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Abstract 

Monitoring of water distribution network (WDN) requires placement of sensors at strategic 

locations to detect maximum contamination events at the earliest. The multi-objective 

optimization (MOO) of sensor placement is a complicated problem owing to its combinatorial 

nature, interconnected and large WDN sizes, and temporal flows producing complex outcomes 

for a given set of contamination events. In this study, a new method is proposed to reduce the 

complexity of the problem by condensing the nodal search space. This method first segregates 

the nodes based on intrusion events detected using k-means clustering followed by selecting 

nodes from each group based on the improvement observed in the objectives, namely, 

contamination event detection, expected detection time, and affected population. The selected 

nodes formed the decision variable space for the MOO study. The developed strategy was 

tested on two benchmark networks: BWSN Network1 and C-town network, and its 

performance is compared with the traditional method in terms of hypervolume contribution 

rate (CR) indicator and the number of Pareto points. The optimal subset of nodes generated 

twice the number of Pareto points than the complete set of nodes set for placing 20 sensors and 

had 10% more than CR indicator than the traditional method. For the placement of 5 sensors, 

the proposed solutions were better at the higher detection likelihood values, which is required 

to achieve maximum detection. The proposed sensor placement algorithm can be easily scaled 
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to large WDNs. It is expected to provide a better optimal sensor placement solution irrespective 

of network size as compared to the traditional approach. 

Key Words: sensor placement, water distribution network, multiobjective optimization, 

optimal sensor placement, BWSN, C-town 
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1 Introduction

The advancements in sensors for water quality measurements have enabled water supply 

assurance and steadily shifted the focus towards monitoring and maintaining the quality of 

supplied water in water distribution networks (WDN) (Storey et al., 2010). Monitoring of 

WDNs has been widely researched with the application of sensors in the network, 

concentrating on collecting crucial supply data to facilitate swift mitigation procedures (Creaco 

et al., 2019; Nurani et al., 2018). The placement of the sensors at niche locations is essential 

due to budgetary constraints, thus allowing only a limited number of sensors to be placed in a 

vast network (Zeng et al., 2018). This led to research in various sensor placement strategies 

aimed at monitoring of WDNs with a limited number of sensors. The main issue for placing 

sensors in a WDN arises in selecting the best solution from a vast number of feasible solutions 

available to utility managers. The efficiency of the ‘best solution’ has to be assessed and 

compared with other available solutions, and this ‘efficiency’ can be estimated based on the 

required goals or objectives for placing the sensors. Though the sensor placement problem 

(SPP) can be constructed as an optimization problem, finding the optimal solution is 

computationally expensive when deterministic methods are employed while stochastic 

approaches result in sub-optimal solutions (Hu et al., 2018a; Xu et al., 2013). The intricacies 

of optimizing the sensor placement in a WDN are further explained in the following 

paragraphs. 

The main components of the sensor placement problem that have been extensively researched 

are: objectives, optimization algorithm, and decision variables. With the network flow 

configuration and nodal demands of a WDN, two crucial information can be estimated: flow 

and contaminant concentration at any node and the time taken for the contaminant to travel in 

the network. Based on this data, The Battle of Water Sensor Networks (BWSN) (Hart et al., 

2007) design challenge was conducted to compare various approaches to solving SPP for 
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WDNs. The problem was formulated with four objectives: minimization of expected detection 

time, minimization of the expected population affected, minimization of expected amount of 

contaminated consumed, and maximization of detection likelihood. The study revealed that the 

first three objectives,  ‘affected population,’ ‘contaminated water consumed’ and ‘detection 

time,’ conflicted with detection likelihood. Since then, many researchers have discussed the 

Multi-objective Optimization of SPP (MOSPP) for WDN, focusing on detecting events and 

either of the other three objectives (Hu et al., 2018b). The effect of contamination in WDN can 

be captured in pollution matrices, and it can be developed by simulating a series of 

contamination scenarios in EPANET 2.0 (https://www.epa.gov/water-research/epanet) 

(Rosmann, 2000) and recording the response from the network compactly in a matrix. The 

pollution matrices have number of rows equal to the number of nodes in the network and 

columns equal to the number of contamination events that are simulated. Each value represents 

the information like contamination detection, time taken for detection if contamination detected 

etc. by the corresponding node (row) for the corresponding event (column). So, each row 

provides values for the estimation of objective function if a sensor is placed at the 

corresponding node. Thus, by adopting similar procedure for all the nodes (rows), the values 

required for estimation of the objective function for each node can be stored efficiently. This 

step will reduce computation cost as during optimization, pollution matrix is utilized to 

estimate the objective function rather than simulating all the contamination events for 

estimating the objective function for each sensor solution. The recorded information in 

pollution matrices depicted contamination presence, time of detection, water consumed before 

detection, or the number of persons affected before detection, etc. (Chastain, 2006; Hart et al., 

2007).  

Various optimization algorithms have been implemented to solve the SPP and MOSPP, such 

as genetic algorithm (GA) and its variants (Eliades and Polycarpou, 2006; Hu et al., 2018a; 
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Preis and Ostfeld, 2007), greedy randomized adaptive search procedures (GRASP) techniques 

(J. Berry et al., 2006; Krause et al., 2008), heuristics (Aral et al., 2010; Guan et al., 2006), 

Particle swarm optimization (PSO) (Hu et al., 2015; Marlim and Kang, 2021) and constrained 

mixed-integer programming (MIP) formulations (J. W. Berry et al., 2006). Also, The TEVA-

SPOT software tool was developed by the U.S. EPA to evaluate the contamination risks and 

design sensor monitoring stations for WDN. TEVA-SPOT allows the users to choose an 

objective among the following: a) number of failed contaminated detections, b) time of 

detection, c) estimated population exposed, d) estimation population contaminated, e) extent 

of contamination, f) mass of contaminated water consumed, g) length of pipe contaminated and 

h) volume of water contaminated. The objectives c, d, f, and h are correlated with the time of 

detection, while objectives e and g are correlated with objective a. It can be seen that 

minimization of objective a is complementary to the maximization of objective ‘number 

(percentage) of successful detections’, which is analogous to the detection likelihood objective 

considered in this study. However, TEVA-SPOT carries out single objective optimization of 

the above mentioned objectives and the conflicting objectives have to be provided as a 

constraint (Janke, 2018). Stochastic techniques generate near-optimal solutions with low 

memory requirements and CPU time for both SPP and MOSPP, while the MIP formulations 

consume huge memory to provide optimal solutions for SPP and constrained MOSPP. 

Nevertheless, irrespective of the methods applied for optimizing sensor locations, the 

complexity of  WDN due to vastness, complex interflows, and temporal demands have kept 

the search for optimal sensor locations still a significant challenge (Adedoja et al., 2019; Hu et 

al., 2018b). 

The third component represents the decision variables given by the set of nodes in the network. 

The problem size depends on the number of nodes considered for placing sensors as large 

number of nodes translate into large number of node-sensor pairs. This makes the problem 



6 
 

computationally and memory-wise expensive. The problem can be interpreted as a 

combinatorial problem of choosing a solution from nCk combinations where ‘n’ is the number 

of nodes, and ‘k’ is the number of sensors (Blockeel et al., 2012). However, if a few nodes are 

deemed non-potential and only ‘m’ such nodes are considered for sensor placement, the 

number of combinations reduces to mCk, which is lesser than nCk. For instance, if a network has 

100 nodes, but only 90 nodes are chosen for the placement of 5 sensors, then the total number 

of combinations reduces by more than 41%. This led to the following studies that focused on 

improving the nodal search space by contracting the WDN using graph trimming methods and 

topography-based clustering, designing contamination events based on heuristics, and 

decreasing decision variable (nodes) search space considered for optimization.  

Klise et al. (Klise et al., 2013) pruned large WDN using graph trimming techniques followed 

by a two-tiered optimization procedure. The first step involved grouping similar nodes based 

on topography and flow into ‘super nodes’ and finding the optimal ‘super nodes’ for placing 

sensors, and then fine-tuning the sensor locations using the original nodes forming the optimal 

‘super nodes’. Xu et al. clustered the WDN into k regions for placing ‘k’ sensors, and from 

each cluster, one node was selected based on maximum connectivity with other nodes in the 

cluster  (Xu et al., 2008). This selection of single node from ‘k’ clusters was improvised by 

greedily selecting ‘k’ nodes with better overall connectivity within the WDN, leading to better 

observability of the whole network (Di Nardo et al., 2018). The above methods oversimplified 

the SPP by overseeing the effects of temporal demands, reverse flows and contaminant 

transport velocity, as their applicability was tested only on a small number of contamination 

events.  

Diao et al. implemented controllability analysis on BWSN Network1 to condense the decision 

variable search space by (Diao and Rauch, 2013) choosing nodes that facilitated maximum 

network observability in a given time frame. But, this prioritized the observability at the 
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expense of swiftness in detections when a set of nodes are considered together for sensor 

placement. In contrast, Khorshid el. al. (Khorshidi et al., 2018) developed a node selection 

strategy based on Value Of Information (VOI) and Transinformation Entropy (TE) techniques. 

The nodes were compared pair-wise in terms detection time and grouped according to the 

swiftness in detecting the given set of contamination events. The results of the VOI-TE method 

were compared with the results from TEVA-SPOT tool which uses GRASP-heuristics, but the 

comparison with the traditional multi-objective optimization is required to assess the efficiency 

of the VOI-TE method. Pierre et al., defined quality zones within the WDN by clustering the 

nodes based on time-varying concentration data (Mandel et al., 2015), but the study has not 

been extended to sensor placement problem. The quality zones were developed by tracing the 

water from the source nodes using EPANET2.0, but in a WDN the contaminant intrusion can 

occur at any node. Moreover, the simulations were carried out at steady-state conditions, which 

are generally not observed in real WDNs.  

Thus, there is a need for a pre-selection procedure to reduce the nodal search space that 

encompasses the dynamic water quality simulations with a focus on the sensor placement 

objectives. The observations or pollution matrices acquired from the contamination transport 

simulations provide the required data on the objectives, detection of contaminant, time of 

arrival of contaminated water, and population affected at the nodes. Based on this data, the 

nodes from the WDN can be clustered in terms of similarity in detecting events followed by 

selecting nodes from these clusters with better objective function values. 

In this study, a novel strategy is developed based on k-means clustering and cluster-wise greedy 

selection to reduce the nodal search space for multi-objective sensor placement study. This 

strategy is based on the transport of contaminant (both nodal observation and transportation 

time) in the WDN rather than just the connectivity. The resulting subset of  nodes will be used 

for multi-objective optimization to generate multiple sensor design solutions with trade-offs 
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between objectives. The multi-objective optimization is carried out for two sets of conflicting 

objectives: (1) maximizing detection likelihood vs minimizing detection time and (2) 

maximizing detection likelihood vs minimizing the affected population. The pattern search 

algorithm (Custódio et al., 2011), which is based on direct search methods for optimization, is 

implemented for finding the Pareto points. The node selection strategy is tested on two 

benchmark networks, BWSN Network1 and C-town network. Finally, the Pareto Front 

generated using the optimal subset of nodes are compared with the traditional method of 

performing MOSPP. 

2 Methodology 

The work carried out in this study consists of three sections, as described in Figure 1. Firstly, 

the effect of contamination in the WDN is analysed by simulating various contamination  

 

Figure 1 Overview of sensor placement problem for water distribution networks 

events. The conditions of each event (time, node, etc.,) is provided by MATLAB to 

EPANET2.0 where extended hydraulic and water quality simulation of each event is carried 
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out. The parameters of the network (nodal concentration , time of contamination observance) 

are then fed back to MATLAB, for developing the pollution matrices. The second step is 

identifying a crucial set of nodes that provide higher detection likelihood and lower detection 

time. The nodes are first clustered in the node clustering module, followed by cluster-wise 

selection of nodes for the objectives considered in the node selection module. Both the 

modules are developed in MATLAB. The selected nodes are then used for multi-objective 

optimization study of sensor placement in the third step. The dotted lines represent the paths 

that will provide the decision search space for the multi-objective optimization. Generally, 

only the first and third steps are carried out to find the optimal Pareto, which suggests that all 

the nodes of WDN are potential locations for placing sensors. In order to compare with the 

proposed strategy, the traditional method of estimating the Pareto is also carried out. 

 Contaminant Transport Simulation and Pollution Matrix 

The two benchmark networks considered as test cases for the developed node selection 

strategy: BWSN Network1 and C-town network are shown in  Figure 2. The contamination 

scenario for BWSN Network 1 was a subset of BWSN Challenge Case A (Hart et al., 2007) 

with an intrusion at every half an hour interval at each node for two hours. The contamination 

event is defined by the parameters: injection flow rate = 125 L/h, contaminant concentration = 

230,000 mg/L, and injection duration = 2 h. This translates to intrusion of 479167 mg/minute 

of contamination for two hours. It is assumed that the ingested contaminant remains inert 

throughout the network and it is consumed only at the demand nodes. While in C-town, a 15-

minute interval for each contamination event was set to capture the intricacies of contaminant 

flow within the network. The number of sensors to be placed was fixed to 5 and 20, translating 

to 3.8% and 15% of nodes in BWSN Network1, respectively, and 1.2% and 5% of the C-town 

network. It is assumed that sensors have a sensitivity limit of 0.01 mg/L and there is no lag 

between detecting a contaminant by the sensor transmitting of  
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Figure 2 Water Distribution Network Layout a) BWSN Network1 b) C-town Network 

information to the utility manager. Table 1 describes the contamination events design for both 

the WDNs.  

The event simulations were carried out in EPANET2.0 integrated with MATLAB 2020b. The 

results of the contamination events were recorded in three pollution matrices, depicting the 

Table 1 Contamination events design for BWSN Network1 and C-town Network 

Features BWSN Network 1 C-town Network 

Nodal contamination All nodes (129) All nodes (396) 

Time of intrusion Every half an hour  Every 15 minutes 

Intrusion duration Half an hour 15 minutes 

Contaminant mass injected 479167 mg/minute 10000 mg/minute 

Detection delay Real-time Real-time 

Detection sensitivity 0.01 mg/L 0.01 mg/L 

Time period for extended simulation 96h 72h 

Simulation time step 5 min 5 min 

Number of sensors 5 and 20 5 and 20 
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detection of the event, time to detection, and population affected. The events detections matrix 

(EDM) is binary in nature, where ‘1’ represented if the contamination was observed and ‘0’ 

otherwise. The time to detection pollution matrix (TDM) stored the time delay in contaminant 

observation since the onset of contamination for each node for all the intrusion events. 

Similarly, the population affected matrix (PAM) provides the details about the number of 

people affected until the contamination is observed. 

 Generation of optimal subset of nodes  

This section discusses the objectives for the sensor placement study and the objective function-

based node selection strategy.   

2.2.1 Definition of objective functions: 

The objectives evaluated for the MOSPP study are: a) Detection likelihood, b) Expected 

detection time, and c) Population affected.  

a) The detection likelihood (Z1) is defined as the percentage of contamination events detected 

for a given design of sensors.  

1

100
1 1, 2,3 .

N

i
i

Z d i N
N 

           (1) 

Where, i = 1,2,3…N refers to the ‘N’ contamination events simulated for the network and di = 

1 if the contamination event ‘i’ was detected otherwise ‘0’.  

b) The time of detection for a particular contamination event ‘i’, td, is the minimum time to 

detect among all sensors (j) present in the design,  

, ,( )d i i jt min t            (2) 

And, the Expected time of detection (Z2) is the expected value of td over N contaminations 

given by,  
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,2 ( )d iZ E t            (3) 

c) Similarly, the expected population affected prior to detection is the expected value of 

population affected (Pa) computed over the assumed probability distribution of ‘i’ 

contamination events. 

,3 ( )a iZ E P            (4) 

The estimation of Pa,i is explained in section A.1. The objectives are taken ‘as is’ from BWSN 

challenge (Hart et al., 2007). In the following paragraphs, the expected time of detection will 

be referred to as detection time and expected population affected prior to detection as affected 

population for ease of discussion. 

2.2.2 Generating optimal subset of nodes 

The ideal case for complete observation of the WDN is to place sensors at all the nodes in the 

network, but it is not possible due to various constraints. The following best-case scenario is to 

design the sensor placement such that all the contamination events can be detected. But a 

guarantee of 100% detection is inefficient if the time to detect is large or large population gets 

affected before detection. It is necessary to assess the nodes based on swift detection of the 

contamination events. The objectives for improving the detections and detection time (or 

affected population) are competing in nature, thus placing sensors for better detections will 

deteriorate the detection time. 

Consider the simple example network with six nodes in a straight line, as shown in Figure 3a. 

The example is explained for the MOO study of detection likelihood vs detection time but can 

also be easily extended to detection likelihood vs affected population. For placing only one 

sensor in the network, it can be observed that placing a sensor at node 5 can detect all the 

events, but the expected detection time will be maximum for this sensor placement design. 
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Figure 3 Clustering and node selection for an example network a) Example network b) Events detected at each node c) 

Cluster formation based on event detection d) Pollution matrix example 

On the other hand, if the sensor is placed at the tank node, the expected detection time will be 

minimum, as the detection time is estimated based only on the detected events, and only those 

events will be detected that occur at the tank. Due to the competing nature, each objective 

requires different nodes for optimal value but at the cost of the other objective. However, if 

two sensors are to be placed in this simple network, then the first sensor can be dedicated to 

maximizing the detection likelihood (Node 5), and the second sensor that results in minimum 

detection time in combination with Node 5 can be selected. Note that the number of 

combinations for placing two sensors in nodes, 6C2= 15, is reduced to just 5 pairs of Node 5 and 

other nodes. This methodology can be extended to real WDNs by selecting all the nodes that 

improve the detections (predominantly dead-end nodes) followed by selecting nodes based that 

improve the detection time of previously selected nodes. The selection procedure is two phases 

as nodes will be first selected based on event detections followed by detection time or affected 

population. But real WDNs are much more complex in design than the above network in Figure 
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3, and this will lead to loss of important information when these nodes are considered for 

MOSPP. In real WDNs, multiple sources in the form of reservoirs and overhead tanks are 

installed for reliable water supply. The nodes that are connected to two sources might receive 

water from either of the sources. Or in the cases, where the nodes are present in between 

reservoir and overhead tanks, a change in water flow direction is observed whenever the source 

of water supply changes. So, it must be noted that these nodes and the nodes in its downstream 

will only be contaminated by the current source of water supply. These issues of changing 

water flow direction can be overcome by segregating the network into different groups or 

clusters based on the similarity in events detected and selecting the nodes from the group. In 

the following paragraphs, the clustering and greedy selection procedure are further explained. 

2.2.2.1 k-means clustering and node selection  

The nodes of the WDN were segregated into clusters using k-means clustering based on the 

dissimilarity of events detected by the nodes rather than the time-variant contamination 

concentration. In k-means clustering, the data is clustered into ‘k’ groups based on the ‘distance 

metric’ between the ‘k’ centroids and the observation data points (Lloyd, 1982). The difference 

in the detection ability of the nodes is translated into the ‘distance metric’ using the event 

detection matrix (EDM). The EDM is built of 0’s and 1’s, and thus, the ‘Hamming distance 

metric’ was used to estimate the distance between two nodal observations. The Hamming 

distance is calculated based on the XOR operation, and it estimates the number of bits that are 

different in each of the strings. For example, the distance between 101011 and 110011 is given 

by, 

101011  110011  011000;     2Hamming distance    

When this metric is applied to the detection matrix, nodes with similar number of detections at 

the same bit locations (events) will be grouped into one. In other words, this calculates the 
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dissimilarity between the nodes in detecting a given set of contamination events. Also, if neither 

the nodes detect the contamination, it does not affect the distance metric. This clustering 

methodology prioritizes the transportation of contaminant to nodes during contamination events 

over connectivity or closeness of nodes, which is norm considered in previous literature. 

The number of clusters is estimated by performing clustering with a multiple number of clusters 

and then fixing it based on statistical measures (Mandel et al., 2015), or they can be fixed based 

on the number of sensors to be placed (Xu et al., 2008). The former procedure requires multiple 

k-means clustering runs, while in the latter, only one node is chosen per cluster for sensor 

placement. These procedures result in larger computation time and neglect of many potential 

locations, respectively. In this study, a heuristics-based approach is developed by assuming 

that all the nodes in the WDN are selected by choosing ‘k’ nodes from ‘k’ clusters for each 

objective considered for MOO study. For two objectives in MOSPP, this results in the equation  

22k number of nodes          (5) 

Upon rearranging the above, the number of clusters can be calculated as, 

2

number of nodes
k round

 
   

 
        (6) 

The number of clusters was fixed on the Eq.6 and from each cluster the nodes were selected as 

discussed below. 

2.2.2.2 Selection of nodes 

The node selection procedure is two-phased and in each phase, the nodes are selected for each 

of the objectives in MOSPP. In the order of importance, first the nodes are chosen for event 

detection followed by the second competing objective, detection time (Z2) or affected 

population (Z3). The selection procedure relies on the pollution matrices for assessing the 
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importance of the nodes. In the first phase, nodes are selected from each cluster in the clustering 

module. The nodes belonging to each cluster are stored in sets Gi, where i=1,2..k, represents 

cluster ‘i’. From each Gi set, nodes are selected in the order of maximum number of events 

detected (Z1) using the event detection matrix and stored in set NG,i. The node selection for a 

cluster is terminated when no further improvements in Z1 is observed. In the example network 

(Figure 3), Node 2 from cluster 1 will have the maximum Z1 value, and no other nodes in the 

cluster can improve Z1 value. Similarly, only Node 5 from cluster 2 will be selected. Thus for 

a given WDN, NG,i, i = 1,2…k, are generated that comprise the nodes selected from sets Gi, i 

= 1,2,…k,  respectively. The nodes with higher sensitivity to detection likelihood (Z1) is given 

by the union of the sets NG,i, denoted as Pୈ୐ = ∐ Nୋ,୧
୩
୧ୀଵ . 

In the second phase, the nodes are selected based on the improvement observed in detection 

time. The nodes are selected from each set Gi and their union will be defined as nodes with 

higher sensitivity to detection time. Firstly, sets TG,i are defined for each set Gi, and the nodes 

in PDL are added to each of the TG,i sets. Inclusion of set PDL in the set TG,i before selecting 

nodes ensures that all the contamination events are detected, and the selected node will improve 

the overall detection time. The detection times corresponding to the nodes were estimated using 

the time to detect matrix (TDM). Then from each set Gi nodes are appended one by one to set 

TG,i that results in the lowest value Z2. The nodes are appended till no further decrease in the 

detection time is observed or a maximum of ‘k’ nodes are selected. The nodes in a WDN will 

provide the lowest detection time when they are the source of contamination, and a sensor is 

placed at them. However, the trade-off in improving Z2 for each new node selected is very low 

when the number of nodes in set TG,i is large. Thus, to control the number of selected nodes, 

the second terminating criteria mandates choosing of a maximum of only ‘k’ nodes from each 

group. The set of nodes selected based on detection time is given by the union of set TG,i as 

Pୈ୘ = ∐ Tୋ,୧
୩
୧ୀଵ .This is the optimal subset of nodes considered for MOO of Z1 vs Z2. Note that 
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the nodes for improving detection likelihood have already been added to sets TG,i and thus do 

not require to be added separately. During the implementation of the above selection procedure,  

 

Figure 4 Objective based selection of nodes for multi-objective sensor placement study (Z1 vs Z2) 

the nodes that were already part of NG,i, PDL and TG,i were removed from sets Gi to avoid 

repeated computations of already selected nodes. The cluster-wise greedy selection of nodes 

results in choosing nodes with lower detection time (which are generally located in the upstream 

of the cluster) as well as nodes with maximum observability (which are generally located in the 

downstream of the cluster). Thus, the combination of k-means clustering and greedy selection 

results in set of selected nodes that are targeted towards both objectives. In contrast, the previous 

studies only focused on the network connectivity, closeness to other nodes for trimming the 
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network or just maximum observability at the expense of detection time. The flowchart for node 

selection procedure is shown in Figure 4. An example of network clustering and node selection 

procedure is illustrated in Appendix A.2. 

 Multi-objective Optimization (MOO) and Contribution rate indicator 

The pattern search algorithm from MATLAB2020b was implemented to find the Pareto front. 

This algorithm uses a derivative-free methodology by extending direct search methods to 

multi-objective problems (Custódio et al., 2011). In the node selection procedure, the objective 

functions would be evaluated for selecting nodes. Therefore, to provide a fair comparison, the 

number of objective function calls made during the selection procedure is reduced from the 

maximum number of function counts for the proposed method. 

Pareto fronts of the traditional and proposed methods were compared in terms of contribution 

rate (CR) indicator based on hypervolume, developed by (Cao et al., 2015). The Pareto fronts 

(PFi) to be compared are first compiled to generate a surrogate true Pareto Front (PFs). Then 

the contribution from each of the PFi‘s in PFs is estimated using hypervolume. Hypervolume 

measures the size of the space enclosed by all points on the Pareto front and a user-defined 

reference point, and it is indicated as IH(PF,r) for a given Pareto front (PF) and a reference point 

(r). After the evaluation of the reference point estimated based on (Cao et al., 2015), CR 

indicator of Pareto Fronts from each method was calculated. The contribution rate (CR) 

associated with each of the Pareto Front are estimated as:  

 
 

' ,

,
H i

i
H s

I PF r
CR

I PF r
          (7) 

where PFi is the set of non-dominating points of Pareto Front ‘i’ present in the surrogate true 

Pareto PFs, ‘r’ refers to the reference point and ‘IH’ refers to hypervolume. The procedure for 

estimation is explained in Appendix A.3. The value of CRi close to ‘1’ means that PFi is closest 



19 
 

to replicating the Surrogate true Pareto front. Compared to other PFs, a higher CR indicator 

translates into higher hypervolume dominance. 

3 Results and Discussion 

 BWSN Network1  

The contamination event simulations for BWSN Network1 yielded three pollution matrices of 

dimensions 129x6192, as 48 events per node were simulated for each of the 129 nodes. It was 

observed that 622 events remained undetected due to zero flow conditions at the nodes during 

contaminant intrusion. The nodes of BWSN Network1 were clustered into 8 groups based on 

Eq.6 and 21 nodes were selected based on EDM, 51 based on TDM and 48 based on the PAM. 

Most of the dead ends have been selected (except Junction 13 and Junction 36, due to zero 

flow),  ensuring that all the ‘observable events’ will be detected. The 8 clusters with the average 

number of detections are depicted in Figure 5a. The average number of detections for clusters 

ranged from 203.4 (3.6% of observable events) at the network entrance nodes and low flow 

nodes to 2893.0 (51.94% of observable events) at the downstream nodes. The 72 nodes selected 

for detection likelihood vs detection time and 69 nodes selected for detection likelihood vs 

affected population are shown in Figure 5b and Figure 5c, respectively. The first cluster had 

the lowest mean detections and consisted of  Junctions 1, 7, 38, 109, 124, 128, and reservoir 

node (129). Junction 1, 7, 38 and 124 were selected during first phase of selection, leaving 

junctions 109, 128 and 129 as no improvement in detections were observed on appending these 

nodes. 



20 
 

  

  

  

Figure 5 a) Clusters formed for BWSN Network1 b) Nodes selected for Z1 Vs Z2 MOSPP study c) Nodes selected for Z1 vs Z3 

MOSPP study (Please go through the web version of this article for interpretation of the colours given in figure legend) 

a)

b

c) 
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In the second phase of selection, all three nodes improved detection time and were thus added 

to the optimal subset of nodes, whereas only Junction 109 was selected for the affected 

population. It must be noted that all three nodes have zero base demand, but as the algorithm 

chooses at least one node from each group, the node at downstream was selected. Out of 48 

nodes selected in the affected population, 13 had zero base demands. These nodes were selected 

either due to their position between two nodes with non-zero base demands (like Junction 91) 

or due to condition that makes the algorithm select at least one node from each cluster, as 

observed for Junction 109. It can be observed that five nodes in cluster 2 are disjointed from 

cluster 2 and are separated by cluster 6. This is because, though the disjointed nodes are located 

closer to and at the downstream of cluster 6, the events detected by these nodes are more similar 

to the events detected by nodes of cluster 6. This is verified by the average number of events 

detected by the disjointed nodes =1181.8, which is closer to average number of events detected 

of cluster 2 (=1081.02) than cluster 6 (=1796.28).      

The matching rate is defined as the percentage of nodes from BWSN results appearing in the 

pre-selected nodes, and it is provided in Table 2. The sensor locations (nodes) in BWSN 

challenge were given by 14 different research groups using different methods to optimize these 

locations. The efficiency of the proposed method is tested by comparing the optimal subset of 

nodes with the possible sensor nodes provided in BWSN. The matching rate of the BWSN 5 

SPP solution nodes with the optimal subset of nodes (set OSN) was 78.8%  and 75.6% for Z1 

vs Z2 and Z1 vs Z3 study, respectively, while only 26.9% matching rate was observed in the 

controllability analysis method (set CAS), described in (Diao and Rauch, 2013). For BWSN 

20 SPP, 64.71% and 67.06% of the BWSN solution nodes matched with set OSN compared to 

57.4% for set CAS. The lower matching rate of set CAS might be due to excluding the 

cumulative effect of selected nodes in improvising the detection time. Meanwhile, the proposed 

methodology  
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Table 2 Matching rate of selected nodes with BWSN sensor nodes 

MOO Study 

Matching rate % (Diao 

et al) 

Matching rate (This 

study ) Z1 Vs Z2 

Matching rate (This 

study) Z1 Vs Z3 

5 sensors 23.9 78.8 75.76 

20 sensors 57.4 64.71 67.06 

 

weighs the nodes in terms of their individual significance in detecting events and reducing 

detection time or exposed population. The nodes of set OSN and BWSN results are enumerated 

in Appendix A.4. 

The percentage of events detected with respect to mean detection time for set OSN and set 

CAS (Diao and Rauch, 2013) are shown in Figure 6. About 66.16 % of events were detected 

by OSN, while CAS detected only 41.36% within 5 minutes of contamination. Also, the set 

CAS observed a maximum of 94.5% of events while OSN observed 100% of the events. This 

shows that the selected nodes have quicker reaction time to the contamination events than DN 

nodes. For comparison purposes, the sensor solutions from BWSN 5 sensor (set B5) and 

BWSN 20 sensor (set B20) were also plotted (Figure 6). The order of improvement of event 

detection percentage with respect to detection time was B5, CAS, OSN, and finally B20 sets. 

The set OSN was swift in detecting events than the set B5 and set CAS but lagged behind set 

B20. It must be noted that only the combination of nodes from set OSN is required for placing 

the sensor, and thus, multi-objective optimization was carried out to verify the efficiency of 

selected nodes. 
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Figure 6 Percentage of events detected with respect to mean detection time for BWSN Network1 

The parameters for multi-objective optimization study were: number of runs=30, maximum 

function count =50000, bounds = [1 number of nodes], tolerance = 1*10-6, final Pareto Front = 

Compiled non-dominating set of all 30 runs. The ‘paretosearch’ tool of MATLAB2020b that 

incorporates pattern search technique was used for generating Pareto fronts. The legend 

‘Traditional’ refers to the generic method where all the nodes in WDN are deemed as plausible 

sensor locations while the legend ‘Proposed’ refers to the method developed in this study where 

only the optimal subset of nodes (OSN) are considered for placing sensors. Figure 7 represents 

the process to estimate the surrogate true Pareto front for placing 20 sensors for objectives Z1 

and Z2. Figure 7a depicts the complete set of Pareto points obtained from 30 runs of the 

optimization. A clear separation of the Pareto points between traditional and proposed 

procedures was observed, with the latter dominating the former in the range 50% to 90%  
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Figure 7 Generation of surrogate true Pareto front for BWSN Network1 - 20 sensors problem a) Pareto fronts of all 30 runs 

b) Compiled final Pareto c) Surrogate true Pareto front with reference point  

detection likelihood. This effect is reiterated when compiled Pareto points from 30 runs are 

compared in Figure 7b. Based on these Pareto fronts, the surrogate true Pareto front and 

reference point were obtained and depicted in Figure 7c. The Surrogate true Pareto fronts with 

the reference points for 5 and 20 sensors placement for objectives Z1 vs Z2 and Z1 vs Z3 study 

are shown in Figure 8. An overview of Pareto points for Z1 vs Z2 study revealed that the OSN 

performs better than the complete set. Whereas in Z1 vs Z3 study for placing 5 sensors, the 

optimal subset generated fewer Pareto points than traditional method, and most of these Pareto 

points had higher detection likelihood values. This could be due to the exclusion of nodes with 

very low base demand that were not selected, and when these combined with zero demand 

nodes with higher detection ability, it resulted in a low number of people affected at higher Z1 
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value. This trend was again pronounced in 20 sensor results shown in Figure 8d, where all the 

Pareto points at Z1<65% were obtained from the traditional method and at Z1 > 75% were 

from the proposed method. The comparisons of both methods in terms of CR indicator is shown 

in Table 3. The CR indicator of both methods for 5SPP was same in Z1 vs Z2 study, indicating 

that both procedures dominate a significant portion of hypervolume at the same level. Whereas 

in Z1 vs Z3 study, the traditional method was higher by 4.16%. The CR indicator for 20 SPP 

was 190% and 22.7% more than the traditional method in Z1 vs Z2 and Z1 vs Z3 study, 

respectively. This indicated that the optimal subset provided better Pareto points in terms of 

hypervolume dominance. Since the solutions with lower detection likelihood cannot be 

considered for placing sensors, a cut-off criterion was maintained to assess the number of 

Pareto points contributed by both methods. Only those solutions whose Z1 value was more 

than 50% of maximum observed events (50% of max(Z1)) were considered as potential 

solutions. The number of these Pareto points observed for 5 sensors were higher for the 

traditional method, while for 20 sensors proposed method provided a higher number of 

solutions. The time taken for estimating the final Pareto Front using the proposed method for 

5SPP was 25% (by average) less than the traditional method while it was less by only 0.7% 

(by average) for 20SPP. Both traditional and proposed methods generated better Pareto points 

in comparison to BWSN results. Only 4 Pareto points from BWSN were coinciding with Pareto 

Fronts obtained in this study (illustrated in Appendix A.5).  
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Figure 8 Surrogate true Pareto fronts and Reference point for BWSN Network1 a) Z1 vs Z2 5 sensors b) Z1 vs Z2 20 sensors 

c) Z1 vs Z3 5 sensors d) Z1 vs Z3 20 sensors 

Table 3 BWSN Network comparison of the traditional and proposed method 

Parameters 

Detection likelihood Vs Detection Time Detection likelihood Vs Affected Population 

5 Sensors 20 Sensors 5 sensors 20 sensors 

Traditional Proposed Traditional Proposed Traditional Proposed Traditional Proposed 

Number of nodes 129 72 129 72 129 69 129 69 

Contribution rate 

Indicator 
0.99 0.99 0.21 0.60 1 0.96 0.44 0.54 

Pareto points in PFs 

(Z1>50%) 
59 47 3 65 36 14 26 46 

Time taken for Final 

Pareto, sec 
433.10 318.84 5426.26 5415.68 679.49 418.45 6402.20 6324.27 
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 C-town Network 

The pollution matrices for the C-town network had 38016 contamination events for 396 nodes 

yielding a pollution matrix of dimension 396x38016. Three nodes in the network did not detect 

any event and their respective contamination events were undetected due to zero flow. The C-

town network was segregated into 14 groups, and 263 nodes were selected for Z1 vs Z2 study 

and 261 nodes were selected for Z1 vs Z3 study (illustrated in A4.7). The surrogate true Pareto  

 

Figure 9 Surrogate true Pareto fronts and Reference point for C-Town Network a) Z1 vs Z2 5 sensors b) Z1 vs Z2 20 sensors 

c) Z1 vs Z3 5 sensors d) Z1 vs Z3 20 sensors 

front and reference point for CR indicator estimation for C-town network is displayed in Figure 

9. For 5SPP, comparable Pareto points are generated by both the methods for both the MOSPP 

studies. In the case of Z1 vs Z3, the proposed methodology generated better Pareto points for 

higher detection likelihood similar to the results observed for BWSN Network1. But for 20SPP 
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most of the Pareto points in PFs were generated from the proposed method. These observations 

have been reflected in the CR value of the corresponding problem provided in Table 4. The set 

OSN yielded 96.6% and 74.6% of Pareto points in PFs for Z1 vs Z2 and Z1 vs Z3 respectively 

for 20SPP. The time taken for estimating the final Pareto Front using the proposed method for 

Z1 vs Z2 study was 3.85% (by average) less than the traditional method, whereas it was less 

by 9.75% (by average) for Z1 vs Z2 study.   

Table 4 C Town Network comparison of the traditional and proposed method 

Parameters 

Detection likelihood Vs Detection Time Detection likelihood Vs Affected Population 

5 Sensors 20 Sensors 5 sensors 20 sensors 

Traditional Proposed Traditional Proposed Traditional Proposed Traditional Proposed 

Number of nodes 396 263 396 263 396 261 396 261 

Contribution rate 

(CR) Indicator 0.615 0.617 0.543 0.650 0.691 0.697 0.576 0.628 

Pareto points in PFs 

(Z1 > 50% Z1) 77 55 4 117 50 49 36 106 

Time taken for Final 

Pareto, sec 3012.18 3185.59 3799.45 3877.15 3678.44 3167.42 3629.90 3425.35 

 

From the results of both the methods, it was observed that the pre-selection procedure performs 

well when the number of combinations is huge, as in 20SPP ( 129C5 << 129C20 and 396C5 << 

396C20). But the deterioration in performance was only observed for the lower detection 

likelihood solutions, which are generally omitted. 

 Comparison of sensor placement solutions based on detection likelihood cut-off  

The expected time for detection for various percentages of detections is described in Table 5. 

For BWSN 5SPP detection, the maximum Z1 value from traditional method was 84.01% and 

84.78% for traditional method and proposed method, respectively and for 20 sensors it was 
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89.21% and 89.95%. On the other hand, the detection time at the maximum Z1 values were 

lower in proposed method. But in order to provide a viable comparison, Z2 and Z3 are 

compared at values at four fixed values of Z1, starting at a minimum level of detecting 50% of  

Table 5 Comparison of objectives Z2 and Z3 at different Z1 cut-off values 

Detection likelihood 

(Z1) 

Detection Time (Z2) Affected Population (Z3) 

BWSN 5 Sensors BWSN 20 Sensors BWSN 5 Sensors BWSN 20 Sensors 

Traditional Proposed Traditional Proposed Traditional Proposed Traditional Proposed 

50% 281.96 289.23 92.10 91.86 100.61 102.46 27.49 32.08 

60% 406.31 406.31 114.91 111.70 113.1 118.61 33.18 34.03 

70% 515.91 515.91 160.38 149.25 124.97 133.79 37.03 36.88 

80% 737.38 737.38 201.02 197.38 212.07 212.07 50.32 48.80 

 

the events and then increasing in the order of 10%. It was observed that there is no significant 

difference in the traditional and proposed method for 5 SPP, while for 20 SPP the expected 

time of detection reduces by 2.8%, 6.94%  and 1.8% for  60%, 70%, and 80% detections, 

respectively. The affected population metric was higher in the proposed method for 5 sensor 

design while it was lower for 20 sensor design at 60%, 70% and 80% detection likelihood. The 

lowest Z1 value Pareto point for 20SPP was 58% in proposed method and thus at cut-off of 

50%, the affected population has 18% higher value. 

As shown in Figure 10, the sensor locations for 70% detection for Z1 vs Z3 study for 5SPP 

have 3 locations in common, and one node each solution had zero base demand. While 12 

sensor locations were similar for 20 SPP, with 5 and 7 zero demand nodes for traditional and 

proposed solutions, respectively. The sensor locations of 5 SPP are not repeated in 20 SPP, 

which indicates that solutions of a smaller number of sensors cannot be replicated for a larger 

number of sensors, and for each sensor design, optimization is required to estimate the best  
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Figure 10 Sensor node location for 5 and 20 sensors in BWSN Network from Z1 vs Z3 study at Z1 = 70%  

location. Similarly, Z2 and Z3 are compared at Z1 values of 40%, 50%, 60% and 65%. This 

range of  Z1 was fixed owing to the maximum Z1 value of 53% and 71% observed for placing 

5 and 20 sensors. The expected time for detection for both 5 SPP and 20 SPP from the proposed  

Table 6 Comparison of objectives Z2 and Z3 at different Z1 cut-off values for C-town Network 

Detection 

Likelihood 

(Z1) 

Detection Time (Z2) Affected Population (Z3) 

C-town 5 Sensors C-town 20 Sensors C-town 5 Sensors C-town 20 Sensors 

Traditional Proposed Traditional Proposed Traditional Proposed Traditional Proposed 

40% 101.37 101.91 38.40 35.64 187.43 188.71 66.35 64.01 

50% 137.81 137.81 44.68 42.22 342.15 337.30 82.76 82.30 

60% - - 57.00 54.49 - - 113.78 112.86 

65% - - 116.60 102.03 - - 133.57 133.97 
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method is comparable to values observed in the traditional method Table 6. All the objective 

values obtained from the proposed method for objectives Z2 and Z3 (except at Z3 at 50% 

detection likelihood, where it is almost equal) are lower than the traditional method.  

The sensor nodes at 50% detections is displayed in Figure 11, where 3 out 5 sensor locations 

are at the same nodes for 5 sensors (Figure 11a) and in the case of 20 sensors, only 6 nodes are 

common in solutions provided by both methods (Figure 11b). The sensor nodes from the 

proposed method are evenly distributed in the WDN, such that the nodes are placed at the 

farthest ends to obtain maximum detections. The set of nodes obtained from the proposed 

(Figure 11) are also present in the decision space of the traditional method, but due to the 

combinatorial nature of the problem, that particular solution was not obtained in the traditional 

method during the optimization process. The focused optimal sub-space developed in this study 

made it easy for the optimizer to determine a better combination of significant nodes, as 

observed in the results of proposed method.  

 

The repeatability of the pre-selection strategy was tested out by running the selection module 

100 times and estimating the percentage of the nodes from the final non-dominating Pareto 

Figure 11 C town Sensor node location for 5 and 20 sensors for Z1 vs Z3 study at Z1 = 50% 
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Fronts selected in all the 100 runs. On average, 80% of the nodes from Pareto Fronts were 

selected in all the runs, while 90.5% of nodes were selected in at least 85 of runs  (Appendix 

A.7). The average time for finding the optimal subset for BWSN was 3.01 secs and for C-town 

network 156.57 secs.   

4 Conclusion 

This study developed a strategy for the pre-selection of nodes to reduce the decision variable 

space for optimal sensor placement. The network was split into clusters based on a novel 

heuristics-based approach that incorporates the nodal disparity in detecting a set of 

contamination events. The selection procedure was two-phased; first, a set of nodes are selected 

based on their ability to detect events, followed by selecting another set of nodes that 

improvised the detection time or affected population in combination with the previously 

selected nodes. The proposed algorithm was tested on BWSN Network1 and C-town network 

and compared based on the quality of Pareto front produced after MOO to optimize detection 

likelihood and expected time of detection. The search space was successfully reduced by 45% 

and 34% for the BWSN and C-town network, respectively and the Pareto front obtained from 

the optimal subset of nodes was better in terms of CR indicator than the complete set of nodes. 

The time taken for generating the final Pareto Front was better than the traditional method in 6 

of 8 MOO studies carried out in the study. These cases are BWSN Network: 5SPP and 20 SPP 

for both Z1 vs Z2 and Z1 vs Z3 study, and C-town network: 5SPP and 20 SPP for Z1 vs Z3 

study.  

The proposed method is robust and can be applied to any network irrespective of its complexity, 

different design of contamination events, and different objectives with appropriate 

modifications. The only prerequisites required are the pollution matrices corresponding to the 

objectives considered for placing sensors. 
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Further, the selection strategy also guarantees that a major set of significant nodes (i.e., >70%) 

are always selected. Thus, it can be integrated with the decision support system to monitor and 

maintain larger WDN. In future studies, the effect of modification and/or improvisation in 

optimization algorithm specifically to MOSPP by methods like the inclusion of initial guesses, 

tweaking of optimization parameters etc., will be analysed to enhance the quality of Pareto 

fronts. 
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