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Abstract 

Perceptual confidence reflects the ability to evaluate the evidence that supports perceptual decisions. It is thought to play a critical role 
in guiding decision-making. However, only a few empirical studies have actually investigated the function of perceptual confidence. 
To address this issue, we designed a perceptual task in which participants provided a confidence judgment on the accuracy of their 
perceptual decision. Then, they viewed the response of a machine or human partner, and they were instructed to decide whether to 
keep or change their initial response. We observed that confidence predicted participants’ changes of mind more than task difficulty 
and perceptual accuracy. Additionally, interacting with a machine, compared to a human, decreased confidence and increased partic-
ipants tendency to change their initial decision, suggesting that both confidence and changes of mind are influenced by contextual 
factors, such as the identity of a partner. Finally, variations in confidence judgments but not change of mind were correlated with 
pre-response pupil dynamics, indicating that arousal changes are linked to confidence computations. This study contributes to our 
understanding of the factors influencing confidence and changes of mind and also evaluates the possibility of using pupil dynamics 
as a proxy of confidence.
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Introduction
Every decision we make is accompanied by a sense of confidence. 
For instance, when biking at night we might feel less confident 
about the speed and behavior of incoming traffic, and this leads 
us to reduce our speed. Confidence is regarded as the ability 
to evaluate the quality of our mental representations and deci-
sions (Fleming and Daw 2017). Recent theoretical accounts have 
suggested that confidence is critical for learning (Meyniel et al. 
2015, Guggenmos et al. 2016) as well as to enable adaptive behav-
ior under uncertainty (Soltani and Izquierdo 2019). For instance, 
it is regarded as an internal feedback signal guiding learning 
strategies (Bjork et al. 2013) and memory “offloading” activities, 
such as writing down the items to buy in a shopping list (Risko 
and Gilbert 2016). Moreover, it is also thought to be critical for 
human–machine interactions: poor confidence in the decisions 
of the machine can lead to a lack of cooperation and coordina-
tion between the human and the machine, which would hinder 
the effectiveness of the interaction (Zhang et al. 2020, Dafoe et al. 
2021, Steyvers and Kumar 2023).

However, only a few empirical studies have actually investi-

gated the role of perceptual confidence in behavior and decision-

making. The difficulty in linking perceptual confidence to behav-

ior relies on the fact that decision accuracy and confidence are 

strongly correlated: the higher the quality of sensory evidence, the 

higher the accuracy and also the confidence in one’s perceptual 

decisions. Hence, it remains unclear whether it is confidence or 

the quality of sensory evidence that influences upcoming behavior 

and individuals’ decision strategies (Desender et al. 2018). Recent 

research started to tackle this issue and highlighted the contri-

bution of perceptual confidence in information-seeking behav-
ior (Desender et al. 2018, Schulz et al. 2023) and in change of 
mind (Fleming et al. 2018, Rollwage et al. 2020, Pescetelli et al. 
2021). Other research also showed that confidence is particularly 
beneficial during collective decision-making (Bang et al. 2014). 
For instance, perceptual confidence is communicated verbally by 
participants in order to interact optimally (Bahrami et al. 2010).

The present study aimed at investigating whether percep-
tual confidence, rather than first-order representations of sensory 
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evidence (i.e. measured by the accuracy of perceptual decisions), 
regulates the interaction with a partner. To address this ques-
tion, participants completed a perceptual discrimination task 
with a partner. They were presented with two random dot kine-
matograms (RDK), one to the left and the other to the right of 
a central fixation point. Participants reported which RDK had 
a coherent motion direction closer to the vertical axis, and 
indicated their confidence in their perceptual decisions. Subse-
quently, participants viewed the perceptual decision of a (ficti-
tious) partner. Notably, in separate blocks, they were presented 
with the responses of either another human participant or a 
machine. They were told that the human/machine partner com-
pleted the same task and that their responses were replayed. 
However, in reality, both partners were fictitious and were pro-
grammed by the experimenter to achieve the same level of per-
formance. Regarding to the machine partner, participants were 
told that it was a machine learning algorithm and that just like 
human participants it was not infallible. After viewing the part-
ner’s response, participants could keep or change their initial 
perceptual decision. They were explicitly instructed to use the 
response of their partner if they thought this could improve their
performance.

We hypothesized that if perceptual confidence, rather than 
first-order representations of sensory evidence (i.e. measured by 
the accuracy of perceptual decisions), guides the interaction with 
a partner, then multilevel regression analyses should reveal that 
participants’ decisions to change their initial response will be 
more strongly predicted by their subjective confidence rather than 
by their accuracy in perceptual decisions.

To bolster these conclusions, we manipulated contextual fac-
tors with the aim of inducing fluctuations in confidence without 
impacting perceptual performance (i.e. accuracy). As mentioned 
earlier, we manipulated the partner’s identity with the expec-
tation that this manipulation might bias confidence judgments 
while leaving accuracy unaffected, and also to assess whether 
the partner’s identity influences participants’ interaction strate-
gies. In fact, recent studies have demonstrated that machines 
can evoke either overconfidence (Booth et al. 2017, Booth 2020) 
or mistrust (Nicodeme 2020, Seth and Kishore 2020, Lee and 
Rich 2021) depending on the context. In addition, we manipu-
lated the variability of the coherent dot motion, since previous 
research showed that stimulus variability can distinctly impact 
confidence and accuracy. For instance, high variability leads to a 
decrease in confidence while low variability increases confidence 
(Desender et al. 2018). In our task, dots could move coherently in a 
given direction with either high or low variance. During a prelim-
inary calibration phase, we ensured that perceptual performance 
remained constant between high- and low-variance conditions. 
Based on these manipulations, we hypothesized that confidence, 
but not accuracy, would be influenced by stimulus variability and 
partner’s identity. In addition, this change in confidence would 
be accompanied by participants’ tendency to change their initial 
decisions.

Finally, we also investigated the relationship between pupil 
dilation and confidence. There is growing interest in the field of 
neuroergonomics to monitor in real-time different cognitive states 
(e.g. attention, vigilance, etc.) of operators while they interact with 
technology (Dehais et al. 2017, 2020, Gramann et al. 2017). This 
monitoring is especially valuable when explicit responses from 
operators during the task are not available (e.g. when operators 
are required to supervise the activity of an automated system). 
Metacognition and confidence are recognized as crucial cognitive 
processes to monitor, since they play a critical role in optimal 

human–machine interactions (Lee and Moray 1992, Parasuraman 
et al. 1993). Past research established a link between pupil size and 
decision uncertainty (Lempert et al. 2015, Urai et al. 2017, Bals-
don et al. 2020). Consequently, pupil dilation holds the potential 
to offer valuable insights into individuals’ confidence without rely-
ing on overt behavior. In line with these notions, this study aimed 
to provide evidence that pupil dilation can serve as a predictive 
marker for individuals’ confidence judgments.

Unlike prior studies that explored post-decisional pupil 
changes linked to decision uncertainty, we specifically investi-
gated pre-response pupil fluctuations that might predict confi-
dence judgments. The ability to predict decision uncertainty from 
pupil dilation during when sensory information is processed is 
important, since it allows monitoring individuals’ confidence and 
uncertainty continuously in the absence of overt behavior. Fur-
thermore, the link between confidence and pupil dilation can pro-
vide insight into the relationship between confidence and phys-
iological arousal. Recent studies have established a connection 
between arousal and uncertainty (O’Connell and Kelly 2021). In 
the current study, to highlight changes in pupil-linked arousal, 
we specifically focused on pupil dilation velocity. This choice is 
informed by recent studies indicating that the temporal deriva-
tive of pupil size more closely reflects the dynamics of arousal 
fluctuation (Reimer et al. 2014, 2016, Okun et al. 2019, Crombie
et al. 2021).

The analysis of pupil dilation also prompted an investiga-
tion into the potential link between confidence and eye blinks. 
The motivation for analyzing eye blinks was 2-fold: firstly, eye 
blinks may impact pupil dilation (Lee et al. 2021), and thus, we 
aimed to remove this potential confound. Secondly, blinks are 
thought to play a role in regulating attention and arousal. Indi-
viduals tend to blink more frequently when engaged in tasks 
that require sustained attention, and eye blinks have been used 
as an index of an individual’s level of arousal, alertness, or 
even fatigue (Oken et al. 2006, Maffei and Angrilli 2018, Gavas
et al. 2020).

In summary, we observed that participants’ confidence more 
reliably predicted their decisions to change or keep their initial 
perceptual response than did accuracy and task difficulty. Addi-
tionally, when participants believed they were interacting with 
a machine rather than a human, their confidence decreased 
and their tendency to change their initial perceptual response 
increased. Statistical analyses suggested that the partner’s iden-
tity impacted confidence and change of mind independently. Fur-
thermore, pupil changes prior to the response correlated with 
observers’ confidence, suggesting that pupil variation could be 
used as an online proxy for confidence in the absence of an explicit 
response. Finally, eye blinks are also correlated with confidence 
judgments. This study contributes to our understanding of the 
role of confidence and contextual factors (i.e. partner’s identity) 
on change of mind and also evaluates the possibility of using pupil 
dynamics as a proxy of confidence.

Materials and methods
Participants
Based on similar experiments investigating confidence (cf. de 
Gardelle et al. 2015; Desender et al. 2019), the sample size was 
set to 14 adult participants that fully completed the experiment. 
In total, 21 adults were recruited on a voluntary basis and received 
a financial compensation of 10€ per hour. Seven were not included 
in the sample size, six participants did not complete the task 
due to technical problems with the eyelink or difficulties with 
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maintaining fixation during stimulus presentation, and one par-
ticipant judged s/he was very confident in all her/his responses. 
The remaining 14 adults (9 female, range of 19–36 years of age) 
completed the experiment and were analyzed. All participants 
had normal or corrected to normal vision, and were naïve to 
the hypothesis under investigation. This study was conducted in 
accordance with the requirements of the Declaration of Helsinki 
and approved by the Ethics Committee of the Université Paris 
Descartes. The experiment lasted approximately 2 h and 30 min 
in total, including instructions, breaks, training, and eye-tracker 
calibration.

Apparatus
Stimuli were presented on an LCD monitor (Samsung 2232RZ, 
47 cm wide) with a refresh rate of 100 Hz and a resolution of 
1680 × 1050 pixels. Stimulus presentation and data collection 
were performed using MATLAB with the Psychophysics Toolbox 
(Brainard 1997) and the Eyelink Toolbox (Cornelissen et al. 2002). 
Viewing was binocular and movements of the right eye were mon-
itored with an EyeLink 1000 Plus (SR Research, Mississauga, ON, 
Canada) at a sampling rate of 1000 Hz. Head movements were 
restrained with a chinrest located 70 cm from the screen.

Stimuli
Stimuli were two RDKs presented simultaneously to the left and 
right of a central fixation point (a white empty circle of 0.3∘ visual 
angle diameter) at an eccentricity of 4∘ from fixation. RDKs con-
sisted of 70 white dots displayed within a circular aperture of 3∘

visual angle diameter. Each dot had a diameter of 5 pixels (0.114∘

visual angle). Dots of each RDK moved coherently (5∘/s speed) 
upward with a specific tilt angle from the vertical axis that was 
determined for each participant in a preliminary experiment (see 
below). The dot lifetime was set to 300 ms after which it was erased 
and then displayed in the symmetric location relative to the center 
of the circular aperture.

Procedure
Preliminary experiment
Before starting the main experiment, we assessed participants’ tilt 
discrimination thresholds with a preliminary experiment. In this 
experiment, participants were presented with two RDKs, and they 
were required to report in which one of the two (i.e. the left or 
the right one) dots moved coherently closer to the vertical axis. 
No confidence judgment was required, and the participants were 
not presented with the responses of the partner during this phase. 
Specifically, each trial started with the presentation of a fixation 
point. Two RDKs were displayed on either side of fixation, 500 ms 
after fixation onset, and for a duration of 1200 ms. The dots on the 
left RDK moved upward with a slight tilt toward the left, while the 
dots on the right RDK moved upward with a slight tilt toward the 
right. While keeping their gaze on the fixation, participants had to 
report in which RDK (left or right) the global motion moved closer 
to the vertical axis, by pressing the left or right arrow key of a key-
board with their right hand. Participants were told that accuracy 
was more important than rapidity when reporting their percep-
tual decisions. If fixation was broken or a blink occurred while the 
stimulus was displayed, an error message appeared on the screen 
and the trial was interrupted. Participants responded only after 
the RDKs disappeared and four unfilled black squares (with a side 
length of 0.3∘ visual angle) appeared around fixation (eccentricity 
of 1.5∘ visual angle) in a cross-like shape (i.e. one square above, 
one below, one to the left, and one to the right of fixation, see 

Fig. 1). Participants’ responses were shown with the corresponding 
square filled with a light gray color.

The calibration to the participants’ discrimination threshold 
consisted in controlling the tilt angle of the dot motion direction. 
In each trial, we varied the tilt angle of one RDK while keeping the 
tilt of the other RDK at 40∘ (i.e. the reference). The change of tilt of 
each RDK was controlled by two interleaved staircases one start-
ing with a difference of 15∘ and the other with a difference of 30∘

from the reference value (i.e. 40∘). Following a correct response, 
the tilt difference between the left and right RDK decreased in 
the subsequent trial, making the discrimination task slightly more 
challenging. Conversely, an incorrect response led to an increased 
tilt difference, making the task slightly easier in the next trial. The 
size of this increment/decrement was controlled by an accelerated 
stochastic approximation algorithm (Kesten 1958) set to converge 
at the tilt difference that supported 75% accuracy. This method 
involves adapting the increment/decrement size on a trial-by-trial 
basis, rather than using fixed step values. It is typically employed 
to rapidly determine individuals’ thresholds. With this approach, 
the stimulus intensity in each trial is determined based on several 
factors, including the participant’s accuracy, the number of tri-
als already completed, and the desired threshold. Each staircase 
stopped once the convergence level was reached. The convergence 
values reached by the two staircases controlling the left (and 
right) RDK were averaged and used as the participant’s tilt dis-
crimination threshold for the left (and right) RDK. Importantly, in 
the preliminary experiment, we also manipulated the variability 
(standard deviation of the Gaussian distribution) of the dot motion 
directions. Dots could move coherently in the specified direction 
with a small (i.e. 3∘) or a large variability (i.e. 15∘). Separate tilt 
discrimination thresholds were obtained for these two variability 
levels. In sum, the preliminary experiment allowed estimating, for 
each participant, four tilt discrimination thresholds: 2 sides (left 
and right) × 2 variabilities (high and low).

Main experiment
Participants completed the same tilt discrimination task described 
above. The tilt difference between left and right RDKs could take 
one of three possible values: 70%, 100%, or 140% of the tilt dis-
crimination threshold determined in the preliminary experiment. 
Hence, participants completed the task under three difficulty lev-
els: hard (70% of threshold), intermediate (100% of threshold), and 
easy (140% of threshold). Finally, as for the preliminary experi-
ment, we manipulated the variability of coherent motion, i.e. dots 
could move coherently with a variability of 3∘ or 15∘. We used dif-
ferent variability values and difficulty levels to prompt individuals 
to vary their confidence judgments.

After reporting the RDK with the dot motion direction closer 
to the vertical axis, participants indicated their confidence on a 
2-point scale, i.e. whether they were confident or not about their 
response, by pressing the up or down arrows of the keyboard, for “I 
am sure, it was correct” and “I am not sure,” respectively. Similarly, 
to the perceptual decisions, participants’ confidence judgment 
was shown by filling the corresponding upper or lower square 
(see Fig. 1). Confidence judgments were followed by the presenta-
tion of the perceptual response of a machine or human partner. 
To remind the partner who they were interacting with, a black 
icon of a computer or human was displayed on top of the fixa-
tion. The partner’s judgment was presented with a black circle 
(0.3∘ visual angle diameter) appearing within the square corre-
sponding to the perceptual judgment of the partner (left/right). 
Note that the partner did not provide any confidence report. After 
visualizing the partner’s judgments, participants decided whether 
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Figure 1. Schematic illustration of a trial. The two RDKs appeared 500 ms after a display screen that contained only a central fixation point. The dot 
motion was presented for 1200 ms. Thereafter, the RDKs disappeared and four squares were presented indicating the participants to report which RDK 
contained the dot motion that was closer to the vertical axis by pressing the left or right arrow. Participants could then report their confidence before 
viewing the response given by their partner. After the presentation of the partner’s response, they could choose whether to keep or change their initial 
perceptual judgments. There was no confidence associated with the partner’s response when it was displayed. Participants reported their second 
response using the same key mapping as for their first response

to keep or change their initial perceptual response. They were 
instructed to use the response of their partner if they thought this 
could improve their discrimination accuracy. They were told that 
both the human and machine partner viewed the same stimuli 
and their answers were stored and replayed. They were also told 
that the machine partner was a machine learning algorithm and 
just like a human participant it was not infallible. In reality, part-
ners’ responses had been programmed by the experimenter and 
both partners were set to achieve the same performance accu-
racy. In particular, they were programmed to have 80%, 90%, and 
100% accuracy for the hard, intermediate, and easy difficulty level, 
respectively. Hence, partners’ accuracy was programmed to be 
higher than participants’ theoretical accuracy (75% threshold in 
the preliminary experiment). Human and machine partner trials 
were divided into four blocks and were presented alternately with 
the order of presentation counterbalanced across participants. 
Each block consisted of 144 trials, with Variability and Difficulty 
trials being randomized and equiprobable within each block. In 
total, participants completed 576 trials (48 trials × 3 difficulties × 2 
variabilities × 2 partners).

Participants were instructed to maintain fixation and to not 
blink both during RDKs presentation and before their perceptual 
response. Fixation was considered broken when the gaze moved 
more than 1.25∘ away from the fixation center. If a fixation break 
or a blink occurred, the trial was interrupted, an error message 
was displayed (“please fixate”), and the same trial repeated at the 
end of the block.

Behavioral analyses
Logistic mixed effect models were employed to fit accuracy, confi-
dence, and switch responses. Model fitting was performed using 
the “lme4” package (Bates et al. 2015) and the lmerTest pack-
age (Kuznetsova et al. 2017) in R (Team, R. C. 2018). Factors with 
two levels were coded using sum contrasts (Schad et al. 2020). 
The models were adjusted to accommodate convergence and sin-
gularity issues. Specifically, the parsimony principle guided the 
selection of random effects (Bates et al. 2018). Indeed, for some 
analyses, the inclusion of the maximal random structure led to 
convergence failures. In these cases, we performed a Principal 

Component Analysis (PCA) to isolate the random effects that con-
tributed the least to model fitting and we removed them from 
the final model. The significance of the fixed effects was deter-
mined using type-II Wald tests with the “car” package in R (Fox 
and Weisberg 2011). Post-hoc comparisons were performed with 
the package “emmeans” (Searle 1980). When required, a False Dis-
covery Rate (FDR; Benjamini and Hochberg 1995) correction for 
multiple comparisons was applied. We used an alpha level of 0.05 
for all statistical tests.

Pupil analyses
Raw pupil data were firstly filtered with a high-pass non causal 
Finite Impulse Response (FIR) filter of 1/12 Hz1 in order to remove 
slow oscillations in the pupil response not related to the task. We 
then extracted two types of segments: (i) from −100 to +1200 ms 
time-locked to stimulus onset and (ii) from −1400 to +400 ms time-
locked to perceptual response onset. Individual segments were 
corrected with a 100 ms baseline. Specifically, we subtracted the 
average pupil size observed from −100 ms to 0 ms prior to stimu-
lus onset for each trial from each time point of the corresponding 
trials. Blinks were linearly interpolated. The correct interpolation 
of blinks was verified through visual inspection of each segment. 
Visually inspecting the segment allowed us also to remove tri-
als containing artifacts (e.g. trials containing blinks that were not 
correctly labeled and interpolated, epochs containing artifactual 
activity such as sudden spikes of pupil changes, epochs exhibit-
ing pupil changes that exceeded a threshold of 700 units2 from 
the baseline). This led to the removal of an average (across partic-
ipants) of two trials in the stimulus-locked segments (i.e. 0.35% of 
the trials) and to 8.64 trials in the response-locked epochs (i.e. 1.5% 
of all trials). Pupil segments were then down-sampled by averag-
ing the pupil size of consecutive 100 ms time windows. From the 
clean segments, we computed pupil dilation velocity (v = Δs/Δt; 
where s is pupil size and t is time) since studies suggested that 

1 The filter amplitude was determined as 1 divided by twice the average 
trial duration. On average a trial lasted 6 s (including the 0.5 s of ITI). This was 
done to remove slow oscillations that were not linked to our manipulations.

2 With the EyeLink 1000 Plus, pupil area is calculated as the sum of the 
number of pixels inside the detected pupil contour.
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temporal derivatives of pupil size are more sensitive and reflect 
more closely the dynamics of arousal fluctuation (Reimer et al. 
2014, 2016, McGinley et al. 2015, Okun et al. 2019, Crombie et al. 
2021, Wang et al. 2022). Note that raw pupil size was also analyzed. 
Raw pupil data showed no significant correlation with confidence, 
neither with accuracy, nor with task difficulty. A graph of raw 
pupil size for the stimulus and response segment is reported in 
the supplementary material.

Pupil data were analyzed in two steps. Firstly, given that we had 
no prior assumptions regarding the timing exhibiting a possible 
relation between confidence and pupil, we performed a cluster-
based permutation test comparing high confidence and low con-
fidence trials. The aim of this first step was to isolate a temporal 
window where the pupil could dissociate low and high confidence 
trials. After isolating these temporal clusters, pupil data points 
within the time window were averaged and analyzed with linear 
mixed-effect models to evaluate their relationship to predictors of 
interest.

Classification analyses
In a series of analyses, we used Linear Discriminant Analysis 
(LDA; cf. Carlson et al. 2003) to evaluate to what extent pupil 
velocity measured during stimulus presentation (hence prior to 
participants’ perceptual responses) could predict the individu-
als’ judgment of confidence. We then compared the prediction 
accuracy of the pupil classifier to the accuracy observed with 
a classifier predicting confidence judgments from individuals’ 
response times (i.e. confidence strongly correlates with percep-
tual decision latencies, notably the slower a perceptual decision 
the lower the confidence, cf. Mamassian 2016). This compar-
ison would help us evaluate the quality of pupil-based clas-
sifier predictions with respect to a well-established proxy of
confidence.

LDA classifiers were trained and tested for each time-point of 
the pupil velocity data to dissociate high and low confidence tri-
als for each participant. Given that the stimulus-locked segment 
was not contaminated by blinks, we used this time window for the 
classification. The classification procedure implemented a Monte 
Carlo cross-validation method (Dubitzky et al. 2007). Notably, each 
classifier was trained on 90% of the available dataset and tested 
on each of the remaining trials. This procedure was repeated 1000 
times. Each time, a random 90% of trials was used as a training set 
and the rest as a test set. It is important to stress that the num-
ber of trials were matched between high and low confidence on 
which the classifier was trained and tested to avoid classification 
biases. Classification accuracy was estimated by calculating for 
each time-point the proportion of trials that the classifier correctly 
identified as high or low confidence trials. The mean classifica-
tion performance of the 1000 shuffling within each participant 
and time-point was taken as the classifier’s accuracy for that spe-
cific participant and time-point. For statistical analyses, chance 
level (a probability of 0.5) was subtracted from classification accu-
racy. Statistical significance (α = 0.05) was then calculated using 
a cluster-based permutation test performed on the resulting val-
ues. This test was chosen because we had no prior assumptions 
regarding the timing within the pupil segment exhibiting a possi-
ble relation between confidence and pupil. The same classification 
approach was used to classify high and low confidence trials from 
reaction times, except that for this variable the statistical signifi-
cance was assessed with a non-parametric one-sample two-tailed 
Wilcoxon signed rank test on the resulting values (no cluster-
based permutation test was performed here since reaction times 
do not reflect temporal series).

Results
Confidence
Logistic mixed effect models assessed the modulation of Dif-
ficulty, Variability, Partner, and Accuracy on confidence judg-
ments. After addressing converging and singularity issues the 
final models for these analyses was the following: confidence ∼
difficulty * variability * partner * accuracy + (1 + difficulty + vari
ability + partner + accuracy|| participants). A main effect of Diffi-
culty was found [χ2(2) = 32.03, P < .001], with confidence increas-
ing with the decrease of task difficulty (hard trials: M = 0.55, 
SD = 0.19; intermediate trials: M = 0.61, SD = 0.17; easy trials: 
M = 0.67, SD = 0.14). The significant interaction between Accuracy 
and Difficulty [χ2(2) = 32.14, P < .001; Fig. 2a] and simple main 
effect analyses showed that the main effect of difficulty was in 
particular driven by correct trials. In fact, confidence increased 
with the decrease of task difficulty only in correct response trials 
(P ≤ 0.010).

There was no main effect of Variability, but the interaction 
between Variability and Difficulty was significant [(χ2(2) = 12.03, 
P = .002; Fig. 2c]. Simple main effect analyses showed that confi-
dence decreased in low Variability trials compared to high Vari-
ability trials only for the hard difficulty level (P = .003). Further-
more, confidence decreased in hard trials compared to both inter-
mediate (P = .012) and easy trials (P = .011) only in the low Variabil-
ity condition. Accordingly, the manipulation of stimulus variability 
had only partially the expected effect of modifying the confidence 
judgments.

As expected, a main effect of Accuracy on confidence was also 
found [χ2(1) = 111.06, P < .001], with lower confidence for incor-
rect (M = 0.42, SD = 0.18) compared to correct judgments (M = 0.67, 
SD = 0.16), showing that participants could evaluate the correct-
ness of their responses. Interestingly, a main effect of Part-
ner was also found [χ2(1) = 7.62, P = .006], with lower confidence 
in the blocks in which participants interacted with a machine 
(M = 0.59, SD = 0.17) compared to when they interacted with a 
human partner (M = 0.63, SD = 0.17), and irrespectively of whether 
the response was correct or incorrect (see Fig. 2b).

In sum, confidence strongly correlated with accuracy, show-
ing that participants could clearly estimate the correctness of 
their perceptual decisions. Confidence was also affected by the 
identity of the interacting partner, while the overall accuracy 
(and reaction times; see supplementary materials) remained 
unaffected by the partner’s identity. Contrary to previous study 
(Desender et al. 2018), stimulus variability only mildly influ-
enced confidence judgments, i.e. only when task difficulty
was hard.

Accuracy
Logistic mixed effect models assessed the impact of Partner, Vari-
ability, and Difficulty on the accuracy of the first perceptual deci-
sion. The final model after addressing convergence and singularity 
issues was the following: accuracy ∼ partner * variability * diffi-
culty + (1 + partner + variability|| participants). The result showed 
only a main effect of Difficulty [χ2(2) = 222.75, P < .001], with accu-
racy increasing with the decrease in task difficulty (Fig. 2g). All 
other factors did not reach significance (P > 0.059). Accordingly, 
neither stimulus variability [χ2(1) = 3.56, P = .059] nor partner’s 
identity [χ2(1) = 1.88, P = .171] induced a change in the accuracy of 
the first perceptual decision.

After the first perceptual decision, participants reported their 
confidence and viewed the response of their partner. Hence, in 
a subsequent analysis, we investigated the modulation of these 
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6 Sanchez et al.

Figure 2. Plots showing dependent variables averaged across participants (thick lines), with error bars indicating the standard error of the means. Thin 
lines depict individual results. (a–c) Proportion of high confidence trials is shown as a function of accuracy and difficulty (a); as a function of accuracy 
and partner (b); and as a function of variability and difficulty (c). (d–f) Proportion of switches (in conflict trials) is shown as a function of partner and 
confidence (d); as a function of partner and accuracy (e); and as a function of stimulus variance and difficulty (f). (g–i) Proportion of correct responses 
is shown as a function of task difficulty and decision (g); as a function of confidence and decision (h); and as a function of decision and partner (i)

new variables on the accuracy of the second decision. The model 
included Decision (first, second), Partner (human, machine), 
and Confidence (low, high) and their interactions as fixed fac-
tors. The final model after addressing convergence and singu-
larity issues was as follows: accuracy ∼ decision * partner * confi
dence + (1 + decision + partner + confidence + decision:confidence
+ partner:confidence|| participants). The analyses showed a main 
effect of Decision [χ2(1) = 52.87, P < .001], with higher accuracy in 
the second decisions, i.e. after viewing the partner’s report (accu-
racy first decision: M = 0.76, SD = 0.04; accuracy second decision: 
M = 0.84, SD = 0.03; Fig. 2g).

The main effect of Partner was also significant, notably accu-
racy increased when participants interacted with a machine com-
pared to a human partner [χ2(1) = 8.27, P = .004]. A significant 

interaction between Decision and Partner [χ2(1) = 6.49, P = .011] 
and subsequent post-hoc tests showed that this main effect was 
driven by the fact that accuracy increased when participants inter-
acted with a machine (M = 0.87, SD = 0.035) compared to when they 
interacted with a human partner (M = 0.82, SD = 0.049) only in the 
second decision (P < .001; Fig. 2i). However, no effect of Partner was 
observed for the first perceptual decision (see also previous anal-
yses performed on the first perceptual decision only). This may 
suggest that participants tended to switch more often for the part-
ner’s report when they thought they interacted with a machine 
compared to when they believed to interact with a human (see 
switch responses below).

Furthermore, we observed a main effect of Confidence 
[χ2(1) = 57.36, P < .001], with higher accuracy for high confident 
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What the eyes, confidence, and partner’s identity can tell about change of mind  7

trials compared to low confident trials, and a significant interac-
tion between Decision and Confidence [χ2(1) = 40.42, P < .001]. This 
interaction and subsequent post-hoc comparisons showed that 
accuracy was higher for the second decision compared to the first 
only when participants were not confident about their perceptual 
decision (P < .001; Fig. 2h, left side of the plot vs right side of the 
plot). This suggests that participants tended to switch for the part-
ners’ response in particular when they were not confident in their 
decision, which improved their performances.

In sum, decision accuracy increased in the second decision 
more strongly when participants interacted with a machine com-
pared to a human partner and when they had low confidence in 
their first decision. Importantly, the confidence results observed 
when participants interact with a machine (i.e. decrease in confi-
dence) and when stimulus variability is low (decrease confidence 
in hard trials) cannot be explained by changes in accuracy.

Switch responses
Logistic mixed-effect models were used to assess the factors influ-
encing change of mind behavior. Given the multitude of factors 
(Confidence, Accuracy, Difficulty, Variability, and Partner), the 
extensive number of potential interactions for modeling switch 
responses, and the relatively small number of switch trials, we 
adopted a model comparison approach to determine the most rel-
evant subset of fixed predictors for inclusion in the final model. 
We started with a full model (Model5) containing all fixed fac-
tors (Confidence, Accuracy, Difficulty, Variability, and Partner) and 
interactions. Subsequently, we compared this full model to a 
simpler version (Model4) from which we removed the quintuple 
interaction term. Model4 was then compared to a simpler model 
(Model3) where all quadruple interactions were omitted. This pro-
cess continued iteratively, with each model being compared to a 
simpler version until we arrived at the most parsimonious model. 
The comparison led us to select a final model, which included 
Confidence, Accuracy, Difficulty, Variability, Partner, and all dou-
ble interactions as fixed factors [switch responses ∼ confidence +
accuracy + partner + variability + difficulty + variability:difficulty +
variability:partner + variability:accuracy + variability:confidence +
difficulty:partner + difficulty:accuracy + difficulty:confidence +
partner:accuracy + partner:confidence + accuracy:confidence + (1 | 
participants)].

Importantly, the analyses of switch responses were performed 
only on conflict trials, i.e. trials where the participant selected a 
different response than the one chosen by the partner (in a total 
of 8064 trials, only once a participant decided to change his/her 
response even though there was no conflict with the partner’s 
response). With the final model we observed three main effects: 
a main effect of Partner [χ2(1) = 100.69, P < .001], with a larger pro-
portion of switches when participants interacted with a machine 
(M = 54%, SD = 19%; Fig. 2e) compared to when they interacted with 
a human partner (M = 35%, SD = 17%); a main effect of Accuracy 
[χ2(1) = 8.57, P = .003], showing that participants switched more 
often for the partner’s report when they were incorrect (Fig. 2e, left 
side vs right side of the plot); and a large main effect of Confidence 
[χ2(1) = 382.45, P < .001], where participants switched more often 
when they were little confident regarding their response (Fig. 2d).

Interestingly, a Wilcoxon signed rank showed that participants 
tended to change their initial decision more often based on their 
confidence than their accuracy. Specifically, participants changed 
their response on average 49.2% more often when they were low 
confident compared to high confidence trials, while they changed 
their initial response 16.4% more often when they were incorrect 
compared to correct trials (see Table 1). These changes in switch 

Table 1. Average proportion of switch responses (and standard 
deviation) for each confidence level as a function of accuracy

 Accuracy

Confidence Correct responses Incorrect responses

High 0.15 (± 0.19) 0.23 (± 0.15)
Low 0.61 (± 0.31) 0.65 (± 0.26)

responses were similar when considering the trials in which par-
ticipants interacted with a machine and the trials where they 
interacted with a human partner, separately. Finally, no effect of 
difficulty on the proportion of switches was observed. 

The logistic mixed-effect model also showed an interaction 
between Variability and Difficulty [χ2(2) = 9.54, P = .008]. Post-
hoc pairwise comparisons contrasting the difference between 
the high and low Variability within the difference between hard 
and intermediate trials showed an opposite pattern of switch 
responses when looking at low and high variability trials (P = .015). 
Specifically, the proportion of switch responses increased in low-
variability hard trials compared to low-variability intermediate 
trials. Conversely, in high-variability trials, an opposite pattern 
seemed to emerge: switch responses tended to decrease in high-
variability hard trials compared to high-variability intermediate 
trials (see Fig. 2f). This finding aligns with the interaction observed 
between Variability and Difficulty in confidence judgments, where 
an increase in confidence was observed in hard trials compared 
to intermediate trials specifically in the low-variability condition, 
while accuracy remained constant. In essence, this may imply 
that low-variability hard trials led to decreased confidence, con-
sequently prompting participants to change their initial decision. 
Finally, an interaction between Accuracy and Confidence was 
observed (χ2(1) = 3.99, P = .046), suggesting that the increase in 
switch responses observed in incorrect compared to correct tri-
als was larger when participants were low confident compared to 
when they were high confident.

Additional analyses reported in the supplementary material 
further investigated the impact of Variability on confidence, accu-
racy, and switch responses. de Gardelle and Mamassian (2014), 
using a very similar stimulus as ours, observed a large vari-
ability in the effect of stimulus variance on confidence across 
participants: some participants were more confident with high 
variance stimuli while others felt more confident for low variance 
stimuli. To examine this inter-subject variability, we performed 
additional analyses in which accuracy, confidence, and switch 
responses were predicted by the “preferred” variability (i.e. the 
stimulus variance that on average led the participant to have 
more confidence in her/his decisions). These analyses showed 
that “preferred” variance impacted switch responses in a similar 
way as confidence but did not affect accuracy (see supplementary
material).

Pupillary response
A cluster-based permutation test showed that pupil velocity 
observed in high and low confidence trials differed within a time 
window going from 550 to 1150 ms (Fig. 3a). The pupil velocity 
observed within this time window was averaged and analyzed 
using linear mixed models. Given the large number of factors 
and interactions that could show a relationship with pupil dila-
tion, a model comparison approach was used to remove from 
the model the factors that do not improve model prediction. 
We started with a complex model including Partner, Variability, 
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8 Sanchez et al.

Difficulty, Accuracy, Confidence, and their interactions as fixed 
effects. The model also included Switch response as predictor 
and the factor Participant as a random intercept [pupil velocity 
(stimulus segments) ∼ partner * variability * difficulty * accuracy * 
confidence + switch responses + (1 | participants)]. We then com-
pared this model with a simpler model from which we removed 
all interaction terms. The comparison showed that including the 
interactions to the model did not significantly improve model 
fitting (χ2(41) = 52.39, P = .109). Consequently, we continued our 
analyses with the more parsimonious model described here as: 
pupil velocity (stimulus segments) ∼ partner + variability + difficul
ty + accuracy + confidence + switch responses + (1 | participants). 
Based on this mode, we then performed a backward elimination of 
the remaining fixed factors in order to find the subset of parame-
ters leading to the best performing model. This led to a final model 
with only Accuracy and Confidence as fixed factors pupil velocity 
(stimulus segments) ∼ accuracy + confidence (1 | participants). The 
model showed that pupil velocity was higher for correct compared 
to incorrect responses [χ2(1) = 17.54, P < .001], and this effect was 
almost three times stronger when comparing high and low confi-
dence [χ2(1) = 41.15, P < .001], with higher dilation velocity for high 
compared to low confidence judgments.

The same analyses on response-locked segments showed 
a difference between high and low confidence trials within 
a time window going from −550 to 50 ms (Fig. 3b). Pupil 
velocity observed within this time window was averaged and 
analyzed using the same approach described above. Includ-
ing all the interaction terms in the model did not improve 
model fitting [χ2(41) = 41.75, P = .438]. Analyses were then con-
tinued with a parsimonious model [pupil velocity (response seg-
ments) ∼ partner + difficulty + confidence + accuracy + switch 
responses + (1 | participants)]. The backward elimination fac-
tors process on this model showed that all fixed factors con-
tributed to pupil dynamics. Specifically, pupil dilation velocity 
was higher when participants interacted with a machine com-
pared to when they interacted with a human partner [χ2(1) = 10.08, 
P = .002], when their response was correct compared to incorrect 
responses [χ2(1) = 18.94, P < .001], when they did not change their 
initial response [χ2(1) = 5.83, P = .016], when the task was easy com-
pared to hard trials [χ2(2) = 6.41, P = .041], and finally more than 
the other factors, pupil dilation velocity was consistently linked 
to individuals’ confidence judgments [χ2(1) = 154.77, P < .001], 
with faster pupil dilation for high compared to low confidence
judgments.

Classification of pupil and RT
Similarly, to the analyses reported above, pupil-based classifiers 
could predict significantly above chance level individuals’ judg-
ments of confidence within a time window going from 750 to 
1150 ms after stimulus onset (Fig. 3c, see also supplementary 
material for additional classification analyses). The best perfor-
mance (across time) of the pupil classifier was 54%. RT clas-
sifier could also predict significantly above chance level indi-
vidual’s judgments of confidence with an average accuracy of 
69% (Fig. 3d). A Wilcoxon Rank Sum Test showed that classifica-
tion accuracy was higher with RT compared to the classification 
accuracy observed with pupil velocity [z(13) = 4.434, P < .001]. In 
additional analyses (not reported), we combined reaction times 
data and pupil data to assess whether classification accuracy 
would increase with both features. However, adding pupil data 
did not improve classification accuracy observed with reaction
times alone.

Blink data
Changes in pupil dilation may partly be caused by eye blinks 
(Lee et al. 2021). The response-locked segments contained 
eye blinks; hence, we decided to verify whether the pro-
portion of blinks differed across conditions. The number of 
blinks observed in the response-locked epochs were analyzed 
with a mixed linear model including Partner, Difficulty, Con-
fidence, Accuracy, and Switch response as fixed predictors 
and participants was included as a random intercept as fol-
lows: blinks ∼ partner + difficulty + confidence + accuracy + switch 
responses + (1 | participants) (i.e. the same final model used 
for pupil analyses in the same pupil segment). The number of 
blinks increased with incorrect compared to correct responses 
[χ2(1) = 7.45, P = .006]; it also increased when participants changed 
their initial response [χ2(1) = 14.80, P < .001] and when their confi-
dence was low compared to high confidence trials [χ2(1) = 308.14, 
P < .001] (Fig. 3e).

Discussion
This study aimed at contributing to: (i) the understanding of 
the impact of confidence in post-decisional behavior, (ii) explor-
ing the link between pre-response pupil dilation and confidence, 
and (iii) confronting personal perceptual decisions with the ones 
of other humans and machines. Participants completed a two-
alternative-forced-choice discrimination task where they had to 
identify the dot display containing a dot motion direction that was 
closer to the vertical axis. After their perceptual decision, they 
estimated how confident they were. They then viewed in differ-
ent blocks the response of a human or a machine partner. They 
were told to evaluate the response of their partner and use it to 
improve their own accuracy on the perceptual task. Specifically, 
participants could either keep their initial perceptual decision 
or change it for the other option. Concomitantly, we recorded 
participants’ pupil dilation to investigate whether it was a good 
predictor of confidence and whether it was informative about 
individuals’ strategies to keep or change their initial perceptual
response.

In agreement with past research on visual confidence, we 
observed that participants could evaluate the correctness of their 
visual decision and that confidence was sensitive to the qual-
ity of sensory information (cf. Mamassian 2016 for a review). 
Multilevel regression analyses showed that confidence better pre-
dicted changes of mind than perceptual accuracy or task difficulty. 
Specifically, participants changed their initial response approxi-
mately 49% of the time when they were not confident compared 
to when they were confident, while around 16% of the time 
when their response was incorrect compared to when it was cor-
rect. Importantly, this behavior was observed both when they 
interacted with a machine or a human partner. In addition, no 
modulation of task difficulty on the decision to keep or change 
initial responses was observed, reinforcing the idea that what 
matters for subsequent behavior is the subjective representa-
tion of decision uncertainty (i.e. confidence). This seems obvious 
considering the fact that the brain cannot have direct access to 
objective external information, and must also take into account 
other sources of information such as internal states and prior 
knowledge. Taken together, these findings suggest that subjective 
confidence estimates guide post-decisional behavior, more than 
perceptual accuracy or task difficulty.

In addition, we found that interacting with a machine or 
a human partner modulated confidence judgments without 
impacting decision accuracy. In particular, when participants 
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What the eyes, confidence, and partner’s identity can tell about change of mind  9

Figure 3. The plots 3a and 3b show the average pupil velocity for high and low confidence trials calculated across participants as a function of the 
time after stimulus onset (a), and the time around the perceptual decision (b). In plot 3a 0 ms is the onset of the RDKs and in plot 3b 0 ms is the onset 
of the perceptual decision. Unit in these time-series plots is pixels/time. With the EyeLink 1000 Plus, pupil area is calculated as the sum of the number 
of pixels inside the detected pupil contour. Hence, pupil dilation velocity was computed as v = Δs/Δt, where s is pupil size (in pixel) and t is time (in our 
case Δt was 100 ms). Shaded areas represent ± 1 standard error of the mean. (c) Accuracy (proportion of correct classification) of a classifier 
dissociating high and low confidence trials from pupil velocity. The classifier was trained and tested on stimulus-locked segments (0 ms reflects the 
onset of the RDKs). The horizontal line below 0.5 accuracy indicates the time points with a classification accuracy that was significantly above chance 
level (50%). Shaded area represents bootstrapped 95% confidence intervals. (d) Best classification accuracy (across time) to discriminate high and low 
confidence from pupil velocity (in red) and from reaction times (in blue). Error bars represent standard errors. (e) Proportion of blinks that occurred in 
high and low confidence trials

interacted with a machine, they exhibited lower confidence judg-
ments in their initial decision compared to when they interacted 
with a human partner. In line with recent models of metacogni-
tion (Fleming and Lau 2014, Mamassian 2016), this suggests that 
confidence judgments do not rely only on the quality of current 
sensory evidence, but also on additional pieces of information that 
can bias confidence evaluations (Shekhar and Rahnev 2020) such 
as prior beliefs or contextual information (Fleming et al. 2018, Mar-
cke et al. 2024). Importantly, the decrease in confidence observed 
when interacting with a machine seemed to reflect a confidence 
bias rather than a change in metacognitive sensitivity. In fact, a 
similar decrease in confidence was observed for correct and incor-
rect responses. Hence, it is unlikely that participants’ change of 

mind was driven by a better use of machine advice on incorrect 
trials.

Furthermore, interacting with a machine not only decreased 
confidence but also increased participants’ tendency to change 
their initial perceptual response. This seems to suggest that 
confidence estimations as well as partner’s identity guided par-
ticipants’ strategies to keep or change their initial perceptual 
judgments. A possibility is that, even though the performance 
accuracy of the two fictive partners was strictly the same across 
the task, participants may have had prior assumptions that the 
machine would be more reliable than a human on the task. Hence, 
to achieve better performances from their subjective perspective, 
participants may attribute less weight to the responses given by 

D
ow

nloaded from
 https://academ

ic.oup.com
/nc/article/2024/1/niae018/7667006 by O

N
ER

A user on 05 August 2024



10 Sanchez et al.

a human partner compared to those given by a machine part-
ner while also being less confident in their initial responses when 
interacting with a machine partner, which may suggest an adap-
tive post-decisional strategy where the likelihood of a change of 
mind is mediated by both confidence (Mattingly et al. 2016) and 
the partner’s identity.

The influence of partner identity on change of mind appeared 
to be not mediated (at least not entirely) by confidence. This is 
suggested by the weaker effect of partner’s identity on confidence 
compared to its effect on change of mind (see Results and Fig. 2d 
& e). Furthermore, multilevel regression analysis revealed two 
independent main effects of partner identity and confidence on 
change of mind, suggesting that partner identity impacts behavior 
beyond the influence of confidence. Thus, these findings support 
the notion that the effect of partner identity on switch responses 
is not mediated (at least not entirely) by confidence and that both 
factors contribute independently to changes of mind. This inter-
pretation is further supported by a mediation analysis reported in 
the supplementary material showing strong direct effects of con-
fidence and the partner’s identity on change of mind a weaker 
indirect effect of the partner’s identity on change of mind via 
confidence.

It is important to underline that the direction of the effect of 
a partner’s identity on confidence and change of mind should be 
taken with caution, as it may originate from personal consider-
ations and contextual factors. In line with this, recent studies 
showed that machines inspire overconfidence (Booth et al. 2017, 
Booth 2020) or mistrust (Nicodeme 2020, Seth and Kishore 2020, 
Lee and Rich 2021) depending on the situation. Furthermore, it has 
been shown that prior beliefs about a task could induce under- and 
overconfidence (Marcke et al. 2024), and that confidence plays a 
role in shaping certain aspects of decision-making behavior such 
as the confirmation bias (Rollwage et al. 2020) as well as driv-
ing post-decisional behaviors such as changes of mind (Rollwage 
et al. 2020, Pescetelli et al. 2021) or decision switch (Mattingly
et al. 2016).

An alternative hypothesis is that the belief that the machine 
would perform better would lead participants to pay less attention 
to the perceptual task and strongly rely on the machine’s answers. 
However, this seems unlikely since no difference in accuracy in 
their initial perceptual decision was observed when participants 
interacted with a machine compared to when they interacted with 
a human partner, while stimuli were strictly identical in the two 
conditions (stimulus calibration using the staircase procedure was 
completed before the actual experimental task, the staircase trials 
did not include the partner’s identity manipulation, i.e. they con-
sisted solely of the stimulus presentation followed by a perceptual 
response).

In summary, our study provides evidence that confidence pre-
dicts change of mind, and that partner’s identity influenced both 
confidence and changes of mind in an independent manner. Con-
fidence seems to play a role in decisional behaviors, corrobo-
rating recent studies suggesting that confidence guides informa-
tion seeking and learning (Meyniel et al. 2015, Guggenmos et al. 
2016, Desender et al. 2018) as well as change of mind (Flem-
ing et al. 2018, Rollwage et al. 2020, Pescetelli et al. 2021) and 
decision switch (Mattingly et al. 2016). Furthermore, it may be 
one of the mechanisms involved in human–human (Bang et al. 
2017, De Martino et al. 2017) and human–machine interactions 
(Wright et al. 2020, Zhang et al. 2020). Joint decisions may some-
times require changes in personal opinion, so by weighting inter-
nal decisions and guiding decision-making behavior, perceptual 

confidence could play a key role in collective decision-making 
(Bahrami et al. 2010, Bang et al. 2014).

Contrary to previous studies, confidence was weakly modu-
lated by the variability of the stimulus (Desender et al. 2018). 
Notably, we observed a change in confidence induced by stimulus 
variability only in hard trials, while accuracy remained unaffected 
by variance in those trials. However, similarly, switch responses 
appeared to be modulated by stimulus variance in hard trials, 
reinforcing the finding observed in multilevel regressions, suggest-
ing that confidence, rather than first-order representations, better 
predicts changes of mind.

Regarding why confidence was modulated by stimulus vari-
ance only in hard trials, we posit that confidence judgments result 
from the weighted integration of various sources of informa-
tion, including sensory evidence and contextual factors (e.g. prior 
beliefs and stimulus variance, Boldt et al. 2017, Schustek et al. 
2019; Van Marcke et al. 2024). It is plausible that, in the current 
experiment, stimulus variance influenced confidence only when 
evidence-related signals were poor (i.e. in hard trials). In other 
words, stimulus variance carried low weight in a process inte-
grating different cues for confidence when task difficulty was low, 
while when sensory evidence was very poor, participants relied on 
stimulus variance to judge confidence.

Regarding why participants were on average more confident in 
high variance trials compared to low variance trials, this could be 
explained in terms of inter-subject variability. In fact, this find-
ing is not entirely new; de Gardelle et al. (2015), using a very 
similar stimulus as ours, showed that some participants were 
more confident with high variance stimuli while others were more 
confident with low variance stimuli. In other words, participants 
exhibited stable preferences regarding the stimulus variance (cf. 
de Gardelle et al. 2015). We investigated this notion further (see 
supplementary material). Specifically, we labelled trials based on 
the stimulus variance that participants preferred. If a participant 
on average rated his/her confidence higher in high variance trials 
than low variance trials, then we relabeled his/her high variance 
trials as “preferred” trials and the low variance as “non-preferred” 
trials. Conversely, if a participant on average rated his/her confi-
dence higher in low variance trials than high variance trials, then 
we relabeled his/her low variance trials as “preferred” trials and 
the high variance as “non-preferred” trials. The analyses of the 
impact of preferred variance on confidence, accuracy, and switch 
responses showed that not surprisingly confidence increased with 
preferred compared to non-preferred variance. More interest-
ingly, accuracy was not modulated by individuals’ preference, and 
switch responses followed a pattern similar to confidence; notably, 
switch responses increased in non-preferred trials compared to 
preferred trials. Taken together, these results suggest that while 
not affecting accuracy, the preferred stimulus variance affected 
confidence which in turn potentially modulated switch responses.

Decision-making is accompanied by broad neurophysiologi-
cal changes of the body (O’Connell and Kelly 2021) including 
changes in eye pupil activity (Urai et al. 2017). In the present 
study we also investigated the relation between eye pupil changes 
and confidence. In particular, we analyzed pupil velocity since 
recent studies suggest that temporal derivative of pupil dilation 
reflects closely arousal fluctuations (Reimer et al. 2014, 2016, 
Okun et al. 2019, Crombie et al. 2021). The interest in using 
pupil dilation as a proxy of confidence relies on the fact that 
it could allow for the monitoring of individuals’ confidence and 
uncertainty online and through time without the need of col-
lecting confidence judgments or measuring response times. This 

D
ow

nloaded from
 https://academ

ic.oup.com
/nc/article/2024/1/niae018/7667006 by O

N
ER

A user on 05 August 2024



What the eyes, confidence, and partner’s identity can tell about change of mind  11

application can be important in different domains, including the 
field of human–human and human–machine interactions. There 
is indeed growing interest in neuroergonomics to monitor through 
time different cognitive states of operators while they interact 
with technology and their teammates (Dehais et al. 2017, 2020, 
Gramann et al. 2017), with the objective among others to conceive 
and evaluate new technology. In this context, confidence appears 
to be a critical phenomenon for optimal human–machine inter-
actions (Lee and Moray 1992, Parasuraman et al. 1993), and to 
that extent, online access to operators’ confidence states could be
particularly useful.

Interestingly, in agreement with previous studies (e.g. Lempert 
et al. 2015), confidence correlated with changes in pupil dilation 
dynamics. However, in addition to past research, our study showed 
that pre-response pupil dynamics predict confidence judgments. 
Specifically, we observed that during the presentation of the 
visual stimulus (when neither blinks nor responses could occur) 
pupil velocity was higher when the following response was cor-
rect or confident. Interestingly, pupil velocity did not correlate 
with the difficulty of the task. This dissociation together with the 
strong relation between pupil velocity and confidence (three times 
stronger than the relation between accuracy and pupil velocity) 
suggests that pupil velocity may be associated with the subjec-
tive evaluation of uncertainty rather than objective uncertainty, 
through short-term arousal fluctuations. A possible explanation 
for this finding would be that in confident trials participants allo-
cated more strongly attentional resources to the stimulus com-
pared to low confidence trials. However, if that was the case, we 
believe that pupil dynamics would then correlate more with cor-
rect responses than confidence. Our finding showed exactly the 
opposite: larger variations of pupil dynamics were observed when 
confidence varied rather than when accuracy varied. Secondly, 
pupil dilation dynamics differed between high- and low-confident 
trials when focusing only on correct trials (see supplementary 
materials). In agreement with confidence-based learning models, 
another possible explanation is that confidence has a mechanis-
tic role in reward and value-based learning (Guggenmos et al. 
2016, Ptasczynski et al. 2022). Interestingly, pupil dilatation, and 
more generally arousal, is associated with reward anticipation 
(Koelewijn et al. 2018, Schneider et al. 2018). We speculate that 
feeling confident in one’s own performance during a task may 
work as a reinforcing and rewarding signal influencing cogni-
tive states, which would in turn modulate arousal-based pupil 
fluctuations.

Past research reported relations between pupil dilation and 
uncertainty post-response (Lempert et al. 2015, Urai et al. 2017, 
Balsdon et al. 2020). Our study provides new evidence on the link 
between pre-response pupil changes and confidence. In further 
analyses, we found that pupil dilations predict confidence only 
weakly (54% correct classification) compared to response laten-
cies related to perceptual decisions (69% correct classification). 
Hence, reaction time remains a rather reliable proxy for confi-
dence estimations, in line with previous literature (Kiani et al. 
2014). In additional analyses (not reported), we combined reaction 
times data and pupil data to assess whether classification accu-
racy would increase with both features. However, adding pupil 
data did not improve the classification accuracy observed with 
reaction times alone. This may suggest that pupil data were redun-
dant with respect to reaction times and that variation of reaction 
times and pupil dilation may be based on partially common mech-
anisms influencing confidence. In spite of the small contribution 
of pupil dilation for confidence classification, we believe that there 
is an intrinsic interest in classifying confidence based on pupil 

data only, since this measure does not require any overt behav-
ior in order to potentially access the degree of confidence of a 
participant. However, classification accuracy remains very low for 
Brain Computer Interface. Further investigation should be encour-
aged to better understand the relationship between pupil and 
confidence and to improve classification accuracy of pupil-based 
confidence signals.

The analyses of pupil changes around the time of the per-
ceptual response provided similar findings showing that, start-
ing from −550 ms to +50 ms around the response, pupil veloc-
ity correlated strongly with confidence, accuracy, task diffi-
culty, and participants’ tendency to change their initial response. 
However, this time window was contaminated by eye blinks 
which may have driven unwanted changes in pupil dilation 
velocity, thus making any conclusion regarding the changes 
in pupil velocity observed during this time period difficult to 
draw. In fact, we observed a larger proportion of blinks in hard, 
incorrect, and in low confidence trials. It is well known that 
stress, boredom, and fatigue can induce an increased blink 
rate (Tanaka and Yamaoka 1993, Barbato et al. 2000, Danck-
ert et al. 2018). We speculate that the increase in eye blinks 
observed either in low confidence trials or in incorrect and 
hard trials is associated with momentary stress changes associ-
ated with low performance and task difficulty. Further studies 
should corroborate the relationship between confidence and eye
blinks.

Conclusions
In summary, our findings bring new evidence supporting that con-
fidence as well as partner’s identity contribute to post-decisional 
behaviors and in particular change of mind during the interaction 
with another partner. Confidence would be a subjective evaluation 
of decision uncertainty, which integrates internal representations 
including current internal states and context-dependent beliefs 
about ourselves and others (Lebreton et al. 2019, Carlebach and 
Yeung 2023) in situations with incomplete knowledge (Khalvati 
et al. 2021). The role of confidence may be to weigh our deci-
sions and perceptions and to modulate the likelihood of change 
of mind, allowing adaptation and learning, therefore contributing 
to decisional behaviors. Furthermore, the identity of the part-
ner during collective decision-making is also a factor influencing 
confidence and also driving change of mind. Our results also pro-
vide new insight on the relation between eye pupil dilation and 
confidence. Crucially, eye pupil dynamics seem to provide online 
information about ongoing metacognitive processes and could 
also directly participate in decision-making and metacognition, in 
line with recent advances in the neurophysiology of perceptual 
decision-making (O’Connell and Kelly 2021).
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