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Evaluation methodology for disentangled uncertainty
quantification on regression models

Kevin Pasini!, Clement Arlotti!, Milad Leyli—abadil, Marc Nabhan? and Johanna Baro! *
1- IRT SystemX, Paris, France 2- Air Liquide, Les-Loges-en-Josas, France

Abstract. A practical way to enhance the confidence of the predictions made
by Machine Learning (ML) models is to enrich them with trustworthiness add-
ons such as Uncertainty Quantification (UQ). Existing UQ paradigms capture
two intertwined components (epistemic and aleatoric), but few of them evalu-
ate their disentanglement, even less on real data. We thus propose and imple-
ment a methodology to assess the effectiveness of uncertainty disentanglement
despite the absence of ground truth in real datasets. To do so, we use a data
withdrawal-based strategy to simulate Out-of-Distribution (OOD) data and eval-
uate four state-of-the-art UQ approaches.

1 Introduction and related work

Complex industrial systems are now equipped with multiple sensors to process mas-
sive amounts of dynamic data and deploy Al-based monitoring models. However, to
enhance their trustworthiness, these models should be complemented by an uncer-
tainty management framework[2]. In the field of ML-UQ), several paradigms claim to
produce models able to separate and quantify two distinct components contributing
to the total uncertainty [3} (10, |6, 5]. The aleatoric component captures irreducible
variability in a model prediction due to inherent noise in the data, while the epis-
temic component is related to the model relevance when facing an atypical input
and can be reduced by observing more data during the training step [8].

However, disentangled Uncertainty Quantification (dUQ) faces both technical
and methodological difficulties. On real data with noisy and limited observations,
the epistemic and aleatoric components are strongly entangled [8]. Plus, no ground
truth allows the evaluation of the quantification and even less the possibility of the
decomposition. Our contribution thus addresses the methodological challenge of
epistemic model confidence evaluation, in the absence of ground truth in real data.
We will first compare recent works on Uncertainty Quantification (UQ) regression in
Machine Learning (ML), then propose a dUQ evaluation methodology based on a
data withdrawal-based strategy that simulates OOD, aiming to assess the effective-
ness of aleatoric and epistemic uncertainty disentanglement.

Three main UQ paradigms are extensively studied in the literature for deep learn-
ing models: The Bayesian formalism [4] is used to develop probabilistic methods for
UQ (e.g., Monte Carlo Dropout, Monte Carlo Markov chain, ...); The ensemble models
[9] are also widely used due to their simple implementation (namely Deep Ensemble);
Finally, Evidential Deep Learning (EDL) [3] learns a distribution over the parametric
space of model outcomes and collects evidence regarding the model predictions.

*This work has been supported by the French government under the France 2030 program, as part of
the SystemX Technological Research Institute within the Confiance.ai program.



We propose to analyze the state-of-the-art approaches for UQ through different
angles in Table |1} We can observe that few papers suggest UQ decomposition and
most of them are applied on synthetic dataset without comprehensive interpretation
of the results. There is also a lack of cross-comparison among various paradigms. In
this paper, we seek to bridge this gap by providing a comprehensive benchmark of
these UQ paradigms using both real and synthetic datasets.

Table 1: Summary and comparison of UQ approaches

Features Problem support Environment setup
Evaluation
Decomposmon criteria

Dy Drop-out Public / Synthetic | 7y ) pvsy Local Yes (diverse)
) (diverse)
DeepEnsemble Ensemble Public / Synthetic NLL / RMSE Local Yes
(stationary) Brier/Calibration  Qualitative (diverse)
AutoDEUQ Public / Synthetic Yes
Ensemble (stationary) NLL/RMSE )
EDL . . Public / Synthetic Partial Yes
)] 1] (stationary) IR Quantitative (diverse)

Color codes (green: satisfying, orange: partial, red: ignorance)

Methods UQ paradigm | Prior Regression Interpretation  Baselines

Classnﬁcauon Dataset ‘

UQ Papers

2 Disentangled Uncertainty Quantification framework

To enable the cross-comparison and benchmarking of state-of-the-art approaches,
we manipulate a UQ decomposition formalism to obtain a unified set of indica-
tors. Next, a set of experiments based on statistical tests are designed to evaluate
the model epistemic confidence (see Figure[I). In the following, we first introduce
the context and notations and describe these components in more detail.
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Fig. 1: Disentangled UQ framework and the experimental setup

Context and notations A dataset D (real-world or synthetic) in a supervised
learning domain is composed of pairs {(x;, ¥;)};c1.n representing the input features
and outputs. In this work, we focus on the regression task; therefore, the output
variable y is continuous. The input vector x; includes contextual variables, latent
variables h; and past timestamps of target variables in the case of time series data.
The partitions of the dataset into various samples are noted as D = {S1, S2,...,S;}
with (n < N). We assume that the data is generated by a function y; = f(x;) +¢;
with: &; ~ A4(0,0;(x;,h;)) being a Gaussian noise not explained by the model
and associated to irreducible variability. The objective of a ML model f (x) is to ap-
proximate the true function f(x) by minimizing the mean squared error (y; — f (x))?.



UQ decomposition formalism According to a common view in the ML-UQ com-
munity [10}/5], dUQ approaches are often composed of two parts. An explicit or im-
plicit family of submodels (approached via an ensemble of submodels), each one
providing a prediction and an aleatoric estimation. A metamodel synthesizing these
outputs and producing an epistemic confidence level based on the variability of
prediction in the family. The metamodel, denoted .#, learns and manipulates di-
verse submodels f, to combine their inferences. The learning phase aims to cap-
ture the explainable variability (true function f) and estimate irreducible variability
by exploring a diversity of submodel candidates. To ensure diversity and avoid re-
dundancy, a variability infusion mechanism (denoted ¢ and depending on the UQ
paradigm) is needed during the learning phase (e.g., MC-dropout). According to the
bias-variance trade-off, we can decompose the metamodel expected error:

Eg | = foi)?| = Ey [(vi = Fxi)? |+ Bg [ fotx) — x| + Eg [ (Bg [fo Inetx)] - foxn)]
_ ———
Intrinsic variability

Bias Variance

Intrinsic variability correspond to the gap between the deterministic true func-
tion f(x;) and the real observation y; due to randomness. It is pure aleatoric that
cannot be caught with any model. The bias term corresponds to the average gap be-
tween submodels and the true function f at the value x;. It acts as irreducible vari-
ability that can’t be handled by our modeling (due to constraints and bad assump-
tions) and so, is assimilated to aleatoric too. Then the variance term corresponds to
the dispersion of submodels prediction. It can be assimilated to epistemic variability
due to lack of observations and could be reduced in our modeling scope by gather-
ing more data. Finally, the metamodel provides a regression with dUQ based on the
average of the predictions j; 9 and the aleatoric estimations 6¢, of submodels, plus

i,0
an epistemic indicator ¢ estimated from the dispersion of submodels predictions.

Experiment and evaluation In this section, we propose a set of experiments to
evaluate the model epistemic confidence, despite the absence of ground truth by
using a training data withdrawal strategy that simulate OOD data. They aim at high-
lighting epistemic confidence gaps between models prediction on nominal and OOD
data. This strategy consists in ablating partially or totally a selected subset of data
(called the altered subset) from the training set (see Figure . Two instances of the
metamodel are trained on nominal (X,,) and altered (X,) datasets (called control .# ¢
and degraded .#“ metamodels respectively). The epistemic confidence gap is quan-
tified by comparing the predictions of these instances on test sets corresponding to
nominal and altered queries and through statistical hypothesis tests. We used the
negative epistemic ratio under total log-likelihood (I¢ = —In(1 + g—Z) called disentan-
gled Epistemic indicator (dE-Ind)) which act as a relative epistemic indicator.

Our statistical framework compares dE-ind distribution using Wilcoxon-Mann-
Whitney and Wilcoxon signed rank tests (denoted T1 and T2), with the null hypoth-
esis Hy that the distribution of dE-Ind computed on nominal and altered sets are
identical. The alternative hypothesis H; is that the distribution of dE-Ind over al-
tered data dominates the distribution computed on the nominal dataset.



3 Experimental settings and results

The benchmark compare four UQ paradigms on univariate time series: Random For-
est disentangled Uncertainty Quantification (RF-dUQ)[1l, Probabilistic Neural Net-
work Monte Carlo Dropout (PNN-MCDP) [7], Probabilistic Neural Network Deep En-
semble (PNN-DE)[9] and Evidential Deep Learning regression (EDL)[3].

The experiments are performed on both real and synthetic datasets. The real
dataset corresponds to weekly demand of industrial gas deliveries (continuous target
variable) issued from 29 time series collected across different areas during 7 years
(29 x7x53 weekly observations). It comprises 29 features including context, calendar
and history of gas demand. We can split the time series into 3 levels of variability due
to their heterogeneity and heteroscedasticity. The synthetic dataset corresponds to
times series of 16000 observations and 16 features. The data are generated following
alocal time-dependent Gaussian distribution including white noise.

UQ-regression performance with data-alteration: We evaluate our four approaches
on a nominal setup (without training data removal) to ensure comparable accuracy
and calibrated variance. We use root mean squared errors (RMSE) and negative log-
likelihood (NLL) metrics to assess respectively regression, and regression under un-
certainty performances. We consider Sharpness and Coverage (i.e. size and % of data
in the confidence interval respectively) to evaluate UQ-relevance. Table [2[summa-
rizes the results between mentioned models and a simple Multi-Layer perceptron
(MLP) model without UQ. Each approach obtains a coverage close to the theoretical
one, although PNN-DE yields narrower confidence intervals for similar coverage.

Table 2: Test set performance of nominal setup using our two forecasting datasets.

Approach MLP RF-dUQ PNN-MCD PNN-DE EDL RF-dUQ PNN-MCD PNN-DE EDL
Dataset RMSE metrics (lower is better) NLL metrics (lower is better)
real 0.22:002  0.23x0.02 0.22x02 0.22:002 0.22x0.01 | -0.51:006  -0.55x008  -0.57:007 -0.55:0.08
synthetic | 0.43:001  0.43:0.01 0.44+0.01 0.43:001  0.44:001 | 0.43:001 0.46+0.01 0.40:002  0.44:00
Dataset Sharpness*(lower is better) Coverage (Target: 95.65%)
real o* 0.82+0.01 0.81+0.02 0.73+0.01  0.75:0.02 94.9: 038 94.9:13 95.1+1.4 944417
synthetic @* 1.78+0.01 1.86+0.05 1.56:+0.03 1.80:003 | 96.7x0. 96.3x0.1 95.0=0.01 96.5:0.2

*NLL, Coverage and sharpness is meaningless for the MLP model.

Detailed d-UQ evaluation on real dataset: The real dataset is composed of three
subsets with different variability levels: low, mid (the altered one here) and high.
Fig. 2| presents the detailed results for the experiment that withdraws 98% of training
data of the mid-var subset. For each approach, performances of the control and de-
graded models (denoted by c and d respectively) are shown for each subset. By com-
paring control vs degraded models, we observe close performances for all metrics on
nominal subsets. On the contrary, for the altered subset, the training data withdrawal
leads to an increasing RMSE (arrows 1) but no significant change for aleatoric sharp-
ness. Moreover, all approaches (except EDL) display significant increase in their dE-
Indicators. Such loss of epistemic confidence combined with unchanged aleatoric
metric (A-sharpness) on the altered subset (that simulates OOD data) suggests an ef-
fective uncertainty disentanglement. Conversely, the EDL approach does not display
any significant increase, suggesting dUQ ineffectiveness in this setup.
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Fig. 2: Subset performances for one experimental setup on real data. Control and
degraded models are denoted by c and d.

Figure[3]shows the RF-UQ predictions with total UQ (blue uncertainty envelopes)
and epistemic indicators (point coloration based on indicators). We easily observe
that the model shows a lack of confidence when predicting values belonging to the
altered context (acting as out-of-distribution data).
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Fig. 3: RF-UQ prediction with dUQ indicators from mid-var altered setup

D-UQ evaluation synthesis: To ensure experimental robustness, 8 variants of the
experiments (with 4 cross-validations) were performed on real and synthetic data.
Using the statistical framework based on dE-Ind distribution shifts, the goal is to
determine if the training data withdrawal affects the epistemic component and if
this impact is greater than on the aleatoric component. The statistical framework is
based on two tests (T'1 & T2). If an approach passes both of them, we can claim that
a lack of confidence is expressed by the epistemic component on the altered subset
samples. Figure[d]displays test results for all experiments.

PNN-DE and PNN-MCDP show successful results in almost all configurations for
both real and synthetic datasets. RF-dUQ fails on the high-var setup. EDL fails in al-
most all configurations, illustrating that dUQ is not effective here, either due to the
intrinsic behavior of the approach or to parameterization issues in spite of hyper-
parameter optimization. The perturbation of the low-variability subset (low-var-98
and low-var-100, indicating 98% and 100% data widthdrawal respectively) leads to
small test scores for all approaches, suggesting difficulties to express low confidence
in small variability data, even with few observations. We also note that withdrawal



percentage does not have a significant impact on dUQ effectiveness. A potential ex-
planation is that neighboring samples belonging to non-removed subsets still retain
part of the supporting information for prediction.

Real dataset Synthetic dataset

Low-var Sub-context

RF-UQ

PNN-MCDP

PNN-DE

EDL

Coloration legend: [ ]:Success(s>4c) [ |: Minor failure (0o > s > 4c) I : Major Failure ( s < 0c)

Fig. 4: Results of the statistical tests T'1 and T2 for all experiments.

4 Conclusion and perspectives

We proposed an UQ-decomposition formalism alongside an evaluation methodol-
ogy. Our formalism was based on a metamodel concept, taking a model as input
and providing disentangled UQ indicators as its output. To assess the epistemic
confidence in the absence of ground truth, the evaluation methodology was based
on training data withdrawal. Experiments performed using four models and a real
and a synthetic dataset demonstrated the dUQ relevance and effectiveness on het-
erogeneous data. Some models (RE MCDP, DE) show relevant local aleatoric and
epistemic indicators, while others (EDL) show limitations for epistemic estimation.
As perspectives, we plan to considerate new data alteration techniques, to tackling
more complex temporal data with specific NN architecture in order to perform real-
time anomaly detection with UQ.

References

[1

Shakeret al. Aleatoric and epistemic uncertainty with random forests. In International Symposium
on Intelligent Data Analysis, 2020.

2

Abdar et al. A review of uncertainty quantification in deep learning: Techniques, applications and
challenges. Information Fusion, 2021.

[3
[4
5

Amini et al. Deep evidential regression. NeurIPS, 2020.
Blundell et al. Weight uncertainty in neural network. In ICML, 2015.

Depeweg et al. Decomposition of uncertainty in bayesian deep learning for efficient and risk-
sensitive learning. In ICML, 2018.

[6
7

Egele et al. Autodeuq: Automated deep ensemble with uncertainty quantification. In ICPR, 2022.

Gal et al. Dropout as a bayesian approximation: Representing model uncertainty in deep learning.
In ICML, 2016.

[8] Hiillermeier et al. Aleatoric and epistemic uncertainty in machine learning: An introduction to con-
cepts and methods. Machine Learning, 2021.

[9] Lakshminarayanan et AL. Simple and scalable predictive uncertainty estimation using deep ensem-
bles. NeurIPS, 30, 2017.

[10] Liu et al. Accurate uncertainty estimation and decomposition in ensemble learning. NeurIPS, 2019.



	Introduction and related work
	Disentangled Uncertainty Quantification framework
	Experimental settings and results
	Conclusion and perspectives

