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Certification of avionic software based on machine
learning: the case for formal monotony analysis

Mélanie Ducoffe1 · Christophe Gabreau1 · Ileana Ober2 · Iulian Ober3 · Eric Guillaume Vidot1

Abstract
The use of machine learning (ML) in airborne safety-critical systems requires new methods for certification, as the current
standards and practices were defined and refined over decades with classical programming in mind and do not support this
new development paradigm. This article provides an overview of the main challenges to the demonstration of compliance with
regulation requirements raised by the use of ML and focuses on one particular case where the formal verification may become
mandatory in future regulations, which is the verification of (partial) monotony properties. For this case, we propose a method
to evaluate the monotony property using mixed integer linear programming. Contrary to the existing literature, our analysis
provides a lower and upper bound of the space volume where the property does not hold, that we denote “Non-Monotonic
Space Coverage”. This work has several advantages: (i) our formulation of the monotony property works on discrete inputs,
(ii) the iterative nature of our algorithm allows for refining the analysis as needed, and (iii) from an industrial point of view,
the results of this evaluation are valuable for the aeronautical domain, where it can support the certification demonstration.
We applied this method to an avionic case study (braking distance estimation using a neural network) where the verification
of the monotony property is of paramount interest from a safety perspective.

Keywords Machine learning · Neural network · Certification · Formal verification · Monotony

1 Introduction

Over the last years, machine learning (ML) based on neural
networks has become increasingly popular and a reference
method for solving a broad set of problems, such as computer

vision, pattern recognition, obstacle detection, time series
analysis, or natural language processing. Its use in safety-
critical embedded systems (e.g., automotive or aviation) is
also becoming increasingly appealing, as it opens the door
to new functions such as navigation/surveillance assistance
(e.g. vision-based navigation, obstacle sensing, virtual sens-
ing), autonomous flight, predictive maintenance or cockpit
assistance.

The aeronautical domain is known to be one of the most
stringent. Indeed, products are ruled by binding regulation
requirements to guarantee that the aircraft will safely oper-
ate in foreseeable operating and environmental conditions.
At the end of 2021, the European Union Aviation Safety
Agency (EASA) released the first issue of a concept paper
[10] to anticipate any application for AI-based products: it
contains a first set of technical objectives and organization
provisions that EASA anticipates as necessary for the ap-
proval of Level 1 AI applications (“assistance to human”)
and guidance material that could be used to comply with
those objectives.

Defining and meeting the regulatory requirements for air-
borne software items based on ML raises a set of specific
challenges, that we analyze in Sect. 2. Although work is still
in progress on the side of certification bodies, it is expected
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that formal verification of certain safety properties will play
an important part in the assurance cases for these items.

Much of the recent work in property verification for
ML-based systems was dedicated to robustness proper-
ties [3, 19, 21, 25, 29, 34, 35, 38–40, 42, 43]. However,
although robustness is a critical property for classification
tasks, we see the emergence of other safety-related proper-
ties for regression tasks in many systems.

Consider the case of neural network-based surrogates for
approximating numerical models [2, 17, 33]. The original
numerical models are developed to approximate physical
phenomena, and are based on physical equations whose rel-
evance is asserted by scientific experts. The qualification
of these numerical models is carried out without any issue.
However, since their computational costs and running time
prevent us from embedding them on board, the use of these
numerical models in the aeronautical field remains mainly
limited to the development and design phase of the aircraft.
ML-based surrogates alleviate this computational cost, thus
opening the way for their use in airborne software. How-
ever, surrogates need to demonstrate certain safety proper-
ties stemming from the physics they model. One of them is
the monotony, which is motivated by the fact that monotonic
functions are ubiquitous in many physical phenomena. For
instance, the braking distance of an aircraft is a monotonic
function with respect to specific parameters such as the state
of the brakes (nominal or degraded) or the state of the runway
(dry or wet). A surrogate that estimates the braking distance
should demonstrate these monotony properties. Another case
where monotony is relevant is deep neural networks used for
control.

Today, state-of-the-art methods for enforcing partial
monotony assume that if the property is not respected on
the whole operational domain of the ML-based function, this
puts at risk its certification (i.e., its compliance determination
to certification requirements) and therefore its industrializa-
tion. We believe that this risk can be covered, especially for
models that, in the future, would also be penalized for being
too loose given the reference function. In Sect. 3 we propose
an iterative method that measures and identifies the part of
the domain for which the monotony property is violated,
which can be used to demonstrate conformity to certification
requirements.

Section 4 discusses the case study and the experimental
results that we have obtained with our method. We conclude
the paper with a discussion of related work (Sect. 5) and our
conclusions (Sect. 6).

2 Certification and machine learning

In the context of critical embedded systems, during the last
few decades, the certification has established itself as a pro-

cess that allows the demonstration of conformity to the reg-
ulation constraints, especially through creating and improv-
ing industrial standards that comply with the regulatory text.
The trend towards obtaining (parts) of the critical systems
through ML is challenging the current certification approach.
To make our discussion more concrete, we refer to the cer-
tification in civil aviation. In Sect. 2.1, we present the main
characteristics of the current certification approaches, and in
Sect. 2.2 we analyze how the current certification practice
is impacted by the emergence of systems that include parts
obtained using machine learning. This analysis allows us to
identify some challenges raised by the need to certify sys-
tems including parts obtained through ML, as described in
Sect. 2.3. Although this analysis is made in the particular
context of avionics, the analysis can be easily transposed to
other contexts where certification is needed, and the chal-
lenges identified in this section correspond to issues that
need to be addressed, regardless of the application domain
in order to be able to certify systems including parts obtained
through machine learning.

2.1 Certification practice

Nowadays, an airplane cockpit offers many complex avionic
functions: flight controls, navigation, surveillance, commu-
nication, displays, etc. As a result, software plays a signifi-
cant role in aircraft safety. Since the aircraft can carry up to
several hundred passengers (e.g., airplanes) and their safety
relies on the detection of systems failures, to which software
faults can contribute, a specific development process is nec-
essary to ensure the correctness of the embedded software.
The regulatory authorities are in charge of setting up the rules
that the aircraft’s manufacturer and suppliers must comply
with to deliver any aircraft.

The regulatory authority of the European Union – Euro-
pean Union Aviation Safety Agency (EASA) – provides regu-
latory materials in which all requirements for development of
safe avionic products are defined and explained [9]. The reg-
ulatory requirements for software/hardware items embedded
in avionic safety-related systems are described in Certifica-
tion Specification documents (CS 2x.1301 and CS 2x.1309),
out of which the CS-25 [9] is the regulatory text for large
airplanes. In particular, CS-25.1301 states that “the system
must perform exactly as specified in the requirements” (i.e.,
it performs its intended function).

Since not all the parts of the avionics system are equally
critical, different levels of rigor are required within the de-
velopment process depending on the failure conditions the
improper functioning of the system may contribute to. Fig-
ure 1 shows the relationship between the failure severity
category and its probability of occurrence. Intuitively, the
more severe a failure condition is, the less probable the oc-
currence should be. Note that no probability is required for



Fig. 1 Relationship between probability and severity of failure condi-
tion effects (adapted from [9, Fig. 1 AMC 20.1309, p.779])

Fig. 2 Item development workflow

the failure conditions with no safety effect. On the contrary,
a catastrophic failure condition must be at most extremely
improbable.

2.1.1 Software certification

Contrary to the hardware assessment, no metric exists to
measure the software quality. Based on the observation that
the development process’s quality directly impacts the soft-
ware’s quality, the standard DO-178x is defined as a set
of software considerations in airborne systems. It defines re-
quirements in terms of objectives (e.g., source code complies
with low-level requirements), activities (e.g., code review)
and evidence (e.g., document summarizing the code review
results).

In the context of the DO-178C standard, the complete
standardized workflow comprises the planning process, four
development processes (requirement, design, coding, inte-
gration), and four integral processes (verification, configu-
ration management, quality assurance, and certification liai-
son). In the context of this article, only the development and
verification processes are meaningful.

In the context of the standard DO-178, the item’s develop-
ment workflow is represented by the V-cycle, summarized in

Fig. 2. The usual development paradigm is the requirement-
based engineering (either textual or model-based): it corre-
sponds to the activities link to the top left square of Fig. 2.
This step might corresponds to the definition of the high-level
requirements, which are refined during the development pro-
cess leading to the software architecture and the definition
of the low-level requirements.

Once high-level requirements, low-level requirements,
and the software architecture are well defined, the imple-
mentation can start (bottom of the V-cycle). For the sake of
the complete description of the software behavior, the spec-
ification can be completed with derived requirements, i.e.,
non-traceable requirements to higher-level requirements. In
parallel, specific verification activities interfere with each
development activity.

To summarize, each line of code implemented in a soft-
ware must be

• developed and traceable from the low-level requirements
• reviewed against the low-level requirements
• covered by requirement-based tests (either high-level re-

quirements and/or low-level requirements)

Moreover, several activities (e.g., review or verification
activities) may need to be performed independently depend-
ing on the targeted assurance level.

2.2 Impact of ML on certification approaches

The introduction of parts of code obtained using ML chal-
lenges the current certification practices, as the existing stan-
dards do not provide sufficient guidance to make a complete
demonstration of conformity for an ML-based system. In-
deed, some fundamentals of the usual techniques (in par-
ticular related to the pivotal place of the requirement-based
engineering and model-based engineering) are jeopardized,
challenging the classical safety guarantee argumentation.

Let us note here that since not all the software used
in avionics needs to be certified, it is possible even with
nowadays certification standards to integrate ML into parts
rated at Design Assurance Level (DAL) “E”. For an analysis
and classification of AI applications and their compatibility
with current certification standards, the reader is referred to
Schweiger et al [31].

For parts of code obtained using ML that require certifi-
cation, three gaps induced by the use of ML can be directly
identified: the lack of specifiability, the lack of traceability,
and the potential introduction of unintended behavior that
traditional methods cannot handle. These gaps are quickly
described below, readers interested in a deeper analysis of
these challenges of certifying ML-based items can refer to
Mamalet et al [22].



2.2.1 Specifiability

As we have seen in the previous section, the current certifica-
tion practice relies heavily on the requirement specification.
ML-based items are often used when it is impossible or
very difficult to specify the function entirely with a classi-
cal requirement process. For instance, the runway detection
specification in the aeronautical industry should contain all
the possible ways to describe a runway, whatever the en-
vironmental and operational conditions (e.g., weather, light
conditions, sensor bias). This cannot be achieved using tex-
tual requirements or a modeling technique. For this reason,
a ML-based approach is preferred in the presence of a train-
ing dataset of thousands to millions of images whose role
would be to complete the requirements capture and allow the
development of an acceptable runway detection function.

One can argue that the absence of a complete specification
inherently decreases the confidence that the model behavior
always matches the functional intent and, therefore, is free of
unintended behavior that may jeopardize safety. One strat-
egy to mitigate this problem consists of ensuring the com-
pleteness and the quality of the dataset. For example, for a
runway detection function, the idea is to describe as thor-
oughly as necessary the Operational Design Domain (ODD)
in which the detection function is supposed to operate and
then validate that the collected data correctly and sufficiently
represents this ODD. Another mitigation technique, consists
in formally specifying safety properties that the ML model
should satisfy for any combination of inputs. For example,
for a braking distance estimation function constructed by
ML, the idea is to formally specify specific properties, such
as bounded variation or monotony, with respect to certain
parameters (weight, speed). The satisfaction of such proper-
ties of the ML model can, in some cases, be verified, e.g.,
using an SMT or MILP solver, as we will see in Sect. 3.

2.2.2 Traceability

The current standard for certified software item development
— DO-178C — requires traceability between the require-
ments and the code (in both senses) so that each line of em-
bedded code can be traced to the requirements that lead to it
and then justified as implementing captured requirements. In
an ML development context, this relationship, which makes
the design a white-box process, is lost. The trained algorithm
is a complex parametric mathematical expression where the
values of the learned parameters are not traceable to any up-
ward functional requirement. Thus it becomes infeasible to
demonstrate the completeness and the correctness of imple-
mentation using traceability.

This lack of traceability results in the loss of transparency
of the model, making the link from the input data to the output
predictions not understandable by humans. The traceability

loss lowers the confidence that the safety properties of the
intended function are preserved in its operational domain. In
this context, explainable AI is seen as a means to enhance
confidence in these algorithms when safety is highly critical.

2.2.3 Unintended behavior

The entire life-cycle processes (requirements capture, model
design, implementation, integration, and requirement-based
testing) of the item development workflow (see Fig. 2) is
used to demonstrate the consistency between the obtained
implementation and the specified requirements. In addition
to the problems mentioned above, the learning phase could
introduce some unexpected behavior, such as high sensitiv-
ity to perturbations, that cannot be measured or prevented
by usual verification and validation activities. Consequently,
one cannot guarantee the absence of unintended behavior
during item operation, specifically those affecting aircraft
safety.

Unintended behavior may result from various causes, such
as a low-quality data management process (e.g., biased or
mislabeled data) or an inadequate learning process. Some
theoretical results emerge that allow to limit or formally
verify the absence of unintended behavior.

2.3 Challenges of certifying systems containing
ML

The certification of ML-based items in the framework of
avionic developments opens challenging (research) domains,
as illustrated in Fig. 3.

We present these challenges through the lens of the avionic
domain with the perspective of conformity to the regulation
requirements. In 2021, the EASA released its first usable
guidance regarding the certification of machine learning ap-
plications [10]: this document gathers the first set of ob-
jectives in order to anticipate future EASA guidance and
requirements and frames any future development of an ML-
based function as a part of a safety-critical system.

Due to the large number of domains involved in the quali-
fication of an ML-based item, we focus on the software level
of engineering. As a result, system-level embedding and re-
silience issues, such as fault tolerance, are not addressed
here. We spotlight five domains that should contribute sig-
nificantly to support the qualification of ML-based items:
explainability, provability, adversarial robustness, data, and
methodology (see Fig. 3).

Explainability aims to help human decision makers un-
derstand the behaviour and outcomes of ML items. One can
expect that, when required by the safety level of the imple-
mented function, explainability is requested to add the neces-
sary confidence to support the demonstration of conformity
[10].



Fig. 3 Key domains involved in
ML certification

Phillips et al [27] identifies four principles of explainable
AI: explanation, meaningfulness, explanation accuracy, and
knowledge limits. These principles state that an explainable
AI must: (i) provide an “evidence or reason for all outputs”,
(ii) be meaningful with respect to the audience, (iii) be repre-
sentative of the way that the algorithm produces the output,
and (iv) be aware of the domain of usage of the algorithm,
i.e., it should not give an explanation when the input is out of
scope, as the algorithm is not designed to work with it [23].

In the avionic context, four stakeholders could need ex-
planation: the designers, the authorities, the end users (e.g.,
pilots), and the forensic investigators. As one can notice, the
nature of explanation may vary depending on the stakeholder.
For instance, considering the “meaningfulness” principle, an
engineer who knows the system would need a different expla-
nation than an end-user who has no prior or inner knowledge
of the system. The explanations could also differ in their na-
ture whether it is used for debugging purposes during the
development (for the designer), for investigation purposes in
case of in-flight issues (for authorities or investigator), or for
a user assessment of the model predictions when the system
is deployed, e.g., a pilot who requests justification of the de-
cision to enhance his confidence in the system before acting.
As far as the ML items certification is concerned, formal
verification and formal explanations [23] will offer essential
guarantees of rigor.

Robustness comprises several sub-domains (adversarial
examples, distributional shift, unknown classes, physical at-
tacks, etc.). We focus here on adversarial robustness, which
is the capability of algorithms to give the same outputs con-
sidering some variation of the inputs in a region of the state
space. The issues addressed by the adversarial robustness

domain are at the heart of the software qualification process,
as it partially addresses the demonstration that there are no
unintended functions. The aim of the robustness is to assess
and enhance the algorithm’s behavior when dealing with
perturbed inputs (e.g., noise, corner cases, or sensor mal-
function). One way to improve the adversarial robustness is
finding robust learning procedures that are resilient against
crafted examples made to defeat the ML algorithm.

Data management refers to the practice of collecting, or-
ganizing, and accessing data. In the avionic context, data has
been used for a long time, with systems making heavy use
of databases or configuration files. In the context of ML, the
design techniques are data-driven, thus ML makes the data
management process essential to the demonstration of con-
formity. Building a good ML algorithm requires good quality
data (e.g., no erroneous or mislabeled data), yet this is not
sufficient, as data representativeness also plays a significant
role. Representativeness refers to checking if the data is an
accurate snapshot of the phenomenon to be learned.

The quality of the data can be measured using metrics
[28] such as: accuracy (data is well measured and stored),
consistency (relationship between parameters regarding the
operational design domain), integrity (not corrupted data),
timeliness (data availability and correctness over time), trace-
ability (data source reliability), and fairness (lacking unde-
sirable biases).

Methodology structures the assurance activities needed
to support the qualification aspects, i.e., the demonstration
to the authorities that the item development complies with
the recognized and standardized guidance.

It will be crucial for the future Acceptable Means of Com-
pliance (AMC) and/or the industrial standards to clearly de-



Fig. 4 ML items development process

fine the development process of ML-based items, starting
from existing best practices [1], in order to (i) ease their de-
velopment and maintainability, (ii) identify the validation and
verification activities, and (iii) guarantee their certifiability.
Figure 4 describes this development process: requirements
from the system/subsystem level are refined into ML-based
item requirements to fit the three main stages of the workflow:

• Data management process covers data collection, data
cleaning and labeling, data pre-processing – comprising
various steps used to transform the data into a more suit-
able format for the design phases, e.g., feature engineering
or data normalization, and data splitting into a training, a
validation, and a testing dataset.

• Design process takes as input the three datasets, it outputs a
frozen ML model (which means no retraining afterward).
The processes in this stage are iterative rather than se-
quential. Indeed, iteration between the training and the
validation steps of the design process is done in order to
tune the hyper-parameters of a model. After this tuning,
the model is tested, leading to a candidate model. The can-
didate model is subject to validation with respect to the
ML item requirements. If the performances are lower than
expected, it is possible to loop back to the data manage-
ment process to improve the model. The model is frozen
when it attains the performance criteria set before imple-
mentation.

• Implementation process takes as an input the frozen model
obtained through ML and it optimizes it with respect
to the host platform constraints and the operational re-
quirements cascaded from the system level. Finally, a bi-
nary code is generated and loaded into the hardware tar-
get.

Validation and verification activities exist at the various
stages to ensure the quality of the respective outputs.

Since their creation in the 1980s, the DO-178x standards
gather the industrial best practices imposing development
rigor needed to avoid introducing errors that may lead to
a system failure, and thus increasing the overall safety of
the system. Historically, methodologies undeniably brought
efficient results in terms of safety. Thus methodological con-
siderations are key to build a viable certification approach.
An essential element in building relevant safety argumenta-
tion are the non-prescriptive approaches, such as safety cases
[30] or assurance cases [24]. Assurance cases, which are a
generalization of safety cases, are defined by MITRE [24]
as follows: a documented body of evidence that provides a
convincing and valid argument that a specified set of critical
claims regarding a system’s properties are adequately justi-
fied for a given application in a given environment. Hence,
assurance cases could be used during the development pro-
cess of an ML-based item to build, share and discuss sets of
structured arguments to support the demonstration of con-
formity based on outcomes of specific assurance techniques
[7].

The development process for software items using ML,
sketched in Fig. 4, is what we consider today to be the most
likely one to be used in certification in the future. Alternative
approaches for including ML-based components in certified
software (e.g., [6] – in the context of avionics or [4] – in the
context of automotive) exist and rely on the use of a ML-
based component that uses run time monitoring to anticipate
critical situations that could lead to using a ML-free certified
backup component.

Provability is the capability to formally demonstrate that
model properties are preserved. Formal methods provide
mathematical evidence to support such a demonstration.
Since robustness, as presented above, can be expressed as
a property, the provability covers the adversarial robustness



Fig. 5 Purpose of the algorithm through Example 1. In x1 the runway
is dry and in x2 the runway is wet. The left plot represents f (x1)− f (x2)
where only the positive values are displayed (monotony property vio-

lated). The two plots on the right are the projection of these points on
the plane composed of features 1 and 2. (Color figure online)

demonstration. Indeed, formal methods are already used to
verify well-defined properties of models, such as the robust-
ness [32] but also safety properties [19]. Regarding the aero-
nautical context, verifying models’ properties, either func-
tional or safety-related (like adversarial robustness), is an
asset for its qualification, since it may avoid time and cost-
consuming testing while providing formal proof that the
property holds.

In the rest of this paper, we focus on one particular
case where the formal verification may become mandatory
in future regulations, which is the verification of (partial)
monotony properties. With respect to the key domains re-
lated to the challenges on certifying systems containing ML
illustrated in Fig. 3, the formal verification will contribute to
the domains depicted in red, namely robustness, provability
and explainability.

3 Monotony analysis

In this section, we define the concept of partial monotony
with respect to a set of inputs. Let V be a (finite) set of
input features. For each feature v ∈ V we denote D(v) the
domain in which v ranges. Hence, let X=×v∈V D(v) be the
input space, Y be the output space and f :X→Y be the neural
network. Note that the features are generally of two types
(V =Vd �Vc):

• v ∈ Vd are features whose domainD(v) is discrete (e.g., a
finite set of labels or categorical values)

• v ∈ Vc are features whose domain D(v) is a real interval

In this work, we are interested in monotony properties, which
supposes that the set Y has an order relation denoted �;
usually, Y ⊆ R and � is one of the usual orders (≤, ≥).
The monotony property will be relative to a subset of dis-
crete features, α⊆Vd for which a partial order is defined on
×v∈αD(v), also denoted � without risk of confusion. We

denote with ≺ the strict order derived from �, i.e., s ≺ t iff
s � t and s � t. For x∈X , let us denote x↓α the projection of
x onto the dimensions in α, and ᾱ=V\α.

Definition 1
Monotony Property A function f is monotone with respect to
an order � on the output domain Y and to a subset of discrete
features α ⊆ Vd endowed with a partial order defined on
×v∈αD(v) also denoted � (without risk of confusion), if and
only if

∀(x1, x2) ∈ X2 : x1 ↓ᾱ= x2 ↓ᾱ ∧ x1 ↓α� x2 ↓α

=⇒ f (x1) � f (x2)

3.1 Goal of the analysis

Our analysis aims to identify the sub-spaces where the
monotony does not hold using a MILP solver. Example 1
describes a toy example (a simplified version of the case
study in Sect. 4) that we will use to explain the main con-
cepts.

Example 1
Setup: Let f be a neural network estimating the braking
distance of an aircraft based on its speed, its weight and the
runway’s state (dry or wet).

Property: for the same speed and weight (x1↓ᾱ=x2↓ᾱ), the
braking distance on a wet runway must be higher than on a
dry one (x1↓α � x2↓α =⇒ f (x1)� f (x2)). Goal: Identify and
quantify the input areas where the property does not hold.

If we plot f (x1) − f (x2) versus the speed and the weight,
the Definition 1 holds if and only if all the values are neg-
ative or null. The 3D plot in Fig. 5 shows a sketch of this
example when the monotony property partially holds, i.e.,
f (x1) − f (x2) is partially positive. To ease the visualization



Fig. 6 Based on Fig. 5:
representation of Ω and Ω
considering Example 1 (Color
figure online)

we only draw the positive values. The crosshatched area in
the 2D plots are projections of the positive values of the
curve on the plane representing the speed and the weight
features and models the area where the monotony property
is not respected, namely the non-monotonic space coverage,
denoted as ω. The rightmost 2D plot shows what we expect
from our analysis on Example 1: identifying and estimating
ω. To estimate ω, we partition the space (grid in Fig. 5) and
then the monotony property is checked on each sub-space.
The dark red area represents the identified sub-space where
monotony issues occur, i.e., an over-approximation of ω. In
addition, our approach provides a lower and upper bound of
the size of ω relative to the whole input domain, respectively
denoted as Ω and Ω (See Fig. 6).

Our approach can distinguish the sub-spaces where the
monotony property does not hold (dark red area in Fig. 6)
from the ones where it partially holds (orange area in Fig. 6).
Hence, the lower bound is the dark red area, while the upper
bound is the dark red and orange areas. The benefit of having
a lower and upper bound, instead of just an overestimation,
is to be able to assess whether our estimation is precise: large
gaps between the upper and lower bounds may reveal that our
bounds are not representative of ω. The iterative nature of
our approach overcomes this problem: we refine our space,
which leads to a finer grid for the Fig. 6, and run again the
MILP solver where the property partially holds to have a
most accurate estimation of ω.

3.2 MILP formulation

3.2.1 Neural network encoding

Let f : X→Y be a neural network composed of n layers with
ReLU activations. The layer 0 corresponds to the input layer
while the layer n to the output one. We use the MILP for-
mulation proposed by Cheng et al [5], which uses the big-M
method [13] to encode the ReLU activation. By convention,
the notations in bold denote the MILP variables, and those
not in bold denote constants. For 1 ≤ i ≤ (n − 1), let Ci be
the conjunction of constraints for the layer i:

Ci � x̂i = W ixi−1 + bi (1)

∧ xi ≤ x̂i + M i(1 − ai) ∧ xi ≥ x̂i (2)

∧ xi ≤ M i · ai ∧ xi ≥ 0 (3)

∧ ai ∈ {0,1} |x
i |, (4)

where x̂i and xi are the vector of neuron values at the layer
i before and after the ReLU activation, respectively. M i is a
large valid upper bound s.t.−M i ≤ x̂i and xi ≤ M i [5]. Wi and
bi are, respectively, the weights and bias at the layer i, and
ai is a binary vector that represents whether the neurons are
activated or not. Equation (1) is the constraint for the affine
transformation and the Equations (2)-(4) are the constraints
encoding the ReLU activation. For the output layer n, there
is no ReLU activation, then we have:

Cn � x̂n = Wnxn−1 + bn (5)

It remains to encode the constraints of the input layer,
which enforce the lower and upper bounds of the domain of
the input features. Our analysis relies on a partition of the
input space X , thus the encoding of the input layer depends
on it: let P be a partition of X , p ∈ P be a subset of X
represented by a set of linear constraints (also denoted p).
Hence, the neural network f is encoded as the conjunction
of the constraints defined for each layer and p, which is
constraining the input layer:

C f (p) � p∧

(
n∧
i=1

Ci

)
∧Cn (6)

3.2.2 Monotony property encoding

Following Definition 1, we must encode f twice in MILP:
C f

1 and C f
2 . Similarly to the encoding of the input space’s

constraints, we encode the monotony property regarding the
partition P. So, let pi,pj ∈ P

2 be two sub-spaces of X such
that ∃x1, x2 ∈ pi×pj , x1↓ᾱ = x2↓ᾱ ∧ x1 ≺ x2. Then, we have:

Cmon(pi,pj) �
(
x0

1↓ᾱ = x0
2↓ᾱ ∧ x0

1↓α � x0
2↓α

)
∧



(
C f

1 (pi) ∧C f
2 (pj)

)
∧

(
x̂n

1 ≤ x̂n
2

)
(7)

C¬mon(pi,pj) �
(
x0

1↓ᾱ = x0
2↓ᾱ ∧ x0

1↓α � x0
2↓α

)
∧

(
C f

1 (pi) ∧C f
2 (pj)

)
∧

(
x̂n

1 ≥ x̂n
2 + ε

)
(8)

The MILP solver may output either SAT, UNSAT or
TIMEOUT. For Equation (7) and Equation (8), TIMEOUT
means that the time limit has been reached. Cmon checks
whether the neural network f is monotonic:

• SAT: there is an assignment for x0
1,x

0
2 ∈ pi × pj that respects

the monotony.
• UNSAT: the monotony is violated on the entire sub-space

pi × pj .

C¬mon checks whether the neural network is not monotonic:

• SAT: there is an assignment for x0
1,x

0
2 ∈ pi × pj that violates

the monotony.
• UNSAT: the monotony is respected on the complete sub-

space pi × pj .

Since strict inequalities cannot be used in a MILP model, we
introduce the ε term in Equation (8) so that C¬mon is not
satisfied when x̂n

1 = x̂n
2 .

To determine for each sub-space pi × pj whether the
monotony property holds, partially holds, or does not hold
(see Fig. 6), we must solve successively C¬mon and Cmon (see
Sect. 3.3 for more details).

3.2.3 Note on alternative formulations

It should be noted that the network and property can be en-
coded in a very similar way in SAT modulo linear arithmetic,
and verified with an SMT solver. We have performed this ex-
periment using the Z3 solver [8], and the resolution proved
to be several orders of magnitude slower than with MILP.
Finding the reason for this difference is beyond the scope of
this paper, but we believe it is related to how the SMT solver
handles the large set of real parameters in W and b. Since the
difference in performance makes verification with standard
SMT solvers impractical, we do not report further on it.

Another possibility that can be considered is the use
of a specialized theory/solver for ReLU networks such as
Marabou [19]. However, our study targets networks with dis-
crete inputs and with specific constraints (see Sect. 4), which
to the best of our knowledge cannot be captured by Marabou,
making its use impossible in this case.

3.3 Verification procedure

As explained in Sect. 3.1, our verification procedure implies
the partition of the space and the verification of each sub-
space. In Algorithm 1, the monotony property is iteratively

Algorithm 1 Monotony analysis refinement
Require: T : the number of iteration of the procedure

1: P1 ← {(pi,pj) ∈ P
2 | ∃(x1, x2) ∈ pi × pj, x1 ≺

x2 and x1↓ᾱ = x2↓ᾱ}

2: P̂0← P1 and Ω0← 0
3: P¬mon←∅, and Ppartially mon←∅

4: for t from 1 to T do
5: P̂t ← P̂t−1 ∧ Pt

6: (P¬mon
t , Ppartially mon

t ) ← F(P̂t )

7: Ωt ←Ωt−1 +
|P¬mon

t |

|Pt |
and Ωt ←Ωt +

|P
partially mon
t |

|Pt |

{See Fig. 7}
8: P

¬mon ← P
¬mon ∪ P¬mon

t and P
partially mon ←

Ppartially mon
t

9: P̂t ← Ppartially mon
t

10: Pt+1← partition(Pt )

11: end for
12: return ΩT , ΩT , P¬mon and Ppartially mon

Algorithm 2 F(P) −→Monotony analysis of P ⊆ P2

Require: P ⊆ P2 gathers the sub-spaces that need to be
verified.

1: P¬mon←∅

2: Ppartially mon←∅

3: for all (pi,pj) ∈ P do
4: if solve(C¬mon(pi,pj)) is SAT then
5: if solve(Cmon(pi,pj)) is SAT then
6: Ppartially mon← Ppartially mon ∪ {(pi,pj)}

7: else
8: P¬mon← P¬mon ∪ {(pi,pj)}

9: end if
10: else
11: Continue to the next (pi,pj) {Monotonic on the

whole domain pi × pj}
12: end if
13: end for
14: return P¬mon and Ppartially mon {P¬mon ∪ Ppartially mon ⊆

P}

analyzed regarding a partition, refining this partition in the
zone of interest to sharpen the analysis. Algorithm 2 details
the verification run at each iteration.

3.3.1 Algorithm 1

The monotony is defined on the space X2; however, we define
earlier the partition P of X . Hence to verify the monotony
on the complete space, i.e., X2, we need to go through all
the sub-spaces i.e., pi × pj, ∀(pi,pj) ∈ P

2. However, it may
happen that the monotony does not apply to the sub-space
(pi,pj) because there are no comparable elements within the



Fig. 7 Run of Algorithm 1 on
Example 1 with the detailed
computation of Ωt and Ωt . The
crosshatched area represents the
sub-space the algorithm strives
to estimate. (Color figure online)

Table 1 State of the monotony property regarding the condition of Lines 4 and 5

Case Line 4 C¬mon Line 5 Cmon Monotony property on pi × p j

1 True SAT True SAT partially holds
2 True SAT False UNSAT does not hold
3 False UNSAT – – holds

sub-space: P1, in Line 1, contains all and only the (pi,pj)

including comparable elements. We denote the elements of
P1 and more generally, Pt , “monotony scenario”.

We propose an iterative procedure where at each iteration
we use, in Line 6, F(·) (see Algorithm 2) to retrieve P¬mon

t and
Ppartially mon
t . Then, we compute in Line 7 the metrics Ωt and
Ωt for the iteration t, which respectively lower-bounds and
upper-bounds ω; ω is the exact ratio of the space where f is
non-monotonic, which corresponds to the ratio of monotony
scenarios where f is non-monotonic. In Line 11, we refine
the partition of the space for the next iteration: partition
is the function that takes the current partition of the space
and returns a finer partition; we suppose that all elements
in the partition have the same size. Note that Pt gets finer
and finer through the iterations: the more we refine, the more
elements Pt will have. We highlight that in Line 5, the oper-
ator ∧ applies the intersection between each subset of P̂t−1
and Pt where Pt is a finer partition of the space than P̂t−1. It
allows to get the elements of interest (P̂t−1) in the right level
of details (Pt ). For the first iteration, we run F(·) on all the
elements (initialization of P̂0 to P). However, we only need
to refine the sub-spaces where the monotony property is par-
tially respected for the other iterations. Finally, the algorithm
returns the lower and upper bounds of each iteration and all
the sub-spaces where the monotony property does not hold
or partially holds.

In Fig. 7, we run Algorithm 1 on Example 1:1 α contains
the runway’s state, we partition X on α and we have a unique
(pi,pj) in P1; in pi the runway is dry and in pj wet. Then,
the two axes represent features of ᾱ (speed and weight) and

1 Note that we simplify the crosshatched area’s shape in order to know
the omega value for the explanation.

the squares, the partition of the space. The crosshatched
surface is the exact sub-space where the monotony property
does not hold. The orange squares mean that the monotony
property partially holds, the dark red squares means it does
not hold, and the light green squares means it holds. Through
the iteration, we refine the partition (smaller squares), while
running the verification only for the smaller squares (in solid
lines) coming from a bigger orange square (in Line 5; P̂t−1
is the orange square of iteration 2 and Pt is the small squares
of iteration 3).

3.3.2 Algorithm 2

The verification function F(P) aims to analyze the monotony
of f regarding P a subset ofP2, which gathers the sub-spaces
where the monotony property must be checked. Intuitively,
the partition P and thus P can be seen as the level of details
of the monotony analysis. Indeed, a finer partition P results
in smaller sub-spaces in P; hence a more detailed analysis.

Then, from Lines 4 to 12, we identify in which sub-spaces
pi × pj the neural network f partially respects or does not
respect the monotony property and sort them in Ppartially mon

and P¬mon. In Lines 4 and 5, solve(·) refers to any off-the-
shelf MILP solver taking as input a MILP problem. Table 1
shows the interpretation of the monotony of f within the sub-
space regarding every truth values of the conditions of Lines
4 and 5. Note that we arrive in Line 11 when the condition
of Line 4 is False, and we jump to the next sub-space (or
monotony scenario) because the monotony property holds
for the current sub-space pi × pj . Finally, we return the two
sets gathering the sub-spaces where the monotony property
does not hold and where it partially holds.



3.3.3 Non-monotonic space coverage

Ωt and Ωt are defined as the ratio of sub-spaces (monotony
scenarios) where f has monotony issue over the total number
sub-spaces in Pt (contains all the monotony scenarios):

Definition 2
Lower and upper bounds of ω

Ωt =Ωt−1 +

��P¬mon
t

��
|Pt |

(9)

Ωt =Ωt +

���Ppartially mon
t

���
|Pt |

(10)

On the one hand, Ωt takes into account only the sub-
spaces where the monotony property holds not; hence, it
lower-bounds ω. On the other hand, Ωt considers the sub-
spaces where the monotony property holds not and partially
holds; hence, it upper-bounds ω. Figure 7 details the com-
putation of these metrics along with the iteration: at each
iteration, the lower bound Ωt is represented by all the dark
red squares and the upper bound Ωt by all the dark red and
orange squares.

Example 2
Computation of Ωt and Ωt considering Example 1.

Iteration 1 We consider the entire space. Hence, we only
have one sub-space where we assess the monotony prop-
erty (|Pt | = 1). There is no dark red square, i.e., sub-space
where the monotony property does not hold, which means
that

��P¬mon
1

�� = 0, then Ω1 = 0. We have one orange square: in
this sub-space, the monotony property partially holds, then
|Ppartially mon

1 | = 1 and Ω1 = 1.
Iteration 2 We partition the space in 4 smaller sub-spaces

(|Pt | = 4) and run again the verification on each sub-space.
We proceed similarly as previously for the computation of
Ω2 and Ω2. We have 3 dark red squares (

��P¬mon
2

�� = 3) and
1 orange square (|Ppartially mon

2 |=1): Ω2=Ω1 + 3
4 =0.75 and

Ω2 =Ω2 + 1
4 = 1.

Iteration 3 We refine the partition of the previous step,
and we end up with 16 sub-spaces. However, we only run
the verification on the sub-spaces coming from an orange
square (Lines 5 of Algorithm 1), i.e., a sub-spaces where f
is partially monotonic. We have Ω3 = 3

4 + 1
16 = 0.8125 and

Ω3 = 3
4 + 1

16 + 2
16 = 0.9375.

The Proposition 1 shows that the lower and upper bounds
are tighter over the iterations: the more iterations we run, the
closer we are to ω.

Proposition 1
For any t ≥ 1, we have:

Ωt−1 ≤ Ωt (11)

Ωt ≤ Ωt−1 (12)

Proof
For Equation (11), from Ω0 = 0 and

��P¬mon
t

��
|Pt |

≥ 0 and Ωt =

Ωt−1 +

��P¬mon
t

��
|Pt |

, we can deduce Ωt−1 ≤ Ωt .
Then, to prove Equation (12), we need first to state an

invariant of Algorithm 1, Line 7:(
Ppartially mon
t ∪ P¬mon

t

)
⊆ P̂t (13)

Based on this, since P̂t is a finer partition of Ppartially mon
t−1 , the

following inequality is true by construction:
���Ppartially mon

t ∪ P¬mon
t

��� ≤ ���P̂t

��� ≤ ���Ppartially mon
t−1

��� ∗ |Pt |

|Pt−1 |

We divide both sides of the inequality by |Pt | and add Ωt−1:

Ωt−1 +

���Ppartially mon
t ∪ P¬mon

t

���
|Pt |

≤ Ωt−1 +

���Ppartially mon
t−1

���
|Pt−1 |

Since Ppartially mon
t ∩P¬mon

t =∅, we have:

Ωt−1 +

��P¬mon
t

��
|Pt |

+

���Ppartially mon
t

���
|Pt |

≤ Ωt−1

therefore by Equation (9):

Ωt +

���Ppartially mon
t

���
|Pt |

≤ Ωt−1

and therefore by Equation (10):

Ωt ≤ Ωt−1 �

3.3.4 Monotony error estimation

If the output of the network is a real, it is useful to produce
an estimation of the seriousness of the monotony violation
on the sub-spaces where monotony does not hold. If we
refer to Fig. 5, the error corresponds to the height of the
volume represented in green. Its measure unit is the same as
that of the network output, which generally has a physical
interpretation. For the example considered in Sect. 4, it is a
distance measured in meters.

The interesting measure here is the maximum bound on
the error for each subspace from P¬mon ∪ Ppartially mon. The
method presented in the previous section can compute this



Fig. 8 Representation of the position of the four brakes on an aircraft,
denoted by bi ∈ {N , A,E , B, R}. For example, we have NN-NN when
all the brakes are in the normal state. Then if the state of one of the left

brakes becomes Altered, we have NA-NN. Note that NA-NN≡AN-NN

due to the choice of the representation of the brakes

bound on its value. Indeed, the call to the MILP solver on
line 4 of Algorithm 2 can be set to use f (x1) − f (x2) as an
optimization objective. Then, when the answer is SAT, the
call also produces an approximate value and a hard upper
bound for max( f (x1) − f (x2)).

4 Case study: braking distance estimation

4.1 Description of the case study

Our case study is an R&D project from the aeronautical in-
dustry consisting in training a neural network to estimate the
braking distance of an aircraft based on physical information.
The R&D team has provided us with a trained feedforward
neural network composed of 2 layers (30 and 29 neurons
in the first and second layer, respectively) and ReLU acti-
vation functions. There are 15 input features, including 13
discrete and 2 continuous. For example, one of the continu-
ous features models the aircraft gross weight (normalized to
the [0,1] interval). The discrete features capture information
such as the state of the runway (dry/wet), the state of the
spoilers or the state of the brakes. Some features are binary,
while others take an integer value in a set capturing the var-
ious possible configurations. For example, the state of the
4 brakes of the aircraft is described through 10 input fea-
tures, as follows. Each brake has 5 possible modes: Normal
(N), Altered (A), Emergency (E), Burst (B), and Released
(R). The network has 2 features for each brake mode: (i)
the total number of brakes in a given mode (referred to as
“symmetric”) and (ii) the difference between the number of
brakes on the left and right side of a given mode (referred to
as “asymmetric”) (see Fig. 8). Thus, there is an equivalence
between an allowed value for the 10 input features and the
state of the pairs of brakes on the left and right sides of the
aircraft, although the state of each individual brake cannot be
retrieved. For clarity, we will describe the state of the brakes
using the form “b1b2-b3b4”, where b1b2 and b3b4 should be
seen as unordered pairs, since the order is not captured by
the input features. There are in total 225 distinct brake states.

Note that this particular encoding of the brakes’ states im-
plies some specific constraints on the 10 input features. For
each possible brake mode (N, A, E, B, R), the “symmetric”
feature is comprised between 0 and 4 and the “asymmet-
ric” feature between −2 and 2. Moreover, the sum of the 5
“symmetric” features is necessarily 4, and the sum of the
“asymmetric” features is 0. In addition there are parity con-
straints: if for a certain mode the “symmetric” feature is odd,
the “asymmetric” feature is either −1 or 1, and if the “sym-
metric” feature is even, the “asymmetric” feature is also even.
These constraints needed to be added to the MILP model in
order to ensure that the SAT answers provided by the solver
during the run of our verification algorithm are not spurious.
Due to their very specific nature, they had to be hand-coded; it
should also be noted that the parity constraints are not linear,
but could be modeled using so-called indicator constraints.2

Several monotony properties are important for this net-
work, some of which are listed below:3

1. The braking distance on a wet runway is larger than on a
dry runway;

2. The braking distance increases depending on the state of
the spoilers (there is an order for the different configura-
tions of the spoilers);

3. Over a certain threshold, the braking distance increases
with the aircraft weight;

4. The braking distance increases when the brakes’ state
deteriorates.

Properties 1–3 listed above involve only one input feature,
which can be discrete (properties 1 and 2) or continuous
(property 3). In the following, we concentrate on property 4,
which involves all 10 input features that model the brakes’
states simultaneously. To perform the monotony analysis, we
need to define what deteriorates means formally. Relying on
the system expert’s knowledge, the following partial order

2 A kind of constraint supported by many MILP solvers, which takes
the form boolean_var =⇒ af f ine_inequality.

3 All the properties should be read as if prefixed with “all else being
equal”.



Fig. 9 Example of visualization of features in α (left) and ᾱ (right) (Color figure online)

applies to the different modes of the brake:

N ≺b A ≺b E ≺b B ≺b R, (14)

where bi ≺b bj means that the state bj is more deteriorated
than the state bi .

We can easily extend the partial order �b on one brake
to the state of an aircraft’s brakes composed of 4 brakes. Let
S1 = (b1,b2,b3,b4) and S2 = (b′1,b

′
2,b
′
3,b
′
4) be two states of an

aircraft’s brakes, we have

S1 ≺ S2 ⇐⇒ ∀bi,b′i∈S1×S2, bi �b b′i and

∃bi,b′i∈S1×S2 bi ≺b b′i (15)

It means that S2 is deteriorated compared to S1 if and only
if, for all brakes in S2, the brake’s mode in S2 is at most as
good as its counterpart in S1 and there exists a brake in S2
whose mode is strictly worse than its counterpart in S1.

4.2 Experimentation

4.2.1 Setup

Let V be the set of 15 input features described above, X =

×v∈V D(v) be the input space, Y = R+ be the output space,
and f : X �→Y be the neural network estimating the braking
distance of an aircraft. We consider the monotony property as
formulated in Definition 1. As stated earlier, we are dealing
with the monotony with respect to the brakes’ space. Hence,
α ⊆ V is made up of the ten features describing the state of
the brakes and the partial order � on ×v∈αD(v) is as defined
in Equation (15). We take advantage of the discrete nature
of the brakes’ features: a natural partition P is to enumerate
all the possible values for the ten brakes features. We have
|P | = 225.

4.2.2 Monotony analysis

We run Algorithm 1 for 5 iterations with the setup described
above. The algorithm is explained in Sect. 3.3. Here we
only focus on the partitions used for the analysis and the
refinement strategy specific to the case study. Additionally,
we will see how to capitalize on the data available at each
iteration to perform some space exploration. P1 is setup us-
ing P, and �; it represents the brakes’ sub-space. Then our
partition’s refining strategy is to start with the remaining dis-
crete features (second iteration) and then consider the con-
tinuous features (the last three iterations). For the discrete
features, the partitioning consists in enumerating the possi-
ble values, while for the continuous features, it consists of a
uniform partition (finer through the iterations). To illustrate
the impact of the refinement on the level of details of the
analysis, we detail the total number of sub-spaces in each
partition Pt : |P1 | = 10,800, |P2 | = 259,200, |P3 | = 6,480,000,
|P4 | = 25,920,000 and |P5 | = 103,680,000.

Based on the partition and the outcomes of F(·), the algo-
rithm yields at each iteration the metricsΩt andΩt . Nonethe-
less, for our case study, we put in place visualization means
(see Fig. 9). However, the relevant visualizations helping
space exploration are case-dependent, so we do not propose
any generic way to do it. Firstly, it might be relevant to vi-
sualize the sub-space composed of the features on which
the partial order � is defined, i.e., α corresponding to the
brakes’ space. It is modeled as a graph where the nodes are
the brakes’ states (the elements of P), and the edges are the
transitions between the states modeled by the partial order
≺ (the elements of P1), and with the outcomes of the first
iteration, we can highlight (dashed line in Fig. 9) the transi-
tions that violate the monotony property (in Fig. 9, we plot
only a sub-graph as an example). Then, to include the infor-
mation of the formal verification of the following iteration



Table 2 Values of Ω and Ω bounding the percentage of the space
where the monotony property is violated

Metrics It.1 It.2 It.3 It.4 It.5

Ωt 11.57% 4.11% 1.95% 1.72% 1.61%
Ωt 0.03% 0.45% 1.12% 1.29% 1.39%

in the space visualization, we plot some features versus the
difference of distances f (x1) − f (x2) and visualize in which
sub-spaces monotony issue occurs. These visualizations are
helpful for exploration purposes after the analysis for the ex-
pert of the system (e.g., if the expert can identify some place
of interest within the space and wants to know what happens
there).

4.2.3 Metrics: non-monotonic space coverage

At each iteration, we compute Ωt and Ωt , which bound the
ratio of the space where f violates the monotony property
(i.e., ω). The results are summarized in Table 2. In Fig. 10,
we can clearly see the convergence of Ωt and Ωt . At the first
iteration, we can explain the notable gap between Ω1 and
Ω1 by the coarse partitioning of the space. That is why, Ω1
is large (numerous sub-spaces where the monotony property
is partially respected) and Ω1 small (only few sub-spaces
where the monotony property does not hold). We can notice
a significant drop of Ωt compared to the rise of Ωt : there are
more sub-spaces where the monotony property holds than
not. Eventually the algorithm yields a narrow gap between
the bounds; we obtain at the fifth iteration: 1.39% ≤ ω ≤
1.61%. The stopping criterion of the algorithm may depend
on various things such that the system’s requirements (e.g.
bounds precision, max value to not cross for Ω or min value
to reach for Ω).

Through these five steps, we analyze the monotony of f
considering finer and finer partition of the space; we obtain:
(i) metrics bounding the percentage of the space where the
neural network is non-monotonic and (ii) the identification
of the sub-spaces where the monotony issue occurs thanks
to the formal verification on each elements of the partitions.

We run our experiments on MacBook Pro 8 core 2,3 GHz
Intel Core i9 with 32 Gb of RAM. The MILP solver used
is Gurobi 9 [15] and our monotony analysis for the property
discussed in this section took less than 10 hours.

4.3 Discussion

The analysis and visualization techniques described above
allowed to detect that, in the studied example, the monotony
violations are concentrated close to the boundary of the op-
erational design domain for one of the features (the aircraft
weight). The possible mitigation actions are to re-train the

model using a more representative dataset for these areas of
the ODD, or to restrict the use of the model for a subareas
of the ODD for which it is deemed safe. The followup ac-
tions are ongoing and are the responsibility of the team that
provided the model.

Although the monotony analysis is not sufficient for en-
suring the correctness of the outputs of the neural network, it
is a necessary complement to other neuronal network val-
idation techniques. We expect monotony analysis results
to be included in the assurance cases of ML items in fu-
ture certification procedures, along with other techniques
(some yet to be invented) for addressing the challenges iden-
tified in Sect. 2.3, in particular robustness. Existing EURO-
CAE/RTCA standards for software items (such as DO-178C)
define requirements on safety levels and bounds on error oc-
currence frequency depending on the software item critical-
ity. In a similar manner, we anticipate the certification will
adjust what is considered an acceptable output of a neural
network to an error bound depending on the criticality of its
context.

5 Related work

In recent years, assessing the robustness of neural networks
has been tackled with formal verification (i.e., sound al-
gorithms demonstrating whether a property holds or not).
Verifying properties on a neural network is challenging be-
cause neural networks are non-convex functions with many
non-linearities and hundreds to millions of parameters. Even
if the type of architecture studied is restricted to piece-wise
linear networks, it is known that this problem is already NP-
hard [40]. There has been tremendous progress in the field of
verification, from robustness proofs of networks trained on
MNIST to scaling up to CIFAR 10 and even TinyImagenet.
These successes are particularly due to the collaboration of
different communities that made it possible to formulate and
tackle the robustness problem from different perspectives.
Without being exhaustive, we can cite the methods that rely
on Lipschitz-based optimization [43, 44], input refinement
[38] and semi-definite relaxations [29].

So far, the verification community has mainly tackled
robustness verification from adversarial robustness [36] to
computing the reachable set of a network [41] despite a
few other properties that are highly relevant for the industry.
Among those properties, partial monotony under specific in-
puts appears to be a key property, especially for regression
tasks. Indeed, the need for monotony appeared in various
contexts such as surrogate modeling [16], economics [11],
fairness [18], or interpretability [26] and is thus a highly de-
sirable feature in the industry. Previous works proposed to
enforce the monotony property during the design. Gupta et al



Fig. 10 Evolution of Ωt and Ωt .

[14] and Gauffriau et al [12] rely on heuristics monotonic reg-
ularizers or hand-designed monotonic architectures, whose
main drawback lies in the absence of guarantees and there-
fore will require verification as a post-processing step, e.g.,
using a method such as the one proposed in this paper. On the
other side, Liu et al [20] adopts an approach also based on
MILP encoding to verify monotonicity, but concentrate on
using it for a different aim than analyzing (non-)monotonic
space coverage. The goal in their case is hardening training,
which can prove to be costly in practice. They also provide
an idea for improving scalability of monotonicity verifica-
tion for deep neural networks by decomposing the network
into a stack of two-layer networks and then verifying their
monotonicity separately. Indeed, this provides a sufficient
(but not necessary) condition for global monotonicity, and
the idea could be used in conjunction to our method, but that
is beyond the scope of the present paper.

An important difference between our approach and the
approach from Liu et al [20] is that their approach applies
only to monotony constraints on continuous inputs, whereas
ours also applies to discrete inputs, such as the ones appear-
ing in our case study. For continuous inputs, monotony is
equivalent to verifying a property on the gradients on the
whole domain. Indeed the sign of the gradient component
corresponding to monotonous inputs should always keep the
same sign, positive or negative. However, for a neural net-
work with discrete inputs, the gradient sign condition is not
necessary for the monotony to hold, even when the gradient
can be computed by extending the input domain to reals. For
piece-wise linear neural networks such as ReLU networks,
we can base verification on the very definition of monotony
(Definition 1), which can be cast as solving a mixed-integer
linear programming problem. This method is complemen-

tary to the literature using the gradient condition and can
verify monotony over discrete inputs.

To our knowledge, most previous work has considered
monotony under continuous inputs, while many industrial
use-cases have monotony constraints on discrete inputs. One
notable exception is the fairness verification in the work
of Urban et al [37] that can be applied on both a discrete
or a continuous input and has similarities with monotony
verification.

Verifying the monotony is recognized to be more chal-
lenging than robustness, since it is a global property on the
whole domain rather than a local neighborhood [20]. How-
ever, we argue that applying partial monotony over the whole
domain, which may affect the performance and put at risk
the product’s release, is a very drastic approach. Indeed, in
an industrial context, it is necessary to balance quality and
safety, especially as the systems are not only constrained by
monotony, but also by other specifications such as accuracy.
The solution we propose is a partitioning scheme that splits
the operational domain into areas where the monotony prop-
erty is respected and areas where it is (partially) violated; in
the latter, the neural network’s behavior could be mitigated.
This possibility has been considered on a collision detection
use case [7] and studied at a higher level for the certification
of a system before an ML component [22].

6 Conclusion

In this paper, we discuss the challenges raised by including
components based on machine learning in critical systems.
We focus on the impact it has on well established certifica-
tion processes, in particular for civil aviation. Some of the



challenges listed can be overcome with the help of formal
verification techniques.

We then focus on the problem of formally verifying
monotony properties on feed-forward neural networks with
ReLU units. We propose an iterative method based on MILP
that allows to identify the input sub-spaces where the neural
network does not satisfy the property. The verification proce-
dure is suited for both discrete and continuous features. Our
proposal is a step further in the demonstration that neural
networks can preserve important functional properties and
therefore in the capability to embed the ML technology in an
aeronautical safety-critical system.

We applied this method on an aeronautical case study that
consists in estimating the braking distance of an aircraft us-
ing a neural network mixing discrete and continuous inputs.
We managed to quantify the percentage of the space where
the neural network does not preserve the monotony prop-
erty and to identify formally each sub-space where it occurs.
In addition, we showed that we can capitalize on the avail-
able data to visualize the sub-spaces for helping the braking
function’s experts in processing the results of the algorithm.

Note that this work leaves room for some optimizations,
such as using tighter big-M values in Equations (2)-(3), or us-
ing asymmetric bounds, computed by incomplete methods
such as [34, 42]. Initial attempts to integrate such bounds
in our method proved to be less effective than the big-M
method in terms of MILP solving time, but this needs to be
further explored. To the best of our knowledge, the scalabil-
ity of complete methods remains a challenge in the verifi-
cation community and is mainly used with “shallow” neural
networks. Thus, this method is mainly useful for small to
medium networks used as surrogates or for control.

As an extension of this work, we plan to estimate the in-
tegral under the curve of f (x1) − f (x2) in the sub-spaces
where the monotony is violated by leveraging our definition
of the monotony property. This would give a key indicator
on the level of violation of the monotony property that could
support the performance of the training phase. Another area
for future work concerns experimenting with different parti-
tion functions, as the proposed method is independent of the
choice of the partition function.
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