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A B S T R A C T

This article presents the asynchronous global–local non-invasive coupling in the case of
nonlinear monotone patches as encountered when inserting elastoplastic components in a global
linear elastic model. The convergence of the method is theoretically established in a general
framework using the paracontractions technique and illustrated in academic examples with a
weak scalability study considering the case of balanced and unbalanced patches.

1. Introduction

The global–local coupling technique is a computational method that aims at simplifying the study of local alterations inside the
finite element model of a structure. Compared to the classical submodeling approach, it is a two-way method in the sense that
all interactions (global model ↔ local patches) are accounted for. This method is particularly precious for industrialists since it
easily adapts to their design workflow, starting from a simplified model of a structure and progressively introducing details. The
global–local coupling makes it possible to compute the exact effects of the details without requiring to modify the model which is
a time-consuming and hard to automate stage. Moreover, due to the classical quantities to be exchanged between the global and
local models (displacement and traction), the coupling is non-invasive, as all computations can be carried out on industrial (closed)
software. The method can even be employed to associated commercial and research software, bringing new functionalities inside
legacy code, see [1] for an implementation using Abaqus co-simulation engine.

The main requirement to employ the global–local coupling method is the well-posedness of local Dirichlet problems, which
is often encountered in mechanical problems. It opens the path to its application in many contexts like, among others, local
plasticity [2], crack propagation in a sound model [3], explicit dynamics [4], plate/three-dimensional modeling of assemblies [5],
uncertainty quantification [6], computation of elastoviscoplastic models with mesh refinement [7], debonding of composite
panels [8], brittle fracture with phase-field modeling [9,10].

Despite its strong link with domain decomposition methods (see [11] for the interpretation as an alternate Robin–Dirichlet
method and [12] as a primal domain decomposition method), the global–local coupling cannot pretend to high performance
computing. In comparison with other nonlinear domain decomposition methods [13,14], it is much less parallel due to the central
role played by the global problem. When considered as a modeling assistant which helps the designer introduce details in a global
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Fig. 1. Models and subdomains for the Global/Local coupling.

structure, scalability does not appear to be an important feature. Handling efficiently few hundreds of patches seems to be an
objective in agreement with industrialists’ practice.

In order to unleash as much computational power as possible, asynchronous parallel computing has emerged as a promising
approach. It allows each subdomain to work independently, asynchronously updating its solution and exchanging information
with neighboring subdomains when possible. This property can be particularly precious when patches are poorly-balanced because
nonlinearity is non-evenly distributed. Several works have focused on classical alternating Schwarz methods with overlap, providing
theoretical convergence proofs and numerical illustrations [15–18]. In [19], an asynchronous version of the weighted additive
Schwarz method is investigated, demonstrating its convergence and significant improvement compared to the synchronous version.
The application of the asynchronous alternating Schwarz method to a large structural mechanic problem using the supercomputer
Grid5000 is presented in [20]. In [21], an asynchronous additive Schwarz method is theoretically and numerically investigated to
solve nonlinear problems with a finite difference scheme. The rate of convergence of asynchronous domain decomposition methods
is studied in the context of convex optimization in [22]. Recently, [23] introduces a novel scalable asynchronous two-level Schwarz
method.

Regarding non-overlapping methods, which are particularly suitable for mechanical problems, recent works achieved interesting
results with asynchronous approach. In [24], a convergence proof of the classical substructuring method for the three-dimensional
Poisson problem is provided. In [25] a Gauss–Seidel scheme is proposed to alternate between the resolution on the interface and
in the subdomains. Furthermore, [26] improves the method by introducing a coarse space correction that enhances its scalability.
Various applications of the asynchronous optimized Schwarz method [27] are discussed in [28–30]. Other studies have explored the
convergence of asynchronous domain decomposition methods, such as primal Schur domain decomposition [31] and asynchronous
multigrid methods [32].

In [12], an asynchronous version of the non-invasive global–local coupling method was presented for linear problems in structural
mechanics. A proof of convergence was provided by analyzing the spectrum of an operator corresponding to repeated iterations. This
paper aims at extending asynchronous iteration to a larger class of mechanical problems. Our approach relies on certain algebraic
structures and energy bounds which correspond to having a linear global model and continuous monotone patches. This framework
encompasses elasto(visco)plastic mechanical models with positive hardening. Even if this may seem a restricted domain compared
to the many current applications of the global-coupling, it in fact corresponds to the hypothesis of [6] where the most advanced
proofs were given for the synchronous global–local iteration. Moreover, elastoviscoplastic problems correspond to a large class of
industrial studies where the objective is to compute the evolution of the structure before damage or fracture threaten its lifespan.
Elastoviscoplasticity requires sophisticated numerical methods to be correctly handled, like Newton–Raphson incremental solver
coupled with radial mapping [33,34]. Due to the (positive) hardening, plasticity is often localized in zones of stress concentration,
and the size of those zones grows smoothly with the intensity of the load. It is thus a very natural approach to start from a global
linear elastic model of a structure and try to apply the nonlinear behavior only in the zones of interest where a certain elastic
criterion was met, like the value of the Mises stress being close to the elastic limit.

The paper is organized as follows: Section 2 introduces to the global–local coupling method. Section 3 presents the asynchronous
framework and provides convergence proofs under reasonable assumptions. Section 4 illustrates the performance on academic
examples, including a weak scalability assessment.

2. Derivation of synchronous non-invasive Global/Local coupling

This section aims at providing the fundamental concepts necessary to comprehend and analyze the Global/Local coupling method
applied to monotone patches with asynchronous iteration. For improved clarity, we directly consider the finite element discretization
of the problem, although the same analysis could be applied to the variational formulation. We use an elastoplastic mechanical
problem as an illustration, however the method can be applied to the general case of monotone elliptic problems. For simplicity,
the presentation follows the basic outline of [12] and introduces novelty where needed.
2



Computer Methods in Applied Mechanics and Engineering 430 (2024) 117166A.E. Kerim et al.

t
b
d

t
a

b

t

The classical scenario is illustrated on Fig. 1. A linear elastic Global coarse model is used to describe a large structure. After
he initial computation, 𝑁 > 0 zones of interest 𝛺𝑠,𝐺 (𝑁 ⩾ 𝑠 > 0) are selected because some criterion has been exceeded or
ecause it was known from the beginning that some details were missing in the Global model. In our illustration, geometrical
etails, elastoplastic behavior and adapted meshes are introduced in the Local modeling of the zones of interest 𝛺𝑠,𝐹 . Material

heterogeneity could also have been introduced. Local computations are run in parallel on the patches using the Global solution as
Dirichlet boundary condition (for 𝑠 > 0, the interior of the Local and Global subdomains may differ, but their interface 𝛤 𝑠 must be
he same 𝛤 𝑠 = 𝛺 ∩ 𝜕𝛺𝑠,𝐺 = 𝛺 ∩ 𝜕𝛺𝑠,𝐹 ). For now, only one load increment is considered, more complex load sequences, which play
n important role in history-dependent problems, will be studied in Section 3.5.

After these initial computations which corresponds to the submodeling technique, there exists lack of balance of the traction
etween the Global zone not covered by patches, denoted by 𝛺0 = 𝛺𝐺 ⧵

(
⋃

𝑠>0 𝛺
(𝑠),𝐹 ) and the Local models. Such a stress gap would

not exist in the Reference computation where the Local zones of interest would have directly inserted in the computational model,
Fig. 1(c).

The Global/Local coupling is a simple iterative technique (a Richardson iteration for its simpler version) aiming at obtaining
the Reference solution from computations carried on the Global and Local models with minimal intervention on the models and
software. The main interest of the coupling is to avoid the creation of the Reference model which is often cumbersome operation,
hard to automate and needing human intervention anytime an extra modification is applied.

2.1. Global problem

The global model (index 𝐺) is a representation of the whole structure assumed to be sufficiently well-designed to correctly grasp
the stress flows in the structure. For instance one can think of a homogenized model of a heterogeneous microstructure, or a shell
model for a slender structure. To fit with our current theoretical proof, we need to assume that the global problem is linear, issued
from the discretization of a symmetric continuous coercive bilinear form. Note that in practice nonlinear global models have already
been successfully used [3,7].

The global model is corrected by an extra load 𝐩𝛤 of nodal fluxes applied on the interface 𝛤 =
⋃𝑁

𝑠=0 𝛤
𝑠. To position the interface

in the Global domain we introduce the boolean trace operator 𝐓𝐺 ∶ 𝛺𝐺 → 𝛤 , so that 𝐮𝐺𝛤 = 𝐓𝐺𝐮𝐺, its transpose is the extension-by-0
operator.

The discrete Global problem can be written as:
|

|

|

|

|

|

For given 𝐩𝛤 on 𝛤 , find 𝐮𝐺 in 𝛺𝐺 , such that

𝐊𝐺𝐮𝐺 = 𝐟𝐺 + 𝐓𝐺𝑇 𝐩𝛤
(1)

where one can recognize the symmetric definite positive stiffness matrix 𝐊𝐺, the vector of generalized loads 𝐟𝐺, the vector of
unknowns 𝐮𝐺. In general the initial guess for 𝐩𝛤 is zero.

2.2. Local problems

Let 𝐀𝑠 ∶ 𝛤 𝑠 → 𝛤𝐺 be the extension-by-zero operator (transpose of the restriction operator), and 𝐓𝑠,𝐹 ∶ 𝛺𝑠,𝐹 → 𝛤 𝑠 be the local
trace operator. In order to handle potentially non-conforming discretizations between the global and fine models, we introduce the
global-to-fine interpolation operator 𝐉𝑠. Note that more involved transfer techniques are possible, e.g. mortar methods [3].

The discrete fine problems correspond to solving independent Dirichlet problems on the patches with the boundary condition
inherited from the global problem 𝐮𝐺:

|

|

|

|

|

|

|

|

|

∀𝑠 > 0, find 𝐮𝑠,𝐹 in 𝛺𝑠,𝐹 and 𝝀𝑠,𝐹 on 𝛤 𝑠 such that

− 𝐟𝑖𝑛𝑡𝑠,𝐹 (𝐮𝑠,𝐹 ) = 𝐟 𝑠,𝐹 + 𝐓𝑠,𝐹 𝑇 𝝀𝑠,𝐹

𝐓𝑠,𝐹 𝐮𝑠,𝐹 = 𝐉𝑠𝐀𝑠𝑇 𝐮𝐺𝛤 ,

(2)

where 𝐟𝑖𝑛𝑡𝑠,𝐹 is the vector of internal forces, which corresponds to the work of the stress field in the finite element strain shape
functions. 𝝀𝑠,𝐹 is the vector of nodal reactions associated with the interface Dirichlet condition.

Problem (2) is nonlinear, it requires an adapted iterative solver, in general a Newton–Raphson method. In the case of plasticity,
solving (2) also involves updating internal variables (plastic strain, hardening) at the Gauss points, often using a 𝜃-method. In this
study, we assume that the error from the nonlinear solver is negligible with respect to the coupling error. The gains to be expected
from the use of an inexact solver will be the subject of a forthcoming study.

We need to introduce the piece 𝛺0 of the global domain that may not be covered by the fine patches 𝛺0 = 𝛺 ⧵ (∪𝑠>0𝛺𝑠). Note
that possibly 𝛺0 can be empty. In the literature, 𝛺0 was sometime referred to as the complement domain. It can also be viewed as
he subdomain where the fine and global models coincide. 𝛺0 is useful in order to post-process 𝝀0, the global reaction from its side

of the interface:

Given 𝐮𝐺 , 𝝀0 = 𝐓0𝑇 (𝐊0𝐮𝐺
|𝛺0 − 𝐟0). (3)

Note that this computation can be conducted only on a halo around the interface, or using integration features of certain finite
element software. To gather notations later, we introduce 𝐉0 = 𝐈 .
3

𝛤



Computer Methods in Applied Mechanics and Engineering 430 (2024) 117166A.E. Kerim et al.

H
i

2

r
c
t
d
d
n
f
o

s
i
e
p
c
e
p

a
o
a
a
d
d

2

D
e

2.3. Residual and iterations

The residual 𝐫 can be defined as:

𝐫 = −

(

𝐀0𝝀0 +
∑

𝑠>0
𝐀𝑠𝐉𝑠𝑇 𝝀𝑠,𝐹

)

. (4)

The residual corresponds to the lack of balance between patches at the interface. It measures how unfit the common Dirichlet
condition 𝐮𝐺 was. Small 𝐫 means that the displacement 𝐮𝐺 is a good guess of the actual displacement of the reference problem
constituted by the assembly of the complement domain 𝛺0 and the fine models (𝛺𝑠,𝐹 )𝑠>0.

We can then consider a simple Richardson iteration in order to improve 𝐮𝐺, leading to the corrected global problem and the
following sequence of computations:

(0) Starting from 𝐩𝛤 = 0,

(1) Compute the corrected global problem: 𝐊𝐺𝐮𝐺 = 𝐟𝐺 + 𝐓𝐺𝑇 𝐩𝛤 ,
(2) Post-process the global reaction 𝝀0 as in eq. (4),
(3) Solve the fine Dirichlet problems (2) , compute the reactions (𝝀𝑠,𝐹 )𝑠>0

(4) Assemble the residual 𝐫 = −

(

𝐀0𝝀0 +
∑

𝑠>0
𝐀𝑠𝐉𝑠𝑇 𝝀𝑠,𝐹

)

,

(5) Update the corrective load 𝐩𝛤 ← 𝐩𝛤 + 𝜔𝐫, go to (1).

(5)

ere, 𝜔 > 0 is a relaxation parameter of the method. Aitken’s 𝛥2 dynamic relaxation appears to be a very efficient technique to tune
t automatically.

.4. Discussion

The Global problem (1) is a well-posed linear elastic mechanical problem, which implies the possibility to process the global
eaction (4). For the global–local coupling iteration to be well-defined, it is necessary for the Local nonlinear problems with Dirichlet
ondition (2) to be well-posed so that the reaction can be processed on the interface. This vague framework made it possible
o use the method successfully in many different cases including fracture [3,9,35] (using phase-field or XFEM approaches) or
elamination [36]. Even if the method often converges to a solution where all mechanical equations are satisfied, it is not clear,
ue to the softening nature of such problems which allows for multiple solutions, that the use of the global/local coupling does
ot drive the solution to a specific branch that would be hard to follow considering the reference problem. Same issue appears in
riction contact problems [5] where uniqueness is not granted. This is even clearer in the case of multiple patches where bad guess
f 𝐩𝛤 might lead to the ruin of one patch and the irremediable choice of a solution path.

In fact, a certain stability is required for the local problems in order to make sure that the reference problem has a unique
olution, towards which the global–local iteration converges. In [6], it was proved that assuming monotone and continuous behavior
n the fine patches (see later for more detail and refer to [6] for comprehensive analysis including stochastic effects), there
xist a non-empty interval of the form (0, 𝜔0) where the (synchronous) iteration converges to the reference solution. Nonlinear
roblems characterized by a monotone operator form an important class of well-posed mathematical problems where the solution
an be reached by fixed-point iterations, even asynchronous [37]. Mechanically speaking, monotone models can be obtained for
lasto(visco)plastic materials in small strains with positive hardening [38, lemma 2], which is linked to the Drucker stability
roperty [39] and to Hill’s maximal plastic work principle.

The proof in [6] was carried out in the continuous setting with a single patch, which is equivalent to the synchronous iteration for
family of non-connected patches, and then applied to the discretized system. We place our study in the same framework, and our
bjective is to extend the convergence proof to multiple patches with asynchronous iteration. In order to simplify our presentation
nd avoid some cumbersome functional analysis issues, in particular for the handling of contiguous patches, our analysis is directly
pplied to the discrete system, nevertheless the properties that underlie the convergence are the same in the continuous and the
iscrete settings. In order to even further simplify the presentation, the starting point of our analysis is the condensed system
escribed in next subsection.

.5. Condensation

Because all manipulated data are associated with mechanical problems in balance, and thanks to the well-posedness of the local
irichlet problems induced by the chosen hypotheses, the convergence is driven by the interface, and it is convenient to formally
4

liminate internal degrees of freedom (index 𝑖) and to condense all problems at the interface (index 𝛤 ).
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2.5.1. Global problem
The condensation of linear operators is a classical operation. It leads to the introduction of the Schur complement matrix 𝐒𝐺 and

he condensed right-hand side 𝐛𝐺:

𝐊𝐺𝐮𝐺 = 𝐟𝐺 + 𝐓𝐺𝑇 𝐩𝛤 ⇔

{

𝐮𝐺𝑖 = 𝐊𝑖𝑖
𝐺−1

(𝐟𝐺𝑖 −𝐊𝑖𝛤 𝐮𝐺𝛤 )
𝐒𝐺𝐮𝐺𝛤 = 𝐛𝐺 + 𝐩𝛤

where 𝐒𝐺 = 𝐊𝐺
𝛤𝛤 −𝐊𝛤 𝑖

𝐺𝐊𝑖𝑖
𝐺−1𝐊𝐺

𝑖𝛤 and 𝐛𝐺 = 𝐟𝐺𝛤 −𝐊𝛤 𝑖
𝐺𝐊𝑖𝑖

𝐺−1 𝐟𝐺𝑖

(6)

The Schur complement inherits the symmetric definite positive nature of 𝐊𝐺. Note that the global Schur complement is the sum
f subdomains’ contributions:

𝐒𝐺 =
𝑁
∑

𝑠=0
𝐀𝑠𝐒𝑠,𝐺𝐀𝑠𝑇 , with 𝐒𝑠,𝐺 = 𝐊𝑠,𝐺

𝛤𝛤 −𝐊𝛤 𝑖
𝑠,𝐺𝐊𝑖𝑖

𝑠,𝐺−1𝐊𝑠,𝐺
𝑖𝛤 , (7)

nd that the local Schur complements may be semi-definite in the absence of Dirichlet conditions.

.5.2. Euclidean structures induced by the Global model
The global model allows us to introduce the following norms which are equivalent to the canonical ones (even in the continuous

etting):

ocal stiffness seminorm for local displacement:

∀𝑠, ∀𝐮𝑠,𝐺𝛤 , |

|

|

𝐮𝑠,𝐺𝛤
|

|

|

2

𝐒𝑠,𝐺
∶= 𝐮𝑠,𝐺

𝑇

𝛤 𝐒𝑠,𝐺𝐮𝑠,𝐺𝛤 , (8)

lobal compliance inner product and norm for global reactions:

∀(𝐚𝐺𝛤 ,𝐛
𝐺
𝛤 ),

⎧

⎪

⎨

⎪

⎩

⟨𝐚𝐺𝛤 ,𝐛
𝐺
𝛤 ⟩𝐺 ∶= 𝐚𝐺𝑇

𝛤 𝐒𝐺−1𝐛𝐺𝛤 ,
‖

‖

‖

𝐚𝐺𝛤
‖

‖

‖𝐺
∶= ⟨𝐚𝐺𝛤 , 𝐚

𝐺
𝛤 ⟩

1∕2
𝐺 .

(9)

.5.3. Patches
We introduce the local Dirichlet-to-Neumann (DtN) maps. The nodal reactions (𝝀𝑠,𝐹 ) on the subdomains’ interface are written as

function of the imposed Dirichlet condition 𝐮𝛤 𝑠,𝐹 :

𝝀𝑠,𝐹 = 𝐬𝑠,𝐹 (𝐮𝑠,𝐹𝛤 ; 𝐟 𝑠,𝐹 ) means
⎧

⎪

⎨

⎪

⎩

∃𝐯𝑠,𝐹 such that
{

𝐓𝑠,𝐹 𝐯𝑠,𝐹 = 𝐮𝑠,𝐹𝛤
(

𝐟𝑖𝑛𝑡𝑠(𝐯𝑠,𝐹 ) + 𝐟 𝑠,𝐹
)

𝑖 = 0

𝝀𝑠,𝐹 ∶= −
(

𝐟𝑖𝑛𝑡𝑠,𝐹 (𝐯𝑠,𝐹 ) + 𝐟 𝑠,𝐹
)

𝛤

(10)

For linear subdomains, in particular 𝛺0 if it exists, the Dirichlet-to-Neumann operators takes the form of an affine operator. For
instance, we have:

𝝀0 = 𝐬0(𝐮0𝛤 ; 𝐟
0) = 𝐒0𝐮0𝛤 − 𝐛0 = 𝐓0 (𝐊0𝐮0,𝐺 − 𝐟0

)

(11)

2.5.4. Global-Local iteration in term of condensed operator
The sequence of operations of (5) can be rewritten as:

𝐩𝛤 ← 𝐩𝛤 − 𝜔

(

∑

𝑠⩾0
𝐀𝑠𝐉𝑠𝑇 𝐬𝑠,𝐹

(

𝐉𝑠𝐀𝑠𝑇 𝐒𝐺−1 (𝐛𝐺 + 𝐩𝛤
)

; 𝐟 𝑠,𝐹
)

)

(12)

If the iterations converge, the limit 𝐩̂𝛤 solves the coupling problem (null residual in (4)):
∑

𝑠⩾0
𝐀𝑠𝐉𝑠𝑇 𝐬𝑠,𝐹

(

𝐉𝑠𝐀𝑠𝑇 𝐒𝐺−1 (𝐛𝐺 + 𝐩̂𝛤
)

; 𝐟 𝑠,𝐹
)

= 0 (13)

2.5.5. Hypotheses
The monotonicity and continuity hypotheses are initially formulated on the partial differential equation (PDE) to be solved.

These hypotheses have direct consequences on the Dirichlet-to-Neumann maps. For simplicity, our starting point are the inequalities
satisfied by the DtN maps. The link with the original PDE is briefly explained in Appendix A and the reader is referred to [6] for a
complete presentation.

Strong monotonicity property ∀𝑠 > 0, ∃𝛾𝑠 > 0, such that ∀(𝐮𝑠,𝐺𝛤 , 𝐯𝑠,𝐺𝛤 ):
(

𝐬𝑠,𝐹(𝐉𝑠𝐮𝑠,𝐺; 𝐟 𝑠,𝐹 )−𝐬𝑠,𝐹(𝐉𝑠𝐯𝑠,𝐺; 𝐟 𝑠,𝐹 )
)𝑇
𝐉𝑠
(

𝐮𝑠,𝐺−𝐯𝑠,𝐺
)

⩾𝛾𝑠 ||𝐮𝑠,𝐺−𝐯𝑠,𝐺||
2

. (14)
5

𝛤 𝛤 𝛤 𝛤
|

𝛤 𝛤
|𝐒𝑠,𝐺
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Continuity property ∀𝑠 > 0, ∃𝑀𝑠 > 0 such that ∀(𝐮𝑠,𝐺𝛤 , 𝐯𝑠,𝐺𝛤 ):

‖

‖

‖

‖

𝐀𝑠𝐉𝑠𝑇
(

𝐬𝑠,𝐹 (𝐉𝑠𝐮𝑠,𝐺𝛤 ) − 𝐬𝑠,𝐹 (𝐉𝑠𝐯𝑠,𝐺𝛤 )
)

‖

‖

‖

‖

2

𝐺
⩽ 𝑀𝑠 |

|

|

𝐮𝑠,𝐺𝛤 − 𝐯𝑠,𝐺𝛤
|

|

|

2

𝐒𝑠,𝐺
. (15)

Note that equivalent inequalities exist at the continuous level between Steklov–Poincaré operators (and the (semi)norms they define
on appropriate Hilbert spaces). This means that the constants (𝛾𝑠,𝑀𝑠) depend on the geometry, the material and the meshes, but
they are not the result of the invocation of the finite dimension of the discrete problem.

Remark 1 (Case of Linear Fine Patches). For linear patches, 𝛾𝑠 and 𝑀𝑠 are extreme generalized eigenvalues:

𝛾𝑠 = min{𝜆 > 0, det(𝐉𝑠𝑇 𝐒𝑠,𝐹 𝐉𝑠 − 𝜆𝐒𝑠,𝐺) = 0}

𝑀𝑠 = max{𝜆, det(𝐉𝑠𝑇 𝐒𝑠,𝐹 𝐉𝑠𝐀𝑠𝑇 𝐒𝐺−1𝐀𝑠𝐉𝑠𝑇 𝐒𝑠,𝐹 𝐉𝑠 − 𝜆𝐒𝑠,𝐺) = 0}
(16)

3. Asynchronous global local non invasive coupling

In this section, the asynchronous version of the global–local coupling is presented, then we prove that there exist a non-empty
interval for the relaxation parameter that ensures convergence, and even monotone decrease of the error in some cases.

3.1. Asynchronous algorithm

The synchronous algorithm was given in Eq. (5), in this section, we discuss its asynchronous version. The asynchronous algorithm
is based on the idea that the global problem is updated as soon as new data is obtained from any of the local problems. Otherwise,
it waits without performing any calculations. Similarly, the fine models in the patches can launch a computation as soon as they
access new information from the global problem.
Algorithm 1: Asynchronous Global–Local Coupling
Initialization Rank 0: 𝐩𝛤 = 0

indows creation. Rank 0: [⋯𝐪𝑠 ⋯] = 0, Rank 𝑠 > 0: 𝐮𝑠,𝐺
hile ‖𝐫‖ is too large do
On rank 0 (Global domain), with at least one new 𝐪𝑠 (𝑠 > 0)

Global computes residual 𝐫 = −
∑

𝑠 𝐀𝑠𝐪𝑠
Global updates 𝐩𝛤 = 𝐩𝛤 + 𝜔𝐫
Global solve system (6), 𝐮𝐺𝛤 = 𝐒𝐺−1 (𝐩𝛤 + 𝐛𝐺)
if 𝛺0 exists then

Post-processing: 𝐪0 ∶= 𝝀0 = 𝐒0𝐮0,𝐺𝛤 − 𝐛0,𝐺

end
∀𝑠 > 0 Global puts 𝐮𝑠,𝐺 ∶= 𝐀𝑠𝑇 𝐮𝐺𝛤 in the Local window

On rank 𝑠 > 0 (Local patch) with new 𝐮𝑠,𝐺

Local solves (2), 𝝀𝑠,𝐹 = 𝐬𝑠,𝐹 (𝐉𝑠𝐀𝑠𝑇 𝐮𝐺𝛤 ; 𝐟
𝑠,𝐹 )

Local puts 𝐪𝑠 ∶= 𝐉𝑠𝑇 𝝀𝑠,𝐹 in the Global window.
end

Algorithm 1 presents the asynchronous version of the global–local coupling algorithm, using MPI-RDMA passive synchronization
ocabulary, as presented in [12,23,30].

In this asynchronous algorithm, Rank 0 serves as the central processor that coordinates the communication and updates between
he global and local components. Whenever Rank 0 detects new information from any of the patches (new 𝐪𝑠 = 𝐉𝑠𝑇 𝝀𝑠,𝐹 ), it performs

the resolution of the global system. Similarly, when a patch detects new information from the global problem (new 𝐮𝑠,𝐺 = 𝐀𝑠𝑇 𝐮𝐺),
it updates its local solution. The algorithm continues until the convergence criterion is met.

The asynchronous algorithm allows for overlapping computation and communication, leading to potentially improved efficiency
in parallel environments.

3.2. Convergence of the asynchronous iteration

As presented in the introduction, several techniques exist to study the convergence of an asynchronous method. One particular
difficulty in our case is the absence of the discrete maximal principle, so that the matrices do not possess the favorable
M-property [40], and the objective to remain non-invasive makes it impossible to recover such a property by invasive manipulations.

A recent study [41] proved the convergence of the asynchronous Richardson iterations for linear problems with a delay bounded
by 2. To generalize that study and go to the case with larger delay, the paracontraction concept introduced in [42] is used. The idea
is to formulate the method as a succession of contractive operators (for a well-chosen relaxation) sharing a common fixed point.
6

We can find other applications of this approach for linear and nonlinear problems in [43–45].
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3.2.1. Paracontractions
Let (𝑇𝑚) be a finite family of paracontractions with a common fixed point 𝑥̂ in some Hilbert space 𝐸. In other words:

• ∀𝑥 ∈ 𝐸, ‖𝑇𝑚(𝑥) − 𝑥̂‖ < ‖𝑥 − 𝑥̂‖ or 𝑇𝑚(𝑥) = 𝑥,
• ∀𝑚, 𝑇𝑚(𝑥̂) = 𝑥̂.

hen a sequence of the form:

𝑥𝑗+1 = 𝑇𝑚(𝑗)(𝑥𝑗 ) (17)

onverges to 𝑥̂, assuming that all the paracontractions (𝑇𝑚) are sufficiently frequently activated [42].

.2.2. Asynchronous formulation
Before studying the convergence of the asynchronous model, a rewriting of the problem is introduced, considering the delays

ffecting the patches.
Referring to Algorithm 1, during the step from Iteration 𝑗 to 𝑗 + 1, it is considered that some patches provide new pieces of

nformation in order to evaluate the residual, anyhow these pieces of information may be related to old configurations 𝐩𝛤 𝑗−𝜎(𝑠,𝑗).

emark 2. 𝜎(𝑠, 𝑗) ⩾ 0 is a delay function, modeling the delay of the subdomain s at iteration j of the global problem.

The asynchronous iteration can be modeled as:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐮𝐺𝛤 ,𝑗 = 𝐒𝐺−1
(𝐛𝐺 + 𝐩𝛤 𝑗 )

If 𝑠 = 0 ∶ 𝐪0𝑗 = 𝐒0(𝐀0𝑇 𝐮𝐺𝛤 ,𝑗 − 𝐛0,𝐺)

If 𝑠 > 0 ∶ 𝐪𝑠𝑗 =
{

𝐉𝑠𝑇 𝐬𝑠,𝐹 (𝐉𝑠𝐀𝑠𝑇 𝐮𝐺𝛤 ,𝑗−𝜎(𝑠,𝑗); 𝐟
𝑠,𝐹 ) Updated

𝐪𝑠𝑗−1, Not updated

𝐫𝑗 = −

(

𝐀0𝐪0𝑗 +
∑

𝑠>0
𝐀𝑠𝐪𝑠𝑗

)

𝐩𝛤 𝑗+1 = 𝐩𝛤 𝑗 + 𝜔𝐫𝑗

(18)

For subdomains that were not updated: 𝜎(𝑠, 𝑗) = 𝜎(𝑠, 𝑗 − 1) + 1.
It is crucial to note that if it exists, Subdomain 0 always contributes to the evaluation of the residual since computing 𝐪0𝑗+1 is only

a post-processing of the Global solution. In order to unify notations, 𝜎(0, 𝑗) = 0 is introduced, ∀𝑗. Thus, the residual at the global
iteration 𝑗 is written in the asynchronous form:

𝐫𝑗 =
𝑁
∑

𝑠=0
𝐀𝑠𝐉𝑠𝑇 𝐬𝑠,𝐹 (𝐉𝑠𝐀𝑠𝑇 𝐒𝐺−1

(𝐩𝛤 𝑗−𝜎(𝑠,𝑗) + 𝐛𝐺); 𝐟 𝑠,𝐹 ) (19)

and then the asynchronous version of (12) can be given:

𝐩𝛤 𝑗+1 = 𝐩𝛤 𝑗 − 𝜔
𝑁
∑

𝑠=0
𝐀𝑠𝐉𝑠𝑇 𝐬𝑠,𝐹 (𝐉𝑠𝐀𝑠𝑇 𝐒𝐺−1

(𝐩𝛤 𝑗−𝜎(𝑠,𝑗) + 𝐛𝐺); 𝐟 𝑠,𝐹 ) (20)

Note that this expression is valid only after all local patches have at least contributed once to the estimation of the residual.
In order to ensure that at some point all patches provide new information, we assume that the delay is bounded:

∃𝐷 ⩾ 0 such that ∀(𝑠, 𝑗), 𝜎(𝑠, 𝑗) ⩽ 𝐷 (21)

Proposition 1. The solution of the coupling problem (13) is a fixed point for any iteration in (20).

Proof. Let 𝐩̂𝛤 be the solution to the coupling problem as defined in (13):
𝑁
∑

𝑠=0
𝐀𝑠𝐉𝑠𝑇 𝐬𝑠,𝐹 (𝐉𝑠𝐀𝑠𝑇 𝐒𝐺−1

(𝐩̂𝛤 + 𝐛𝐺); 𝐟 𝑠,𝐹 ) = 0. (22)

Then, if at some point ∀𝑘 ∈ {0, 1,… , 𝐷}, 𝐩𝛤 𝑗−𝑘 = 𝐩̂𝛤 , the next iteration of (20) is 𝐩𝛤 𝑗+1 = 𝐩̂𝛤 whatever the distribution of delays
(𝜎(𝑠, 𝑗)) among the subdomains, and by recursion, 𝐩𝛤 𝑗+𝑙 = 𝐩̂𝛤 for any 𝑙 > 0. □

For a given delay 0 ⩽ 𝑘 ⩽ 𝐷, we define 𝜛(𝑘, 𝑗) as the set of subdomains (𝑠) such that 𝜎(𝑠, 𝑗) = 𝑘. We define the contributions to
the residual:

𝐫𝑠(𝐩𝛤 𝑗−𝑘) =𝐀𝑠𝐉𝑠𝑇 𝐬𝑠,𝐹 (𝐉𝑠𝐀𝑠𝑇 𝐒𝐺−1
(𝐩𝛤 𝑗−𝑘 + 𝐛𝐺); 𝐟 𝑠,𝐹 )

𝑠 𝑠𝑇 𝑠,𝐹 𝑠 𝑠𝑇 𝐺−1 𝐺 𝑠,𝐹
(23)
7

− 𝐀 𝐉 𝐬 (𝐉 𝐀 𝐒 (𝐩̂𝛤 + 𝐛 ); 𝐟 ),
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and we use the short notation 𝐫𝑠𝑗−𝑘 = 𝐫𝑠(𝐩𝛤 𝑗−𝑘). We have:

𝐫𝑗 =
𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
𝐫𝑠𝑗−𝑘. (24)

Writing 𝐞𝑗 = (𝐩𝛤 𝑗 − 𝐩̂𝛤 ) the error at iteration 𝑗, we have:

𝐞𝑗+1 = 𝐞𝑗 − 𝜔
𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
𝐫𝑠𝑗−𝑘. (25)

In the linear case studied in [12], it was possible to give a simple link between 𝐫𝑠𝑗−𝑘 and 𝐞𝑗𝑘 , which permitted to bring the
convergence proof down to the spectral analysis of a certain linear operator. Such an approach is not possible here and we need to
find a bounding of a well-chosen norm of the error.

Proposition 2 (General Error Bound). The assumptions on the local models lead to 𝐩𝛤 ↦ 𝐫𝑠(𝐩𝛤 ) being strongly monotone and continuous,
ith associated constants given in (14) and (15), and we have:

‖

‖

‖

𝐞𝑗+1
‖

‖

‖

2

𝐺
⩽ ‖

‖

‖

𝐞𝑗
‖

‖

‖

2

𝐺
− 2𝜔

( 𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
𝛾𝑠 ||

|

𝐀𝑠𝑇 𝐒𝐺−1𝐞𝑗−𝑘
|

|

|

2

𝐒𝑠,𝐺

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎

+𝜔2

⎛

⎜

⎜

⎜

⎜

⎝

𝑁
𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
𝑀𝑠 ‖

‖

‖

𝐞𝑗−𝑘
‖

‖

‖

2

𝐺
+ 2

∑

1⩽𝑘⩽𝐷
0⩽𝑞⩽𝐷
1⩽𝐾⩽𝑘

∑

𝑠∈𝜛(𝑘,𝑗)
𝑡∈𝜛(𝑞,𝑗−𝐾)

√

𝑀𝑠𝑀 𝑡 ‖
‖

‖

𝐞𝑗−𝐾−𝑞
‖

‖

‖𝐺
‖

‖

‖

𝐞𝑗−𝑘
‖

‖

‖𝐺

⎞

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏

. (26)

The proof is detailed in Appendix B.

This bound has two defects. First it mixes error terms from the previous 2𝐷 iterations. Second, the error is not correctly isolated
in the first degree coefficient 𝑎 of the bound (26) seem as a polynomial of degree two in 𝜔. In order to prove the convergence, we
need to find settings where a bound of the following form holds:

𝑒2𝑗+1 ⩽ 𝑒2𝑗
(

1 − 2𝜔𝐴 + 𝜔2𝐵
)

with 𝐴 > 0, (27)

where 𝑒𝑗 is some measure of the error at iteration 𝑗. Indeed, in that case, choosing 0 < 𝜔 < 2𝐴∕𝐵 we have
(

1 − 2𝜔𝐴 + 𝜔2𝐵
)

< 1 and
the iteration is a contraction. The process converges to the common fixed point. Note that the best convergence ratio is obtained
for 𝜔 = 𝐴∕𝐵, and it is worth (1 − 𝐴2∕𝐵).

In the next two subsections we analyze two configurations where the convergence can be proved.

3.3. Max norm on the history vector of the error

Following [42], the history vector of the error is introduced:

𝐞̂𝑇𝑗 =
(

𝐞𝑇𝑗 𝐞𝑇𝑗−1 ⋯ 𝐞𝑇𝑗−2𝐷
)

,

equipped with the max norm
‖

‖

‖

𝐞̂𝑗
‖

‖

‖𝐺,∞
= max

0⩽𝑘⩽2𝐷
‖

‖

‖

𝐞𝑗−𝑘
‖

‖

‖𝐺
(28)

Let 𝑘̂𝑗 be the delay for which the maximum is reached at iteration 𝑗.
This norm makes it trivial to bound the second degree term 𝑏 (B.5) from above using (B.6):

𝑏 ⩽

⎛

⎜

⎜

⎜

⎜

⎝

𝑁
𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
𝑀𝑠 + 2

∑

1⩽𝑘⩽𝐷
0⩽𝑞⩽𝐷
1⩽𝐾⩽𝑘

∑

𝑠∈𝜛(𝑘,𝑗)
𝑡∈𝜛(𝑞,𝑗−𝐾)

√

𝑀𝑠𝑀 𝑡

⎞

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵𝑗

‖

‖

‖

𝐞̂𝑗
‖

‖

‖

2

𝐺,∞ . (29)

To bound 𝑎 from below:

𝑎 ⩾
𝐷
∑ ∑

𝛾𝑠 ||
|

𝐀𝑠𝑇 𝐒𝐺−1𝐞𝑗−𝑘
|

|

|

2

𝐒𝑠,𝐺
⩾

∑

𝛾𝑠 ||
|

𝐀𝑠𝑇 𝐒𝐺−1𝐞𝑗−𝑘̂𝑗
|

|

|

2

𝐒𝑠,𝐺
. (30)
8

𝑘=0 𝑠∈𝜛(𝑘,𝑗) 𝑠∈𝜛(𝑘̂𝑗 ,𝑗)
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We need to further strengthen hypothesis (21) by assuming that sufficiently many subdomains are activated for the 𝑘̂𝑗 contribution
so that the following bounding exists:

∑

𝑠∈𝜛(𝑘̂𝑗 ,𝑗)

𝛾𝑠 ||
|

𝐀𝑠𝑇 𝐒𝐺−1𝐞𝑗−𝑘̂𝑗
|

|

|

2

𝐒𝑠,𝐺
⩾

𝜃𝑘̂𝑗 ,𝑗
𝜅

⏟⏟⏟
𝐴𝑗

‖

‖

‖

𝐞𝑗−𝑘̂𝑗
‖

‖

‖

2

𝐺
, (31)

where 𝜃𝑘̂𝑗 ,𝑗 is the minimal non-zero eigenvalue of the matrix:

𝐒𝐺−1
⎛

⎜

⎜

⎝

∑

𝑠∈𝜛(𝑘̂𝑗 ,𝑗)

𝛾𝑠𝐀𝑠𝐒𝑠,𝐺𝐀𝑠𝑇
⎞

⎟

⎟

⎠

,

and where 𝜅 ⩾ 1 is some constant, which can be illustrated by the following cases:

• 𝜅 = 1 would be suited to 𝐞𝑗−𝑘̂𝑗 being non-zero only on the boundary of ⋃𝑠∈𝜛(𝑘̂𝑗 ,𝑗)
𝛺𝑠.

• 𝜅 = 𝑁 would correspond to one subdomain being activated with the 𝑘̂𝑗 and the error 𝐞𝑗−𝑘̂𝑗 being smoothly distributed on the
domain.

n practice, 𝜅 can be influenced by the load balancing between patches, and hardware properties like the speed of the network.

heorem 1. Under the monotonicity and continuity hypotheses of Section 2.5.5 together with the bounded delay assumption (21) and its
einforcement (31), there exists a non-empty interval of the form (0, 𝜔1) for the relaxation coefficient for which the asynchronous iteration
onverges.

roof. Introducing 𝐴 = min𝐴𝑗 > 0 and 𝐵 = max𝐵𝑗 taken among all the potential distribution of delays in the subdomains, we have:
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1 − 2𝜔𝐴 + 𝐵𝜔2) , (32)

or 0 < 𝜔 < 𝜔1 = 2𝐴∕𝐵, we have:
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(33)

hus the error (strictly) decreases at least every 2𝐷 iteration. □

However, the convergence in max-norm over an interval of 2𝐷 global iterations opens the possibility for saw-tooth convergence
ith decreasing peaks.

.4. Sufficient condition for monotone convergence

It is possible to recover a strict decrease of the error at each iteration (and not over a 2D interval) assuming that enough fresh
nformation is provided. That is to say when equation (31) applies to the previous iteration. This occurs in particular in the case
here patches (𝛺𝑠)𝑠>0 are non-adjacent and therefore are all connected to the subdomain 𝛺0. Beside being in contact with the whole

nterface (the interface degrees of freedom can be ordered such that 𝐀0 = 𝐈 and 𝐉0 = 𝐈), subdomain 𝛺0 is always synchronous with
he global problem. Thus, when Subdomain 𝛺0 exists, the bounding from below is simple to obtain:

𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
⟨𝐞𝑗−𝑘, 𝐫𝑠𝑗−𝑘⟩𝐺 ⩾

∑

𝑠∈𝜛(0,𝑗)
⟨𝐞𝑗 , 𝐫𝑠𝑗⟩𝐺

⩾ 𝛾0‖𝐒𝐺−1𝐞𝑗‖2𝐒0 ⩾ 𝜃0
⏟⏟⏟

𝐴

‖

‖

‖

𝐞𝑗
‖

‖

‖

2

𝐺

(34)

where 𝜃0 > 0 is the minimal eigenvalue of the matrix 𝛾0𝐒𝐺−1𝐒0,𝐺.

Remark 3. Note that the same property can be obtained with contiguous patches by forcing the global model to wait for enough
new data be provided by patches.

The bounding from above of the 𝑏 term is a bit more complex, because of the many delayed error terms. Let us prove that there
exists some interval (𝜔min, 𝜔max) for which the relaxed iteration is strictly decreasing, in the sense that there exists 1 > 𝑐 > 0, which
depends on 𝜔, such that, ∀𝑗:

‖ ‖

2
‖ ‖

2

9

‖

‖

𝐞𝑗+1‖
‖𝐺

⩽ 𝑐 ‖
‖

𝐞𝑗‖
‖𝐺

(35)
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Fig. 2. Typical dependence of rate of convergence vs 𝑐

Let us assume that such a constant 𝑐 exists. We have:

𝑏 ⩽ 𝑁
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(36)

Introducing 𝐵̃ = max 𝐵̃𝑗 , taken among all the potential distributions of delays in the subdomains:
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(

1 − 2𝜔𝐴 + 𝜔2𝐵̃𝑐−3𝐷
) (37)

Theorem 2. Under the monotonicity and continuity hypotheses of Section 2.5.5 together with the bounded delay assumption (21) and the
assumption of non-connected patches leading to the bound (34), there exists a non-empty interval of the form (𝜔min, 𝜔𝑚𝑎𝑥) for the relaxation
coefficient for which the asynchronous iteration converges with monotone decrease of the error.

Proof. For a given problem, it is possible to evaluate 𝐴, 𝐵̃ and 𝐷. For (37) to be consistent with (35), we need to find a non-empty
omain for 𝜔 and 0 < 𝑐 < 1 such that:

1 − 2𝜔𝐴 + 𝜔2𝐵̃𝑐−3𝐷 < 𝑐 (38)

or a given 𝑐, the optimal rate of convergence is attained for 𝜔𝑜𝑝𝑡 = 𝐴𝑐3𝐷∕𝐵̃, and it is worth 𝑟𝑜𝑝𝑡(𝑐) = (1 − 𝐴2𝑐3𝐷

𝐵̃ ). Fig. 2 illustrates
he existence of a domain (𝑐0, 1) where 𝑐 ∈ (𝑐0, 1) ⇒ 𝑐 ⩾ 𝑟𝑜𝑝𝑡(𝑐). 𝑐0 > 0 is the solution to 1 − 𝐴2𝑐3𝐷0 ∕𝐵̃ = 𝑐0.

For a given 𝑐 ∈ (𝑐0, 1), let 𝛿 = 𝐴2 − (1 − 𝑐)𝐵̃𝑐−3𝐷 > 0, any 𝜔 ∈ ( 𝐴−
√

𝛿
𝐵̃𝑐−3𝐷

, 𝐴+
√

𝛿
𝐵̃𝑐−3𝐷

) satisfies (38) and leads to a convergence rate in
𝑟𝑜𝑝𝑡(𝑐), 𝑐) at each iteration.

We set 𝜔min = 𝐴𝑐3𝐷0 ∕𝐵̃ and 𝜔max = 𝐴∕𝐵̃. For 𝜔 ∈ (𝜔min, 𝜔𝑚𝑎𝑥), the rate of convergence between two consecutive iterations is by
onstruction at least (𝜔𝐵̃∕𝐴)1∕(3𝐷) < 1. □

Contrarily to the synchronous case, or to the linear analysis of [12], the difficulty is that the relaxation cannot be too small (else
aw-tooth convergence of Theorem 1 would be recovered). Also, for large 𝐷 the result may become unpractical as the interval of
10

onotone convergence would be quite small and the convergence rate very close to 1. Note that anyhow, the analysis is based on
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a worst case scenario and the width of the actual interval of monotone convergence can be much larger and the convergence rate
much better than the bound.

3.5. Practical considerations about elastoplasticity

Plasticity needs to introduce internal variables (like plastic strain or hardening), the evolution of which depends on the load
istory. For instance, the assessment of fatigue requires simulating lots of cyclic loads themselves decomposed into many increments.
he classical solution strategy is a step-by-step procedure (time outer iteration) where each time step is a nonlinear problem solved
y a Newton–Raphson algorithm (inner iteration) that alternates between return mapping (to update the hardening at the Gauss
oints) and tangent solves (to update the displacement).

The first approach to combine plasticity with global–local coupling is to use it at each load increment. In [2], such an incremental
lobal–local procedure is interpreted as a modified Newton approach. One computational interest of this technique is to confine the
onlinear solves into the patches.

A second possibility is to treat the whole time interval inside the domains, in a manner similar to the Schwarz waveform
elaxation techniques [46]. At each global–local iteration, the global domain solves a family of linear systems corresponding to
ll the time steps with adapted external and interface load. Since it is linear, a multiple right-hand side strategy is possible. The
lobal model then transmits a time sequence of Dirichlet conditions to be imposed on the patches. The patches independently solve
he Dirichlet problem while updating their internal variables in accordance with the nonlinear evolution. This approach leads to a
uch higher degree of parallelism with more independent computations. It was used in a simplified way in [7] for elastoviscoplastic
roblems where the models were allowed to adapt their increments (cutbacks) independently of the global model. Note that this
pproach is covered by the theory above by concatenating all the time steps (𝑡0,… , 𝑡𝑛) together and using a time-integrated norm:

𝐩
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=

⎛

⎜

⎜

⎜

⎝

𝐩𝑡0𝛤
⋮
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⎟

⎠
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𝑗=0

‖

‖

‖

𝐩𝑡𝑗𝛤
‖

‖

‖

2

𝐺
. (39)

4. Assessments

We illustrate the convergence of the asynchronous global–local coupling on two academic examples. Note that by essence, the
numerical experiments are not strictly reproducible since the resolution process depends on the availability of the data, which
cannot be controlled. Asynchronous computations are thus always executed three times and the mean values are retained (standard
deviation is negligible).

In our comparison, we retained the Aitken accelerated synchronous iteration as our reference solver because of its excellent
efficiency. Aitken’s 𝛥2 can be viewed as a technique to dynamically adapt (i.e. at each iteration) the relaxation coefficient. For now,
we do not have equivalent techniques for asynchronous iterations, and we identified the ‘‘optimal’’ relaxation coefficient by trial
and error.

4.1. Cluster

The studies were carried out with the cluster of the LMPS simulation center using several workstations connected by an Ethernet
network. These machines are quite heterogeneous with 4 different generation of CPUs:

• Intel(R) Xeon(R) CPU E5-1660 v3 (Haswell) @ 3.00 GHz (8 cores)
• Intel(R) Xeon(R) CPU E5-2630 v4 (Broadwell) @ 2.20 GHz (10 cores)
• Intel(R) Xeon(R) Silver 4116 CPU (Skylake) @ 2.10 GHz (12 cores)
• Intel(R) Xeon(R) W-2255 CPU (Cascade Lake) @ 3.70 GHz (10 cores)

Besides the heterogeneity, another characteristic is that the cluster can be used by several users simultaneously, there is no queuing
system.

We use one MPI process for the global problem and as many processes as needed to distribute the local problems according to
the study. As much as possible the MPI processes are allocated to the cores of the same CPUs.

The presence of the Ethernet network prevents the full use of the RDMA features. In order to avoid hidden synchronization due
to the implementation of the MPI methods, we had to slightly modify our algorithm: instead of testing for the availability of new
data, the solvers never stop computing with the available information even if nothing new was put, which may lead to solving twice
the same system. This phenomena will be observable in the performance tables where we give the number of global iterations as
well as the minimal and maximal number of solves in the fine patches.
11
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Fig. 3. Von Mises stress at the convergence.

4.2. Plasticity system

For our illustrations, we focus on associated elastoplasticity problems. In this context, the global problem is assumed to be a linear
elasticity problem, while the local problems exhibit nonlinear elastoplastic behavior with linear kinematic and isotropic hardening.
The governing equations for the local problem can be stated as follows:

Find 𝑢 ∶ 𝛺 ⊂ R𝑑 → R𝑑 ,

div(𝜎) + 𝑓 = 0 in 𝛺,

𝑢 = 0 on 𝜕𝑑𝛺,

𝜎 ⋅ 𝑛 = 0 on 𝜕𝛺 ⧵ 𝜕𝑑𝛺,

𝜀(𝑢) = ∇𝑠𝑦𝑚𝑢 = 𝜀𝑒 + 𝜀𝑝,

𝜎 = 𝐸
1 + 𝜈

(

𝜀𝑒 + 𝜈
1 − 2𝜈

tr(𝜀𝑒)𝐼
)

,

Yield function 𝑌 (𝜎, 𝛼) = ‖Dev(𝜎 − 2
3
𝐻𝑘𝜀

𝑝)‖ −
√

2
3
(

𝜎𝑦0 +𝐻𝑖𝛼
)

⩽ 0.

(40)

Here, 𝑢 represents the displacement vector field, 𝜎 is the Cauchy stress tensor, and 𝑓 ≠ 0 represents the body force. Dirichlet boundary
condition 𝑢 = 0 is imposed on 𝜕𝑑𝛺, and Neumann boundary condition 𝜎 ⋅ 𝑛 = 0 on 𝜕𝛺 ⧵ 𝜕𝑑𝛺. The strain tensor 𝜀(𝑢) (symmetric part
of the gradient of displacement) is decomposed into the elastic part 𝜀𝑒 and the plastic part 𝜀𝑝. The stress–strain relation is given by
the constitutive law, and the yield function 𝑌 (𝜎, 𝛼) characterizes the plastic behavior (Dev operator extracts the deviatoric part of
a tensor). The model considers linear kinematic and isotropic hardening, where 𝐻𝑖 and 𝐻𝑘 are the associated hardening modulus,
𝜎𝑦0 is the uniaxial yield stress. The solution technique for this problem uses a 𝜃-scheme for the pseudo-time integration, and it is
readily available in the GetFEM software. We use the default solver configuration (𝜃 = 1 aka backward Euler method).

In the following analysis, we consider only one load increment, and the body load is adjusted to trigger plasticity in the patches.
In future work, the asynchronous approach can be extended to parallelization in time using Schwarz waveform relaxation.

4.3. Two-dimensional illustration

The first test case, Fig. 1, is inspired from [2]. The structure is composed of five unit-length squares arranged in a T-shape. The
global mesh contains 700 nodes and a complement zone (subdomain 𝛺0) represented in yellow in the global model. There are two
zones of interest in which complex geometrical details are added. In the green zone of interest, the addition of 1 circular hole and a
modification at the boundary of the global structure can be seen. The addition of two square voids characterizes the red patch inside
the structure. The Fine models have refined meshes (380 nodes each). We use the plane strain assumption. The elastic behavior is
given by the following Lamé coefficients: shear modulus 𝜇 = 80769 and first coefficient 𝜆 = 121150. Regarding plasticity, we use
𝜎𝑦0 = 4000 which results in a elastic limit of 3266. The kinematic and isotropic hardening coefficients are 𝐻𝑘 = 16 and 𝐻𝑖 = 20. The
solid is clamped on its bottom face, while the body load is worth 0 in the 𝑥 direction and 1300 in the 𝑦 direction.

Fig. 3 illustrates the von Mises stress obtained through the global–local iteration process. The maximum value of the von Mises
stress in one of the patches is 4000 and 3800 respectively, far exceeding the elastic limit. 4 shows the hardening in both local
problems where we can see that we achieve the plastic regime.

This simple example is not advantageous for the asynchronous iteration because all systems are solved quasi-instantaneously.
We mostly use it to illustrate the difference of convergence behavior as explained in Sections 3.3 and 3.4. Indeed, the presence of
the complement domain 𝛺0 makes it possible to find a relaxation coefficient which leads to monotone convergence.
12
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Fig. 4. Accumulated plasticity in the local problems.

Fig. 5. The impact of the relaxation coefficient on the convergence.

In Fig. 5, we compare the convergence (decrease of the norm of the residual) along iterations for two values of the relaxation
parameter 𝜔 = 0.7 and 𝜔 = 0.4. In the first case, we observe the saw-tooth convergence: the maximum delay is around 𝐷 = 4, the
residual decreases with micro-variations of a factor of 10, while the general trend (shown by the upper peaks) is towards zero. In
the second case, the relaxation is adapted for the iteration to enter the domain of monotone convergence, and in this case more
efficient, regime.

4.4. Three-dimensional test case

The global–local coupling method is primarily a non-invasive multi-level modeling technique. As such, its computational
performance is difficult to quantify. As we have no industrial test case to handle, we generate an easy to customize three-dimensional
test case with the objective to generate as many patches as wished. Since it seems unnatural to accumulate more patches than
necessary on a given geometry, we particularly focus on the ability to handle structures of increasing size (and more patches).
Even if this kind of study is related to weak scalability, the global–local coupling is not a competitor to high performance domain
decomposition methods.

The domain is chosen to be a right-angled parallelepiped covered by non-overlapping contiguous unit-length cuboid patches.
Figs. 6(a) and 6(b) show the 8- and 16-subdomain cases. In that case there is no complement zone 𝛺0 = ∅. The left side of the
domain is clamped and a constant body load is applied, adjusted to trigger plasticity.
13
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Fig. 6. fig:3D academic case.

Fig. 7. Example of one unit cube with different representations.

Table 1
Mesh data for 128 subdomains.
Problem Global Local (One subdomain)

Number of nodes 2769 1254

The global version of the cuboids is a homogeneous isotropic linear elastic solid (Young modulus 𝐸 = 10000, Poisson’s coefficient
𝜈 = 0.3) with a coarse mesh, see Fig. 7(a). The local model in the cuboids is heterogeneous with a linear elastic matrix (same material
as the Global model) and a central elastoplastic inner sphere (with diameter half the side of the cube, same elastic constant as the
matrix, and same plastic properties as previous example 𝜎𝑦0 = 4000, 𝐻𝑘 = 16 and 𝐻𝑖 = 20), see Figs. 7(b). A refined mesh is used in
the local patches, adjacent fine meshes are not necessarily matching at the interface. In contrast, the global mesh is conforming at
the interface.

The body load is of the form 𝑔 ∗ (1, 1, 1), it is adjusted depending on the test case in order to ensure that all sphere undergo
plastic evolution. Depending on the number of subdomains, it ranges from 𝑔 = 1900 to 𝑔 =1 0000. This setting leads to subdomains
closer to the clamped boundary undergoing higher level of plasticity than others.

4.4.1. Preliminary study
The preliminary study was conducted on a 128-patch (4 × 4 × 8) geometry, with the mesh dimensions provided in Table 1. The

focus of the study was on cases where the load imbalance arises from the intensity of nonlinearity.
Table 2 displays the performance results. The asynchronous approach with optimal relaxation parameter 𝜔opt exhibited improved

performance compared to the synchronous Aitken acceleration. The time was reduced by a factor of three, whereas the number of
global iterations was more than tripled proving the noxiousness of synchronization in codes. As can be observed, local patches
had enough time to carry many resolutions, in particular the ones which remained in the elastic domain (roughly 4 times more
computations).

The same study was repeated on a 256-patch (4 × 4 × 16) geometry, with mesh data provided in Table 3. Table 4 presents
the results. Here again, the asynchronous approach also demonstrated improved performance compared to the synchronous Aitken
acceleration.

The consistent trend across both cases was that the asynchronous approach with the optimal relaxation parameter 𝜔opt achieved
reduced computation times compared to the synchronous Aitken acceleration. This observation emphasizes the advantage of allowing
14
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Table 2
Iterations & Time (Nonlinear plastic inclusion).
Variant Sync. Aitken Async. 𝜔opt

Time(s) 508 155
#iter. glob. 25 84
#loc. sol. [min, max] ⋅ [119 - 428]

Table 3
Mesh data for 256 subdomains.
Problem Global Local (One subdomain)

Number of nodes 5490 2308

Table 4
Iterations & Time (Nonlinear plastic inclusion).
Variant Sync. Aitken Async. 𝜔opt

Time(s) 703 403
#iter. glob. 30 95
#loc. sol. [min, max] ⋅ [181 - 594]

Table 5
Number of nodes in the meshes for the weak scalability study.

# of subdomains 8 27 64 125 216 343
Global 233 667 1449 2681 4465 6903
Local (1 subdomain) 1858 1858 1858 1858 1858 1858

Table 6
Weak scalability: Number of iterations in the elastoplastic case.

#patches 8 27 64 125 216 343
Aitken #iter. 25 23 23 25 26 27
Async. #glob. sol. 1083 72 77 81 99 96
Async. #loc. sol. [min, max] [68, 191] [84, 183] [106, 241] [126, 490] [152, 410] [178, 518]

subdomains to work independently, free from strict synchronization. While initially counterintuitive, the increased number of global
iterations was effectively compensated by the overall reduction in computation time.

Furthermore, the wide range of local subdomain computational load in the asynchronous approach, as indicated by the [min,
ax] values, underscores the method’s adaptability. Different subdomains may converge at varying rates due to nonlinearity.
owever, the asynchronous approach effectively manages these variations, with subdomains in the elastic domain converging faster
nd those with stronger nonlinearity requiring more iterations.

In conclusion, the preliminary study confirms the merits of the asynchronous global–local non-invasive coupling method with
he optimal relaxation parameter in addressing nonlinear plasticity problems with multiple patches. The asynchronous approach
ffers improved computation time, making it a promising solution for efficiently tackling large-scale and complex problems.

.4.2. Weak scalability
In this subsection, a study of weak scalability is conducted to assess the performance of the method. A cubic geometry, as shown

n Fig. 6(b), is maintained while multiplying patches. The cases consist of 𝑛3 (𝑛 ∈ {2, 3,… , 7}) patches. The domain size increases
with the number of subdomains, following the standard practice for weak scalability assessment of domain decomposition methods.
Again, the global model is linear, while the local models feature elastoplastic spherical inclusions.

The patches are not identical in terms of meshes, but they are well-balanced in terms of degrees of freedom. As the study
progresses, the global model increases in size, starting from being 8 times smaller than one patch and ending up 3.7 times larger.
Table 5 summarizes the number of nodes for each case.

To provide an illustration, Figs. 9(a) and 9(b) display the von Mises stress and the hardening in the case with eight subdomains.
It demonstrates that all spherical inclusions reach their elastic limit, with a large values difference.

Examining Fig. 8, we notice a general trend as the number of patches increases. The computation time for the asynchronous
method increases more slowly than for the synchronous method (Aitken). This indicates that the asynchronous method exhibits
better scalability in terms of computation time as the problem becomes larger.

Looking at Table 6, we observe that the number of global iterations for the asynchronous method (Async. #iter. glob.) decreases
significantly as the number of patches increases. This means that for larger problems, the asynchronous method requires fewer
global iterations to achieve convergence.

On the other hand, the number of iterations for the synchronous method (Aitken #iter.) remains relatively constant or slightly
increases with the number of patches. This suggests that the synchronous method requires more global iterations for larger problems,
which can lead to a significant increase in computation time.
15
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Fig. 8. Weak scalability: time in the plasticity case.

Fig. 9. Mechanical fields in the 8-subdomain case.

Table 6 also shows a range of values for local computation time (Async. #loc. sol. [min, max]). This variability is observed in
the asynchronous method because subdomains perform their local computations at different rates. Some subdomains may require
more iterations to converge due to the influence of nonlinearities and plasticity, resulting in longer solution times. On the other
hand, subdomains that remain in the elastic domain converge faster and require fewer iterations.

5. Conclusion

This article focused on the application of an asynchronous global–local non-invasive coupling method to nonlinear monotone
patches, in the interest to introduce elastoplastic patches in a linear elastic global model. The study presented an asynchronous
version of the non-intrusive global–local coupling method. The convergence of the discrete system was proved using paracontractions
techniques.

Furthermore, the implementation of the method with MPI RDMA parallelization was discussed, enabling efficient distributed
computation. Assessments were conducted on problems involving a significant number of patches, demonstrating the effectiveness
of the coupling approach. Notably, the asynchronous method, employing hand-tuned relaxation, exhibited superior performance
in terms of computation time compared to the synchronous solver with Aitken’s dynamic relaxation on a cluster of heterogeneous
machines.

In future studies, we will focus on the development of efficient estimation techniques for the optimal relaxation parameter in
the asynchronous iteration. This would enhance the overall performance and effectiveness of the method.
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ppendix A. Properties of the condensed operators

.1. Subdomain’s equation

For some subdomain 𝜔 ⊂ R𝑑 , we consider a variational formulation of the form 𝑎(𝑢, 𝑣) = 𝑙(𝑣) in the Hilbert subspace  ⊂ 𝐻1(𝜔)𝑑

which accounts for the zero Dirichlet conditions. 𝑙 is assumed to be a continuous linear form in  and to embed non-zero Dirichlet
onditions thanks to an extension. The left-hand side 𝑎 is linear in the second variable, it is of the form:

𝑢 ∈ 𝐻1(𝛺𝑠),∀𝑣 ∈ 𝐻1(𝛺𝑠)

𝑎𝐹 (𝑢, 𝑣) ∶= ∫𝜔
𝜎(𝜀(𝑢)) ∶ 𝜀(𝑣)dx

(A.1)

where the Cauchy stress tensor 𝜎 is a nonlinear function of the symmetric gradient 𝜀(𝑢). For better readability, internal variables
that account for the hardening are omitted.

The monotonicity means:

∃𝛾 > 0, ∀(𝑢, 𝑣) ∈ 𝐻1(𝜔), 𝑎(𝑢, 𝑢 − 𝑣) − 𝑎(𝑣, 𝑢 − 𝑣) ⩾ 𝛾|𝑢 − 𝑣|2 , (A.2)

where we used the 𝐻1 seminorm |𝑢|2 = ∫𝜔 ‖𝜀(𝑢)‖2dx. This property is encountered for elastoplastic models with positive hardening,
see [38, lemma 2].

The Lipschitz continuity means:

∃𝑀 > 0, ∀(𝑢1, 𝑢2, 𝑣) ∈ 𝐻1(𝜔), 𝑎(𝑢1, 𝑣) − 𝑎(𝑢2, 𝑣) ⩽ 𝑀‖𝑢1 − 𝑢2‖ ‖𝑣‖ . (A.3)

Note that weaker continuity assumptions are possible, see [6] for instance.
In any case, we can use the following global model:

𝑎𝐺(𝑢, 𝑣) = ∫𝜔
(𝐻 ∶ 𝜀(𝑢)) ∶ 𝜀(𝑣)dx. (A.4)

𝐻 is the (symmetric definite positive) Hooke tensor. 𝑎𝐺 is a bilinear continuous semi-coercive form which is equivalent to the 𝐻1

seminorm.

A.2. Dirichlet problem on the fine subdomain

Let 𝛤 ⊂ 𝜕𝜔 be the interface of the subdomain and 𝛤 the trace space of  . 𝛤 is a Hilbert space and ‖ tr(𝑢)‖𝛤
⩽ ‖𝑢‖ Using

a Lagrangian approach, the Dirichlet problem can be written as:

Given 𝑢𝛤 ∈ 𝛤 , find 𝑢 ∈  , 𝜆 ∈  ∗
𝛤 , such that

{

𝑎(𝑢, 𝑣) − ⟨𝜆, tr(𝑣)⟩𝛤 = 𝑙(𝑣), ∀𝑣 ∈ 

⟨𝜇, 𝑢𝛤 − tr(𝑢)⟩𝛤 = 0, ∀𝜇 ∈  ∗
𝛤

(A.5)

For the given hypotheses, this is a well-posed problem and the Dirichlet-to-Neumann map 𝑠 is well-defined:

𝑠 ∶ 𝛤 →  ∗
𝛤

𝑢𝛤 ↦ 𝑠(𝑢𝛤 ) = 𝜆 solution to (A.5),
(A.6)
17
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A.3. Dirichlet problem on the global model of the subdomain

This situation is more classical. We can invoke the Lax–Milgram theorem to prove the existence of the solution to the Dirichlet
roblem, the continuity of the solution w.r.t the Dirichlet condition, the existence of the Dirichlet-to-Neumann map and the fact
hat it inherits linearity, symmetry, (semi) coercivity and continuity from the form in the subdomains. This leads to the Dirichlet-to-
eumann map defining a norm on the trace space which is equivalent to the natural norm. This makes it legitimate to express the
onotonicity and continuity properties of the fine condensed operators in terms of subdomains’ coarse (global) Dirichlet-to-Neumann
ap.

.4. Discretization

We use the classical Galerkin finite element approach. Let ℎ be a finite-dimension subspace of  and 𝜙 be the matrix of shape
unctions so that any field 𝑢ℎ ∈ ℎ can be written in terms of its vector of degrees of freedom 𝐮: 𝑢ℎ = 𝜙𝐮. We can define the vector

of internal forces 𝑓𝐹
𝑖𝑛𝑡 and the stiffness matrix 𝐊𝐺:

∀(𝐮, 𝐯), 𝐯𝑇 𝐟𝐹𝑖𝑛𝑡(𝐮) = 𝑎𝐹 (𝜙𝐮, 𝜙𝐯)
𝐯𝑇𝐊𝐺𝐮 = 𝑎𝐺(𝜙𝐮, 𝜙𝐯)

(A.7)

It can be checked that monotonicity and continuity are preserved during discretization. Also, the discrete Dirichlet-to-Neumann
maps of Eqs. (10) and (11) are well-defined and possess the required properties.

Appendix B. Proof of Proposition 2

Due to Eq. (25):
‖

‖

‖

𝐞𝑗+1
‖

‖

‖

2

𝐺
= ‖

‖

‖

𝐞𝑗
‖

‖

‖

2

𝐺
− 2𝜔

𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
⟨𝐞𝑗 , 𝐫𝑠𝑗−𝑘⟩𝐺 + 𝜔2

‖

‖

‖

‖

‖

‖

𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
𝐫𝑠𝑗−𝑘

‖

‖

‖

‖

‖

‖

2

𝐺

. (B.1)

The first degree term needs to be further analyzed in order to make appear terms with the same delay. The recursion is obtained
with:

𝐞𝑗 = 𝐞𝑗−1 − 𝜔

( 𝐷
∑

𝑞=0

∑

𝑠∈𝜛(𝑞,𝑗−1)
𝐫𝑠𝑗−1−𝑞

)

= 𝐞𝑗−𝑘 − 𝜔

( 𝑘
∑

𝐾=1

𝐷
∑

𝑞=0

∑

𝑡∈𝜛(𝑞,𝑗−𝐾)
𝐫𝑡𝑗−𝐾−𝑞

)

.

(B.2)

Hence:
𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
⟨𝐞𝑗 , 𝐫𝑠𝑗−𝑘⟩𝐺 =

𝐷
∑

𝑘=0

∑

𝑠∈𝜛(𝑘,𝑗)
⟨𝐞𝑗−𝑘, 𝐫𝑠𝑗−𝑘⟩𝐺
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𝑘=1

∑

𝑠∈𝜛(𝑘,𝑗)

𝑘
∑

𝐾=1

𝐷
∑

𝑞=0
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𝑗−𝑘⟩𝐺 . (B.3)

Finally, Eq. (B.1) can be written as:
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Using convexity and Cauchy–Schwarz inequalities:
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The bounding from above is a classical consequence of the continuity of the fine problems.
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where we used that ∀𝑠, 𝐒𝐺 =
∑𝑁

𝑡=0 𝐀
𝑡𝐒𝑡,𝐺𝐀𝑡𝑇 ⩾ 𝐀𝑠𝐒𝑠,𝐺𝐀𝑠𝑇 in the SPD-matrix ordering. In the end, we have:
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Regarding the first degree term, the bounding from below is a consequence of the monotonicity:
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