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Abstract
Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis,
allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled fetal
motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing the outcome
of subsequent studies. We present FetMRQC, an open-source machine-learning framework for automated image
quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical
data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them
to predict experts’ ratings using random forests. We validate our framework on a pioneeringly large and diverse
dataset of more than 1600 manually rated fetal brain T2-weighted images from four clinical centers and 13
different scanners. Our study shows that FetMRQC’s predictions generalize well to unseen data while being
interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging, which has the potential to shed
new insights on the developing human brain.
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1 Introduction

Establishing a protocol for objective image quality as-
sessment and control for neuroimaging studies is criti-
cal to enforce reliability, generalization and replicabil-
ity (Mortamet et al., 2009; Niso et al., 2022; Rosen
et al., 2018). Quality assessment (QA) focuses on as-
sessing and eventually improving the quality of a pro-
cess to prevent issues from propagating, while qual-
ity control (QC) looks to find and discard problem-
atic outputs of that process (Alfaro-Almagro et al.,
2018). Both steps are fundamental in magnetic reso-
nance imaging (MRI) studies, as insufficient MRI data
quality has been shown to bias statistical analyses and
neuroradiological interpretation (Power et al., 2012;
Reuter et al., 2015; Alexander-Bloch et al., 2016).

Automated QA/QC tools designed to assist data ex-
clusion decisions for adult brain neuroimaging studies
(Esteban et al., 2017; Klapwijk et al., 2019; Vogelbacher
et al., 2019; Ravi et al., 2023) are becoming increasingly
available. However, these techniques are inapplicable
to fetal MRI, as they rely on priors that are not valid
in utero, such as e.g., assuming that the head is sur-
rounded by air or the relative orientation of the brain
with respect to the stereotaxic frame defined by the
scanner. In addition, fetal brain MRI typically displays
larger and uncontrolled motion of the head as fixation
techniques (e.g., padding) and real-time feedback coun-
termeasures are only available after birth (Fig. 1A).
Moreover, fetal brain imaging greatly lacks standard-
ization in acquisition protocols (Fig. 1B). While con-
sensus has settled on 2-dimensional (2D) fast-spin echo
interleaved T2-weighted (T2w) MR schemes showcas-
ing thick slices (Tortori-Donati et al., 2005; Gholipour
et al., 2014), specific imaging parameters such as in-
plane resolution, slice thickness, field of view, or vendor
implementation of the imaging sequence greatly vary.
As a result, the appearance and quality of fetal MR im-
ages in this wild-type data vary markedly across centers
(Fig. 1B).

Although fetal brain MRI can be severely affected
by artifacts like inter-slice motion, signal drops or bias
field (Gholipour et al., 2014), only few methods dedi-
cated to QA/QC have been proposed. Initially, auto-
mated QA/QC has been integrated within the super-
resolution reconstruction (SRR) process (Uus et al.,
2022b; Kuklisova-Murgasova et al., 2012; Ebner et al.,
2020; Tourbier et al., 2015; Xu et al., 2023). SRR is a
ubiquitous early step of the fetal MRI processing work-
flow that builds a high-resolution, isotropic, 3D volume
from several differently-oriented stacks of 2D slices with
low-resolution (LR) along the through-plane axis (i.e.,

anisotropic resolution) (Uus et al., 2022a). Some of
the proposed approaches incorporate an automated QC
stage for outlier rejection that excludes sub-standard
slices or pixels from the input low-resolution stacks,
and measure the similarity between a reconstructed
slice and an input slice using information-theoretic
metrics (Ebner et al., 2020; Kuklisova-Murgasova et al.,
2012; Kainz et al., 2015; Xu et al., 2023). However,
as illustrated on Fig. 1c, sub-optimal quality stacks
can remain detrimental to the final quality of the re-
construction, even when SRR pipelines include outlier
rejection schemes. Additional QA/QC checkpoints are
thus needed to filter out low-quality raw T2 stacks be-
fore using SRR, and several deep learning-based meth-
ods were recently proposed for this task (Lala et al.,
2019; Xu et al., 2020; Liao et al., 2020). These solu-
tions aim to automatically identify problematic slices
for exclusion (QC), and, if streamlined with the ac-
quisition, enable re-acquiring corrupted slices on the
fly (Gagoski et al., 2022) (QA). However, these meth-
ods operate at the slice level, and not all artifacts can
be seen by analyzing slices independently. For instance,
inter-slice motion (visible on the right of Figure 1a), a
strong bias field in the through-plane direction, or an
incomplete field of view can be spotted only when con-
sidering the entire stack of slices. Stack-wise QA/QC
methods are thus still needed.

Importantly, these methods face the challenge of de-
ployment to unseen scanners or acquisition settings:
how will they generalize to unseen domains? Due to the
private and sensitive nature of medical data (Willemink
et al., 2020), building large and diverse medical imag-
ing datasets is difficult endeavor. As a consequence,
proposed methods are often only evaluated on locally
available data, and can fail to deal with the heterogene-
ity found across different centers (Sambasivan et al.,
2021; Varoquaux and Cheplygina, 2022). In addition,
while openly shared MRI databases have been released
for adults (Mueller et al., 2005; Di Martino et al., 2014;
Markiewicz et al., 2021; Van Essen et al., 2013), chil-
dren and adolescents (Makropoulos et al., 2018; Casey
et al., 2018), privacy protection regulations and ethical
limitations to data-sharing are much stronger regard-
ing fetuses, making it even more difficult to construct
robust ML models trained on multicentric data. As
today, the question of the robustness of state-of-the-
art approaches to fetal brain quality control (Xu et al.,
2020; Ebner et al., 2020; Uus et al., 2022b) to unseen
domains remains open.

Beyond the need of supporting SRR, quality assess-
ment also builds towards reproducible neuroimaging
pipelines, allowing to fairly compare different process-

2



FetMRQC: a robust quality control system for multi-centric fetal brain MRI

Figure 1: Variations in data quality illustrated. A – Comparison of data across adult (T1w), from the
ABIDE dataset (Di Martino et al., 2014) and from fetal acquisitions. In the excluded scans, the adult image on
the left suffers from severe motion artifacts, while large coil artifacts corrupt the image on the right. The fetal
data suffer from strong intensity changes between multiple slices and signal drop; in the through-plane view,
strong inter-slice motion makes it difficult to discern the brain structures. B – Examples of data acquired on
different scanners, with very different appearance. The in-plane and through-plane resolution, the field of view,
the repetition time (TR), and the echo time (TE) can all substantially change between acquisition protocols.
C – Importance of quality control for super-resolution reconstruction (SRR), illustrated using NiftyMIC (Ebner
et al., 2020), and NeSVoR (Xu et al., 2023), two SRR methods with built-in outlier rejection. On the top row
a subject is reconstructed using all stacks available (13 for NiftyMIC, 5 for NeSVoR), and each reconstruction
shows large artifacts. On the bottom row, FetMRQC is plugged in and by removing low quality series (6 out of
13 for NiftyMIC, 2 out of 5 for NeSVoR), the reconstruction quality is improved.

ing steps (Payette et al., 2021). For instance, initiative
of fetal brain tissue segmentation but lack of system-
atic/standardized objective evaluation of quality input
data that would support the analysis of the comparison
results (Payette et al., 2023).

The contribution of our paper is threefold. First,
we introduce a framework specifically designed for
QA/QC manual annotations of T2w fetal brain MRI.

It generates a visual report for efficient stack screening
and manual QA, facilitating the work of raters. Sec-
ond, we present FetMRQC, a machine learning model
based on manual ratings to automatically perform two
tasks: 1) quality assessment, where a discrete score
between 0 (bad quality) to 4 (excellent) quality is pre-
dicted, and 2) quality control, where the model pre-
dicts whether an image reaches a predefined quality
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threshold. QA – a regression task in our case – and
QC – a binary classification problem – are performed
automatically by a random forest that uses an ensem-
ble of 332 image quality metrics (IQMs), extracted
from raw T2w stacks, that reflect complementary qual-
ity features based on various statistics computed from
image intensity, brain mask and segmentation (details
on IQMs extraction is available in the Materials and
Methods section). Third, by collecting and manu-
ally annotating a very large collection of 1649 low-
resolution T2w images from 233 subjects, acquired in
13 different scanners in four different institutions across
Europe, we can benchmark the generalization of au-
tomated QA/QC models to unseen domains, includ-
ing existing baselines (Ebner et al., 2020) and pre-
trained deep learning models (Legorreta et al., 2020;
Xu et al., 2020). A pilot study of this work, includ-
ing fewer IQMs and only two centers, was previously
presented (Sanchez et al., 2023). The code and image
quality metrics are available at https://github.com/
Medical-Image-Analysis-Laboratory/fetmrqc.

2 Methods

2.1 Data

For this study, we retrieved 1649 T2-weighted 2D stacks
of slices from 233 subjects from existing databases at
four different institutions, including both neurotypical
and pathological cases. The corresponding local ethics
committees independently approved the studies under
which data were collected, and all participants gave
written informed consent.

Lausanne University Hospital (CHUV), Switzerland,
provided 61 subjects (498 scans), with an average of
7.9±3.0 stacks per subject. BCNatal (Hospital Sant
Joan de Déu, Barcelona, Spain) provided 85 subjects
(508 scans), 5.8 ± 3.4 stacks per subject. University
Children’s Hospital Zürich (KISPI), Switzerland, pro-
vided 19 subjects (441 scans) with 23.2±5.36 stacks
per subject. La Timone University Hospital, Marseille,
France, provided 68 subjects (203 scans) with 3 stacks
per subject. The reason for having few scans per sub-
ject at La Timone is due to the acquisition duration
being limited in clinical routine, while other centers
have a more research-oriented acquisition. After the
exclusion of scanners with insufficient data (CHUV -
Siemens Avanto with 5 stacks), the aggregate sample
size is N=1644 stacks. The imaging parameters, mag-
netic field strength, repetition time (TR), echo time
(TE), field of view (FoV), etc. greatly varied across

centers and scanners, reflecting the heterogeneity found
in clinical practice. The details are provided in Table
1.

The acquisition parameters show a very large vari-
ability across scanners and sites. For instance, the res-
olution of 1.5 T scanners changes from 1.1 × 1.1 mm2

(e.g. CHUV - Aera) in-plane to 0.5×0.5 mm2 (e.g.
KISPI - Signa Artist), which leads to large differences
in signal-to-noise ratio. In addition, different models
using the similar parameters can also yield largely dif-
ferent images. Examples are shown on Figure 1B. Such
variable parameters are strong indicators of domain
shifts that might challenge the generalization of ma-
chine learning models.

2.2 Manual QA of fetal MRI stacks

FetMRQC comprehends two major elements to imple-
ment QA/QC protocols of unprocessed (stacks of 2D
slices) fetal brain MRI data. First, the tool builds upon
MRIQC’s framework and generates an individual QA
report for each stack to assist and optimize screening
and annotation by experts. Second, FetMRQC pro-
poses to train machine learning models based on image
quality metrics (IQMs).

Akin to MRIQC (Esteban et al., 2017), FetMRQC
generates an HTML-based report adapted to the QA
of fetal brains for each input stack of 2D slices (Fig-
ure 2A) to help make the process of manual rating of
quality standardized and efficient. The input dataset is
required to comply with the Brain Imaging Data Struc-
ture (BIDS (Gorgolewski et al., 2016)), a format widely
adopted in the neuroimaging community. The reports
are generated using an image with a corresponding
brain mask. This mask can be extracted automati-
cally, and in this work, we used MONAIfbs (Ranzini
et al., 2021). Each individual-stack report has a QA
utility (the so-called rating widget), with which raters
can fill in an overall quality score, the in-plane orienta-
tion, and the presence and grading of artifacts visible
in the stack. We use an interval (as opposed to categor-
ical) rating scale with four main quality ranges: [0,1):
exclude – [1,2): poor – [2,3): acceptable – [3,4): ex-
cellent. Interval ratings simplify statistical modeling,
set lower bounds to annotation noise, and enable the
inference task where a continuous quality score is as-
signed to input images rather than broad categories. In
addition, a navigation menu allows the rater to access
all reports in a centralized location, and by being able
to access the next image to be rated in a single click.
Being HTML-based, the reports can be visualized on
any web browser, and effectively remove any bias due
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Table 1: Detailed description of the data used in the study. Field refers to the magnetic field of the scanner, TR
is the repetition time and TE is the echo time, FoV is the field of view.

CHUV
Model (Siemens) Field [T] (nsubjects, nLR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

Aera 1.5 (34, 281) 1200 90 1.12× 1.12× 3.3 36
MAGNETOM Sola 1.5 (17, 138) 1200 90 1.1× 1.1× 3.3 36
MAGNETOM Vida 3 (2, 14) 1100 101 0.55× 0.55× 3 35
Skyra 3 (8, 77) 1100 90 0.55× 0.55× 3 35

BCNatal
Model (Siemens) Field [T] (nsubjects, nLR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

Aera 1.5 (16,158)
- (6, 80) 1500 82 0.55× 0.55× 2.5 28
- (4, 34) 1000 137 0.59× 0.59× 3.5 23 / 30
- (4, 33) 1000 81 0.55× 0.55× 3.15 28
- (2, 11) 1200 94 1.72× 1.72× 4.2 36 / 44

MAGNETOM Vida 3 (11, 56) 1540 77 1.04× 1.04× 3 20
TrioTim 3 (59,322) // 4 outliers

- (24, 97) 1100 127 0.51× 0.51× 3.5 26
- (15, 108) 990 137 0.68× 0.68× 3.5− 6.0 26
- (14, 71) 2009 137 0.51× 0.51× 3.5 26
- (1, 14) 3640 137 0.51× 0.51× 3.5 26

Kispi
Model (General Electric) Field [T] (nsubjects, nLR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

SIGNA Premier 3 (3,58) // 8 outliers
- (3, 24) < 2500 100/120 0.65× 0.65× 3/5 33
- (3, 26) 3000 120 0.47/0.57× 0.47/0.57× 3 29/24

Discovery MR750 3 (5,125) // 5 outliers
- (5, 29) < 2500 120 0.65× 0.65× 3/5 33
- (5, 81) 3000 120 0.55× 0.55× 3 28
- (5, 10) 5000 120/500 0.53× 0.53× 3/5 28

SIGNA Artist 1.5 (11,258) // 22 outliers
- (11, 108) < 2500 100/120 0.47/0.64× 0.47/0.64× 3/5 24− 35
- (11, 128) 3000 120 0.47/0.55× 0.47/0.55× 3 26

La Timone
Model (Siemens) Field [T] (nsubjects, nLR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

Skyra 3 (34,101)
- (31, 93) 3200 177 0.68× 0.68× 3 26
- (3, 8) 3750 183 0.59× 0.59× 3 30

SymphonyTim 1.5 (34,102) 1680 137 0.74× 0.74× 3.5 38

to using different image visualization software.

2.3 IQMs extraction and prediction
models

FetMRQC’s QA/Qc prediction models work in two
steps. An ensemble of image quality metrics are first
extracted from the raw T2-weighted images and then
are used as input to a classification or regression model
that learns to predict the quality ratings from the
IQMs.

2.3.1 IQMs tailored to fetal brain MRI

While tools designed for QA/QC for adult brain neu-
roimaging studies (Esteban et al., 2017; Klapwijk et al.,
2019) are available, they are not readily applicable to
fetal brain MRI, due to priors invalid in this context.
However, some IQMs can be translated to fetal brain
MRI and several works have proposed developed quan-
tities that can be used as IQMs, and we include them
as features in FetMRQC. The method of Kainz et al.

(2015), rank_error, predicts the quality of a raw T2-
weighted stack by estimating its compressibility using
singular value decomposition. Ebner et al. (2020) used
the volume of the brain mask, mask_volume, to exclude
outlying stacks, and de Dumast et al. (2020) computed
its centroid to estimate inter-slice motion. We also in-
clode recently proposed slice-wise and stack-wise deep
learning-based IQMs, dl_slice (Xu et al., 2020) and
dl_stack (Legorreta et al., 2020). We use their pre-
trained models, as we want to test the off-the-shelf
value of these IQMs. Note that the method of Liao
et al. (Liao et al., 2020) was not included because their
code is not publicly available and we could not get in
contact with the authors. dl_slice (Xu et al., 2020)
predicts simultaneously whether a slice contains some
brain volume, and whether this slice is of good quality.
We aggregate their slice-wise score into a global score
by computing 1

nslices

∑nslices
i=1 pi,pass − pi,fail, yielding a

score between -1 and 1.

Along with these existing IQMs, we also propose ad-
ditional IQMs for quality prediction that have not pre-
viously been used in the context of fetal brain MRI.
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They can be roughly categorized into three groups:
intensity-based, mask-based, segmentation-based. In
a nutshell, intensity-based IQMs directly rely on the
voxel values of the image. These include summary
statistics (Esteban et al., 2017) such as mean, median,
and percentiles. We also repurpose metrics tradition-
ally used for outlier rejection, such as PSNR or Normal-
ized Cross Correlation (NCC) (Kuklisova-Murgasova
et al., 2012; Kainz et al., 2015; Ebner et al., 2020)
to quantify the intensity difference between slices in
a volume. We compute entropy (Esteban et al., 2017),
estimate the level of bias using N4 bias field correc-
tion (Tustison et al., 2010) and estimate the sharpness
of the image with Laplace and Sobel filters. The sec-
ond type of metrics are mask-based and operate di-
rectly on the automatically extracted brain mask. We
propose to use a morphological closing in the through-
plane direction to detect inter-slice motion, as well as
edge detection, to estimate the variation at the sur-
face of the brain mask, using Laplace and Sobel fil-
ters. The third type of IQMs is segmentation-based.
While such metrics were originally proposed in the
context of MRIQC (Esteban et al., 2017), they have
never been adapted to fetal brain imaging. These
are segmentation-based and include region-wise sum-
mary statistics, region-wise volume, region-wise signal-
to-noise ratio (Dietrich et al., 2007), contrast-to-noise
ratio between white matter (WM) and gray matter
(GM) (Magnotta et al., 2006), coefficient of joint vari-
ation between gray matter and white matter (Ganzetti
et al., 2016) and white matter to maximum inten-
sity ratio (Esteban et al., 2017). In order to com-
pute these segmentations from the raw T2-weighted
stacks, we train a nnUNet-v2 (Isensee et al., 2021) 2D
model on the FeTA dataset (Payette et al., 2021), a
public dataset consisting of super-resolution (SR) re-
constructed fetal brain images along with manual seg-
mentations. The model is trained with the parameters
automatically defined by nnUNet, which yield satisfac-
tory results for SR volumes, and is then used to perform
slice-wise inference on the low-resolution T2-weighted
stacks. The segmentations are done over eight different
classes, which we merge then into three groups: white
matter (excluding corpus callosum), cerebrospinal fluid
(CSF; intra-axial and extra-axial), and gray matter
(cortical and deep). This is done to enable the use of
the segmentation-based IQMs from MRIQC (Esteban
et al., 2017), which rely on these three groups.

Variants of the metrics All the IQMs operate by
default on raw T2-weighted 2D images and/or masks,
but they can be pre-processed in various manners. For

example, Kainz et al. (2015) evaluated their metrics
only on the third of the slices closest to the center of
a given volume. We construct variants on our IQMs
using various pre-processing methods. The variants in-
clude considering the third of the center-most slices
instead of the whole ROI; masking the maternal tissue
in the background; aggregating point estimates using
mean, median, or other estimators; and computing in-
formation theoretic metrics on the union or intersection
of masks. Finally, metrics used for outlier rejection can
be either computed as a pairwise comparison between
all slices (by default) or only on a window of neighbor-
ing slices. With all the different variations, we obtain
a total of 166 different IQMs.

In addition to the previously described IQMs, we
also include a Boolean variable that assesses whether a
given IQM computation failed. If this occurs, the IQM
will have a zero value and the corresponding Boolean
variable will be set to true. This allows to keep all
IQMs values to a real number. With the variants and
the missing value flag, we reach a total of 332 IQMs. A
more thorough description of each IQM used in FetM-
RQC is available in Table 4 in the supplementary mate-
rial, along with a cross-correlation matrix on the entire
training dataset of the 100 IQMs most frequently used.

2.3.2 QA/QC prediction

Given the extracted IQMs, a prediction model is then
trained to predict the discrete ratings (QA; regression)
or predict whether an image should be excluded (QC;
classification), using various machine learning models
from the Scikit Learn library (Pedregosa et al., 2011)
and from the XGBoost python package. For the QA
task, we consider linear regression, support vector ma-
chine (SVR class using an RBF kernel with a scaled ker-
nel coefficient, regularization parameter C=1.0), ran-
dom forests (RandomForestRegressor class with 100
estimators, fitted using the Gini coefficient), and XG-
Boost’s regression model (Chen and Guestrin, 2016)
(XGBRegressor class using 100 estimators). For the
QC task, we consider logistic regression, support vector
classifier (SVC class using an RBF kernel with a scaled
kernel coefficient, regularization parameter C=1.0),
random forest (RandomForestClassifier class with
100 estimators, fitted using the Gini coefficient), and
XGBoost’s classification model (Chen and Guestrin,
2016) (XGBClassifier function using 100 estimators).

Early experiments included also a multi-layer percep-
tron (MLPRegressor and MLPClassifier classes with
multiple hidden layers with up to 1000 neurons per
layer), but these models were not found to bring any
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added value compared to the non deep-learning based
approaches, while very largely increasing the training
time. They were not used in the following analyses.
Note that this behavior is common in tabular data,
where deep learning models are not necessarily per-
forming best (Grinsztajn et al., 2022).

We performed model selection by ablating over the
previously mentioned feature normalization and fea-
ture selection options, as well as various models.

Pre-processing The QA/QC prediction started
from the unprocessed clinical acquisitions, converted
from the DICOM to the Nifti format. The same pre-
processing steps were applied to the data from all the
sites considered.

IQM normalization. Domain shifts, also known
as batch effects (Leek et al., 2010; Esteban et al.,
2017), can induce substantial biases in IQM compu-
tations. One approach to mitigate them is using
group scaling (Esteban et al., 2017). This is why
we experiment with various normalization techniques:
standardization, robust (median-based) and quantile
scaling, group-wise standardization, group-wise ro-
bust/quantile scaling (scaling by subject/scanner/site)
and ComBat (Johnson et al., 2007). In addition to
mitigating batch effects, feature standardization is im-
portant for models such as logistic or linear regression,
but this is not the case for tree-based models.

Feature selection and dimensionality reduction. Cor-
related and irrelevant features can also be an obsta-
cle for machine learning models. We experiment with
dropping IQMs that are highly correlated with each
other(with thresholds of 0.8 and 0.9), to remove con-
stant features, and experiment with removing features
that do not contribute more than noise using the Win-
now algorithm (Littlestone, 1988) with extremely ran-
domized trees (Esteban et al., 2017). Finally, we also
explore using principal component analysis to con-
struct orthogonal features.

Model selection In our initial experiments, we used
nested cross-validation to automatically perform model
selection and evaluation without introducing optimistic
biases (Varoquaux et al., 2017). We performed model
selection by ablating over the previously mentioned
feature normalization and feature selection options, as
well as the different models. However, in the large ma-
jority of these experiments, the best-performing config-
uration used no standardization, no feature selection,
and random forests for both classification and regres-
sion. Based on these ablations (available in the Supple-

mentary Material 5.3), we decided to only use a random
forest without standardization or feature selection. As
no model selection needs to be carried out, nested cross-
validation is not required and will not be used in the
rest of the paper.

2.4 Experimental setting

We divide our dataset in two: 1246 stacks were used for
training and validation of the models based on cross-
validation experiments and 398 were used for assess-
ing the generalization to unseen data, from La Timone
and two randomly selected scanners. Data from La Ti-
mone were included in the study specifically to serve
as external testing from an unseen site. Three increas-
ingly challenging evaluation settings are considered: (i)
Subject-wise 10-fold cross validation (CV) on the train-
ing stacks, which quantifies the expected performance
of the method on new subjects acquired on already
seen scanners; (ii) Leave-one-Scanner-out (LoSo) CV
on the training stacks, where each fold leaves out all
data from a single scanner for evaluation. This eval-
uates the expected performance of the method on dif-
ferent scanners; (iii) Pure testing on unseen scanners
and an unseen site. This is the closest to a real-world
deployment setting, as the pure testing data were not
seen during the processes of design and training of the
models.

Baselines For classification, we consider the follow-
ing baselines. We first include NiftyMIC-QC (Ebner
et al., 2020), which computes the volume of the brain
for each stack and, for each subject, excludes the
stacks with a volume below 70% of the median vol-
ume. We also include the deep learning methods of
Legorreta et al. (2020) (dl_stack) and Xu et al. (2020)
(dl_slice). These IQMs are computed for each in-
dividual subject, we then standardize them and train
a logistic regression model to adjust their prediction
to the statistics of our dataset. This step adjusts the
threshold for prediction and can only be beneficial to
the prediction accuracy of these baselines.

For regression, as there is no baseline available to our
knowledge, we consider a simple model predicting only
subject-wise class statistics for regression, predicting
the average rated quality of each subject as quality as-
sessment (e.g. for a subject with three stacks rated as
3.5, 2, 3 respectively, the model assigns the value 2.83
to all stacks). This oracle is based on the assumption
that the subject-wise averaged rating can be predictive
of the quality rating, which is the case in our data, as
the Pearson correlation of the two is R = 0.59. This
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Table 2: Summary of the methods compared in the
paper.
dl_slice Slice-wise deep learning (DL) quality control of Xu et al.

(2020), aggregated into a single score. The decision
threshold is learned by logistic regression.

dl_stack Stack-wise DL QC of Legorreta et al. (2020). The deci-
sion threshold is learned by logistic regression.

NiftyMIC-QC Subject-wise QC, excluding stacks with brain volume be-
low 70% of the median brain volume calculated for the
subject.

Base Base version of FetMRQC using 6 IQMs: rank er-
ror (Kainz et al., 2015), mask centroid (de Du-
mast et al., 2020), mask volume (Ebner et al.,
2020), normalized cross-correlation, mutual informa-
tion (Kuklisova-Murgasova et al., 2012; Ebner et al.,
2020), dl_stack (Legorreta et al., 2020), dl_slice (Xu
et al., 2020)

FetMRQC Full version of FetMRQC, using 332 IQMs
FetMRQC-20 Use the 20 best IQMs of FetMRQC –

rank_error, closing_mask_full, mask_volume,
filter_mask_Laplace, filter_mask_sobel_full,
nRMSE_window, filter_mask_Laplace_full,
filter_mask_Laplace, closing_mask,
rank_error_center, seg_sstats_BG_N, centroid,
rank_error_center_relative, seg_sstats_CSF_N,
seg_sstats_GM_N, im_size_z, NCC_intersection,
NCC_window, PSNR_window, seg_SNR_WM, seg_volume_GM.

Sub.-wise
oracle

For each subject, compute the average stack quality and
return this value for all the stacks of the subject.

method serves as a coarse point of comparison for the
QA performance of FetMRQC.

In addition, for both QC and QA, we assessed the
added value of our proposed IQMs as follows. First,
we constructed a Base version of FetMRQC using the
six state-of-the-art IQMs proposed in the context of
fetal brain QA/QC. Then, we considered two variants
of our model: FetMRQC used all estimated 332 IQMs
and FetMRQC-20 used only 20 IQMs (selected based
on their measured feature importance on the training
data). Note that as this selection was based on the re-
sults in evaluation settings (i) and (ii), the performance
of the model was likely be inflated due to double dip-
ping (Kriegeskorte et al., 2009). It remains nonethe-
less informative on the expected performance of FetM-
RQC when only relying on a restricted set of IQMs.
FetMRQC-20 is further discussed in our last experi-
ment. All details regarding the baselines is provided in
Table 2.
Evaluation metrics. Our classification results use a
weighted F1-score, to handle imbalanced classes, and
the area under the receiver operating characteristic
curve (ROC AUC), as well as precision and recall.
Our regression results are evaluated using Pearson’s R2

score, Spearman rank correlation, and mean absolute
error (MAE).
Implementation. The experiments were imple-
mented with Python 3.9.15 and Scikit-learn 1.1.3 (Pe-

dregosa et al., 2011). All code is available on Github1

and a Docker version2 is also provided.

3 Results

3.1 Stack screening optimization with
visual reports

Using FetMRQC’s visual reports interface, Rater 1 an-
notated 657 stacks, and rater 2 annotated 1203 stacks.
211 of these stacks selected randomly across the train-
ing dataset were annotated by both raters to assess
inter-rater reliability. Rater 1, YG, is a maternal-
fetal physician with 5 years of experience, and Rater 2,
MBC, is an engineer with 20 years of experience. The
total rating time was 6h 40min for Rater 1 (median
of 36s per volume), and 14h20 for Rater 2 (median
of 42s per volume). A high inter-rater agreement was
achieved in the manual quality annotations, with Pear-
son’s correlation value of 0.75 overall (R2=0.56; Fig-
ure 2). The inter-rater agreement is consistently high
within each site (2B). On CHUV data, 127 stacks were
manually rated below the exclusion threshold (Quality
< 1), and 371 were rated between poor and excellent.
On BCNatal data, 155 stacks were excluded, and 353
rated above the threshold. On KISPI, 218 stacks were
rated below 1, and 223 above. On La Timone, 42 stacks
were rated below 1, and 161 stacks above. The average
ratio of excluded stacks is 2.04. Regarding inclusion
and exclusion of stacks (stacks with quality above 1
are included, other are rejected), the inter-rater agree-
ment yielded a Cohen’s coefficient of κ = 0.58 (moder-
ate agreement according to the interpretation of Landis
and Koch (1977)).

While the raters were trained to rate the overall qual-
ity of the images, they also were instructed, but not
trained, to rate specific artifacts. They were asked to
rate the degree of fetal motion (visible as discontinu-
ities through-plane and signal drops in-plane) and bias
field, visible as a low-frequency varying field. However,
as their main goal was to give a global rating, the raters
often skipped the assessment of the artifacts when the
image was either clearly good or clearly bad, leading
to inconsistent ratings. for motion rating, their Pear-
son’s correlation drops to R2=0.15, and for bias rating,
R2=0.02. We believe that such a low reliability could
be avoided by designing the rating differently, and ask-
ing the raters to assess artifacts before giving a global

1https://github.com/Medical-Image-Analysis-Laboratory/
fetmrqc

2https://hub.docker.com/u/thsanchez
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Figure 2: A look into the dataset. A – Illustration of the quality rating interface developed in this work. B –
Inter-rater agreement on the 211 stacks annotated by both raters. The global R value is 0.75. Note that stacks
from La Timone were only annotated by Rater 2. C – Distribution of the quality ratings across the different
sites considered, on all data. The median values are respectively 1.75 [0.84, 2.4] for BCN, 1.75 [1, 2.45] for CHUV
and 1 [0.1, 2.05] for KISPI.

score. In the sequel, we will only use the overall quality
rating of the images.

3.2 Performance and robustness of
FetMRQC

Based on the ratings from FetMRQC, we considered
two tasks: a quality control (QC) task, where we aimed
at predicting whether a scan should be excluded (rating
below 1), and a quality assessment (QA) task, where
we predicted the interval rating (between 0 and 4). Re-
sults from the experiment are summarized in Table 3.
A more detailed outlook at the variations in perfor-
mance across scanners in the LoSo cross-validation and
pure testing performance is available in Figure 3. As
expected, the three increasingly challenging evaluation
settings (10-fold CV, LoSo CV, pure testing) led to a
decrease of performance. This decrease is less notable
for QC than QA.
Quality control. Overall, FetMRQC and FetMRQC-

20 consistently performed best with a performance
(weighted F1) of 0.86, 0.80 and 0.82 in median for the
cross-validation, leave-one-out scanner and pure testing
scenarios respectively. This performance is consistent
across the evaluation metrics considered (3). Precision
is of great interest in our case, as including bad quality
in further analysis can be greatly detrimental to fur-
ther processing. FetMRQC shows a consistently high
precision in all settings considered, with median per-
formance of 0.86, 0.85 and 0.83 in CV, LoSo CV and
pure testing respectively.

Focusing on the scanner-wise breakdown of perfor-
mance (Figure 3A and B), FetMRQC and FetMRQC-
20’s performance is very consistent across almost all
scanners considered, and does not change on new scan-
ners from sites used in training (Siemens’ MAGNE-
TOM Vida at CHUV and BCNatal - GE’s Discovery
MR750 at Kispi). On the other hand, DL-based meth-
ods (Legorreta et al., 2020; Xu et al., 2020), trained on
homogeneous data from a single site, fail to perform
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Table 3: Quality control and assessment results. QC (classification, left) and QA (regression, right) results
were averaged over five repetitions of the experiment. Results are the median cross-validation performance.
The number in parentheses is the average worst-performing cross-validation fold. Three evaluation settings were
considered: 10-fold subject-wise cross-validation (CV), LoSo CV and pure testing. Pure testing evaluation was
grouped by scanners in the testing set.

Quality control (classification)
Weighted F1 (↑) ROC AUC (↑) Precision (↑) Recall (↑)

10-fold subject-wise cross-validation

dl_slice (Xu et al., 2020) 0.64 (0.65) 0.72 (0.61) 0.71 (0.73) 0.98 (0.86)
dl_stack (Legorreta et al., 2020) 0.71 (0.72) 0.77 (0.73) 0.78 (0.80) 0.85 (0.81)
NiftyMIC-QC (Ebner et al., 2020) 0.76 (0.75) – 0.76 (0.77) 0.96 (0.96)
Base 0.82 (0.78) 0.88 (0.79) 0.85 (0.83) 0.92 (0.84)
FetMRQC 0.86 (0.79) 0.91 (0.87) 0.86 (0.85) 0.94 (0.86)
FetMRQC-20 0.86 (0.77) 0.92 (0.87) 0.86 (0.85) 0.93 (0.81)

Leave-one-Scanner-out cross-validation

dl_slice (Xu et al., 2020) 0.61 (0.47) 0.75 (0.60) 0.70 (0.62) 0.96 (0.93)
dl_stack (Legorreta et al., 2020) 0.64 (0.53) 0.75 (0.62) 0.69 (0.47) 0.90 (0.87)
NiftyMIC-QC (Ebner et al., 2020) 0.75 (0.66) – 0.76 (0.71) 0.95 (0.86)
Base 0.78 (0.63) 0.80 (0.76) 0.80 (0.69) 0.84 (0.67)
FetMRQC 0.80 (0.64) 0.89 (0.74) 0.85 (0.71) 0.86 (0.73)
FetMRQC-20 0.82 (0.72) 0.90 (0.83) 0.85 (0.76) 0.88 (0.83)

Pure testing (KISPI + CHUV + La Timone – by scanner)

dl_slice (Xu et al., 2020) 0.73 (0.76) 0.79 (0.79) 0.77 (0.77) 0.97 (0.92)
dl_stack (Legorreta et al., 2020) 0.62 (0.60) 0.72 (0.51) 0.68 (0.67) 0.97 (0.86)
NiftyMIC-QC (Ebner et al., 2020) 0.74 (0.52) – 0.70 (0.65) 0.98 (1.00)
Base 0.77 (0.54) 0.77 (0.62) 0.80 (0.65) 0.97 (1.00)
FetMRQC 0.82 (0.67) 0.77 (0.76) 0.83 (0.70) 0.91 (0.91)
FetMRQC-20 0.79 (0.56) 0.74 (0.64) 0.78 (0.65) 0.93 (0.94)

Quality assessment (regression)
R2 (↑) Spearman (↑) MAE (↓)

10-fold subject-wise cross-validation

Subject-wise oracle 0.33 (0.39) 0.53 (0.68) 0.65 (0.61)
Base 0.40 (0.38) 0.69 (0.68) 0.59 (0.61)
FetMRQC 0.60 (0.49) 0.80 (0.75) 0.50 (0.56)
FetMRQC-20 0.60 (0.53) 0.79 (0.78) 0.50 (0.53)

Leave-one-Scanner-out cross-validation

Subject-wise oracle 0.29 (0.40) 0.48 (0.58) 0.64 (0.64)
Base 0.29 (0.25) 0.59 (0.48) 0.64 (0.66)
FetMRQC 0.45 (0.39) 0.74 (0.72) 0.56 (0.60)
FetMRQC-20 0.52 (0.36) 0.77 (0.71) 0.55 (0.62)

Pure testing (KISPI + CHUV + La Timone – by scanner)

Subject-wise oracle 0.41 ( 0.41) 0.60 (0.60) 0.45 (0.45)
Base 0.26 ( 0.36) 0.45 (0.47) 0.65 (0.37)
FetMRQC 0.35 (-0.74) 0.59 (0.39) 0.51 (0.65)
FetMRQC-20 0.30 (-0.94) 0.54 (0.31) 0.53 (0.68)

and exhibit very large variations in performance across
sites, making them generally unreliable. We note also
that a few scanners were consistently challenging for
the models. On panel A, we see that all methods ex-
cept NiftyMIC-QC and FetMRQC-20 struggled on the
CHUV - Skyra scanner. On panel B, we see that FetM-
RQC managed to generalize well to unseen scanners
from known sites (BCN, KISPI and CHUV). However,
all models, except dl_slice, poorly generalized to data
from La Timone.

Quality assessment. In the case of quality assess-
ment, we observed that FetMRQC’s new IQMs were
instrumental in achieving a performance above the
subject-wise oracle. On Table 3B, we see that while the
IQMs used in the base model (R2=0.49) were sufficient
to outperform the subject-wise oracle (R2=0.33) in the
subject-wise CV, using FetMRQC with either all IQMs
(R2=0.44) or the selected 20 (R2=0.49) was necessary
to achieve a performance over the subject-wise oracle
(R2=0.29) in the LoSo setting. This was nonetheless
not sufficient to achieve a satisfying performance in the
pure testing setting, where FetMRQC’s prediction, de-
spite outperforming consistently over the base model,
do not outperform the subject-wise oracle. It also fails
on one scanner (CHUV - MAGNETOM Vida scanner,
Figure 3D), but we hypothesize that such drop is likely
due to the small amount of data available from this

scanner.

3.3 Generalization as a function of
scanner diversity and number of
training examples

Data annotation is known to be a time-consuming pro-
cess that requires highly specialized raters (Rädsch
et al., 2023). Given a limited budget (in time and ex-
pertise), the question of which data to annotate then
raises naturally. In this experiment, we investigated
how the number of scanners nscanner and the number
of data ntraining available during training impacted the
generalization performance of FetMRQC in the con-
text of LoSo CV. We had in total 8 different scan-
ners and 1251 data points. For a given configuration
(nscanner, ntraining), we performed a LoSo CV where the
data used in training were subsampled: between 1 and
7 scanners were sampled randomly from the available
data and between 100 and 900 data points were then
randomly sampled from the available scanners. For
each (nscanner, ntraining), the experiment was repeated
20 times.

Figure 4 contains the results of the experiment,
showing the minimum, maximum and median perfor-
mance with the deviation from the median, across 20
repetitions. In each case entry, the reported measure

10



FetMRQC: a robust quality control system for multi-centric fetal brain MRI

Figure 3: Scanner-wise results for QA/QC. A –
Weighted F1 score for the QC task for each scanner
used in LoSo cross-validation (sorted from the one with
the least subjects to the most subjects). B – Weighted
F1 score for the QC task for each scanner used in the
pure testing set. C – R2 for the QA task for each
scanner used in LoSo cross-validation. D – R2 for the
QA task for each scanner used in the pure testing set.
Distribution of scores is aggregated by scanner, and the
median performance for each method is shown as the
black dashed line. The red line in the prediction task
at 0 shows the baselines for a constant predictor. These
results detail the ones presented in Table 3.

was computed as the average across the 20 repetitions.
Looking at the median performance, it is clear that in-
creasing the size of the training set (x axis) or the num-
ber of scanners (y axis) both improve the generaliza-
tion. Starting with best-case generalization (maximum
performance, lower row in figure 4), we see that in ev-
ery case, there is a subset of data that enables reaching
the best performance with only 100 data points. While
this is not surprising, this is also difficult to exploit: one
cannot readily find ahead of time a subset of data that
will generalize well to the testing data. The worst-case
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Figure 4: Performance as a function of the num-
ber of scanners and training points. This is
obtained by performing leave-one-scanner-out cross-
validation 20 times, using different random subsets
of data. (Top row.) Minimum (worst-case) perfor-
mance across folds (Middle row.) Median perfor-
mance across folds. The smaller plots show the corre-
sponding median average deviation. (Bottom row.)
Maximum (best-case) performance across folds.

generalization is more interesting: using 100 training
data points from seven scanners reaches a similar per-
formance as using 700 data points from four scanners in
the case of classification. In the case of regression how-
ever, we see that both the number of training samples
and scanners is important: the worst-case generaliza-
tion with 100 training data and 7 scanners is close to
zero, and the performance steadily increases with more
data.

Overall, using multiple scanners is key to achieving
the highest performance regimes, but using more data
is also greatly valuable. However, if constrained to a
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limited annotation budget, we anticipate that anno-
tating more diverse data from various scanners will be
more helpful for generalization than gathering a large
corpus from a single scanner.

In addition, we also observe, on the median perfor-
mance, that the classification task is generally more
straightforward than the regression task: fewer data
allow to reach the highest performance, while per-
formance keeps increasing for regression when adding
more sites and more data. Thus, we hypothesize that
regression performance would further be increased by
increasing the size of training data. In contrast, the
median classification performance might stagnate, al-
though its worth case performance might still improve,
thus making the model more robust to new scanners
by further enhancing the training dataset.

3.4 Model performance on a restricted
set of IQMs

FetMRQC relies 332 different IQMs that are not fully
independent from each other, as shown in Figure 6. In
this final experiment, we explore the IQMs that are
most important for FetMRQC QA and QC models.

We computed the feature importance of the random
forest model used in each fold of the LoSo CV and aver-
age them across folds. We grouped together the IQMs
with a correlation coefficient above 0.95 (as shown in
Figure 6) to prevent several IQMs contributing very
similar information but selected by different models in
the LoSo CV for QA and QC. We then randomly se-
lected a single IQM from each correlated group, and
arrived at the ranking shown in the top row of Fig-
ure 5. First, we see that in the QC task (A), IQMs
are generally spread out (the top four IQMs sum up to
0.20). In the regression task (B) however, a few IQMs
capture a large part of the feature importance (the top
four IQMs sum up to 0.53). Nonetheless, three IQMs
are consistently among the top predictors: rank-based
error (Kainz et al., 2015), the volume of the brain mask
and the morphological closing of the brain mask. The
first estimates the consistency of the intensities across
slices by computing how well a low-rank approxima-
tion can represent the volume, the second estimates
the volume of the brain and the third estimates the de-
gree of motion across stacks by computing a morpho-
logical closing of the brain mask in the through-plane
direction and then subtracting the original brain mask.
The first two IQMs are the ones that have been used
in NiftyMIC-QC (Ebner et al., 2020) and complement
each other well. Secondly, we see that although the
ranking of the most important IQMs can vary, overall

19 out of the 25 IQMs of Figure 5A and B appear in
common in both tasks as the most important IQMs.
Thirdly, let us note that the best IQMs cover differ-
ent representative families of features: intensity-based,
mask (or shape)-based, and segmentation-based IQMs.
Finally, note that features proposed within FetMRQC
rank highly in terms of feature importance: 14 out of
the 25 IQMs shown in Figure 5A and B were proposed
in this work.

FetMRQC-20 is built on the feature importance ob-
tained for FetMRQC (Figure 5A and B). The IQMs
were selected by averaging the feature importance from
QC and QA, and then by selecting the top-20 features.
In order to keep the reduced model as interpretable
as possible, we excluded the deep learning (DL)-based
IQMs from FetMRQC-20 and replaced them with the
two features that came next in line. Results in Ta-
ble 3 show that does not yield a decrease in perfor-
mance. The feature importance using only FetMRQC-
20’s IQMs is shown on Figure 5C and D and is generally
consistent with FetMRQC’s results. As fewer IQMs are
available, their relative importance is generally higher,
and the same IQMs end up carrying the largest weight
in decision.

4 Discussion

In this work, we proposed FetMRQC, a novel open-
source machine learning framework for the automated
quality control and quality assessment of fetal brain
MRI. While most existing works focus on a single-
center, single-scanner setting (Legorreta et al., 2020;
Xu et al., 2020; Gagoski et al., 2022), the evaluation
in this work was carried out on a large, multi-scanner,
multi-centric dataset. These diverse data allowed us
to measure the impact of domain shift on generaliza-
tion, and assess the variability in performance across
scanners. Being trained with multi-centric data FetM-
RQC achieves a reliable performance in quality con-
trol over most scanners considered, which is not the
case for baseline DL-methods, trained on homogeneous
data, which exhibit a very large variability in perfor-
mance. These observations were made possible by fol-
lowing good practices regarding evaluation and report-
ing of dataset with domain shifts (Roberts et al., 2021;
Varoquaux and Cheplygina, 2022; Zech et al., 2018).
Indeed, cross-validation at the group level (subject or
scanner in our case) (Varoquaux et al., 2017), com-
puting the performance metrics at the group level and
reporting the worst-performing site were essential in
unfolding the large variability in performance, which
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Figure 5: Most important IQMs for QA/QC. Feature importance for quality control (classification) on the
left, and for quality assessment (regression) on the right. The top row shows the top-25 IQMs from FetMRQC
and the bottom row shows the 20 selected IQMs that form FetMRQC-20. Blue IQMs are intensity-based, orange
are mask- (or shape) based, green are segmentation based, pink are deep-learning based and brown are metadata
based. Hatched features denote the new ones proposed in this work. The error bars are the standard deviation
over the different cross-validation folds, performed over different scanners. Note that the scales are very different
between the plots: the highest feature importance for classification is around 0.055, whereas it is around 0.23 for
regression.

is obfuscated when averaging across the entire testing
set (Dockès et al., 2021; Zhou et al., 2023). Design-
ing a pure testing (Varoquaux and Cheplygina, 2022;
Kapoor and Narayanan, 2022) set comporting both un-
seen scanners and unseen sites allowed to observe an-
other trend: methods performing well in the LoSo CV
setting performed well on unseen scanners from known
sites, but struggled on the unseen site. Indeed, data
from La Timone were very different from the ones ac-
quired at other institutions: only three stacks were ac-
quired per subject due to strong constraints on the du-
ration of the scanning session, and the acquisition was
done at a high in-plane resolution, leading to higher
level of noise in the images compared to the rest of the
data.

Beyond measuring the impact of domain shifts, sev-
eral methods to correct and compensate them on tabu-
lar data have been proposed, including group-wise nor-
malization of data (Esteban et al., 2017), or empirical
Bayes approaches, like ComBat (Johnson et al., 2007).
As shown in our supplementary experiments, we did

not find these approaches to be beneficial in our case,
which is most likely due to the quality of data being
related to the scanner on which data were acquired:
removing the scanner information at the IQM level
might not be helpful because it might remove mean-
ingful information (Dockès et al., 2021). This might
be mitigated by attempting to directly harmonize the
input T2w images (Zhou et al., 2023; Wang et al.,
2022) rather than the IQMs, as the IQMs were directly
extracted from images acquired with widely different
imaging parameters that could induce some confound-
ing factors in the derived metrics.

A question that can be raised is whether a deep mod-
els (like convolutional neural networks (CNN) or trans-
formers (Vaswani et al., 2017)) could serve as an alter-
native to FetMRQC. FetMRQC operates in a highly
heteorogeneous setting, with relatively few, high di-
mensional data points when compared to deep learn-
ing standards – where datasets commonly feature more
than 105 − 106 data points (Deng et al., 2009; Varo-
quaux and Cheplygina, 2022). Using our data, we
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were unable to train a CNN or a transformer model
that would outperform FetMRQC. In addition, the
trained models exhibited unstable generalization per-
formances. We hypothesize that the diversity of IQMs
of FetMRQC, leveraging image intensity, brain masks
and finer segmentations were able to provide a more
stable ground for generalization than the one learned
by a deep learning model on our data. Our choice of
privileging random forests over deep networks in FetM-
RQC then hinged on practical considerations, rather
than the theoretical representation power of deep net-
works. Nevertheless, deep learning has still been suc-
cessful for quality control (Legorreta et al., 2020; Xu
et al., 2020; Liao et al., 2020) and it is likely that hav-
ing more data or leveraging semi-supervised (Xu et al.,
2020) or self-supervised (Liu et al., 2021; He et al.,
2022) learning methods could help build some robust
deep models.

Note however that FetMRQC suffers from two main
limitations. As any other supervised learning method,
the first limitation comes from an often underestimated
component of machine learning pipelines, namely the
quality of annotations. As QA/QC has an inherently
subjective dimension, narrowing the task at hand for
rating is key to maximize inter-rater reliability (Este-
ban et al., 2018; Rädsch et al., 2023). The quality rat-
ing interface is an essential tool for displaying the raw
T2w fetal brain data uniformly, and when providing
the raters with a training session, can successfully lead
to high inter-rater reliability. However, our fetal mo-
tion and bias field rating results suggest that a finer
protocol is needed. The protocol should, in particular,
encourage raters to proceed in artifact-based quality
ratings: first assessing the presence and degree of vari-
ous artifacts and then deciding on a score to give rather
than the opposite. Improving the inter-rater agree-
ment might further improve the quality of FetMRQC,
in particular on the quality assessment task, where the
subject-wise CV regression performance comes close to
the level of agreement between the raters: R2=0.58
for the subject-wise CV and the inter-rater agreement
has R2=0.56. A second limitation comes from the sim-
plicity of the model: while FetMRQC’s predictions are
easily interpretable and generally depend on a small
number of IQMs, its learning capabilities are limited
by its shallow nature. A deep learning model trained
directly on 3D clinical acquisitions is likely to improve
QA/QC predictions, if enough training data is avail-
able, as it can make better use of large amounts of
training data.

Beyond addressing these limitations, future work
will investigate how preprocessing the raw T2w data

might impact FetMRQC’s performance. Future work
will also include a more thorough evaluation of the
impact of FetMRQC on downstream tasks such as
super-resolution reconstruction quality. FetMRQC is
only a first step towards robust tools for quantita-
tive analysis of fetal neuroimaging. While QA/QC
starts at the raw images, it is greatly needed at ev-
ery stage of the fetal brain MRI pipeline, from acqui-
sition to reconstruction to surface extraction. Such
checkpoints, along with community efforts in collect-
ing large, reality-centric datasets are key to developing
robust and reliable learning-based approaches for fetal
neuroimaging and beyond.
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5 Supplementary material

5.1 IQMs
We provide additional details on the image quality metrics used in this work in Table 4, as well as a cross-
correlation matrix of the 100 IQMs most frequently used by FetMRQC (in terms of feature importance) on
Figure 6. Table 4 provides a detailed allocation of the 332 IQMs and how they are split between intensity-
based, mask-based, segmentation-based, deep learning-based and metadata-based categories. Figure 6 shows
that although these IQMs tend to cluster different groups, they remain generally independent from each other,
and so can serve as complementary information for FetMRQC’s prediction model. Highly correlated IQMs tend
to be variants of each other: the variant with center-most slices can be very close to the full image IQM (_full
in the Figure), even if this is not systematically true. Clusters can happen also with IQMs denoting similar
quantities: kurtosis in the segmented tissues (_k in the Figure), or number of voxels in the segmented classes (_n
in the Figure).

Table 4: Detailed description of the Image Quality Metrics (IQMs) computed in FetMRQC. The
number in parentheses are the total available variants on each metric (e.g. computation on the masked image,
on the central slices, etc.). The number of IQMs sums up to 166 variants. The final number is doubled by
incorporating an indicator variable of whether a given entry failed to be computed, resulting in a NaN (not-a-
number).

Intensity-based metrics

rank_error (Kainz et al., 2015) (5) Measure the compressibility of the image using a low-rank approximation

slice_loss (32)

Use metrics commonly used for outlier rejection (Kuklisova-Murgasova et al.,
2012; Kainz et al., 2015; Ebner et al., 2020) to compute the difference between
slices in the volume. We considered (normalized) mean averaged error, (nor-
malized) mutual information, normalized cross correlation, (normalized) root
mean squared error, peak signal-to-noise ration, structural similarity and joint
entropy.

sstats (Esteban et al., 2017) (14) Compute the mean, median, standard deviation, percentiles 5% and 95%, co-
efficient of variation and kurtosis on brain ROI.

entropy (Esteban et al., 2017) (2) Measure the overall entropy of the image.
bias (3) Level of bias estimated using N4 bias field correction (Tustison et al., 2010)

filter_image (4) Estimate the sharpness by using Laplace and Sobel filters (commonly used for
edge detection)

Mask-based metrics

mask_volume (1) Compute the volume of the brain mask.
centroid (de Dumast et al.,
2020) (2) Measure the variance in the center of mass of the brain mask across slices.

closing_mask (2) Morphological closing of the brain mask in the through-plane direction, to
detect inter-slice motion. Report the average difference with the original mask.

filter_mask (4)
Estimate the sharpness of the brain mask using Laplace and Sobel filtering.
In an ideal case, the brain mask would be smoothly varying, especially in the
through-plane direction.

Segmentation-based metrics (Esteban et al., 2017)

sstats (64)

Summary statistics on each region of the segmentation (white matter (WM),
gray matter (GM) and cerebrospinal fluid (CSF). Computing mean, median,
5th and 95th percentile, kurtosis, standard deviation, mean absolute deviation
and number of voxels)

volume (6) Volume of the three brain regions (WM, GM, CSF; entire brain/central slices)

SNR (Dietrich et al., 2007) (10) Signal-to-noise computed in each region (background, WM, GM, CSF and glob-
ally)

CNR (Magnotta et al., 2006) (2) Contrast-to-noise-ratio, to estimate the separation between GM and WM.
CJV (Ganzetti et al., 2016) (2) Coefficient of joint variation of GM and WM.
WM2Max (2) White-matter to maximum intensity ratio.

Deep learning-based metrics

dl_slice (Xu et al., 2020) (5)
Slice-wise deep learning-based quality assessment. Several variants are consid-
ered: full image/central-slices, uncropped/cropped image around the ROI, and
using only pgood for scoring.

dl_stack (Legorreta et al., 2020) (1) Stack-wise deep learning-based quality assessment.

Metadata-based metrics

im_size (5) voxel size (in-plane x and y and through-plane), as well as voxel-size and in-
plane pixel dimension.
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Figure 6: Correlation matrix between the top 100 features used in FetMRQC, according to feature importance,
evaluated on the entire dataset. Blue refers to negative correlations, and red to positive ones. The scale goes
between -1 and 1. The features are clustered by similarity.

20



FetMRQC: a robust quality control system for multi-centric fetal brain MRI

5.2 Quality rating protocol
In this section, we describe and illustrate the protocol that we used for quality rating in the study. The quality
rating is defined in the context of downstream super-resolution reconstruction (SRR) from multiple low-resolution
acquisitions in different orientations (axial, coronal, sagittal). The quality assessment specifically aims at quantify
how suitable a given raw T2 weighted volume is for SRR, and is not a radiological assessment of the image.

Rating protocol Using a FetMRQC report, our quality rating was consisted of going through the following
questions.

• Motion-related artifacts. Fetal motion can induce in-plane and through-plane artifacts.
– Is there in-plane motion: signal drop/void, blurring, aliasing, ringing artifacts?
– Is there through-plane motion: loss of structural continuity in neighbouring slices (Gholipour et al.,

2014; Uus et al., 2022a)?.
• Bias related artifacts. Bias field is typically described as a smoothly varying spatial inhomogeneity that

alters image intensities that otherwise would be constant for the same tissue type regardless of its position
in the image (Vovk et al., 2007). In practice, it often appears like a shade on a part of an image, and is
visible both in-plane and through-plane.

– Is there in-plane bias: differences in intensity within a single tissue on a given slice?
– Is there through-plane bias: difference in intensity within a single tissue across slices?

• Miscellanous.
– Is the image paritcularly noisy: grainy appearance?
– Is the brain entirely contained on the image?

After answering the questions, the rater is asked to provide a score for global quality. Examples below show the
scores that we assigned to various images.

5.2.1 Example cases

We now review six cases from our data, featuring different gestational ages and orientations with explanation of
the artifacts in the captions. This review does not aim to be exhaustive. Figure 7 shows two cases of excellent
quality acquisitions. The other images show typical artifact patterns that can be found in fetal images. Figure
8 shows acceptable and poor-to-acceptable quality images. Figure 9 shows poor quality images.
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Figure 7: Excellent quality images. (Left) Acceptable to excellent quality sagittal image. No clear
artifacts are visible in the in-plane view, and no large patterns of motion are view are present on the through-
plane views. Moreover, the structure of the brain is clearly distinguished on all three planes. (Right) Excellent
quality axial image. No artifacts are visible on any part of the image. The intensity of the tissues is spatially
homogeneous, indicating a low bias, and no in-plane or through-plane affecting structural integrity are visible.

Figure 8: Acceptable quality images. (Left) Acceptable quality sagittal image. Although some ringing
artifacts are visible outside the brain on slices 6 and 7, all brain structures are clearly visible in-plane. A strong
bias field can be viewed between the top and bottom row of in-plane slices, as well as through-plane view.
There is also moderate motion, viewed in the through-plane view 268 where one sees various blocks of slices look
disconnected from each other. (Right) Poor to Acceptable quality coronal image. On both in-plane and
through-plane images, a clear intensity discontinuity is visible, suggesting a strong bias bield. In addition, one
sees on slice 14 a signal drop. No stair-like motion is visible, but a sharp discontinuity is seen on slice 160. This
was rated as moderate motion.

22



FetMRQC: a robust quality control system for multi-centric fetal brain MRI

Figure 9: Poor quality images. (Left) Poor-to-Exclude quality sagittal image. Multiple slices are affected
by signal drops suggesting heavy motion. Unsurprisingly, this leads to a poor structural integrity on the through-
plane slices: it is very difficult to recognize the brain structure. (Right) Low Poor quality coronal image. A
strong bias field is visible on all in-plane slices (the bottom of each slice is much darker than the top for the same
tissue), and also through-plane: on 279, the left is darker than the right, and on 333, the left is clearer than the
right. In addition, a typical "staircase" motion is viewed through-plane, as well as a signal drop on slice 6.
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5.3 FetMRQC ablation studies
Various components such as IQM standardization, feature selection, dimensionality reduction can be included
in FetMRQC. We used nested cross-validation to automatically perform model selection and evaluation without
introducing optimistic biases (Varoquaux et al., 2017). We then had three variants of FetMRQC to compare:

• Vanilla FetMRQC: No preprocessing, use all IQMs and fit a random forest.
• Nested CV FetMRQC: Preprocessing, feature selection and various possible models, with selection per-

formed using nested CV. The parameters are the one of Table 5 below.
• ComBat + Nested CV FetMRQC: ComBat (Johnson et al., 2007), preprocessing, feature selection and

various possible models, with selection performed using nested CV. The parameters are the one of Table 5.

We evaluated each of these methods in a leave-one-scanner-out (nested) CV and report the results on Table 6.
The differences between Vanilla FetMRQC and the variants were tested with Welch’s t-test (to take into account
the unequal variance across samples), but none of the differences were found to be statistically significant.
The breakdown of the results is shown on Figure 10, where we see that no method manages to provide an
improvement for all scanners. While some scanners get a better performance, the performance is also decreases
for other scanners. This is most clearly seen for Combat + Nested CV in the QA task (Figure 10B).

The full nested cross-validation very largely increases the computational time required to train the model.
Given the IQMs, vanilla FetMRQC takes around 5 to 10 seconds to be trained. Nested CV evaluates 1004
models (regression) and 1344 models (classification), and parts like the Winnow algorithm make the overall
training slower. Our simple implementation, using 5 parallel workers, took around one day to run. While this
could certainly be greatly improved, it is clear that nested CV brings a much larger computational burden
compared to vanilla FetMRQC. In this case, as it did not bring any significant benefit, we chose to only rely on
the vanilla version of FetMRQC: using all IQMs without scaling and with a random forest.

While these ablation studies focus on various pre-processing steps and using different models, we also carried
out additional ablation studies where each of the regression or classification model were trained using different
parameters (e.g. larger or smaller forests, different fitting criteria, regularization, etc.). We used a random grid
of parameters in each nested CV fold, and had to disable the Winnow algorithm for the training time to be
reasonable. The results of this experiment (not presented) were largely similar to the ablation below.

Table 5: Parameters automatically optimized by the inner loop of the nested CV.
Model step Parameters

Remove correlated features Threshold ∈ {0.8, 0.9}; Disabled

Data Scaling Standard (group) scaling, Robust (group) scaling,
Quantile (group) scaling No scaling

Winnow algorithm Enabled, Disabled
PCA Enabled, Disabled

Regression models Linear regression, Gradient
boosting, Random Forest

Classification models Logistic regression, Random Forest,
Gradient Boosting, AdaBoost
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Table 6: Quality control and assessment ablation study. LoSo CV was performed using vanilla FetMRQC,
as well as nested cross-validation for hyperparameter tuning. A third variant preprocessed the data using Com-
Bat (Johnson et al., 2007) prior to performing nested CV. Results are the median cross-validation performance.
The number in parentheses is the average worst-performing cross-validation fold.

Quality control (classification) Quality assessment (regression)

Weighted F1 (↑) ROC AUC (↑) Precision (↑) Recall (↑) R2 (↑) Spearman (↑) MAE (↓)
Leave-one-Scanner-out cross-validation Leave-one-Scanner-out cross-validation

Nested CV 0.81 (0.68) 0.79 (0.64) 0.85 (0.73) 0.83 (0.79) Nested CV 0.50 (0.36) 0.73 (0.70) 0.55 (0.54)
ComBat+Nested CV 0.80 (0.73) 0.79 (0.71) 0.86 (0.71) 0.89 (0.79) ComBat+Nested CV 0.49 (0.18) 0.75 (0.68) 0.57 (0.60)
Vanilla 0.81 (0.62) 0.78 (0.58) 0.89 (0.69) 0.83 (0.79) Vanilla 0.45 (0.39) 0.74 (0.71) 0.56 (0.51)

Figure 10: Scanner-wise results for the QA/QC ablation study. This is the breakdown of Table 6. A –
Weighted F1 score for the QC task, for each scanner used in LoSo CV. B – R2 for the QA task for each scanner
used in LoSo CV.
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