
HAL Id: hal-04668339
https://hal.science/hal-04668339v1

Submitted on 6 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large-scale analysis of structural brain asymmetries
during neurodevelopment: Associations with age and

sex in 4265 children and adolescents
F. Kurth, D. Schijven, O. van den Heuvel, M. Hoogman, D. van Rooij, D.

Stein, J. Buitelaar, S. Bölte, Guillaume Auzias, A. Kushki, et al.

To cite this version:
F. Kurth, D. Schijven, O. van den Heuvel, M. Hoogman, D. van Rooij, et al.. Large-scale analysis
of structural brain asymmetries during neurodevelopment: Associations with age and sex in 4265
children and adolescents. Human Brain Mapping, 2024, 45 (11), �10.1002/hbm.26754�. �hal-04668339�

https://hal.science/hal-04668339v1
https://hal.archives-ouvertes.fr


R E S E A R CH A R T I C L E

Large-scale analysis of structural brain asymmetries during
neurodevelopment: Associations with age and sex in 4265
children and adolescents

F. Kurth1,2 | D. Schijven3 | O. A. van den Heuvel4 | M. Hoogman5,6,7 |

D. van Rooij8 | D. J. Stein9 | J. K. Buitelaar7,10 | S. Bölte11,12 | G. Auzias13 |

A. Kushki14 | G. Venkatasubramanian15,16 | K. Rubia17 | S. Bollmann18 |

J. Isaksson11,19 | F. Jaspers‐Fayer20 | R. Marsh21 | M. C. Batistuzzo22,23 |

P. D. Arnold24 | R. A. Bressan25,26 | S. E. Stewart27 | P. Gruner28 |

L. Sorensen29 | P. M. Pan30,31 | T. J. Silk32,33 | R. C. Gur34 | A. I. Cubillo35 |

J. Haavik36,37 | R. L. O'Gorman Tuura38 | C. A. Hartman39 | R. Calvo40,41,42,43 |

J. McGrath44 | S. Calderoni45,46 | A. Jackowski47,48 | K. C. Chantiluke17 |

T. D. Satterthwaite49,50,51 | G. F. Busatto52 | J. T. Nigg53 | R. E. Gur54 |

A. Retico55 | M. Tosetti45 | L. Gallagher44,56,57,58 | P. R. Szeszko59,60,61 |

J. Neufeld11,62 | A. E. Ortiz40,43 | C. Ghisleni38 | L. Lazaro40,41,42,43 |

P. J. Hoekstra63 | E. Anagnostou64 | L. Hoekstra65,66,67 | B. Simpson68 |

J. K. Plessen69 | C. Deruelle13 | N. Soreni70,71 | A. James72 |

J. Narayanaswamy15 | J. Y. Reddy15 | J. Fitzgerald73 | M. A. Bellgrove74 |

G. A. Salum75,76 | J. Janssen77 | F. Muratori45 | M. Vila40 | M. Garcia Giral40 |

S. H. Ameis78,79 | P. Bosco45 | K. Lundin Remnélius11 | C. Huyser80,81 |

J. C. Pariente82 | M. Jalbrzikowski83,84 | P. G. Rosa85 | K. M. O'Hearn86 |

S. Ehrlich87 | J. Mollon88 | A. Zugman89 | A. Christakou35,90 | C. Arango91 |

S. E. Fisher3,7 | X. Kong92,93 | B. Franke5,6,7 | S. E. Medland94 |

S. I. Thomopoulos95 | N. Jahanshad95 | D. C. Glahn84,96 | P. M. Thompson95 |

C. Francks3,6,7 | E. Luders1,62,97,98

Correspondence

F. Kurth, School of Psychology, University of

Auckland, Private Bag 92019, Auckland 1142,

New Zealand.

Email: f.kurth@auckland.ac.nz

Abstract

Only a small number of studies have assessed structural differences between the two

hemispheres during childhood and adolescence. However, the existing findings lack

consistency or are restricted to a particular brain region, a specific brain feature, or a

relatively narrow age range. Here, we investigated associations between brain
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asymmetry and age as well as sex in one of the largest pediatric samples to date

(n = 4265), aged 1–18 years, scanned at 69 sites participating in the ENIGMA

(Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study

revealed that significant brain asymmetries already exist in childhood, but their mag-

nitude and direction depend on the brain region examined and the morphometric

measurement used (cortical volume or thickness, regional surface area, or subcortical

volume). With respect to effects of age, some asymmetries became weaker over time

while others became stronger; sometimes they even reversed direction. With respect

to sex differences, the total number of regions exhibiting significant asymmetries was

larger in females than in males, while the total number of measurements indicating

significant asymmetries was larger in males (as we obtained more than one measure-

ment per cortical region). The magnitude of the significant asymmetries was also

greater in males. However, effect sizes for both age effects and sex differences were

small. Taken together, these findings suggest that cerebral asymmetries are an inher-

ent organizational pattern of the brain that manifests early in life. Overall, brain asym-

metry appears to be relatively stable throughout childhood and adolescence, with

some differential effects in males and females.

K E YWORD S

adolescence, age, asymmetry, brain, childhood, cortical thickness, development, ENIGMA,
gender, gray matter, sex

1 | INTRODUCTION

Despite its striking overall symmetric appearance at first glance, a

closer look at the human brain reveals a multitude of asymmetries

(Ocklenburg & Gunturkun, 2018). These asymmetries not only exist

functionally—that is, the preference of one hand over the other

(Papadatou-Pastou et al., 2020) or the lateralization of language to

one hemisphere (Malik-Moraleda et al., 2022)—but also structurally.

The brain's most prominent structural asymmetry is the Yakovlevian

torque—a forward warp of the right hemisphere and a backward warp

of the left hemisphere (Kong et al., 2021; LeMay, 1976). However,

several other left–right differences exist, as summarized elsewhere

(Jancke, 2003; Toga et al., 2009). For example, the left Sylvian fissure

is often longer and runs more horizontally than the right, whereas the

left hemisphere often contains only one Heschl's gyrus, but the right

hemisphere contains two. While some structural asymmetries are con-

sistent across brains and stable over time, others have been reported

to differ across individuals and to change with increasing age

(Guadalupe et al., 2017; Kong et al., 2018; Kong et al., 2022).

The majority of asymmetry studies have been conducted in adult

populations (Chiarello et al., 2016; Good et al., 2001; Guadalupe

et al., 2017; Jancke et al., 1994; Koelkebeck et al., 2014; Kong

et al., 2018; Kong et al., 2022; Luders et al., 2006; Maingault

et al., 2016; Plessen et al., 2014; Sha, Pepe, et al., 2021; Toga

et al., 2009; Toga & Thompson, 2003; Zhou et al., 2013), and some of

those studies cover the entire lifespan, including childhood and ado-

lescence, but do not explicitly focus on these earlier periods in life

(Kong et al., 2018; Plessen et al., 2014; Zhou et al., 2013). So, it

remains unclear when cerebral asymmetries arise and how they

develop during childhood and adolescence. There is some evidence

that cerebral asymmetries already exist in newborns (de Vareilles

et al., 2022; Ge et al., 2022; Gilmore et al., 2007; Lehtola et al., 2019;

Li et al., 2014; Li et al., 2015; Namburete et al., 2023; Steger

et al., 2023) and even in the fetal brain (Abu-Rustum et al., 2013;

Corballis, 2013; de Kovel et al., 2017; Namburete et al., 2023; Steger

et al., 2023; Vasung et al., 2020). However, to date there is limited

research investigating brain asymmetries and their age-related associ-

ations during childhood and adolescence. The few existing studies

with an explicit focus on childhood and adolescence have resulted in

inconsistent findings or in findings restricted to a particular brain

region, a specific brain feature, or a relatively narrow age range

(Levman et al., 2017; Raja et al., 2021; Shaw et al., 2009; Wang

et al., 2015).

Our current study was designed to pool international data to pro-

vide crucial and high-powered insights into brain asymmetry with a

focus on the age range of 1–18 years, capturing a multitude of brain

features (cortical thickness, cortical surface area, as well as cortical

and subcortical volumes), reflecting both regional and global mea-

sures. Moreover, we set out to analyze whether there are significant

differences in brain asymmetry between males and females, given the

often conflicting outcomes in prior (mostly adult) studies (Fan

et al., 2010; Good et al., 2001; Guadalupe et al., 2015; Guadalupe

et al., 2017; Jancke et al., 1994; Kong et al., 2018; Kong et al., 2022;

Kurth et al., 2017; Kurth et al., 2018; Levman et al., 2017; Luders
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et al., 2004; Luders et al., 2006; Plessen et al., 2014; Savic, 2014;

Shaw et al., 2009; Takao et al., 2011; Toga et al., 2009; Toga &

Thompson, 2003; Watkins et al., 2001; Zhou et al., 2013). If sex differ-

ences in brain asymmetry exist, such differences may already be pre-

sent at their full extent early on in life or manifest only later

(e.g., during puberty). Moreover, any existing sex differences may

become stronger (or weaker) over time. Any significant change in sex

differences in brain asymmetry over time would manifest as a sex-

by-age interaction.

Altogether, this study was designed to answer the following four

main questions: (1) are there any structural brain asymmetries in child-

hood and adolescence; (2) do brain asymmetries change with age dur-

ing this period; (3) are there any sex differences in brain asymmetries

in childhood and adolescence; and (4) do sex differences in brain

asymmetries change during this period (sex-by-age interaction)?

2 | METHODS

2.1 | Dataset and sample

Our study sample consisted of typically developing children and

adolescents aged 1–18 years (i.e., <19 years), scanned at 69 sites par-

ticipating in the Enhancing NeuroImaging Genetics through Meta-

Analysis (ENIGMA) consortium (Boedhoe et al., 2018; Hoogman

et al., 2019; Postema et al., 2019; Satterthwaite et al., 2014). At each

site, data collection was performed after obtaining institutional ethics

approval as well as informed consent/assent. The present study was

conducted with additional approval from the University of Auckland

Human Participants Ethics Committee (UAHPEC23851).

All brain scans were processed at the respective sites using Free-

Surfer (Fischl, 2012), which resulted in a standard set of cortical thick-

ness and surface area measures for 34 cortical regions-of-interest

(ROIs) (Desikan et al., 2006) and of volume measures for 7 subcortical

ROIs1 (Fischl et al., 2002) in each hemisphere. In addition, the mean

thickness and total surface area for each hemisphere as well as the

total intracranial volume (TIV) were calculated. These individual mea-

sures, together with other relevant information (sex, age, scanner/site,

and handedness), were shared with a central analysis team in the form

of spreadsheets. In total, the central analysis team received informa-

tion on 4331 participants. Of those, 66 participants lacked measures

of cortical thickness, cortical surface area, and/or subcortical volume,

and thus were excluded. The final sample of 4265 participants had a

mean (SD) age of 12.2 (3.2) years (range: 1–18 years) and consisted of

41.2% females and 58.8% males. Information on handedness was

available for 2391 participants, with 2126 (88.9%) right-handers

reflecting the expected distribution of handedness in the population

(Annett, 1973). Demographics of the final sample for each site are

given in Supplementary Table 1.

2.2 | Existing measures and new calculations

As mentioned above, the different sites provided the left and right

regional measures (regional cortical thickness, regional surface area,

and regional subcortical volume) as well as the left and right global

measures (total cortical thickness and total surface area).2 The central

analysis team calculated the following additional measures: (I) the left

and right regional cortical volumes of the 34 ROIs in each hemisphere

(thickness � surface area), (II) the left and right total cortical volume,

and (III) the left and right total subcortical volume. Altogether, this

resulted in 109 regional measures (34 � 3 cortical + 7 � 1 subcorti-

cal) as well as in four global measures in each hemisphere. Subse-

quently, for each of these hemispheric measures, the asymmetry

index was calculated as AI = (Left � Right) / (0.5 � [Left + Right]),

with resulting positive values indicating leftward asymmetry and neg-

ative values indicating rightward asymmetry (Guadalupe et al., 2017;

Kong et al., 2018; Kurth et al., 2015; Kurth et al., 2018).

2.3 | Statistical analysis

All analyses were run in Matlab 2018a (http://www.mathworks.com/

products/matlab) using mixed models, where site was treated as a

random effect3 and TIV as a variable of no interest. Overall, four ana-

lyses were run to assess (1) hemispheric asymmetry; (2) age-related

changes in asymmetry; (3) sex differences in asymmetry; and (4) sex-

by-age interactions in asymmetry. For all four analyses, the dependent

variables were the asymmetry indices for each measurement, while

the independent variables varied according to the analysis performed

(see next sections). For all four analyses, the results were corrected

for multiple comparisons by controlling the false discovery rate (FDR)

at pfdr ≤.05 (Benjamini & Yekutieli, 2001; Hochberg &

Benjamini, 1990) within each set of measurements (i.e., [sub]cortical

volumes, cortical thickness, and cortical surface areas).

In a supplementary stream, the aforementioned analyses were

repeated (a) in a subsample of 2126 right-handers (45.9% female);

(b) in a subsample of 2116 participants younger than 12 years of age

(41.1% female); and (c) in a subsample of 2149 participants aged

12 years or older (41.2% female). The outcomes of these analyses are

presented in Supplementary Tables 7–21 and Supplementary

Figures 1–9.

2.3.1 | Analysis 1: Hemispheric asymmetry

The first analysis used the intercept of the mixed model as the inde-

pendent variable to determine the presence of asymmetries. The

effect size was calculated as d = t/sqrt(df) (Rosnow &

Rosenthal, 2003). To capture the direction of the asymmetry

1Some sites included the lateral ventricles as an 8th ROI, while others did not. Thus, in our

analyses, the lateral ventricles were omitted, resulting in a total of 7 subcortical ROIs.

2Any empty cells—a result of classifying individual measures as outliers at the original sites

and excluding them—were coded as missing values.
3If a site provided data from multiple scanners, the dataset from each scanner was treated as

coming from a different site.
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(leftward/rightward) we used the sign of the estimated intercept in

the statistical model: a positive estimate signifies a leftward asymme-

try, while a negative sign signifies a rightward asymmetry.

2.3.2 | Analysis 2: Change of asymmetries with age

The second analysis used age and age-squared as the independent

variables to establish the link between asymmetry and age (age-

squared, respectively), where age-squared was orthogonalized to

age to avoid collinearity between the two regressors. The effect

size was calculated as the partial correlation coefficient r = t /(sqrt

[t2+df]) (Rosnow & Rosenthal, 2003). To capture the direction of

the asymmetry (leftward/rightward) as well as the trajectory of the

asymmetry (increasing/decreasing), we used the fixed-effects esti-

mate from the statistical model at the minimum and the maximum

age (as calculated from the betas): the sign of the estimate indicates

the direction, with positive values for leftward asymmetries and

negative values for rightward asymmetries. A higher absolute esti-

mate at the maximum age compared to the minimum age signifies a

more pronounced asymmetry with increasing age, while a lower

absolute estimate signifies a less pronounced asymmetry with

increasing age. A switch in the sign indicates a change in the direc-

tion of asymmetry with age.

2.3.3 | Analysis 3: Sex differences in asymmetry

The third analysis used sex as the independent variable to determine

if asymmetry was different between males and females. The effect

size was calculated as d = t(n1+n2) / (sqrt[n1�n2] � sqrt[df])

(Nakagawa & Cuthill, 2007). To capture the direction of the asymme-

try (leftward/rightward) as well as the direction of the sex difference

(more asymmetric in males/more asymmetric in females), we used the

fixed-effects estimates from the statistical model for males and

females (as calculated from the betas): a higher absolute value of the

estimates in one sex signifies the direction of the sex effect (i.e., a

more pronounced asymmetry than in the other sex). The sign of the

estimate indicates the direction of the asymmetry, with positive

values for leftward asymmetries and negative values for rightward

asymmetries. Significant sex differences were followed up by asses-

sing asymmetries within males and females, separately.

2.3.4 | Analysis 4: Sex-by-age interactions in
asymmetry

The fourth analysis used sex, age as well as the sex-by-age interaction

as independent variables to determine whether any age-related

changes in asymmetry differ between males and females. Significant

interactions were followed up by post hoc analyses assessing the

Pearson correlation between asymmetry and age within males and

females, separately.T
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3 | RESULTS

3.1 | Hemispheric asymmetry

When comparing both hemispheres, a multitude of significant left- and

rightward asymmetries emerged both on a global and regional scale.

More specifically, with respect to global measures, total cortical thickness

and total subcortical volume showed a significant leftward asymmetry,

total cortical surface area a significant rightward asymmetry, and total

cortical volume no significant asymmetry. With respect to regional mea-

sures, as detailed in Table 1, all subcortical ROIs as well as the vast

majority of cortical ROIs displayed significant asymmetries (for visualiza-

tion of cortical effects, see Figure 1). Supplemental Table 2 provides sta-

tistics for all ROIs and sets of measurements, regardless of significance.

3.2 | Change of asymmetries with age

There was no significant association between asymmetry and age for any

global cortical measurement, but a significant change in asymmetry

direction was observed for total subcortical volume. In contrast, several

significant age-related changes in asymmetry were detected for regional

cortical and subcortical measures. As detailed in Table 2, 15 regions overall

displayed a significant association between asymmetry and age. More spe-

cifically, of those 15 regions, five showed an increase and six a decrease in

asymmetry (two of those had additional associations with age-squared).

One region showed a decrease in one measurement but a change in direc-

tion in another measurement. One region had a change in direction, and

two others had an association with age-squared. For visualization of corti-

cal effects, see Figure 2. For statistics for all areas and sets of measure-

ment regardless of significance, see Supplemental Table 3.

3.3 | Sex differences in asymmetry

There was no significant association between asymmetry and sex for any

global measurements. In contrast, significant sex differences in asymme-

try were evident for regional cortical and subcortical measures. More

specifically, as detailed in Table 3, males had significantly stronger asym-

metries than females in two cortical ROIs (superior temporal gyrus and

F IGURE 1 Hemispheric asymmetry. Cortical regions with significant asymmetries are indicated in green. The regions defined by the Desikan–
Killiany atlas (Desikan et al., 2006) were projected onto the central surface of the FSAverage template using the CAT12 toolbox (Gaser
et al., 2022). Rightward asymmetries are indicated on the right hemispheres, leftward asymmetries on the left hemispheres. All significant
asymmetries are FDR-corrected using a threshold of 0.05 (Benjamini & Yekutieli, 2001; Hochberg & Benjamini, 1990).
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inferior parietal cortex), while females had significantly stronger asymme-

tries in two cortical (rostral anterior cingulate and insula) as well as two

subcortical (thalamus and nucleus accumbens) ROIs. For the transverse

temporal gyrus males and females showed asymmetries in opposite

directions (for visualization of cortical effects, see Figure 3). Follow-up

analyses revealed that, except for the insula, asymmetries were signifi-

cant when males and females were investigated separately. In other

words, even if one sex displayed a more pronounced asymmetry than

the other, the asymmetry was significant in both sexes. Supplemental

Table 4 provides statistics for all areas and sets of measurements regard-

less of significance. Supplemental Table 5 provides additional statistics

for the follow-up analyses.

3.4 | Sex-by-age interactions in asymmetry

There were no significant sex-by-age interactions for any global or

regional measurement. Supplemental Table 6 provides statistics for all

areas and sets of measurement regardless of significance.

4 | DISCUSSION

In the present study we characterized cerebral gray matter asymme-

tries during childhood and adolescence. For this purpose, we analyzed

a large sample of >4000 children and adolescents between 1 and

18 years of age, scanned at 69 sites around the world. Hemispheric

differences were determined with respect to various morphological

features—cortical thickness, cortical surface area, as well as cortical

and subcortical volumes—capturing both regional and global

measures.

4.1 | Asymmetries

Asymmetries varied markedly between brain regions, ranging from

minute differences between the hemispheres to extremely large dif-

ferences, the latter observed, for example, for the cortical surface

areas of the transverse temporal gyrus (34% larger on the left than on

the right) and the inferior parietal cortex (20% larger on the right than

TABLE 2 Significant effects of
increasing age on asymmetry. Cortical volume

Age Age2

ROI Direction r pfdr r pfdr

Fusiform – 0.01 n.s. �0.06 .003

Precuneus Decrease rightward 0.06 .004 �0.05 .046

Supramarginal Decrease leftward �0.05 .009 0.02 n.s.

Cortical thickness
Age Age2

ROI Direction r pfdr r pfdr

Banks superior temporal sulcus Decrease rightward �0.04 .043 �0.05 n.s.

Inferior parietal Left to right �0.05 .013 0.01 n.s.

Inferior temporal Left to right �0.04 .043 0.03 n.s.

Lateral orbitofrontal Decrease leftward �0.06 .004 0.00 n.s.

Parahippocampal Increase leftward 0.05 .012 0.02 n.s.

Paracentral Increase rightward �0.05 .004 �0.02 n.s.

Rostral anterior cingulate Decrease leftward �0.05 .004 0.00 n.s.

Rostral middle frontal Increase leftward 0.05 .004 0.02 n.s.

Transverse temporal Decrease rightward 0.06 .003 �0.05 .034

Cortical surface area
Age Age2

ROI Direction r pfdr r pfdr

Fusiform – 0.01 n.s. �0.05 .021

Inferior parietal Decrease rightward 0.05 .042 �0.03 n.s.

Precuneus Decrease rightward 0.06 .001 �0.03 n.s.

Subcortical volume
Age Age2

ROI Direction r pfdr r pfdr

Thalamus – 0.03 n.s. �0.05 .008

Putamen Increase leftward 0.06 .002 0.01 n.s.

Nucleus accumbens Increase rightward �0.05 .003 �0.03 n.s.

Total subcortical Right to left 0.05 .003 �0.03 n.s.

Note: Table restricted to ROIs, where at least one measure survived corrections for multiple comparisons.

Abbreviations: d, Cohen's d; n.s., not significant; pfdr, fdr corrected p-value (main analyses); ROI, region of

interest.
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on the left). Overall, effects were most pronounced for cortical sur-

face area (some large and very large effects) and least pronounced for

cortical thickness and subcortical volumes (only small and medium

effects).

While, historically, asymmetry studies relied on smaller sample

sizes, some recent studies were able to draw from larger pools of par-

ticipants comprising thousands or even tens of thousands of brains.

The overall pattern of asymmetries in cortical thickness and cortical

surface area as presently observed is very similar to that reported in

the large-scale studies that were primarily based on adults (Guadalupe

et al., 2017; Kong et al., 2018). More specifically with respect to corti-

cal thickness, in accordance with Kong et al. (2018), there is a leftward

asymmetry around the central sulcus which extends into frontal and

prefrontal regions dorsolaterally and medially; and there is a rightward

asymmetry in lateral and medial occipital cortical regions. With

respect to cortical surface area, and also in accordance with Kong

et al. (2018), there is a leftward asymmetry in superior frontal and

inferior frontal (pars opercularis) regions, in perisylvian regions

including postcentral and supramarginal gyrus, in superior temporal

regions including Heschl's gyrus, as well as in inferior temporal, lateral

occipital, retrosplenial, dorsomedial frontal, and pregenual regions;

there is a rightward asymmetry in prefrontal, middle temporal and

inferior parietal as well as in medial occipital and parietal regions. In

addition, both Kong et al.'s study (2018) and the present study

detected a leftward asymmetry for total cortical thickness and a right-

ward asymmetry for total cortical surface area. Similarly, when com-

paring the present results to the other lifespan study focusing on

subcortical volumes (Guadalupe et al., 2017), the direction of asymme-

try is identical in both studies for all six subcortical regions examined.

Relating our findings to the outcomes of other smaller-scale

asymmetry studies, there is a moderate degree of consistency. For

example, the pattern of asymmetries in total cortical volume, thick-

ness, and surface area matches the effects reported in children by

Raja et al. (2021). Similarly, our finding of a leftward asymmetry in the

cortical volume and surface area of the transverse temporal gyrus, the

pars opercularis of the inferior frontal gyrus, and the region around the

F IGURE 2 Age-related changes in asymmetry. Cortical regions with significant age-related changes in asymmetry are indicated in orange
(increases) or cyan (decreases). Rightward asymmetries are indicated on the right hemispheres, leftward asymmetries on the left hemispheres. If
asymmetry for a specific region changes in its direction with increasing age, the region is indicated in both left and right panels.
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central sulcus matches the effects reported in children and adoles-

cents by Levman et al. (2017). Finally, our finding of a rightward asym-

metry in the volume of the caudal anterior cingulate and a leftward

asymmetry of the superior frontal gyrus matches effects detected in a

study in children that focused specifically on the dorsal anterior cingu-

late cortex (Wang et al., 2015). Nevertheless, there are also some dif-

ferences between the current findings and other previously reported

effects, such as a leftward asymmetry in inferior parietal and a right-

ward asymmetry in inferior frontal regions with respect to cortical

thickness (Zhou et al., 2013), a leftward asymmetry in inferior frontal

regions with respect to cortical thickness (Plessen et al., 2014), and a

leftward asymmetry in the lateral occipital cortex with respect to cor-

tical volume (Levman et al., 2017). Such discrepancies, however, might

be attributable to differences in sample characteristics, applied

methods and/or scanning equipment and parameters, as discussed

elsewhere (Kong et al., 2022). Importantly, asymmetry effects for

regions where the current study detected very large effect sizes

(transverse temporal gyrus, etc.) have been largely consistent across

studies (Kong et al., 2018; Levman et al., 2017; Plessen et al., 2014;

Raja et al., 2021; Zhou et al., 2013).

4.2 | Effects of age

Recent large-scale studies addressing age-related changes in brain

asymmetry across the entire life span reported an increasing left-

ward asymmetry of the putamen (Guadalupe et al., 2017), superior

temporal gyrus, and entorhinal cortex (Kong et al., 2018). However,

some of these effects only reached significance when covering an

age range of more than 20 years. Thus, these life-time studies are

not immediately comparable with the current study covering

merely 18 years toward the beginning of the age spectrum (1–

18 years), albeit there is some resemblance with respect to the

effects, such as an increasing leftward asymmetry of the putamen

TABLE 3 Significant sex differences in asymmetry.

ROI

Main analyses Follow-up analyses (within each sex separately)

Sex effect Asymmetry by sex

Direction d pfdr Direction Estimate d p

Cortical volume

Inferior parietal M > F: both rightward 0.09 .036 M: rightward �0.19 �1.21 <.001

F: rightward �0.18 �0.94 <.001

Rostral anterior cingulate F > M: both leftward 0.10 .035 M: leftward 0.25 0.91 <.001

F: leftward 0.28 0.81 <.001

Superior temporal M > F: both leftward �0.13 .002 M: leftward 0.05 0.23 <.001

F: leftward 0.04 0.15 <.001

Cortical thickness

Superior temporal M > F: both rightward 0.10 .018 M: rightward �0.01 �0.07 <.001

F: rightward �0.01 �0.04 .023

Transverse temporal M/F: opposite direction 0.15 <.001 M: rightward �0.01 �0.08 <.001

F: leftward 0.01 0.04 .019

Insula F > M: both leftward 0.11 .009 M: leftward 0.00 0.00 n.s.

F: leftward 0.01 0.04 .006

Cortical surface area

Inferior parietal M > F: both rightward 0.12 .002 M: rightward �0.18 �1.20 <.001

F: rightward �0.17 �0.91 <.001

Superior temporal M > F: both leftward �0.17 <.001 M: leftward 0.07 0.61 <.001

F: leftward 0.05 0.39 <.001

Subcortical volume

Thalamus F > M: both leftward 0.08 .049 M: leftward 0.04 0.11 <.001

F: leftward 0.04 0.12 <.001

Nucleus accumbens F > M: both rightward �0.08 .049 M: rightward �0.02 �0.03 .045

F: rightward �0.03 �0.05 .001

Note: Table restricted to ROIs, where at least one measure survived corrections for multiple comparisons in the main analysis.

Abbreviations: d, Cohen's d; F > M, females more asymmetric than males; F, females; M > F, males more asymmetric than females; M, males; n.s., not

significant; p, uncorrected p-value (follow-up analyses); pfdr, fdr corrected p-value (main analyses); ROI, region of interest.
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with age (Guadalupe et al., 2017). In contrast to those adult studies

(Guadalupe et al., 2017; Kong et al., 2018)—which reported only

3 out of 41 regions to be significantly associated with age—the cur-

rent study revealed more widespread associations between age

and asymmetries during childhood and adolescence, with signifi-

cant effects in 15 out of 41 regions. However, the effects of age

were small in general. The localization of the present results some-

what agrees with the study by Shaw et al. (2009) in children and

adolescents, even though there is also some disagreement on the

direction of the age-related change. More specifically, with respect

to cortical thickness, both the current study and Shaw's

study (2009) detected a decreasing leftward asymmetry in the lat-

eral orbitofrontal cortex. However, while Shaw et al. (2009)

reported a decrease in rightward asymmetry in the middle occipital

and angular gyri, our study revealed a change from leftward to

rightward asymmetry in the inferior parietal cortex (i.e., a region

that best matches the angular cluster described by Shaw

et al., 2009).

4.3 | Effects of sex

Previous studies on sex differences in asymmetry revealed conflicting

results (Good et al., 2001; Guadalupe et al., 2015; Guadalupe

et al., 2017; Kong et al., 2018; Levman et al., 2017; Plessen

et al., 2014; Shaw et al., 2009; Zhou et al., 2013), with findings indi-

cating stronger asymmetries in men, stronger asymmetries in women,

or no differences. Moreover, effects seem to depend on the brain

region examined and the specific measures used. Recent large-scale

studies reported significant sex differences, particularly around the

Sylvian fissure, but also inferior parietal, lateral occipital and medial

frontal as well as in subcortical structures, such as the putamen and

globus pallidus (Guadalupe et al., 2015; Guadalupe et al., 2017; Kong

et al., 2018). Our current study is consistent with these findings in

part, revealing an increased leftward asymmetry in males compared to

females in the superior temporal gyrus (cortical volume and surface

area) and an increased rightward asymmetry in males compared to

females in the inferior parietal cortex (cortical surface area). However,

F IGURE 3 Sex differences in asymmetry. Cortical regions with significantly larger asymmetries in males are depicted in blue, and with
significantly larger asymmetries in females in red. Rightward asymmetries are indicated on the right hemispheres, leftward asymmetries on the
left hemispheres.
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we also observed more pronounced asymmetries in the rostral ante-

rior cingulate, the insula, as well as the thalamus and nucleus accum-

bens in females compared to males. Interestingly, while the total

number of regions exhibiting significant asymmetries was larger in

females than in males, the magnitude of the significant asymmetries

was larger in males. Moreover, the total number of measures indicat-

ing significant asymmetries was also larger in males (as we obtained

more than one measurement per cortical region; that is, cortical thick-

ness, cortical volume, and cortical surface area). Given that there were

no significant sex-by-age interactions, these sex differences do not

appear to change with age and remain stable throughout

development.

5 | CONCLUSION

The multitude of asymmetries detected in our large sample of children

and adolescents suggests that cerebral asymmetries manifest early in

life. In terms of age effects, asymmetries became both smaller and

larger with increasing age and sometimes even reversed in direction,

depending on region or measure. However, in general, age effects

were small. In other words, the pattern of asymmetry seems relatively

stable throughout childhood and adolescence, which may seem sur-

prising given that cerebral development is rather dynamic during that

time. Cerebral asymmetries may therefore reflect a fundamental orga-

nizational pattern of the brain rather than a result of brain develop-

ment and regional specialization. This view might be supported by

reports of cerebral asymmetries as early as the first and second tri-

mester of pregnancy (Abu-Rustum et al., 2013; Corballis, 2013; de

Kovel et al., 2017; Namburete et al., 2023; Steger et al., 2023; Vasung

et al., 2020) and by findings of asymmetries in gene activation

(de Kovel et al., 2017; Francks, 2015; Karlebach & Francks, 2015;

Ocklenburg et al., 2017). In addition, genes associated with variation

in adult brain asymmetry, as identified in large-scale genome-wide

association analyses, tend to be most active in the embryonic and

fetal brain (Sha, Schijven, et al., 2021). In terms of sex differences,

there were greater asymmetries in males than in females when inves-

tigating cortical volume and cortical surface area, while sex differ-

ences in the asymmetry of cortical thickness were more variable.

However, these sex differences were small overall. Thus, brain asym-

metry and its change over time appear to be relatively similar in males

and females.
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