
HAL Id: hal-04668002
https://hal.science/hal-04668002v2

Submitted on 29 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to modify the tree of shapes of an image:
Connected operators without gradient inversion

Julien Mendes Forte, Nicolas Passat, Yukiko Kenmochi

To cite this version:
Julien Mendes Forte, Nicolas Passat, Yukiko Kenmochi. How to modify the tree of shapes of an image:
Connected operators without gradient inversion. International Conference on Pattern Recognition
(ICPR), 2024, Kolkata, India. �hal-04668002v2�

https://hal.science/hal-04668002v2
https://hal.archives-ouvertes.fr

How to Modify the Tree of Shapes of an Image:
Connected Operators Without Gradient Inversion⋆

Julien Mendes Forte1, Nicolas Passat2, and Yukiko Kenmochi1

1 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, F-14050 Caen, France
2 Université de Reims Champagne-Ardenne, CReSTIC, 51100 Reims, France

Abstract. The tree of shapes is a hierarchical data structure that models a grey-
level image via its level lines. It belongs to the family of morphological trees,
which allow to design connected operators, i.e. non-linear filters that transform
an image without creating new contours. Connected operators act by modify-
ing the image-modeling tree, shifting the values of its nodes. This paradigm is
frequently used with the component tree, another popular morphological tree.
It is much less considered in the case of the tree of shapes despite its abil-
ity to model more finely the image. Indeed, shifting the values of the nodes of
a tree of shapes is more complex, compared to other morphological trees. In
this article, we investigate how to modify a tree of shapes by shifting the val-
ues of its nodes. We explain how to carry out this operation so that the mod-
ified / simplified tree remains the tree of shapes of the processed image. We
propose algorithmic solutions and methodological schemes to reach that goal.
We discuss on their properties and we illustrate their relevance by application
examples of induced connected operators. Software implementation available at
https://github.com/jmendesf/ToSConOp.

Keywords: tree of shapes · connected filters · grey-level imaging · hierarchical
models · mathematical morphology

1 Introduction

Graph-based hierarchical structures are a cornerstone of mathematical morphology.
These hierarchical structures—most often trees—allow to model, describe and analyse
images. They also provide a way to process images, by allowing the design of con-
nected operators [29], a family of non-linear filters which share the specific property
of modifying an image while preserving its contours (i.e. not creating contours that do
not exist in the input image). This property derives from the fact that these operators
do not act at the scale of the pixels, but at the scale of the connected components / flat
zones of the image modeled by a tree [28]. The applications of such operators are many,
including mainly filtering and segmentation.

⋆ Work funded by Région Normandie (thesis grant RIN), Partenariats Hubert Curien (Sakura,
49674RK) and Agence Nationale de la Recherche (ANR-20-CE45-0011, ANR-22-CE45-
0034, ANR-23-CE45-0015). ANATOMIX is an EQUIPEX funded by the Investments for the
Future program of the Agence Nationale de la Recherche (ANR-11-EQPX-0031).

2 J. Mendes Forte, N. Passat, and Y. Kenmochi

Two kinds of trees were proposed for modeling images: the component tree [27]
and the tree of shapes [17]. Both were initially designed for modeling grey-level images
and further generalized to handle multivalued images [14, 7]. The design of connected
operators based on such trees relies on a three-step procedure [13]: (1) building the
tree from the original image (2) modifying the tree (generally, simplifying it, which
can be done by attribute analysis [4] or shaping [32]), and (3) reconstructing the final
image from the modified tree. While component tree based connected operators enjoy a
wide variety of applications, they are not well-fitted when brighter and darker areas of
the images need to be handled simultaneously. In such cases, using both the min- and
max-trees in a parallel or iterative fashion may lead to unsatisfactory results. Despite
the strong links that exist between the component tree and the tree of shapes [21],
and while connected operators based on the tree of shapes have been proposed [33],
this three-step procedure was mostly used to develop connected operators based on the
component tree.

This fact derives from the distinct modeling proposed by the two kinds of trees. The
component tree builds upon the connected components of the binary threshold sets of
the image. As consequence, simplifying that tree, i.e. removing a node, provides a valid
component tree. It also has a straightforward effect on the image, by lowering the values
of the region associated to the node, leading in particular to gradient-sign preserving,
anti-extensive filters. By contrast, the tree of shapes builds upon regions bounded by the
level lines of the image. As a consequence, simplifying that tree by removing a node
(or more generally by modifying its value) provides a tree which may not be a valid tree
of shapes. It may also have unexpected effects on the image, in particular by modifying
the sign of the gradients of the contours.

To the best of our knowledge, the way to modify the value of the nodes in a tree
of shapes without altering its intrinsic properties nor its ability to model the associated
image had not been investigated until now [10]. We propose to tackle this issue.

This article is organized as follows. Sect. 2 describes related works on the tree of
shapes and connected operators. Sect. 3 provides notions and properties related to the
tree of shapes. Sect. 4 describes how an image can be modified by shifting the value of
the nodes of its tree of shapes, and discusses on the related issues. Sect. 5 provides an
algorithm for shifting the value of one node of a tree of shapes whereas guaranteeing
that it remains the tree of shapes of the modified image. Sect. 6 proposes a generic
scheme that extends the one-node shifting algorithm as a many-node shifting. Sect. 7
exemplifies this scheme with induced connected operators. Sect. 8 concludes the article.

2 Related works

The trees developed in mathematical morphology are subdivided into two families. The
first gathers the total partition trees (e.g. the binary partition tree [26] and the watershed
tree [18]) that decompose the image into incrementally refining partitions. The second
gathers the partial partition trees that model images with respect to their spatial-spectral
structure. The tree of shapes [17] belongs to this second family. It models a grey-level
image by considering it as a topographic map. It encodes the nested relation between

How to Modify the Tree of Shapes of an Image 3

the isocontours of the image. It is the grey-level generalization of the adjacency tree
[24] that models the topological structure of a binary image.

Modeling an image by a tree of shapes requires to fulfill specific topological con-
straints. Indeed, the support of the image has to satisfy the Jordan-Brouwer property.
This is guaranteed for certain topological frameworks, e.g. for the well-composed im-
ages [15]. Digitally well-composed interpolations were investigated for the definition
of trees of shapes in arbitrary dimensions [3].

Variants of the tree of shapes were proposed. One can cite the multivariate tree of
shapes [7] that handles non-grey-level images, or the topological monotonic tree [30]
and the topological tree of shapes [20], that focus on the topological structure of the tree
of shapes. The links that exist between the tree of shapes and the component tree [27]
(the other archetype of the partial partition trees) were also investigated. These links
are known since their introduction, and were mainly characterized by the hole-filling
procedure between the nodes of the component trees and those of the tree of shapes.
Recently, the homeomorphic links between both trees were explicited and formalized
[21].

Efforts were geared towards efficiently building the tree of shapes. A method based
on immersing the image domain in the Khalimsky grid guarantees a worst-case quasi-
linear complexity [12]. Alternative approaches, including a root-to-leaves paradigm
[16], have also been presented, and parallel strategies were investigated [11]. The liter-
ature on the construction of the component tree and the tree of shapes proposes some
algorithms that rely on the first to build the second [9, 5] or vice versa [31].

The rich information modeled by the tree of shapes allowed the development of var-
ious image processing and analysis approaches: filtering [8], segmentation [1], simpli-
fication [2] or object recognition [19]. The image processing methods based on the tree
of shapes belong to the family of the connected operators [29]. Such operators model
an image via a morphological tree (tree of shapes, component tree), modify that tree,
and reconstruct the image accordingly [13]. The modification of the tree is most often
a simplification that discards the nodes of the tree that do not satisfy a given criterion,
based on descriptive attributes [4].

Connected operators based on this paradigm mainly build upon component trees,
generally leading to anti-extensive filters. This sheds light on the spectral anisotropy of
these component tree-based operators. By contrast, the simplification (or more gener-
ally, the modification) of a tree of shapes generally belongs to the class of self-dual con-
nected operators, leading to an isotropic behaviour, relevant for many image processing
applications. Such tree-of-shapes-based connected operators are especially interesting
as they can take into account both minimal (“dark”) and maximal (“light”) regions of
the image. However, modifying / simplifying a tree of shapes in a convenient fashion is
an operation that is more complex than for a component tree (see Sect. 4).

3 Tree of shapes

3.1 Basic definitions

An image is defined as a function F : U → V (Fig. 1(a)). We assume that (1) U is
endowed with a topological structure compliant with the Jordan-Brouwer property and

4 J. Mendes Forte, N. Passat, and Y. Kenmochi

(a) F (b)

o

o

o o

o

(c) (d)

o

o

oo

oo

(e) (f)

o

o

o o

o o o

(g)

Fig. 1. An image F (a), its upper- (b) and lower-threshold sets (d) (coloured regions). The two
component trees of F : the max-tree (c) that derives from (b) and the min-tree (e) that derives
from (d). Both model the inclusion between connected components. The tree of shapes (g) that
derives from the hole filling of the connected components of (b,d). The connected components of
(b,d) of same color lead to the node of this color in (f,g).

(2)V is endowed with a total order relation ⩽. For the sake of readability, we setU = Zd

(d ⩾ 2) endowed with the digital topology framework [25]. We also set V = Z so that
F (U) = [[⊥,⊤]] ⊂ V and a finite number of points x ∈ U satisfy F (x) > ⊥. These
hypotheses are generally satisfied by digital images.

Let v ∈ V. The upper- and lower-threshold sets of F at value v (Fig. 1(b,d)) are the
subsets of U defined as

Λ◦v(F) = {x ∈ U | v ⩽ F (x)} and Λ•v(F) = {x ∈ U | v > F (x)} (1)

Let A ⊆ U. We note Π[A] ⊆ 2U the set of the connected components of A (we set
Π[A] = ∅ if A = ∅). We note

C◦ =
⋃
v∈V

Π[Λ◦v(F)] and C• =
⋃
v∈V

Π[Λ•v(F)] (2)

the set of the connected components of F induced by its upper- and lower-threshold
sets, respectively (Fig. 1(b,d)).

Let Z ∈ Π[A]. We note Zτ ⊇ Z the connected set obtained by filling the cavities of
Z (Fig. 1(f)). We set C = C◦ ∪ C• and

Θ = {Zτ | Z ∈ C} (3)

We consider the partial order relation ⊆ on Θ and we note ◁ its reflexive-transitive
reduction. The tree of shapes (Fig. 1(g)) is then defined as follows.

Definition 1 (Tree of shapes [17]) The tree of shapes of F is the tree T = (Θ,◁).

The elements of Θ (resp. ◁) are called the nodes (resp. the edges) of T.

3.2 Proper part, altitude, image reconstruction

Each node X ∈ Θ is characterized spatially (with respect to U) and spectrally (with
respect to V). This leads to the two notions of proper part and the altitude of a node.

How to Modify the Tree of Shapes of an Image 5

Definition 2 (Proper part of a node) Let X ∈ Θ. The proper part of X in the tree of
shapes T = (Θ,◁) is defined by

ρ(X) = X \
⋃
Y◁X

Y (4)

We note ρ : Θ→ 2U the induced function.

Remark 3 The set {ρ(X) | X ∈ Θ} is a partition of U.

Definition 4 (Altitude of a node) Let X ∈ Θ. The altitude Alt(X) of X in the tree of
shapes T = (Θ,◁) is defined by

∀x ∈ ρ(X), Alt(X) = F (x) (5)

The altitude Alt(X) of X is the unique value of V that F assigns to the points of the
proper part ρ(X) of X. We note Alt : Θ→ V the induced function.

From now on, we consider that the tree of shapes T is implicitly endowed with
its induced proper part and altitude functions, i.e. we consider T as (T, ρ, Alt). From
(T, ρ, Alt), it is possible to reconstruct the image in a lossless way.

Property 5 Given the tree of shapes (T = (Θ,◁), ρ, Alt), the image F : U→ V can be
recovered by setting, for any x ∈ U

F (x) =
⩽∨

X∈Θ

1(ρ(X), Alt(X))(x) (6)

where
∨⩽ is the supremum for ⩽, and 1(Y,u) : U→ V is the cylinder function defined by

1(Y,u)(x) = u if x ∈ Y and ⊥ otherwise.

In other words, the image F can be reconstructed by assigning to each points x ∈ U
the altitude value Alt(X) of the node X ∈ Θ that contains x in its proper part ρ(X). This
reconstruction formula constitutes the cornerstone for designing connected operators
based on the tree of shapes of an image, as discussed in the next section.

4 How to modify an image via its tree of shapes?

Before discussing on the connected operators based on morphological trees (Sect. 4.2),
we recall properties of the tree of shapes related to its invariance to contrast transfor-
mations (Sect. 4.1).

4.1 Contrast invariance of the tree of shapes

Let γ : V → V be a transformation of the space of values. We say that γ is a contrast
transformation if it is strictly increasing, i.e. if for all u, v ∈ V we have (u < v) ⇒
(γ(u) < γ(v)).

6 J. Mendes Forte, N. Passat, and Y. Kenmochi

Property 6 (Constrast invariance of the tree of shapes) Let F : U → V be an im-
age. Let γ : V → V. Let (T, ρ, Alt) be the tree of shapes of F . If γ is a contrast
transformation, then (T, ρ, γ ◦ Alt) is the tree of shapes of γ ◦ F .

In other words, a contrast transformation γ alters neither the structural (T) nor the spatial
(ρ) part of the tree of shapes of an image, whereas the spectral part (γ ◦ Alt) directly
follows the contrast transformation.

A contrast transformation γ acts on the space of values V. It induces a contrast
transformation Γ : VU → VU that acts on the space of images. It is defined, for any
image F : U → V, by Γ(F) = γ ◦ F . The function Γ exhibits an important property:
it is gradient-sign preserving. Let x, y ∈ U such that x and y are neighbour with respect
to the topological structure of U. Let F : U → V be an image. The gradient sign-
preserving property of Γ means that

(F (x) ⩽ F (y)) =⇒ (Γ(F (x)) ⩽ Γ(F (y))) (7)

As a corollary of Eq. (7), we have

(F (x) = F (y)) =⇒ (Γ(F (x)) = Γ(F (y))) (8)

From Eq. (8), Γ is a connected operator, i.e. it does not create new contours in the
transformed image.

From Props. 5–6, the application of Γ on the image F could be carried out by (1)
building the tree of shapes (T, ρ, Alt) of F ; (2) modifying Alt into γ ◦ Alt; (3) recon-
structing the image Γ(F) modeled by (T, ρ, γ ◦ Alt) (see Eq. (6)).

For a trivial transformation such as Γ, acting directly on F would be sufficient.
Nonetheless, the three-step procedure inspired from [13] and discussed in Sect. 4.2
opens the way to the design of a wider range of gradient-sign preserving connected
operators based on the modification of the values of the nodes of the tree of shapes,
leading to local modifications of the contrast of the modeled images.

4.2 Connected filtering framework: issues and purpose

As stated above, a connected operator can be designed from the simplification of a tree.
The process consists in:

(i) building the tree T that models the image F ;
(ii) simplifying T into a new tree T̂; and

(iii) reconstructing the new image F̂ from T̂.

F
(i)

−−−−−−→ TyΓ y(ii)

F̂
(iii)

←−−−−−− T̂

(9)

It was pioneered in [13], where it was designed for component trees [27] and by con-
sidering that the simplification of Step (ii) consists of discarding nodes according to
attributes [4].

This framework may be considered also with a tree of shapes instead of a component
tree. Step (i) relies on the construction of the tree, which can be done either for the
component tree [6] or the tree of shapes [12]. Step (iii) relies on the reconstruction
formula of Eq. (6), which is similar for both the component tree and the tree of shapes.

How to Modify the Tree of Shapes of an Image 7

A
B

C

ED D

(a) F

A

B

C

D

E

(b) T

A

B

D

E

(c) T′

A
B

D D’

(d) F̂

A

B

D D’

(e) T̂

Fig. 2. An image F (a) and its tree of shapes T (b). The removal of C (equivalent to setting its
altitude to that of B) leads to the tree T′ (c). The image obtained from T′ (d) and its tree of shapes
T̂ (e). (1) The tree T′ (c) differs from T̂ (e). (2) The sign of the gradients has been modified
between F and F̂ for some contours (d, in red). (Figure adapted from [17].)

Regarding Step (ii), in [13] and most of the subsequent contributions, the idea was
to preserve some nodes of the component tree whereas discarding others. In particular,
when a node X was preserved, ρ(X) and Alt(X) were unaltered. By contrast, when a node
X was discarded, ρ(X) was merged with the proper part ρ(P) of its parent node P such
that X ◁ P. This discarding / merging can be seen as a side effect of the modification of
the altitude Alt(X) so that it becomes equal to Alt(P). Step (ii) could then be generalized
as “turn T into a new tree T̂ by modifying the altitudes of its nodes”.

Defining a new altitude function Âlt : Θ → V does not modify the structure of the
tree T. Besides, the reconstruction formula of Eq. (6) remains valid, making Step (iii)
tractable. The induced operator Γ applied on F is a connected operator, since it satisfies
Eq. (8). Nonetheless, two problems may occur (Fig. 2). First, the tree T′ associated to
the new altitude application Âlt, and to the induced image F̂ may not be the tree of
shapes T̂ of F̂ . More generally, it may not be a tree of shapes (Fig. 2(c,e)). Second, the
operator Γ, although being a connected operator, may not satisfy Eq. (7), i.e. it may not
be gradient sign-preserving (Fig. 2(a,d)).

We propose hereafter a framework that allows to modify the altitude of the nodes of
a tree of shapes—with controlled side effects on its structure—so that:

(P1) the modified tree remains the tree of shapes of the associated modified image;
(P2) the sign of the gradients of the modified image is preserved with respect to the

initial image.

5 Shifting one node of the tree of shapes

We now explain how to modify the altitude of (i.e. shift) a node of a tree of shapes while
satisfying (P1) and (P2).

5.1 Notations

Let F : U → V be an image. Let T = (Θ,◁) be its tree of shapes. Let X ∈ Θ be a node
of T. From Prop. 6, we assume without loss of generality that Alt(X) = 0. (See Fig. 3.)

8 J. Mendes Forte, N. Passat, and Y. Kenmochi

P (m = −2)

X (0)

C1 (v1 = −5) C2 (v2 = −3) C3 (v3 = −1) C4 (v4 = 2) C5 (v5 = 3)
||| ||| ||| ||| |||

C−3 (v−3 = −5) C−2 (v−2 = −3) C−1 (v−1 = −1) C+1 (v+1 = 2) C+2 (v+2 = 3)

α β

δ

C− C+

Fig. 3. Graphical example of notations of Sect. 5.1. The altitudes of nodes are given into brackets.
In this figure, we have m+ = v4 and m− = v3. They correspond to the closest (higher and lower)
altitudes with respect to X within the set of its children. We have M+ = {C4} and M− = {C3},
which are the sets of children nodes associated to the respective values m+ and m−. Finally, we
have µ+ = v4 and µ− = v3 which correspond to the closest (higher and lower) altitudes with
respect to X within the whole set of its neighbouring nodes (parent and children).

Definition 7 (Parent set) The parent set of X is P(X) = {P ∈ Θ | X ◁ P}.

If P(X) = {P}, then P is the parent node of X, i.e. X ◁ P. In that case, by abuse of
notation, we write P(X) = P and we note m = Alt(P). If P(X) = ∅, then X is the root of
T and we set m = 0.

Definition 8 (Children set) The children set of X is C(X) = {Ci ∈ Θ | Ci ◁ X}δi=1 (with
δ ⩾ 0).

For any i ∈ [[1, δ]], we note vi the altitude value of the node Ci, i.e. vi = Alt(Ci). We
have vi , 0, i.e. either vi > 0 or vi < 0.

We assume that {Ci}
δ
i=1 is sorted with respect to the values vi, i.e. for all j, k ∈ [[1, δ]],

we have
(j < k) =⇒

(
v j ⩽ vk

)
(10)

We set α = |{Ci | vi < 0}| and β = |{Ci | vi > 0}| (with δ = α + β). In particular, we
have {Ci | vi < 0} = {Ci}

α
i=1 and {Ci | vi > 0} = {Ci}

α+β
i=α+1 For each i ∈ [[1, α]], we set

C−i = Cα−i+1 and we note v−i = vα−i+1. For each i ∈ [[1, β]], we set C+i = Cα+i and we
note v+i = vα+i. We set C− = {C−i }

α
i=1 and C+ = {C+i }

β
i=1. We set

m+ = min
{
v+i
}β
i=1 =

{
v+1 if β > 0
+∞ if β = 0 and m− = max

{
v−i
}α
i=1 =

{
v−1 if α > 0
−∞ if α = 0 (11)

and

µ+ =

{
min{m+,m} if m > 0
m+ if m ⩽ 0 and µ− =

{
max{m−,m} if m < 0
m− if m ⩾ 0 (12)

Finally, we set

M+ =
{
C+i ∈ C

+ | v+i = µ
+} and M− =

{
C−i ∈ C

− | v−i = µ
−} (13)

How to Modify the Tree of Shapes of an Image 9

P (2)

X (0)

C1 (−1) C2 (2) C3 (2) C4 (5)

P&X&C2&C3 (2)

C1 (−1) C4 (5)

(a) Case (i), Prop. 10

P (2)

X (0)

C1 (−1) C2 (3) C3 (3) C4 (5)

P&X (2)

C1 (−1) C2 (3) C3 (3) C4 (5)

(b) Case (ii), Prop. 11

P (3)

X (0)

C1 (−1) C2 (2) C3 (2) C4 (5)

P (3)

X&C2&C3 (2)

C1 (−1) C4 (5)

(c) Case (iii), Prop. 12

Fig. 4. The three cases of short range shifting. First row: initial configuration. Second row: final
configuration. (a–c) We have µ− = −1, µ+ = 2 and the targeted altitude is v = 2. The part of the
tree impacted by the shifting is depicted in red.

5.2 Short range shifting

Let us first suppose that we want to shift a node X ∈ Θ with no impact beyond its
immediate vicinity. The following property states that if this shifting is small enough,
then the tree of shapes remains unchanged.

Property 9 If the new value v of Alt(X) satisfies µ− < v < µ+, then neither T nor ρ are
modified, and Alt is modified only for X.

Now, let us suppose that we want to shift X slightly further. More precisely, we want
to set the new altitude v of X so that v = µ⋆ (where ⋆ is either + or −). Three (mutually
exclusive) distinct cases can occur (Fig. 4):

(i) µ⋆ = m = m⋆ (see Prop. 10);
(ii) µ⋆ = m , m⋆ (see Prop. 11);

(iii) µ⋆ = m⋆ , m (see Prop. 12).

In each case, it is necessary to discard nodes, as the new altitude v of X is either that of
its parent (ii), of some of its children (iii), or both (i). The node discarding procedure is
defined in Func. Discard. For a node X ∈ Θ to be discarded, it proceeds as follows: ρ(X)
is added to the proper part of the parent P of X (Line 1); X is removed from Θ (Line
2); (X, P) is removed from ◁ (Line 3); for each children C of X, (C, X) is removed from
◁ and replaced by (C, P) (Lines 4–6). From now on, “Discarding a node X” will mean
that we apply Func. Discard for X.

Alg. 1 provides the general short range shifting process that corresponds to Cases
(i–iii) and Props. 10–12.

Property 10 If the new value v of X is µ⋆ = m = m⋆, then the tree of shapes of the
image F is modified as follows: (1) each C ∈ M⋆ is discarded; (2) X is discarded.

In that case, the targeted altitude of X reaches both the altitude of some of its children
and of its parent. We discard these children (Alg. 1, Lines 4–5) and then X (Alg. 1, Line
6).

10 J. Mendes Forte, N. Passat, and Y. Kenmochi

Function Discard
Input: Θ, ◁, ρ, X
Output: Θ, ◁, ρ

1 ρ(P) := ρ(P)
⋃
ρ(X)

2 Θ→ X
3 ◁→ (X, P)
4 foreach C ◁ X do
5 ◁→ (C, X)
6 ◁← (C, P)

Algorithm 1: Short range shifting of a node
Input: Θ, ◁, ρ, Alt, X, v ∈ [[µ−, µ+]]
Output: Θ, ◁, ρ, Alt

1 if µ− < v < µ+ then Alt(X) := v (Prop. 9)
2 else
3 if v = m⋆ then
4 foreach S ∈ M⋆ do Discard(Θ, ◁, ρ, S) (Cases (i), (iii), Props. 10, 12)
5 Alt(X) := v

6 if v = m then Discard(Θ, ◁, ρ, X) (Cases (i), (ii), Props. 10, 11)

Algorithm 2: Long range shifting
Input: Θ, ◁, ρ, Alt, X, v
Output: Θ, ◁, Alt, ρ

1 while Alt(X) , v do
2 P := P(X)
3 if v > µ+ then b := µ+

4 else if v < µ− then b := µ−

5 else b := v
6 Apply Algorithm 1 (Θ,◁, ρ, Alt, X, b)
7 if X < Θ then X := P

Property 11 If the new value v of X is µ⋆ = m , m⋆, then the tree of shapes of the
image F is modified as follows: X is discarded.

In that case, the targeted altitude of X reaches that of its parent only. We discard X
(Alg. 1, Line 6).

Property 12 If the new value v of X is µ⋆ = m⋆ , m, then the tree of shapes of the
image F is modified as follows: each C ∈ M⋆ is discarded.

In that case, the targeted altitude of X reaches that of some of its children only. We
discard these children (Alg. 1, Lines 4–5).

How to Modify the Tree of Shapes of an Image 11

P′ (6)

P (3)

Y (4)X (0)

C1 (−2) C2 (1)

P′ (6)

P (3)

Y (4)X&C2 (1)

C1 (−2)

P′ (6)

P&X&C2 (3)

Y (4)

C1 (−2)

P′ (6)

P&X&C2&Y (4)

C1 (−2)

P′P
X C2

C1
Y

P′P
X&C2

C1
Y

P′

P&X&C2

C1
Y

P′

P&X&C2&Y
C1

Fig. 5. The successive steps of long-range shifting for a node X (first row) and the side effect on
the image (second row). The target altitude is v = 4. The red nodes are shifted, while the blue
nodes are involved in the intermediate short-range shiftings.

5.3 Long range shifting of a node

Let us now suppose that we want to shift a node X ∈ Θ by modifying its altitude Alt(X)
to a value v < [[µ−, µ+]]. We have either v > µ+ or v < µ−. Let us suppose that v > µ+

(the same reasoning holds for v < µ−). If we apply Alg. 1 to the node X to modify its
altitude to the value v = µ+, then the node X is merged with some of its neighbouring
nodes (parent and/or children), leading to a new node X̂ that differs from X but such that
X ⊂ X̂. Thus, further modifying X boils down to modifying X̂. This node X̂ is associated
to its own interval [[µ̂−, µ̂+]] with µ+ < µ̂+. If v ⩽ µ̂+, then the process ends by applying
Alg. 1 (Line 1, Prop. 9) with the value v. If v > µ̂+, then the process continues one step
further by applying Alg. 1 (Lines 3–6, Props. 10–12) with the value µ̂+, and so on. This
iterative process is described in Alg. 2 (see Fig. 5).

6 Shifting many nodes of the tree of shapes

In Sect. 5, we explained how to shift a single node of a tree of shapes. We now focus on
the issue of shifting many nodes.

6.1 Criterion and policy

A criterion is a Boolean function Crit : Θ → {True, False} defined on the nodes of
the tree of shapes (or, more generally, on any subset of U). Its definition guides the
selection of the nodes to be shifted. Such criteria, already considered in [13], often
rely on attributes [4] that describe specific (spatial, spectral. . .) properties of the nodes.
Examples of criteria are given in Sect. 7 for the illustrative applications.

The policy of a tree-of-shapes modification framework is defined as a function Pol :
Θ → V. Given a criterion Crit, for any node X ∈ Θ such that Crit(X) = True, the

12 J. Mendes Forte, N. Passat, and Y. Kenmochi

Algorithm 3: Generic tree of shapes modification
Input: Θ, ◁, Alt, ρ
Parameters: Crit : Θ→ {True, False}, Pol : Θ→ V
Output: Θ, ◁, Alt, ρ

1 foreach X ∈ Θ such that Crit(X) = True do
2 v := Pol(X)
3 Apply Algorithm 2 (Θ, ◁, ρ, Alt, X, v)

function Pol is used to assign a new value v to Alt(X). Many tree modification methods
proposed in the literature (especially for the component trees) usually aimed at merging
a node X with its parent node P. In that case, the function Pol was simply defined so
that Pol(X) = Alt(P). Here, the considered functions Pol are more versatile. Examples
of policies are given in Sect. 7 for the illustrative applications.

6.2 General approach for shifting a set of nodes

Algorithm 3 defines a generic tree of shapes modification framework. The application
of Crit on the nodes of Θ defines a set N = {X ∈ Θ | Crit(X) = True} (Line 1). Each
node X ∈ N is assigned a new altitude v ∈ V using the function Pol (Line 2) and Alg. 2
is then called in order to effectively shift X with respect to v (Line 3).

To keep this framework as generic as possible, we did not propose any sorting of
N nor tree-traversal strategy. Of course, such choices have a fundamental effect on the
behaviour of the process, since the shifting of a node X ∈ Θ—and its possible side
effects on the remainder of the tree—may (1) modify the part of N not yet processed
(e.g. by adding or removing nodes Y due to modifications of Crit(Y)) and (2) impact the
way to shift these nodes (e.g. if Pol(Y) has been impacted by the processing of X). Based
on these considerations, the way to order N , the choice to update (or not) the values of
Crit and Pol during the process and the way of processing the nodes (e.g. sequentially
or simultaneously) are important hyperparameters that have to be set depending on the
application and its purpose.

6.3 Preservation

Algorithms 3, 2, 1 and Func. Discard incrementally build upon each other. By definition,
Func. Discard preserves (P1) and (P2). From Props. 9–12, Alg. 1 also preserves (P1)
and (P2). By construction this is also the case for Alg. 2 and then for Alg. 3.

Moreover, depending on the used function Pol, additional properties may be sat-
isfied. For instance, by designing Pol so that for any X ∈ Θ, Pol(X) < Alt(X) (resp.
Pol(X) > Alt(X)), one may build extensive (resp. anti-extensive) connected operators.
The versatility of the proposed framework allows to tackle various image processing
issues, as illustrated in the next section.

How to Modify the Tree of Shapes of an Image 13

6.4 Computational aspects

If we assume that the number of children is O(1) for the nodes of a tree of shapes
(which is generally the case), then the time cost of Funct. Discard is O(1), the time
cost of Alg. 1 is O(1) and the time cost of Alg. 2 is O(k) where k is the number of
intermediate altitudes the current node has to go through. At each application of Alg. 2,
the number of nodes of the tree is reduced by at least k. It follows that, except the
extra-cost induced by the computation of Crit and Pol in Alg. 3, its overall time cost is
O(|Θ|). The complexity of this generic approach described in Alg. 3 then depends on the
strategies adopted by the user for defining and updating Crit and Pol. For well-chosen
strategies (e.g. construction of attributes based on separable properties, no updating of
the modified nodes. . .), the overall process may be carried out in linear time. Since the
construction of the tree of shapes is itself a quasi-linear time process, this may allow
the development of efficient strategies, in particular for handling large-scale images.
Considering that the simplification process described in Alg. 2 acts in only a part of
the tree, composed of the subtree rooted at the processed node plus its upper branch,
it is also possible to rely on parallel approaches, that may be deployed on distributed
architectures.

7 Application examples

We illustrate the relevance of the proposed approach for tree of shapes modification by
providing three examples of induced connected operators acting on grey-level images.
In these experiments, the trees of shapes were natively computed from Higra [22], and
subsequently processed by our code (https://github.com/jmendesf/ToSConOp).

– The first one performs image quantization (Fig. 6). It reduces the dynamics of an
image from 2p to 2k grey-levels, (0 ⩽ k ⩽ p). Here, Crit always holds True. The
quantized grey-levels are regularly sampled over [[0, 2p − 1]] and Pol is defined so
that the altitude of each node is shifted to the closest quantized value. This first
application is a toy example, since pixel-wise quantization also satisfies (P1) and
(P2). It mainly aims to show the generality of our approach.

– The second one performs area opening (Fig. 7). It removes the nodes of the tree
with smallest proper parts and, equivalently, the smallest details in the image. Here,
Crit(X) = True iff ρ(X) < λ with λ ∈ N. Pol is defined so that the altitude of X be
shifted to m. The nodes X are processed by increasing size of their proper part.

– The third one performs mean filtering at the scale of the nodes of the tree (Fig. 8).
It progressively smoothes the altitudes / grey levels between neighbouring nodes /
flat zones. Here, Crit always holds True. Pol is defined so that X is shifted to an
altitude defined as the mean value of the altitude of its neighbouring nodes. The
nodes X are processed from the root to the leaves.

By definition, in each one of these applications, the designed connected operator mod-
ifies / simplifies the tree of shapes and the induced images while satisfying (P1) and
(P2), thus leading to the preservation of the structure of the image.

14 J. Mendes Forte, N. Passat, and Y. Kenmochi

(a) Original (256) image (b) Quantized (32) values (c) Quantized (16) values

Fig. 6. (a) A natural image (256 grey levels). (b,c) The result of its quantization to 32 and 16 grey
levels, respectively.

(a) Original image (b) λ < 10 (SSIM = 0.903) (c) λ < 25 (SSIM = 0.855)

Fig. 7. (a) Remote sensing image (Landsat-7 image courtesy of the U.S. Geological Survey) (4.1 ·
105 pixels, tree of shapes: 1.7 ·105 nodes). (b,c) Simplified images obtained by area opening with
(b) λ = 10 (tree of shapes: 1.5 · 104 nodes). (c) λ = 25 (tree of shapes: 9.7 · 103 nodes). The
number of nodes / flat zones is progressively reduced with respect to λ in correlation with the
SSIM decrease.

8 Conclusion

In this article, we introduced an approach for shifting nodes of a tree of shapes, ensuring
that (P1) the resulting tree remains the tree of shapes of the image and (P2) the sign
of the gradient of its contours is preserved. This opens the way to the development
of a wide range of connected operators, designed to tackle specific issues in various
applicative contexts.

The proposed framework is dedicated to the standard tree of shapes, that models
grey-level images. On the one hand, the multivariate tree of shapes [7] was proposed
for handling e.g. colour images. Extending our shifting paradigm to handle such mul-
tivariate images constitutes a perspective work. On the other hand, the topological tree
of shapes [21] was recently introduced as a companion of the tree of shapes, which
models the topology of grey-level images. Extending the proposed shifting approach to
the topological tree of shapes is also a perspective work.

How to Modify the Tree of Shapes of an Image 15

(a) Original image (b) n = 5 (SSIM = 0.981) (c) n = 10 (SSIM = 0.910)

Fig. 8. (a) Biological image (synchrotron microtomography, SOLEIL ANATOMIX, project
#20211303, courtesy S. Almagro) (4.2·106 pixels, tree of shapes: 1.2·106 nodes). (b–c) Smoothed
images after n iterations of mean filtering of the tree: (b) n = 5 (tree of shapes: 4.7 · 105 nodes),
(c) n = 10 (tree of shapes: 2.3 · 105 nodes). The mean filter works by assigning to each node of
the tree the mean value of its neighbouring nodes. The process is repeated n times. The number
of nodes / flat zones is progressively reduced (removing noise) while the SSIM remains high
(preserving structural information).

The ability of the proposed framework to simplify a tree of shapes, e.g. by removing
(physical, semantic) noise and/or by reducing its combinatorial cost without losing sig-
nificant information also opens the way to its involvement as a relevant image descriptor
which could be embeded in deep-learning approaches, e.g. to model topological priors,
or to ensure the preservation of structural properties of images, as already pioneered
with the component tree [23].

References

1. Baderot, J., Desvignes, M., Condat, L., Dalla Mura, M.: Tree of shapes cut for material
segmentation guided by a design. In: ICASSP, Procs. pp. 2593–2597 (2020)

2. Ballester, C., Caselles, V., Igual, L.: Level lines selection with variational models for seg-
mentation and encoding. Journal of Mathematical Imaging and Vision 27, 5–27 (2006)

3. Boutry, N., Najman, L., Géraud, T.: Topological properties of the first non-local digitally
well-composed interpolation on n-D cubical grids. Journal of Mathematical Imaging and
Vision 62, 1256–1284 (2020)

4. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision
and Image Understanding 64, 377–389 (1996)

5. Carlinet, E., Crozet, S., Géraud, T.: The tree of shapes turned into a max-tree: A simple and
efficient linear algorithm. In: ICIP, Procs. pp. 1488–1492 (2018)

6. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms.
IEEE Transactions on Image Processing 23, 3885–3895 (2014)

7. Carlinet, E., Géraud, T.: MToS: A tree of shapes for multivariate images. IEEE Transactions
on Image Processing 24, 5330–5342 (2015)

8. Caselles, V., Monasse, P.: Grain filters. Journal of Mathematical Imaging and Vision 17,
249–270 (2002)

16 J. Mendes Forte, N. Passat, and Y. Kenmochi

9. Caselles, V., Meinhardt, E., Monasse, P.: Constructing the tree of shapes of an image by
fusion of the trees of connected components of upper and lower level sets. Positivity 12,
55–73 (2008)

10. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps. Lecture
Notes in Mathematics, Springer (2010)

11. Crozet, S., Géraud, T.: A first parallel algorithm to compute the morphological tree of shapes
of nD images. In: ICIP, Procs. pp. 2933–2937 (2014)

12. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree
of shapes of nD. In: ISMM, Procs. pp. 98–110 (2013)

13. Jones, R.: Connected filtering and segmentation using component trees. Computer Vision
and Image Understanding 75, 215–228 (1999)

14. Kurtz, C., Naegel, B., Passat, N.: Connected filtering based on multivalued component-trees.
IEEE Transactions on Image Processing 23, 5152–5164 (2014)

15. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Computer Vision and Image
Understanding 61, 70–83 (1995)

16. Monasse, P.: A root-to-leaf algorithm computing the tree of shapes of an image. In: RRPR,
Procs. pp. 43–54 (2018)

17. Monasse, P., Guichard, F.: Scale-space from a level lines tree. Journal of Visual Communi-
cation and Image Representation 11, 224–236 (2000)

18. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical seg-
mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 1163–1173
(1996)

19. Pan, Y., Birdwell, J.D., Djouadi, S.M.: Preferential image segmentation using trees of shapes.
IEEE Transactions on Image Processing 18, 854–866 (2009)

20. Passat, N., Kenmochi, Y.: A topological tree of shapes. In: DGMM, Procs. pp. 221–235
(2022)

21. Passat, N., Mendes Forte, J., Kenmochi, Y.: Morphological hierarchies: A unifying frame-
work with new trees. Journal of Mathematical Imaging and Vision 65, 718–753 (2023)

22. Perret, B., Chierchia, G., Cousty, J., Ferzoli Guimarães, S.J., Kenmochi, Y., Najman, L.:
Higra: Hierarchical graph analysis. SoftwareX 10, 100335 (2019)

23. Perret, B., Cousty, J.: Component tree loss function: Definition and optimization. In: DGMM.
pp. 248–260 (2022)

24. Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26, 24–33 (1974)
25. Rosenfeld, A.: Digital topology. The American Mathematical Monthly 86, 621–630 (1979)
26. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image pro-

cessing, segmentation, and information retrieval. IEEE Transactions on Image Processing 9,
561–576 (2000)

27. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and
sequence processing. IEEE Transactions on Image Processing 7, 555–570 (1998)

28. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction.
IEEE Transactions on Image Processing 4, 1153–1160 (1995)

29. Salembier, P., Wilkinson, M.H.F.: Connected operators. IEEE Signal Processing Magazine
26, 136–157 (2009)

30. Song, Y., Zhang, A.: Monotonic tree. In: DGCI, Procs. pp. 114–123 (2002)
31. Tao, R., Qiao, J.: Fast component tree computation for images of limited levels. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 45, 3059–3071 (2023)
32. Xu, Y., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 38, 1126–1140 (2016)
33. Xu, Y., Géraud, T., Najman, L.: Hierarchical image simplification and segmentation based on

mumford–shah-salient level line selection. Pattern Recognition Letters 83, 278–286 (2016)

