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Motivation
The component tree (CT) [3] can model grey-level images for various image processing / analysis pur-
poses (filtering, segmentation, registration, retrieval…). Its generalized version, the multivalued compo-
nent tree (MCT) [1] can model images with hierarchically organized values. We provide new tools:

a new algorithm for the construction of MCTs;
two strategies for building hierarchical orders on values, required to further build MCTs.

Multivalued Component Tree

Let G = (Ω,a) be a non-directed graph. Let C[X] be the set of the connected components of X ⊆ Ω.
Let V be a finite set and 6 a hierarchical order on V, i.e. an order (1) which admits a minimum (resp.
a maximum) and (2) such that for any v ∈ V, the subset of the elements lower (resp. greater) than v is
totally ordered by 6.
Let us consider an image F : Ω → V. The threshold set of F at value v ∈ V is defined by Λv(F) =
{x ∈ Ω | v 6 F(x)}. We define the set of nodes of the MCT as

Θ =
⋃
v∈V

C[Λv(F)] (1)

with I(X) = {v ∈ V | X ∈ C[Λv(F)]}, ω(X) =
∨6 I(X) and τ (X) = |I(X)| for any node X ∈ Θ.

The inclusion relation ⊆ is a hierarchical order on Θ. Let C be the reflexive-transitive reduction of ⊆.
The Hasse diagram T = (Θ,C) of (Θ,⊆) is the multivalued component tree of the image F .
For any node X ∈ Θ, we set ρ(X) = X \

⋃
YCX Y = {x ∈ Ω | F(x) = ω(X)}.

The MCT T is an image model of the image F :

∀x ∈ Ω,F(x) =
6∨

X∈Θ
1(X,ω(X))(x) (2)
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(a) (V,6) (b) F : Ω → V (c) T = (Θ,C) (d) Λv(F)for v ∈ V

Building the Multivalued Component Tree

This construction algorithm derives from the CT construction of [3].
nodes: stores the nodes of the multivalued component tree.
points: stores the processed points of the image.
status: stores the status of each point of the image.
nb_nodes and index: store the number of nodes already fully built and the index of the node
currently built at each value of V.
progress: indicates if there exists a node at value v, currently under construction or to be built,
which is an ancestor of the node at value u currently being defined.

Algorithm: Build the multivalued component tree
Input: (Ω,a), (V,6),F : Ω → V
Output: T = (Θ,C)
Build nodes, points, status, nb_nodes, index, progress
vmin :=

∧6V
Choose xmin ∈ Ω such that F(xmin) = vmin
points[vmin].add(xmin)
progress[vmin] := true
Flood(vmin)
Function: Flood(u ∈ V)
Input: u ∈ V: current level
Output: w ∈ V: value of the parent node of the root of the built (partial) MCT at value u
while !(points[u].empty()) do

x := points[u].remove()
if index[u] > nb_nodes[u] then

nb_nodes[u] := index[u]
X := create_node() // new node in Θ
nodes[u].insert(X)

if F(x) 6= u then
w := F(x)
points[w].add(x)
progress[w] := true
while u < w do w := Flood(w)

else
status[x] := index[u]
nodes[u][index[u]].add_to_proper_part(x)
foreach y a x do

w := F(y)
if status[y] = −1 then

if u 6 w then ŵ := w
else ŵ :=

∧6{u,w}
points[ŵ].add(y)
status[y] := 0
progress[ŵ] := true
while u < ŵ do ŵ := Flood(ŵ)

if u = vmin then
w := ε

else
w :=

∨6{w′ ∈ V | w′ < u}
while progress[w] = false do w :=

∨6{w′ ∈ V | w′ < w}
create_edge(nodes[u][index[u]],nodes[w][index[w]]) // new edge in C

progress[u] = false
index[u]++
return w

Running the Construction Algorithm

Construction of the MCT of an image F : Ω → V. At a current stage: a plain coloured node is fully
built; a contour-colored node is under construction; a non-colored node has not been considered yet; a
black edge is built; a light gray edge is not built.
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(e) F : Ω → V
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(f) Order of processing of Ω

(g) 1 (h) 2–3 (i) 4 (j) 5–6 (k) 7–8 (l) 9

(m) 10 (n) 11 (o) – (p) 12 (q) – (r) 13–16
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Hierarchical order construction (1/2): (Pre)ordering the value set

Building the MCT requires a hierarchical order on V.
First, we can build a hierarchical preorder 6V on V. This can be done by building the CT of an “image”
composed by the value set. It is only required that V be endowed with:

an adjacency aV, allowing to map a graph structure on V;
a function δV : V → N, allowing to associate to each element of V a value within the totally ordered
set (N,≤).

the CT of δV is a hierarchical preorder 6V on V.

(ae) (af) (ag)

Hierarchical order construction (2/2): Ordering the enriched value set

Second, we can build hierarchical order 6W on W ⊃ V so that the elements of V are the maximal
elements with respect to 6W.
This can be done by building the binary partition tree (BPT) [2] of an “image” composed by the value
set 6V. It is only required that V be endowed with:

an adjacency aV, allowing to map a graph structure on V;
a priority function δaV : aV → N, allowing to determine the couples of nodes to be merged in
priority.
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