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Abstract 1 

 2 

From March to June 2020, governments across the world imposed lockdowns in an attempt to 3 

reduce the transmission of COVID-19 during the early phase of the pandemic. This period of 4 

time in which human activity slowed worldwide has been coined the “Anthropause”. The goal of 5 

this study was to determine if sunscreen pollution abated during the Anthropause and to identify 6 

the severity of the pollution when tourism/recreation recovered at two coastal units of the U.S. 7 

National Park System: Kaloko-Honokōhau National Historical Park in Hawaiʻi, U.S.A. and Cape 8 

Lookout National Seashore in North Carolina, U.S.A. Active ingredients of sunscreen products 9 

were measured in water and sand samples at both locations, including oxybenzone, octinoxate, 10 

octocrylene, octisalate, homosalate, and relevant breakdown products of some of these 11 

ingredients. A risk assessment was conducted on Anthropause and post-Anthropause 12 

contaminant levels for both locations to determine if there was a threat reduction during the 13 

Anthropause, and whether tourism recovery in the post-Anthropause period served as a threat to 14 

coastal wildlife. Both national park units exhibited an almost absolute reduction in the levels of 15 

sunscreen contamination during the Anthropause period, a striking commonality considering the 16 

geographic expanse separating the parks. Once travel restrictions were lifted, a large influx of 17 

tourists ensued at both locations, resulting in a relatively sudden and dangerous increase in the 18 

levels of sunscreen chemical pollution. This study supports the argument that unmanaged 19 

tourism is a source of coastal sunscreen pollution that poses a threat to the localized continuity of 20 

species populations and biodiversity, especially to coral reefs and fisheries.  21 

 22 

Keywords: oxybenzone, National Park, sunscreen pollution, risk assessment, Anthropause, 23 

COVID-19 24 

  25 



1. Introduction 26 
 27 

From March to June 2020, governments across the world imposed lockdowns in an attempt to 28 

reduce the transmission of COVID-19 during the early phase of the pandemic. This period of 29 

time in which human activity slowed worldwide has been coined, the “Anthropause” (Rutz et al., 30 

2020). The effect of the Anthropause was apparent in tourist hotspots (Zielinksi and Botero, 31 

2020; Ormaza-González et al., 2021; Kough et al., 2022; Moustafa and Mansour, 2022). As 32 

travel ground to a halt, tourist destinations were among those to record the largest declines in 33 

human activity with concomitant improvements in local environmental conditions (Dutta et al., 34 

2020; Manenti et al., 2020; Oarani, 2020; Thomson et al., 2020; Zambrano-Monserrate et al., 35 

2020; Callejas et al., 2021; Soto et al., 2021; Bertucci et al., 2023). Thus, the “pause” serves as 36 

an opportune natural experiment for testing the relationship between tourism and environmental 37 

degradation and assessing the effectiveness of visitation policies in reducing contamination (Rutz 38 

et al., 2020; Gaiser et al., 2022). 39 

 40 

Over the past 60 years, the exponential increase in tourism has spurred environmental 41 

degradation and loss of biodiversity, with coral reefs among the most globally impacted 42 

ecosystems (Gardner et al., 2003; Gil et al., 2015; Partelow et al., 2015; Downs et al., 2022a; Lin 43 

et al., 2023). Sunscreen pollution is one of the symptoms of unsustainable tourism and coastal 44 

development (Sánchez-Quiles and Tovar-Sánchez, 2014; Tovar-Sánchez et al., 2019; Casas-45 

Beltrán et al., 2020; Casas-Beltrán et al., 2021; Downs et al., 2022b, 2022c).  Tourism-associated 46 

sunscreen pollution contaminates the entire range of marine habitats, from Arctic and Antarctic 47 

coastlines and Norwegian Fjørds to temperate beaches, as well as coral reefs (Langford and 48 

Thomas, 2008; Bratkovics et al., 2015; Downs et al., 2016; Dominguez-Morueco et all., 2020; 49 

Garcia-Pimentel et al., 2023). Tourism and water-recreational activities also contaminate 50 

limnological systems with sunscreen pollutants, with major sources that include activities such as 51 

river tubing, paddle boarding, kayaking/canoeing, and other water sports (Balmer et al., 2005; 52 

Cuderman and Heath, 2007; Mandaric et al., 2017; Domingiez-Morueco et al., 2020; Rand et al., 53 

2020; Newham et al., 2021; Harjung et al., 2022; Homem et al., 2023). As a consequence of 54 

more than a decade of research on its impacts, tourism-associated sunscreen pollution is no 55 

longer an “emerging concern” but a managed pollutant that is being mitigated through legislative 56 

rules or executive policies that ban or restrict the presence of offending sunscreen chemicals 57 

(Downs et al., 2022a). What remains unclear is how much of a driver tourism versus other 58 

potential sources is on sunscreen pollution, regardless of policy status. 59 

 60 

Sunscreen chemicals reach levels in some aquatic environments that they pose a localized 61 

threat to biodiversity, especially in conjunction with other stressors, such as climate change 62 

factors, microplastic pollution, and other kinds of pollutants (Alonso et al., 2015; Pont et al., 63 

2004; Le Bihanic et al., 2020; Wijgerde et al., 2020; Zhou et al., 2023). In fish, oxybenzone, 64 

octocrylene, octisalate and other sunscreen chemicals induce a range of acute toxicities, from 65 

genotoxicity and developmental deformities to impacting reproductive fitness over multiple 66 

generations (Kim et al., 2014; Almeida et al., 2019; Yan et al., 2020; Zhou et al., 2022; Zhao et 67 

al., 2023). Fish seem exceedingly susceptible to the endocrine-disrupting nature of many of these 68 

sunscreen chemicals, with impacts such as skeletal deformations, feminization and sex change of 69 

males to females, thyroid-axis pathologies, and adverse alterations to critical social behaviors 70 

(Ziarrusta et al., 2018; Simons et al., 2022; Xie et al., 2022; Tao et al., 2023). For aquatic 71 

invertebrates, these chemicals elicit similar multi-generational toxicities as seen in vertebrates, 72 

but are also documented to interfere with aragonite or shell deposition in species ranging from 73 



corals to bivalves (Downs et al., 2016; Coinaldesi et al., 2017; Campos et al., 2019; Lopes et al., 74 

2020; Santonocito et al., 2020; Pham et al., 2022). In all animal taxa, the benzophenones from 75 

sunscreens, such as oxybenzone and benzophenone, are noted reproductive and developmental 76 

toxicants, and have carcinogenic potential (DiNardo and Downs, 2019; Tao et al., 2020; Downs 77 

et al., 2021; Zhang et al., 2021; Ma et al., 2023). Moreover, aquatic algae and plants are 78 

extremely susceptible to various sunscreen chemicals, exhibiting growth-inhibition toxicities as 79 

low as parts per trillions (Mao et al., 2017; Zhong et al., 2019; Xing et al., 2022; Yang et al., 80 

2023). 81 

  82 

Ecotoxicological and risk assessment research on terrestrial species and habitats has lagged 83 

far behind studies of aquatic systems, but has recently gained prominence because of the impact 84 

sunscreen chemicals have had on hydroponics and irrigated agriculture (Downs et al., 2022b; 85 

Gautam et al., 2022). Independent groups in China, Mexico, Portugal, and Spain noticed a 86 

significant reduction in crop yields when R1 recycled-waters from municipal waste-water 87 

treatment facilities (WWTF) were used for irrigation (Sabourin et al., 2009; Chen et al., 2017; 88 

Cabrera-Peralta and Peña-Alvarez, 2018; Zhong et al., 2020; Ramos et al., 2021). Experimental 89 

and reductive investigations established that one of the main categories of toxicants to plants 90 

were sunscreen chemicals, especially oxybenzone, avobenzone, and octocrylene (Chen et al., 91 

2017; Zhong et al., 2020). This finding is consistent with the historical usage of these chemicals 92 

(Downs et al., 2021). These findings led to research regarding sunscreen-chemical impacts to 93 

agricultural outcomes when biosolids from a WWTF were used as soil amendments (Wang and 94 

Kannan, 2017; Gautam et al., 2022; Li et al., 2022). New research shows that sunscreen chemical 95 

contamination and toxicities extend to migratory birds, sea turtles, and even amphibians (Fin et 96 

al., 2017; Molins-Delgado et al., 2017; Li et al., 2022; Li et al., 2023). Concern over sunscreen 97 

pollution has become so great that even indirect routes of contamination, including atmospheric 98 

deposition from saerosolized sunscreen volatile organic carbons (VOCs), surf aerosolization, and 99 

various means of discharge from WWTF are now identified as critical targets for mitigation 100 

efforts (Teplitz et al., 2018; Pegoraro et al., 2020; Bayati et al., 2021; Franklin et al., 2021; 101 

Pendergraft et al., 2021; Franklin et al., 2022). 102 

 103 

Several environmental monitoring studies have suggested the value of using the Anthropause 104 

to establish baseline data for determining the impact of tourism to wildlife receptors and natural 105 

resources (Coll, 2020; Chakraborty et al., 2021). Research on the Anthropause has been a crucial 106 

factor in identifying the lack of effectiveness of current conservation management policies 107 

regarding tourism/recreational activities and intensity, allowing for resource management to 108 

adjust policies to increase effectiveness, and providing a measure for policy effectiveness (Bates 109 

et al., 2020; Callejas et al., 2021; Ben-Haddad et al., 2022). For example, using the Anthropause 110 

as a baseline, it was shown that tourism-associated chemical pollution was responsible for the 111 

high-levels of genotoxicity seen in near-shore populations of sergeant-major reef fish (de Lima e 112 

Silva et al., 2022). Schofield and co-workers also used the Anthropause to demonstrate that 113 

tourism served as a major disturbance to sea turtle nesting (critical or essential habitat) and 114 

recommended that a refuge zone be established to facilitate increased turtle aggregation in this 115 

critical habitat (Schofield et al., 2021). In other studies, fish densities in ecologically important 116 

habitat structures improved significantly during the Anthropause, but subsequently declined as 117 

tourism recovered (Bertucci et al., 2023). Ghost crab populations on tourist beaches were 118 

recognized to be severely reduced because of the Anthropause differential, concluding that “… 119 

urban beaches should not be exclusively managed for recreational purposes.” (Costa et al., 120 

2022).  121 



 122 

The goal of this study was to determine if sunscreen pollution abated during the Anthropause 123 

and to identify the severity of the pollution when tourism/recreation recovered at two coastal 124 

units of the U.S. National Park System: Kaloko-Honokōhau National Historical Park in Hawaiʻi, 125 

U.S.A. and Cape Lookout National Seashore in North Carolina, U.S.A. These two sites were 126 

selected because the U.S. National Park Service had concerns about the implications of mass 127 

tourism and the impact to two of the major coastal park units. The Hawaii site represented a 128 

Pacific coast location while the North Carolina site represented an Atlantic location. Active 129 

ingredients of sunscreen products were measured in water and sand samples at both locations, 130 

including oxybenzone, octinoxate, octocrylene, octisalate, homosalate, and relevant breakdown 131 

products of some of these ingredients. A risk assessment was conducted on Anthropause and 132 

post-Anthropause contaminant levels for both locations to determine if there was a threat 133 

reduction during the Anthropause, and whether tourism recovery in the post-Anthropause period 134 

served as a threat to coastal wildlife. To this end, shoreline sand samples were collected at both 135 

National Park units in May 2020 and then again in August 2021. Our results contribute to the 136 

baseline information on the linkages between tourism/recreation and coastal natural resources, 137 

which can be used to facilitate the development of effective, evidence-based management 138 

policies to ensure conservation of biodiversity, as well as sustainable use by tourism (Zieleniski 139 

and Botero, 2020; Armstrong et al., 2022; Procko et al., 2022). 140 

 141 

  142 



2. Materials and Methods 143 
 144 

2.1 Sample Locations and Collections 145 

 146 

2.1.1 Sample Locations 147 

 148 

Seawater and beach-sand samples were collected from two U.S. National Park units: Kaloko-149 

Honokōhau National Historical Park on the Island of Hawaiʻi in the State of Hawaiʻi (U.S.A.; 150 

Figures 1A and 1B) and Cape Lookout National Seashore in the southern Outer Banks region of 151 

the State of North Carolina (U.S.A.; Figure 1C). Samples were collected along shoreline of the 152 

ʻAiʻōpio Fishtrap within Kaloko-Honokōhau National Historical Park (Figure 1B). For Cape 153 

Lookout National Seashore, two separate locations were sampled (Figure 1C).  One location is 154 

the western end of the island of Shackleford Banks (Figures 1C and 1D) and the other is on the 155 

island of South Core Banks that is adjacent to the Cape Lookout Lighthouse facility (Figures 1C 156 

and 1E). Coordinates for all sampling sites are listed in Supplemental Table 1 and, in most 157 

cases, were determined using a Garmin WAAS-enabled GPS. Accuracy for all locations was 158 

within three meters. 159 

  160 

2.1.2 Sampling time points. 161 

 162 

At Kaloko-Honokōhau National Historical Park, water samples were collected in April 18, 2018 163 

(15:30-15:48 HST), November 11, 2019 (11:47 HST), May 8, 2020 (16:00-17:00 HST), and 164 

August 18, 2021 (sand samples were collected from 09:06 to 09:24, and water samples were 165 

collected from 14:10 to 14:21 HST). Water samples were collected during the outgoing tide 166 

because concentrations are the highest at this time period (unpublished data). 167 

 168 

 At Cape Lookout National Seashore, sand samples from both the South Core Banks and 169 

the Shackleford Banks sites were collected in May 14, 2020 (Figure 1C). Water and sand 170 

samples were collected July 25, 2021, at the South Core Banks site. Water and sand samples 171 

were collected July 24, 2021 at the Shackleford Banks site. Water samples were collected during 172 

the outgoing high tide and sand samples were collected between 2-4 pm, when tourist density on 173 

the beaches is greatest. 174 

 175 

2.1.3 Sampling Methods 176 

  177 

Spatulas for sand collection and sample vessels were precleaned following EPA Method 815-R-178 

05-004.  179 

 180 

Water samples were collected using either precleaned one-liter amber glass bottles with 181 

Teflon-lined lids (I-Chem, 300 series, VWR) or precleaned 5 mm PFE-bags with seals, at a depth 182 

of 30 cm below the surface of the water. This depth reflects the measurement of the 183 

contaminants in the water column versus what is found on the water surface. 184 

 185 

 Sand samples were collected by measuring a 10 x 10 cm area on the surface of the beach, 186 

and a cleaned spatula was used to collect the top 0.5 cm of surface sand into a precleaned 100 187 

mL amber jar with a Teflon-lined lid (Environment Express). Spatulas were only used once to 188 

prevent cross-contamination. 189 

 190 



 After collection, both water and sand samples were placed in a cooler until transferred to 191 

a freezer between -20°C to -30°C.  Samples were shipped frozen to the laboratory and remained 192 

in a -30°C freezer until processing. 193 

 194 

2.2 Analytical standard and chemicals 195 

The following analytical standards (> 97% purity) were used: 2-Hydroxy-4-196 

metoxybenzophenone (oxybenzone (BP3),  dihydroxy benzophenone (benzophenone-1, BP1), 5-197 

benzoyl-4-hydroxy-2-methoxybenzene-1-sulfonic acid (benzophenone-4, BP4), 4-198 

hydroxybenzophenone (4HB), 4,4'-dihydroxy benzophenone (4DHB), 3-(4-tert-butylphenyl)-1-199 

(4-methoxyphenyl)propane-1,3-dione (avobenzone,AVO), drometrizole (UVP), dimethyl 200 

benzotriazole (DMBZT), octocrylene (OC), 3,3,5-trimethylcyclohexyl 2-hydroxybenzoate 201 

(homosalate, HMS), 2-ethylhexyl salicylate (octisalate,OS), and BP-13C were purchased from 202 

Sigma-Aldrich (Darmstadt, Germany). Benzophenone-2 (BP-2), 2,2'-dihydroxy-4-203 

methoxybenzophenone (DHMB, benzophenone-8), ethyl p-aminobenzoic acid (benzocaine, 204 

EtPABA), octinoxate (ethylhexyl methoxycinnamate), and 1H-benzotriazole (BZT) were 205 

purchased from Merck (Darmstadt, Germany). 4-Methylbenzylidene camphor was obtained from 206 

Dr. Ehrenstorfer (Augsburg, Germany). MeBZT was acquired from TCI (Zwijndrecht, Belgium). 207 

Then isotopically labelled standards BP3-
13

C, BP3-d5, 4MBC-d4 and BZT-d4 were obtained 208 

from CDN isotopes (Quebec, Canada).  209 

Methanol (MeOH), acetonitrile (ACN), dichloromethane (DCM), ethyl acetate (EtAc), 210 

formic acid and HPLC-grade water were purchased from J.T. Baker (Deventer, The Netherlands) 211 

and were all ≥99.9% purity and included Certificates of Analysis. Aluminum oxide (≥99.9% 212 

purity), used as a clean-up agent in the pressurized liquid extraction (PLE) cells, was obtained 213 

from Merck (Darmstadt, Germany). Nitrogen and argon gasses (purchased from Air Liquid – 214 

Barcelona, Spain) were of 99.999% purity. Glass fiber filters (1 µm) and nylon membranes (0.45 215 

µm) from Whatman International Ltd. (Maidstone, UK) and syringe filters supplied by Dionex 216 

Corporation (Sunnyvale, CA, USA) were used. 217 

 218 

Stock solutions of the UV-filters and internal standards were prepared at 100 mg/L in 219 

MeOH and stored in the dark at -20 °C. Separate working standard solutions with UV-filters and 220 

internal standards were prepared at 10 mg/L in MeOH, stored in the dark at -20 °C, and refreshed 221 

weekly. 222 

2.3 Sample pre-treatment and analytes extraction 223 

The optimized and validated analytical methods used for the multiresidue determination of the 224 

target compounds and isotopically labelled standards in the standard solutions and in the sample 225 

extracts, were based on previous procedures developed in our laboratories (Gago-Ferrero et al., 226 

2011; Downs et al., 2022b) and expanded for new compounds as described in Downs et al., 227 

2022c. 228 

2.3.1 Sand 229 

 230 

The extraction of the selected analytes from the sediment samples was carried out according to 231 

the expanded method based on Rodrigues et al. (2021). Benzophenone (BP), Tinosorb M 232 

(methylene bis-benzotriazolyl tetramethylbutylphenol; CAS# 103597-45-1), and oxybenzone 233 

(CAS# 131-57-7) were purchased from Sigma-Aldrich (Lyon, France). Tinosorb S (bis-234 



ethylhexyloxyphenol methoxyphenyl triazine; CAS# 187393-00-6), avobenzone (butyl 235 

methoxydibenzoylmethane; CAS# 70356-09-1), homosalate (CAS# 118-56-9), octisalate 236 

(ethylhexyl salicylate; CAS# 118-60-5) and octocrylene (CAS# 6197-30-4) were kindly provided 237 

by Pierre Fabre Laboratories. Butyloctyl salicylate (CAS# 190085-41-7) was obtained from 238 

Innospec Active Chemicals. Octinoxate (ethylhexyl methoxycinnamate; CAS# 5466-77-3) was 239 

obtained from Accustandard (Cat# ALR144N). 240 

The standard additions method was used to measure the concentration of UV filters in 241 

sand, as described previously (Rodrigues et al., 2021). Briefly, the extraction solutions were 242 

MeOH containing 2000, 500, 200, 150, 100, 50, and 0 ng/mL of each UV filter. Exact 243 

concentrations were calculated from the concentrations of each compound in the stock solution. 244 

Extraction was performed on sand samples (seven samples, ~2 g of sand per each) each with a 245 

MeOH (2 mL), and the concentration of UV filters in the supernatant was measured by direct 246 

injection using an Ultra High Performance liquid chromatography-high resolution mass 247 

spectrometer (UHPLC-HRMS) and calculation of the intersection of the regression line with the 248 

x-axis. After analysis, the solvent and the interstitial water were removed by evaporation with a 249 

GeneVac HT-4X. The exact mass of dry sand gave the initial mass of water in the sand and the 250 

total volume of supernatant (2-mL MeOH + interstitial water), allowing for correction of the 251 

concentrations in supernatant and in sand. The limits of quantification (LOQ) are provided in 252 

Supplemental Table 2. 253 

The recovery rates were calculated from spiked sand samples, which were extracted with 254 

MeOH using the same protocol as for extraction of natural sand samples (Rodrigues et al., 2021). 255 

The recovery rates are reported in Supplemental Table 3.  256 

2.3.2 Water 257 

 258 

The extraction of the 20 aromatic hydrocarbon ultraviolet filters (parent and transformation 259 

products) from the water samples followed the expanded method based on Downs et al. (2021).  260 

2.4 LC-MS analysis 261 

2.4.1 HPLC- MS/MS analysis of water 262 

The chromatographic separation and tandem-mass spectrometry detection for water analysis was 263 

performed as described in Downs et al, (2022b and c).  264 

 265 

Several methodological blanks were included (reagent blanks were run by processing 266 

HPLC water in the same way as samples and procedural blank without matrix or sample). A 267 

surrogate standard (BP-13C) as evaluation of the extraction performance and IS for the 268 

quantification of the target analytes (Supplemental Table 4). 269 

.  270 

 We use isotopically labeled standards to spike the samples.  These isotopic compounds 271 

are not used commercially and can be differentiated in both the chromatograms and with their 272 

mass:charge ratios. We use these isotopic standards to determine the %recovery of our extraction 273 

method – a measure of quantitation accuracy. 274 

2.4.2 UHPLC-(ESI)-Orbitrap MS analysis of sand 275 



The chromatographic separation of all analytes is described in Downs et al., 2022b and was 276 

performed in an Acquity UHPLC C18 column (100 Å, 1.8 μm, 2.1 ×100 mm) with a guard 277 

column containing the same material, using an Acquity ultra-high-performance liquid 278 

chromatograph (UHPLC) (Waters Corporation, Milford, Ma, USA) coupled to a Q-Exactive 279 

Orbitrap mass spectrometer (Thermo Scientific, Waltham, Ma, USA).  280 

 281 

All samples were measured in duplicate and the reported value corresponds to the mean 282 

of the two determinations. All the compounds were quantified and confirmed with the two most 283 

intense transitions by the isotope dilution approach. 284 

  285 

LODs, LOQs and recovery rates are listed elsewhere of analytes and the average recovery 286 

rates are the same as found in (Downs et al, 2022b). 287 

2.5. Risk Analysis 288 

As described in previous papers (Downs et al., 2022b, 2022c), the European Commission 289 

guidance was used to calculate risk quotients (RQs) for oxybenzone and octocrylene in both 290 

water and sand samples (European Commission 2003; European Medicines Agency 2006; 291 

Dussault et al., 2008; Hernando et al., 2006; Downs et al., 2021; Downs et al., 2022b).  292 

 293 

 It is praxis to use an AF of 1000 for acute toxicity data and 100 for chronic toxicity data 294 

(Belanger et al., 2021).  To calculate RQs, the following equation was used: RQ = 295 

(MEC)/(PNEC, NOEC, LC50 or EC50) x 1000. Toxicity reference values were obtained from the 296 

published literature (Tables 2-4, 5-7) (Chapman et al., 2009; Dussault et al., 2008; Environment 297 

Canada, 2013; Belanger et al., 2021; Jung et al., 2021). 298 

 299 

 The criteria for Levels of Concern for organisms in ecosystems for interpreting the RQs 300 

is described in Downs et al., 2022b and 2022c. A color scheme is used for ease of visualization 301 

of the Levels of Concern for this methodology (Downs et al., 2021a; Tables 1 and 2, 302 

Supplemental Table 5). Red boxes represent RQ values greater than 1, indicating an 303 

unacceptable risk requiring immediate action, and RQ≥1 is the standard criteria for the Level of 304 

Concern within the European Commission framework. Orange boxes represent values between 305 

0.5 and 1.0, a moderate concern for an acute impact. Yellow boxes represent values between 0.1 306 

and 0.49, indicating a lower risk of impact. White boxes indicate no concern of danger with 307 

values below 0.1. 308 

  309 



3. Results 310 

3.1.1 Water Samples from Kaloko-Honokōhau National Historical Park.  311 

 312 

Sunscreen target analytes in water samples collected from 2018 to 2021 are listed in Table 1A.  313 

Site W3 was sampled from 2018 to 2021.  Nine out of the 17 target UVFs analyzed were 314 

detected at least in one water sample (Table 1A). Oxybenzone levels ranged from 5,150 ng/L to 315 

35,207 ng/L in 2018-2019, but were below the limit of quantification during the Anthropause. 316 

Oxybenzone levels remained at this unquantifiable level in 2021. Avobenzone, octisalate, 317 

homosalate and octocrylene at site W3 did not follow this behavior.  In 2018-2019, these 318 

sunscreen compounds were quantifiable in the µg/L concentrations, but were not quantifiable 319 

during the Anthropause sampling period. All target compounds (except oxybenzone) were 320 

detected several-fold higher in 2021 compared to 2018-2019 (Table 1A). During the 321 

Anthropause sampling, only Site W5 had measurable quantities of a single sunscreen compound 322 

– 85 ng/L oxybenzone.  323 

 324 

3.1.2. Sand Samples from Kaloko-Honokōhau National Historical Park.  325 

 326 

Only one sample from site S4 was collected (2018) before the Anthropause time-period. Site S4 327 

is a popular area for beachgoers to dwell during their visit. In 2018, common sunscreen 328 

compounds were detected in concentrations of parts per billion, while the breakdown product of 329 

octocrylene, benzophenone, was detected at 60 ng/g (Table 1B).  During the Anthropause 330 

sampling period, all five beach sites had quantifiable levels of octocrylene (mean = 57 ng/g, Std 331 

deviation = 36.7 ng/g), but no measurable concentration of the other six sunscreen compounds 332 

(Table 1B). In 2021, oxybenzone was not detected at any of the beach sites. Octocrylene (mean 333 

= 27,485 ng/g, Std deviation = 4,414 ng/g) and avobenzone (mean = 3,700 ng/g, Std Deviation = 334 

5,666 ng/g; median = 1,333 ng/g) were measurable at all four 2021-beach sites. Homosalate 335 

(mean = 22,102 ng/g, Std deviation = 21,029 ng/g; median = 18,860 ng/g) and octisalate (mean = 336 

12,393 ng/g, Std deviation = 12,583; median = 9,814 ng/g) were measurable at sites S2-S4, but 337 

were not detectable at site S1(Table 1B). 338 

 339 

3.1.3. Water samples from South Core Banks and Shackleford Banks, Cape Lookout National 340 

Seashore area 341 

 342 

Water samples were not collected during the Anthropause period, but were collected during the 343 

2021 sampling period. Sampling occurred in the proximity of a high density of swimmers for 344 

Site CW1, but Site CW2 had only 22 swimmers south of the collection site.  At the time of 345 

sample collection, current flow was moving south to north. At the South Core Banks sites, Site 346 

CW1 had extremely high levels of avobenzone, octisalate, octocrylene, and oxybenzone (Table 347 

2A). At site CW1, it was observed that individuals were standing in the water and applying 348 

aerosol sunscreen to 90% of their body, then quickly entering into the water. 349 

 350 

 The site SW1 sample at the Shackleford Banks area (Figure 1D, Table 2A) was 351 

collected in the midst of ~80 people in the water in a small cove that contained a centralized 352 

eddy.  It was also observed that at least two individuals sprayed aerosol sunscreen onto their 353 

bodies while standing in the water.  Several individuals on watercraft anchored next to shore 354 

were also spraying aerosol sunscreen to their bodies, and the spray was drifting onto the cove’s 355 

water-surface. 356 



 357 

3.1.4. Sand samples from South Core Banks and Shackleford Banks, Cape Lookout National 358 

Seashore area 359 

 360 

Sand samples collected during the Anthropause period at the South Core Banks site (Figures 1C, 361 

1E) have no quantifiable levels of target sunscreen chemicals (Table 2B).  During this period, 362 

the commercial ferry services to the islands were not operating transport to either of the islands. 363 

During the sampling period of 2021, levels of avobenzone, homosalate, octisalate, octocrylene, 364 

and oxybenzone were all measurable in sand samples, though concentrations ranged by as much 365 

as 12-fold (Table 2B). Benzophenone was measurable at site C1 and site C4 (Table 2B).  366 

  367 

 Sand samples collected during the Anthropause period at the Shackleford Bank site 368 

(Figures 1C, 1D) had no quantifiable levels of target sunscreen chemicals with the exception of 369 

Site 4, where 10 ng/g of octinoxate was measured (Table 2C). During the 2021 sampling period, 370 

levels of six of the seven target sunscreens chemicals were measurable, the exception being 371 

octinoxate (Table 2C).  372 

  373 

3.2. Risk Analysis 374 

 375 

3.2.1. Risk quotients for water samples Kaloko-Honokōhau National Historical Park.  376 

 377 

During the 2018-2019 pre-Anthropause period, RQs for oxybenzone concentrations in water 378 

samples exhibited a severe threat to the range of taxonomic receptors found at Kaloko-379 

Honokōhau (Table 3). This result is in striking contrast to the RQs for all the water samples 380 

during the 2020 Anthropause period, except for site W5.  For 2020 W5, the measurement of 381 

oxybenzone posed a severe threat to coral receptors, lower threat levels to arthropods and 382 

molluscs, and a moderate to severe threat to fish and photosynthetic taxa (Table 3). Risk 383 

quotients for oxybenzone in water samples in 2021 was “0” because oxybenzone was always 384 

below the limit of detection, i.e., not detected. 385 

 386 

 Octocrylene RQs in water samples from 2018-2021 showed a different trend than that of 387 

oxybenzone (Table 3); the RQs for the four major taxonomic groups exhibited a severe threat. 388 

During the Anthropause period, RQ values were “0” or not calculable because octocrylene was 389 

not detected. In 2021, with the return of crowds using oxybenzone-free sunscreens, octocrylene 390 

levels in W2 and W3 had RQ>1, indicating a severe threat to the four taxonomic groups. 391 

 392 

3.2.2. Risk quotients for sand samples at Kaloko-Honokōhau National Historical Park. 393 

 394 

The single sand sample collected in 2018 had a RQ > 1 for oxybenzone, indicating a severe 395 

threat to the two terrestrial taxonomic groups (Table 4). Sand samples collected in 2020-2021 396 

had an RQ of >0, indicating no threat from oxybenzone because oxybenzone was not detected in 397 

any of the water samples. 398 

 399 

 In contrast, the RQ values for octocrylene were “0” in all the sand samples collected from 400 

2018-2021, except for site S5 (Table 4). Tourists are prohibited from lounging at site S5 by a 401 

park-specific policy of the U.S. National Park System. 402 

 403 

3.2.3. Risk quotients for water samples at South Core Banks, Cape Lookout National Seashore 404 



 405 

Oxybenzone risk quotients for water samples collected from South Core Banks (Figure 1C-1E) 406 

during the 2021 sampling period had RQ  values of more than 1 for both sampling locations, 407 

with the exception was for site CW2, where the sea urchin and mussel whereRQ = 0.9 (Table 5).  408 

 409 

 Octocrylene was not detected at site CW2 (Figure 1E) resulting in an RQ of 0. Sites 410 

CW1 and SW1 had RQ values far exceeding “1” (Table 5). 411 

 412 

3.2.4. Risk quotients for sand samples at South Core Banks, Cape Lookout National Seashore 413 

 414 

During the Anthropause, neither oxybenzone nor octocrylene were detected at sites C1-C3 415 

(Figure 1 E, Table 1), resulting in a RQ = 0 (Table 6). All sand samples for the sites collected 416 

in 2021 had RQ>1, indicating a severe threat to localized wildlife. 417 

 418 

 419 

3.2.5. Risk quotients for sand samples at Shackleford Banks, Cape Lookout National Seashore 420 

 421 

As with South Core Banks, none of the sand samples collected during the Anthropause contained 422 

oxybenzone or octocrylene, resulting in a RQ = 0 (Table 7). It should be noted that Site S2 was 423 

not collected during the 2020 sampling time point, but only during the 2021 sampling. For 424 

oxybenzone, all five sites predominantly exhibited an RQ>1, with the exception of sites S2 and 425 

S5 for two of the parameters of Eisenia fetida (Table 7). Site S3 had an RQ = 0 for octocrylene; 426 

this site was immediately in front of the latrines, and away from the beach zone where tourists 427 

repose on the beach. 428 

 429 

 430 

  431 



4. Discussion 432 
 433 

Both national park units exhibited an almost absolute reduction in the levels of sunscreen 434 

contamination during the Anthropause period, a striking commonality considering the 435 

geographic expanse separating the parks. Once travel restrictions were lifted, a large influx of 436 

tourists ensued at both locations, resulting in a relatively sudden and increase in dangerous levels 437 

of sunscreen chemical pollution. This study supports the argument that unmanaged tourism is a 438 

source of coastal sunscreen pollution that poses a threat to the localized continuity of species 439 

populations and biodiversity, especially to coral reefs and fisheries (Downs et al., 2022c; Pei et 440 

al., 2023). 441 

 442 

 One major difference between the two sites was the absence of oxybenzone in the post-443 

Anthropause-period in Kaloko-Honokōhau National Historical Park. This absence is most likely 444 

a direct result of the implementation of the State of Hawaiʻi Act 104 (2018), which banned the 445 

sale and distribution of sunscreen products containing oxybenzone or octinoxate and went into 446 

effect on January 1, 2021 (Downs et al., 2022b). Octocrylene contamination during the 447 

Anthropause at this location may have come from local residents who were able to access the 448 

beach areas even when the park was officially closed (Table 1B; State of Hawaiʻi, 2020). It 449 

should be noted that at these two locations, the major proximate source for sunscreen chemical 450 

contamination are swimmers, and that fluvial sewage discharges from homes or municipalities 451 

are not present within the boundaries of the National Park units and the nearest municipal 452 

discharge is over 7 km way with prevailing current going away from Shackleford Banks. 453 

  454 

The high RQ values for Kaloko-Honokōhau NHP for water and beach areas indicate that 455 

actions to mitigate sunscreen pollution are warranted. Besides the threat to the taxonomic 456 

categories included in this risk analysis, the threat to other endangered species (including those 457 

on the IUCN Red List and those protected under the U.S. Endangered Species Act) should be 458 

considered. Sea turtles accumulate sunscreen compounds and exhibit associated pathologies 459 

(Cocci et al., 2020; Cocci et al., 2022; Guevara-Melendez et al., 2023). Juvenile green sea turtles 460 

(Chelonia mydas) frequently haul-out onshore to bask along the shoreline of the ʻAiʻōpio 461 

Fishtrap at Kaloko-Honokōhau NHP.  Because these chemicals are readily absorbed through the 462 

skin, the concentrations of sunscreen contamination at this location may prove a serious threat 463 

both in and out of the water. Food sources in this area (macroalgae and turf algae) could also be 464 

contaminated with sunscreen chemicals and could be another route of exposure for these turtles 465 

as has been found in macroalgae and sea grasses elsewhere (Cunha et al., 2015; Agawin et al., 466 

2022; Xing et al., 2022; García-Márquez et al., 2023).  467 

 468 

Both national park units provide important sea turtle habitat. Kaloko-Honokōhau NHP is 469 

a feeding and resting area for juvenile green turtles. The Cape Lookout National Seashore is a 470 

critical nesting habitat for loggerhead, Kemp’s Ridley, green, and leatherback sea turtle species.  471 

Sunscreen contamination can occur on sands immediately adjacent to sea turtle nesting sites at 472 

Cape Lookout (Supplemental Figure 1), either via drift from surf-action or from aerosol spray 473 

discharges, as well as from urination of tourists and their canine pets (C. Downs, personal 474 

observation). We observed both signs of human urination (done out of ignorance with confirmed 475 

admission by the perpetrators) and canines urinating on the sea turtle marker poles during our 476 

field sampling.  Canine urine can potentially be a source of contamination because of market 477 

pressure to use canine sunscreen on pets, licking their owners' sunscreen-laden skin, and from 478 

drinking from plastic dishes or on canine chew-toys which often contain oxybenzone as a UV 479 



stabilizer (Asimakopoulos et al., 2016; Karthikraj et al., 2020; American Kennel Club, 2023). 480 

Temperature is a major driver of sea turtle sex ratio (Mrosovsky and Provancha, 1989; Tanner et 481 

al., 2019; Hays et al., 2023). For a broad range of vertebrates, oxybenzone can cause 482 

feminization of juveniles, effect change in primary and secondary sex ratios, and alter embryonic 483 

developmental fates (Bae et aal., 2016; Santamaria et al., 2020; Xu et al., 2021; Moreira et al., 484 

2022; Bai et al., 2023). In Florida, reports of sex ratios in sea turtle nests are 99 females:1 male, 485 

even in areas/years where average temperatures during nesting incubations are not above the 486 

critical threshold (U.S. NOAA, 2023b). Could sunscreen pollution be a contributing factor to 487 

skewed sex ratios? Monitoring data collected for 2020-2021 nest hatching during the 488 

Anthropause in Cape Lookout and other marine parks may provide some insight. 489 

 490 

The 2014-2017 global coral bleaching event caused extensive mortality to the park’s 491 

coral reefs (McCutcheon and McKenna, 2021). The RQ analysis indicates that live coral 492 

recovery may be affected by sunscreen contamination, particularly if bleaching events associated 493 

with temperature increases become more frequent with the progression of global climate change. 494 

Increase in sea surface temperatures can aggravate the toxicities of oxybenzone, avobenzone, and 495 

octocrylene suggesting that the compound stressors may exacerbate localized population declines 496 

(Wijgerde et al., 2020; Bordalo et al., 2023; He et al., 2023; Vuckovic et al., 2022; Morais et al., 497 

2023; He et al., 2023; Zhang et al., 2024). Mitigation of sunscreen pollution will be necessary for 498 

coral reef recovery and conservation efforts (Downs et al., 2022a; Pastorino, 2024).  499 

 500 

High RQ values for the Cape Lookout National Marine Seashores barrier islands indicate 501 

a threat to both the marine and beach ecosystems. The botanical diversity of the beach dunes on 502 

these islands provides critical ecosystem services for preventing coastal erosion. Oxybenzone, 503 

octocrylene, avobenzone, and octinoxate are toxic to vascular plants (Zhong et al., 2020; Santo et 504 

al., 2023; Li et al., 2023). Benzophenone, the breakdown product of octocrylene, is an herbicide 505 

patented by both Monsanto and the Rohm & Haas Company (Downs et al., 2021). The major 506 

metabolite of benzophenone, 4-hydroxybenzophenone, is a powerful estrogenic endocrine 507 

disruptor (Carstensen et al., 2023). Ecotoxicological studies should be conducted using native 508 

plants species from this area to generate a relevant ecological risk assessment for these chemicals 509 

on their impact to native floral species, and their threat to the ecological-services structures they 510 

provide (Feagin et al., 2013; Feagin et al., 2019). As a result of sunscreen chemical toxicity, 511 

decreased botanical root densities in these dunes may make them more susceptible to erosion 512 

from storm action (Li et al., 2023).  Rising sea levels with increasingly intense storms threaten 513 

North Carolina’s barrier islands; therefore, it is important to address factors that decrease 514 

resilience to coastal erosion (Sweet et al., 2022; Balaguru et al., 2023). 515 

 516 

Although plants can act as keystone species for building-up and sustaining dune 517 

landscapes, ghost crabs (Genus Ocypode) contribute to the bioerosion and aeration of dune 518 

structures, as well as beach sedimentary turnover and mixing (Hughes et al., 2014). They are a 519 

vital component of the beach landscape food web, acting as an important food source for birds 520 

and mammals (Wolcott, 1978).  Ghost crabs are an indicator-species for the health condition of 521 

coastal dunes impacted by tourism (Schlacher et al., 2010; Noriega et al., 2012; Schlacher et al., 522 

2016). With high concentrations of sunscreen chemicals in both national park units, it begs the 523 

question of whether sunscreen ingredients could be the etiological drivers for tourism-associated 524 

declines of ghost crab demographics and detrimental changes in social behaviors, especially 525 

because oxybenzone, octocrylene, benzophenone, and avobenzone are renowned endocrine 526 

disruptors (Campos et al., 2019; Muñiz-González and Martínez-Guitarte, 2020; Boyd et al., 527 



2021). Decapods are susceptible to estrogenic endocrine disruption, especially to estrogenic-axis 528 

disruption which will inappropriately induce vitellogenin production in males, exhibit significant 529 

shifts in sex ratios in decapod populations, and display a reduction in population persistence 530 

(Brian, 2005; Lye et al., 2008; Matozzo et al., 2008; Park et al., 2014; Langston, 2020). 531 

Furthermore, oxybenzone and octocrylene’s degradate, benzophenone, are genotoxic and the 532 

high concentration of these chemicals on beach sands may explain why high levels of 533 

genotoxicity in ghost crabs were associated with tourist/recreational beaches (de Lima de Silva et 534 

al., 2002; Ma et al., 2023). Ghost crabs are not the only decapod species under threat. The 535 

Barden Inlet Blue Crab Spawning Sanctuary is within the boundaries of the Cape Lookout 536 

National Seashore, between Shackleford Banks and South Core Banks. This Sanctuary is 537 

immediately adjacent to the Cape Lookout sampling site, and rests within the pollution plume of 538 

this site.  The tourism’s sunscreen pollution plume in this area could potentially impact this 539 

spawning habitat. 540 

 541 

Many species of migratory birds subsist on ghost crabs, and their principle feeding 542 

grounds are coastal beaches. Storks, harriers, gulls, eagles, kestrels, and other carnivorous bird 543 

species were shown to have excessive amounts of oxybenzone and its metabolites and 544 

octocrylene accumulating in eggs (Molins-Delgado et al., 2017; Oró-Nolla et al., 2021). 545 

Octocrylene was detected in 100% of the bird egg samples from the variety of species studied; 546 

therefore, benzophenone (a known carcinogen and reproductive toxicant) may also be a 547 

contaminant (Downs et al., 2021). Ghost crabs’ primary habitat is regularly visited by tourists 548 

and local recreationists; their shoreline habitat is highly contaminated with sunscreen pollutants. 549 

Could a diet of ghost crabs inhabiting sunscreen-polluted beaches be a major factor for egg 550 

contamination and subsequent hatching success? The bioaccumulation and biomagnification of 551 

these sunscreen chemicals need to be assessed in wildlife settings, starting with a rigorous survey 552 

of contaminant loads in ghost crabs from various locations. 553 

 554 

 555 

The beaches of Kaloko-Honokōhau are designated Critical Habitat for the recovery of 556 

monk seals under the Endangered Species Act (Federal Register, 2015). Hawaiian Monk seals 557 

(Neomonachus schauinslandi) may spend about 1/3 of their time resting on beaches in the main 558 

Hawaiian Islands (Wilson et al., 2017). In Kaloko-Honokōhau, seals have been recorded to haul 559 

out and rest at some of the same locations the samples were collected. In mammals, oxybenzone, 560 

avobenzone, benzophenone and octocrylene can be readily absorbed through the skin and 561 

detected in blood samples after two weeks from a single acute exposure (Matta et al., 2019; 562 

Matta et al., 2020; Downs et al., 2021; Pilli et al., 2021). Increasing exposure concentration often 563 

translates into increased body absorption, and with no vehicle formulation to protect or mitigate 564 

the rate of absorption, exposure directly from sand may result in a very high rate of absorption 565 

(Kurul and Hekimoglu, 2001; Gonzalez et al., 2006; Do et al., 2022). Octocrylene has been 566 

shown to be carried at a high body-burden concentration in cetaceans, and octocrylene 567 

contamination can be passed directly from mother to neonate via breastmilk, suggesting a similar 568 

phenomenon in pinnipeds (Gago-Ferrero et al., 2013; Alonso et al., 2015). Octocrylene can 569 

directly reduce Vitamin D production (Abdi et al., 2022). Octocrylene accumulation from beach-570 

reposed seals may affect Vitamin D seasonal variance, and result in deficiencies at vulnerable 571 

times during reproductive development as well as immunocompetence (Wilske, 1993; Atkinson 572 

and Gilmartin, 1992; Wilske and Arnbom, 1996). Monk seals may also consume high levels of 573 

microplastics (Pietroluongo et al., 2022; Mclvor et al., 2023).  Marine plastic debris is a 574 

concentrator of sunscreen chemicals, thus consumption of marine plastics in sunscreen polluted 575 



waters may increase exposure risk and body burdens to pinnipeds that haul out on shore 576 

(O’Donovan et al., 2020; Achar et al., 2021; Cui et al., 2022). Research on contaminant 577 

accumulation in phocid seals is necessary to better understand this threat. 578 

 579 

It is important to note that the water samples we collected were at least 30 cm below the 580 

surface of the water.  In Shackleford Bank, the water sample was collected about 10 meters from 581 

the narrow swash zone, in and amongst over 120 swimmers in the water within 20 meters of the 582 

collection point. Kaloko-Honokōhau is a protected embayment that is the remnants of a cultural 583 

Hawaiian fishpond – it had no active swash zone on any of the collection days. Concentrations of 584 

many of the sunscreen compounds were above the solubility in fresh water or salt water (36 ppt 585 

salinity).  This is because water column loading of organic compounds can increase the solubility 586 

of these slightly hydrophobic and polyaromatic compounds (Witt, 1995; Dong et al., 2012; 587 

Nasher et al., 2013; Abdel-Safy and Mansour, 2016; Zukausjaute et al., 2021; Zheng et al., 588 

2023). Sunscreen compounds, such as oxybenzone and octocrylene, can readily be bound to 589 

proteins for increased solubilization and bioavailability (Ao et al., 2015; Ma et al., 2023a; Ma et 590 

al., 2023c; Tsurushima et al., 2023).  Proteins and acyl-chain compounds are major components 591 

of marine flocculence and organic carbon in the marine water column allowing for the increased 592 

availability within the length of the water column (Lee et al., 2000; Sun et al., 2019).  This is 593 

why we see a fraction of the sunscreen compounds on the surface of the water, and can detect 594 

sunscreen compounds meters deep in waters amongst corals (Tsui et al., 2017; He et al., 2023). 595 

Coral themselves are major sources of organic matter in the water column of coral reefs; 596 

including sunscreen solubilizing solvents such as dimethyl sulfoxide and 597 

dimethylsulphoniopropionate (Ferrier-Pages et al., 1990; Broadbent and Jones, 2006; 598 

Deschaseaux et al., 2015; Jones et al., 2015; Gardner et aal., 2016; Gardner et aal., 2017). 599 

 600 

Aerosol-spray sunscreen was observed to be an obvious mode of environmental 601 

contamination at both locations. Daily onshore winds at Cape Lookout frequently reach 10-20 602 

knots (https://www.ndbc.noaa.gov/station_page.php?station=clkn7).  Sunscreen drift from 603 

aerosol applicators can be significant with as much as 60-95% of the discharge not deposited on 604 

human skin.  In a laboratory setting with no wind, the amount of aerosol sunscreen lost to the 605 

environment and not deposited on the skin is over 61% of the discharge (Broussard et al., 2019). 606 

Furthermore, to achieve the SPF protection on the product label, the amount of aerosol sunscreen 607 

to be discharged is significantly higher than commonly assumed; a full body application to reach 608 

labeled SPF levels would require more than a 90-second-long continuous discharge application 609 

(Cancer Council, 2020). The high concentration of sunscreen contamination on surface sands is a 610 

testament to this form of environmental contamination. Aerosol applications have also been 611 

observed when beachgoers wade into the sea and discharge the product directly into receiving 612 

waters (e.g., Sample Site CW1, Figure 1E, Supplemental Video 1).  In most observed cases, the 613 

sunscreen-drift directly contaminates the water as the person applies the aerosol sunscreen.  614 

Tourists and local visitors have also been observed to submerge their bodies and swim 615 

immediately after sunscreen application of both lotions and aerosol applications without waiting 616 

the 15 minutes for the matrix formula to polymerize as indicated by the product’s directions for 617 

use (personal observations). This failure to use the technology as directed increases the discharge 618 

rate of the sunscreen product ingredients into the environment as well as causing “Sunscreen 619 

Abuse” which can cause harm to the individual and public health by potentially increasing their 620 

risk for UV-associated skin cancer (Autier, 2009; DiNardo and Downs, 2021). Estimates for the 621 

amount of sunscreen contamination of a specific location can be calculated based on rigorous 622 

surveys of the number of visitors and the percentage of those visitors using aerosol sprays (e.g., 623 



Downs et al., 2002c). Regulating the use of aerosol sunscreen sprays should be considered for 624 

marine protected areas as a way of mitigating environmental contamination via sunscreen aerosol 625 

drift (Logemann et al., 2022). 626 

 627 

5. Conclusion 628 

During the Anthropause of 2020, the concentrations of UV filters in water and sand samples at 629 

two national park units in the U.S. were lower than at times of normal visitation.  Because these 630 

filters, at the levels present in the collected samples from after the Anthropause, can negatively 631 

affect marine life, interventions will be necessary to avoid these deleterious effects. Previous 632 

studies have identified several behavioral barriers that may prevent visitors from adopting 633 

ecologically friendly sun protection behaviors. A multi-faceted approach, including educational 634 

campaigns, behavior change strategies, and park-specific prohibitions would address many of the 635 

challenges that parks face regarding sunscreen pollution while maintaining the quality of the 636 

visitor experience.    637 

  638 
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Figure and Table Legends 1684 
 1685 

 1686 

Figure 1. Location of water and sand sampling sites. (Panel A) Sampling sites of water and sand 1687 

samples within Kaloko-Honokōhau National Historical Park in Hawai’i, U.S.A. (Panel B) 1688 

Locations of Kaloko-Honokōhau National Historical Park on the Island of Hawai’i, Hawaii, 1689 

U.S.A. (Panel C) Location of the two sampling areas within the Cape Lookout National Marine 1690 

Seashore where “D” indicates the Shackleford Banks sampling area and “E” indicates the South 1691 

Core Banks sampling area. (Panel D) Location of the sand and water sampling sites at 1692 

Shackleford Banks.  (Panel E) Location of the sand and water sampling sites in the South Core 1693 

Banks sampling area adjacent to the Cape Lookout Light House compound. 1694 

  1695 



Table 1. Concentrations of sunscreen chemicals and their metabolites in water (Table 1A) and 1696 

beach sand (Table 1B) individual samples collected within the Kaloko-Honokōhau National 1697 

Historical Park in Hawai’i, U.S.A. Location of individual sample collection is shown in Figure 1698 

1A,B. Samples were collected in 2018-2021. Concentrations are in nanograms per liter. NA = 1699 

Not assayed. <LOQ = Below the Limit of Quantitation. <LOD = Below the Limit of Detection. 1700 

 1701 

 1702 
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Table 2. Concentrations of sunscreen chemicals and their metabolites in individual water and 1704 

beach sand samples collected within the Cape Lookout National Marine Seashore in North 1705 

Carolina, U.S.A. Location of individual sample collection is shown in Figure 1(Panel C-E). 1706 

Table 2A are concentrations in water samples collected from the South Core Bank area (Figure 1707 

1E). Table 2B are concentrations in beach sand samples collected from the South Core Bank area 1708 

(Figure 1E). Table 2C are concentrations in beach sand samples collected at Shackleford Banks 1709 

area (Figure 1D). Samples were collected in 2020-2021. Concentrations are in nanograms per 1710 

liter. NA = Not assayed. <LOQ = Below the Limit of Quantitation. <LOD = Below the Limit of 1711 

Detection. 1712 
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Table 3. Risk Quotient for Acute Toxicity of oxybenzone and octocrylene in water samples 1716 

collected at Kaloko-Honokōhau National Historical Park in Hawai’i, U.S.A from 2018-2021 1717 

associated with Table 1A for Cnidarian species, invertebrate (non-Cnidarian) species, plant and 1718 

algae species, and fish species. Color chart: RED= Severe condition for a potential toxic effect 1719 

≥1; Orange = Moderate threat condition for a potential toxic effect = 0.5 to 1.0; Yellow= Low 1720 

condition of concern 0.49 to 0.1. 1721 



  1722 



Table 4. Risk Quotient for Acute Toxicity of oxybenzone and octocrylene in beach sand samples 1723 

collected at Kaloko-Honokōhau National Historical Park in Hawai’i, U.S.A from 2018, 2020, 1724 

and 2021 associated with Table 1B for Annelida and Arthropoda species. Color chart: RED= 1725 

Severe condition for a potential toxic effect ≥1; Orange = Moderate threat condition for a 1726 

potential toxic effect = 0.5 to 1.0; Yellow= Low condition of concern 0.49 to 0.1. 1727 

 1728 

  1729 



Table 5. Risk Quotient for Acute Toxicity of oxybenzone and octocrylene in water samples 1730 

collected at South Core Banks within the Cape Lookout National Marine Seashore, North 1731 

Carolina U.S.A in 2021 associated with Table 2A for Cnidarian species, invertebrate (non-1732 

Cnidarian) species, plant and algae species, and fish species. Color chart: RED= Severe 1733 

condition for a potential toxic effect ≥1; Orange = Moderate threat condition for a potential toxic 1734 

effect = 0.5 to 1.0; Yellow= Low condition of concern 0.49 to 0.1. 1735 



  1736 



Table 6. Risk Quotient for Acute Toxicity of oxybenzone and octocrylene in beach sand samples 1737 

collected at South Core Banks within the Cape Lookout National Marine Seashore, North 1738 

Carolina U.S.A in 2021 associated with Table 2B for Annelida and Arthropoda species. Color 1739 

chart: RED= Severe condition for a potential toxic effect ≥1; Orange = Moderate threat condition 1740 

for a potential toxic effect = 0.5 to 1.0; Yellow= Low condition of concern 0.49 to 0.1. 1741 

 1742 

  1743 



Table 7. Risk Quotient for Acute Toxicity of oxybenzone and octocrylene in beach sand samples 1744 

collected at Shackelford Banks within the Cape Lookout National Marine Seashore, North 1745 

Carolina U.S.A in 2020-2021 associated with Table 2C for Annelida and Arthropoda species. 1746 

Color chart: RED= Severe condition for a potential toxic effect ≥1; Orange = Moderate threat 1747 

condition for a potential toxic effect = 0.5 to 1.0; Yellow= Low condition of concern 0.49 to 0.1. 1748 

 1749 


