all, clusters = all, order = GEN, baseline = sfdp (see the corresponding
matrix Fig. 24).
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0.43
0.0038 0.011

8.5e-05 0.00012 0.092
0.17 0.49 0.12 0.0034

0.7 0.7 0.0026 1.2e-05 0.26
0.074 0.2 0.19 0.0048 0.69 0.088

0.00044 0.0014 0.4 0.53 0.018 0.0003 0.043
0.7 0.57 0.013 0.00073 0.33 0.89 0.14 0.0021

0.67 0.69 0.0025 1e-05 0.27 0.98 0.085 0.00027 0.84
0.034 0.085 0.33 0.01 0.44 0.034 0.7 0.083 0.07 0.028

0.00022 0.00041 0.24 0.66 0.0097 6.8e-05 0.017 0.8 0.0013 5.9e-05 0.036
0.81 0.31 0.00033 5.5e-07 0.076 0.54 0.019 2.5e-05 0.63 0.54 0.0055 5e-06

0.013 0.00024 3.7e-10 1.9e-13 2.7e-05 0.00078 4.5e-07 2.6e-11 0.011 0.00083 2.4e-08 1.6e-12 0.0069
0.22 0.03 1.8e-06 1.5e-09 0.0046 0.069 0.00042 1.3e-07 0.2 0.068 5e-05 1.4e-08 0.22 0.13
0.23 0.57 0.058 0.00087 0.87 0.33 0.52 0.0088 0.39 0.32 0.28 0.0034 0.11 2.9e-05 0.0062

Table 15: P-Values for overall completion time for network sizes = all, clusters = all, order = GEN, baseline = sfdp (see the corresponding matrix
Fig. 25).

2.8e-49
4.3e-46 0.21
7.7e-40 0.049 0.43
1.2e-13 7.3e-19 7.6e-17 4.2e-13

3e-56 0.24 0.015 0.0018 3.3e-24
4.1e-60 0.065 0.0017 0.00014 2.4e-27 0.5
4.9e-46 0.83 0.34 0.1 2.7e-17 0.16 0.038

0.22 8.9e-54 8.3e-50 1.6e-43 1.4e-17 1.9e-60 3.7e-64 2.2e-50
2.2e-93 4e-20 5.3e-27 2.8e-28 2.6e-58 1e-15 4.6e-14 1.3e-19 2.2e-98
5.1e-99 1.1e-20 1.2e-27 3.9e-29 4.8e-62 4.3e-16 2.6e-14 2.7e-20 4e-104 0.93
5.1e-74 7.1e-09 3e-13 1.4e-14 1.5e-40 3.5e-06 3.9e-05 7.7e-09 1e-78 0.00055 0.0006
1.5e-74 0.00025 3e-07 9.3e-09 1.5e-38 0.011 0.066 0.00011 1.9e-78 1.4e-10 1.4e-10 0.0056

5.9e-138 6.3e-61 2.8e-73 3.7e-73 4e-102 2.6e-52 6.6e-50 1.2e-57 6.8e-145 5.4e-15 9.8e-16 6.2e-29 1.8e-46
1.2e-128 4.4e-50 3.6e-61 1.3e-61 4e-91 2.7e-42 5.2e-40 1.5e-47 1.6e-135 9.1e-10 3e-10 2.1e-21 2.5e-36 0.09
5.4e-113 8.5e-37 3.3e-46 6e-47 4.4e-78 3.3e-30 5.3e-28 5e-35 1.4e-118 0.00022 0.00011 9.4e-13 6e-24 3.1e-05 0.014

Table 16: P-Values for overall accuracy of cluster count judgments for sizes = all, clusters = all, order = CR, baseline = sfdp (see the corresponding
matrix Fig. 26).

25

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


4.4e-12
2.1e-13 0.69
1.2e-14 0.3 0.48

0.17 9.6e-10 6.1e-11 4.7e-12
5.5e-10 0.33 0.17 0.045 9.5e-08
7.8e-14 0.89 0.8 0.34 4e-11 0.25
3.5e-16 0.15 0.27 0.7 1.2e-13 0.013 0.16

0.7 5.3e-10 4.6e-11 4.1e-12 0.33 2.9e-08 2.6e-11 1.9e-13
0.0015 1.6e-05 1.4e-06 1.5e-07 0.054 0.00053 1.1e-06 7.6e-09 0.0053

6.7e-06 0.001 0.00015 1.5e-05 0.00088 0.018 0.00016 1.3e-06 6.3e-05 0.16
5.6e-09 0.22 0.11 0.026 7.2e-07 0.81 0.16 0.0073 2.5e-07 0.0012 0.033

0.81 1.9e-16 1.8e-18 1.6e-19 0.076 7.1e-14 3.4e-19 7.6e-22 0.63 0.00015 4.2e-08 8.7e-13
1 2e-15 2e-17 2.1e-18 0.13 7.1e-13 3.6e-18 9.3e-21 0.83 0.00038 1.7e-07 5.6e-12 0.83

0.088 4.5e-10 1.3e-11 8e-13 0.79 4.8e-08 3.4e-12 1.4e-14 0.16 0.081 0.00078 2.4e-07 0.031 0.055
0.00057 3.6e-05 3.2e-06 2.6e-07 0.022 0.0011 3.4e-06 1.6e-08 0.0029 0.68 0.33 0.0025 1.1e-05 3.9e-05 0.021

Table 17: P-Values for overall completion time for network sizes = all, clusters = all, order = CR, baseline = sfdp (see the corresponding matrix
Fig. 27).

1.7e-35
1.6e-37 0.74
6.6e-39 0.47 0.66
1.2e-13 3e-10 2.3e-11 3.1e-12
1.4e-69 1.7e-12 2.9e-12 1.9e-10 3.5e-36
1.9e-68 3.4e-12 7e-12 3.8e-10 5.2e-36 0.76
8.8e-60 7.7e-09 8.8e-09 3.4e-07 1.8e-28 0.35 0.54

0.22 3.7e-39 6.2e-41 1.2e-42 1.4e-17 3.2e-73 1.3e-71 6e-64
1.1e-85 3.1e-22 1.8e-22 1.5e-19 1.5e-49 0.0021 0.00058 8.4e-05 3.2e-90
5.3e-85 9.2e-22 4.9e-22 2.9e-19 3.2e-49 0.0024 0.0007 8.2e-05 7e-90 0.98
1.6e-67 5.4e-13 3.6e-13 4.7e-11 2.1e-34 0.36 0.2 0.064 2.4e-72 0.049 0.046
1.5e-74 2.4e-12 6.6e-12 3e-10 1.5e-38 0.65 0.83 0.59 1.9e-78 0.00031 0.00037 0.19

5.9e-104 2.7e-43 7.5e-46 3.7e-41 7e-69 1.8e-19 2.8e-21 1.7e-22 2.3e-110 1.7e-10 3.1e-10 3.6e-15 2e-21
4.3e-102 1.7e-42 3.6e-45 1.9e-40 7.2e-67 1.5e-19 2e-21 1.9e-22 1e-108 1.5e-10 2.9e-10 4.2e-15 1.9e-21 0.96
5.4e-94 1.1e-34 1.6e-36 1.7e-32 2.7e-59 4.1e-13 1.6e-14 1.2e-15 5.2e-100 5.1e-06 6.9e-06 8.7e-10 1.2e-14 0.1 0.094

Table 18: P-Values for overall accuracy of cluster count judgments for sizes = all, clusters = all, order = OLO, baseline = sfdp (see the corresponding
matrix Fig. 28).
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4.7e-11
3e-20 0.0042

1.8e-18 0.006 0.88
0.17 1.7e-08 1.4e-17 8.5e-16

6.2e-07 0.067 1.9e-06 5.6e-06 9.1e-05
1.9e-11 0.95 0.0019 0.0028 7e-09 0.064
5.6e-14 0.23 0.11 0.1 1.5e-11 0.0025 0.17

0.7 3.3e-09 6.6e-17 2e-15 0.33 1e-05 1.6e-09 1.5e-11
1.7e-07 0.075 8.5e-07 3.1e-06 2.8e-05 0.89 0.065 0.0019 3.4e-06
1.3e-13 0.52 0.019 0.02 5.1e-11 0.009 0.44 0.52 2.2e-11 0.0092
1.4e-09 0.79 0.0016 0.0022 2.4e-07 0.13 0.82 0.12 9.3e-08 0.12 0.36

0.81 1.1e-14 6.9e-28 1.7e-24 0.076 2.4e-09 4.9e-16 3.5e-19 0.63 1e-10 7e-19 1.5e-13
0.39 3.1e-11 2.1e-22 9.9e-20 0.52 1.1e-06 5.3e-12 6.9e-15 0.52 1.3e-07 1.3e-14 3.3e-10 0.27

0.0062 3.2e-06 9.5e-15 3.2e-13 0.15 0.0055 1.6e-06 5.1e-09 0.017 0.0024 2.2e-08 1.7e-05 0.00065 0.024
0.0021 5.1e-05 1.9e-12 3e-11 0.064 0.026 3.3e-05 1.9e-07 0.0074 0.014 7.1e-07 0.00023 0.00014 0.0075 0.63

Table 19: P-Values for overall completion time for network sizes = all, clusters = all, order = OLO, baseline = sfdp (see the corresponding matrix
Fig. 29).

27

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

	Introduction
	Related Work
	Graph Visualization
	Graph Seriation
	User Studies on Cluster Perception in Graphs

	Methods
	The Visual Stimuli
	Hypotheses
	Study Design
	Study Procedure

	Results
	Preliminary Remarks
	Hypothesis H1 (✓): Orderable Node-Link Layouts Improve Cluster Saliency Over Linlog Layouts
	Hypothesis H2 (✗): OLO Beats CR at Cluster Saliency
	Hypothesis H3 (✗):  0=[height=9pt]img/icons/ArcSym.svg00  Beats  0=[height=9pt]img/icons/Arc.svg00  at Cluster Saliency
	Additional Findings

	Discussion
	Cluster Detection in Orderable Layouts
	Limitations
	Guidelines

	Conclusion

