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DIRICHLET PROBLEM ON PERTURBED CONICAL DOMAINS VIA
CONVERGING GENERALIZED POWER SERIES

MARTIN COSTABEL, MATTEO DALLA RIVA, MONIQUE DAUGE, AND PAOLO MUSOLINO

ABSTRACT. We consider the Poisson equation with homogeneous Dirichlet conditions in a
family of domains in Rn indexed by a small parameter ε. The domains depend on ε only
within a ball of radius proportional to ε and, as ε tends to zero, they converge in a self-similar
way to a domain with a conical boundary singularity. We construct an expansion of the solu-
tion as a series of fractional powers of ε, and prove that it is not just an asymptotic expansion
as ε → 0, but that, for small values of ε, it converges normally in the Sobolev space H1.
The phenomenon that solutions to boundary value problems on singularly perturbed do-
mains may have convergent expansions is the subject of the Functional Analytic Approach
by Lanza de Cristoforis and his collaborators. This approach was originally adopted to study
small holes shrinking to interior points of a smooth domain and heavily relies on integral rep-
resentations obtained through layer potentials. To relax all regularity assumptions, we forgo
boundary layer potentials and instead exploit expansions in terms of eigenfunctions of the
Laplace-Beltrami operator on the intersection of the cone with the unit sphere. Our anal-
ysis is based on a two-scale cross-cutoff ansatz for the solution. Specifically, we write the
solution as a sum of a function in the slow variable multiplied by a cutoff function depend-
ing on the fast variable, plus a function in the fast variable multiplied by a cutoff function
depending on the slow variable. While the cutoffs are considered fixed, the two unknown
functions are solutions to a 2 × 2 system of partial differential equations that depend on ε
in a way that can be analyzed in the framework of generalized power series when the right-
hand side of the Poisson equation vanishes in a neighborhood of the perturbation. In this
paper, we concentrate on this case. The treatment of more general right-hand sides requires
a supplementary layer in the analysis and is postponed to a forthcoming paper.
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1. INTRODUCTION

1.1. Aim. Consider a bounded domain Ω in Rn that coincides near the origin with a cone Γ.
Assume that ε is a small positive parameter and that the domain is perturbed in a neighbor-
hood of size ε near the vertex of the cone. The perturbed domain is thought of as a member
of a family of domains Ωε, where, as ε→ 0, the perturbation shrinks to the vertex point in a
self-similar way. The goal is to compare the solution uε of a boundary value problem (BVP)
on Ωε with the solution u on the unperturbed domain Ω.

This type of singular perturbation problem is typically addressed with methods of asymp-
totic analysis, as shown in the books by Maz’ya, Nazarov, and Plamenevskij [32, 33] (see
especially [32, Chapter 4]). In particular, there is a vast literature on problems where a small
perturbation is located in the interior of a domain, a situation which corresponds, in our
setting, to the case where the cone Γ coincides with the whole space. For such problems,
there exists a variety of methods that yield asymptotic expansions, mostly stemming from
the method of Matched Asymptotic Expansions [21] and its variants.

Lanza de Cristoforis [27] observed that for these interior perturbations, the dependence
of uε on ε can often be described by an analytic function defined in a neighborhood of
ε = 0. Thus, not only by asymptotic approximations but by convergent power series of ε.
To prove this, he first represented the solution using layer potentials supported on boundary
components associated with different scales and then transformed the singularly perturbed
BVP into a system of equations for which the limit as ε → 0 corresponds to a regular
perturbation. These few lines synthesize the core idea of the method he called the “Func-
tional Analytic Approach” (FAA), which has since been generalized in many directions,
as overviewed in [11]. In particular, in our previous paper [6], the FAA was applied to a
problem in a perturbed two-dimensional corner domain. By using a conformal mapping, we
reduced the problem to one in a domain with interior holes, which was then analyzed using
the standard toolkit of the FAA.

In the present paper, we introduce a generalization of the FAA that overcomes several
of the drawbacks found in [6]. Specifically, we do not use conformal mappings, making
our new method applicable in any dimension n ≥ 2 (and not just for n = 2), and we do
not use boundary integral representations, which allows us to greatly reduce the regularity
requirements for the domains and the perturbations. Instead, we exploit expansions on a
basis of homogeneous harmonic functions in the cone that are related to the eigenfunctions
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of Laplace-Beltrami operator of the cone’s base (its intersection with the unit sphere). As a
result, we don’t need any regularity assumptions on the base of the cone or the perturbations,
and we can analyze a large variety of perturbations, such as cracks, several cones touching
at their tips, holes tangent to the boundary, and “the rounding of the corner,” which is the
approximation of the corner domain by smooth domains. Many of these were excluded in
[6]. The rounding of the corner, for example, could not be treated because it led to non-
Lipschitz boundary components. The price to pay for this broader generality is that, for
now, we only consider homogeneous Dirichlet boundary conditions, the Laplace operator,
and right-hand sides that vanish in a neighborhood of the tip of the cone.

Depending on the specific problem under consideration, the application of the FAA yields
different analyticity properties of the solution. In simpler cases, the solution depends ana-
lytically on ε, whereas in more complex scenarios, a richer analytic structure is required,
involving multiple scales which can include fractional powers of ε or even 1/ log ε, ε log ε,
and so on.

For the problem analyzed in this paper, particularly when n ≥ 3, we encounter a situation
where an infinite number of scales with fractional powers are necessary. These powers
correspond to the eigenvalues of the Laplace-Beltrami operator on the base of the cone. The
solutions uε are then expressed in terms of convergent generalized power series of ε. This is
a new level of generality compared to previous works. The underlying algebraic framework
is based on the theory of generalized power series developed by Hahn and others [18], which
we will recall and adapt to our purposes.

1.2. State of the art. Understanding how the solution of a BVP depends on perturbations
of the domain finds applications in various theoretical and practical scenarios. For instance,
it is relevant in the study of inverse problems (e.g., Ammari and Kang [2]), topological op-
timization (e.g., Novotny and Sokołowski [37]), and composite materials (e.g., Movchan,
Movchan, and Poulton [35]). One common setting is that of singular perturbations, where
a problem is defined on a regular domain, but as a positive parameter ε tends to zero, some
regularity is lost or the topology changes. Examples include domains with shrinking holes or
rounded corners becoming sharp (the “rounding of a corner” mentioned above). The prevail-
ing approach in the literature is that of asymptotic analysis, which employs techniques like
Matched Asymptotic Expansions (as in Il’in [20, 21]) or Multiscale Approximation Meth-
ods (like the Compound Approximation Method of Maz’ya, Nazarov, and Plamenevskij
[32, 33] and Kozlov, Maz’ya, and Movchan [24]). In both cases, an iterative algorithm is
used to obtain asymptotic approximations of the solution as ε tends to zero. The results are
usually presented as a finite sum of functions of ε plus a remainder that tends to zero as
ε → 0. The vanishing order of the remainder is known and increases when more terms are
considered in the expansion. However, there is, at least in general, little information about
the size of the remainders for a fixed positive value of ε. We may not even know if, for ϵ
fixed, the remainders converge to a limit when the number of terms goes to infinity. As a
consequence, we cannot usually claim the convergence of the expansion for small positive
values of ε. For many classical singular perturbation problems, where not the domain but
the coefficients of the differential operator depend on ε, the series do indeed not converge
(see [38] for examples).

The FAA developed by Lanza de Cristoforis addresses the convergence issue by showing
that solutions to perturbed BVPs can often be expressed in terms of analytic functions of
the perturbation parameter ε. In these situations, the asymptotic expansions are, in fact,
convergent power series.
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So far, the strategy of the FAA consists in reducing the problem to the boundary using
integral equations. This leads to functional equations of the form

(1.1) M[ε](U) = F ,

where M is a map defined on a (possibly one-sided) neighborhood of ε = 0 with values in
a suitable space of operators and such that M[0] is the limit of M[ε] as ε→ 0 and is invert-
ible. The solution U of this system typically consists of several components associated with
geometric objects of different scales (connected components of the boundary in the integral
equation method) that can be brought to fixed sizes by rescaling. As ε → 0, the different
scales become uncoupled, and then M[0] corresponds to the simultaneous solution of sev-
eral possibly independent problems, one of which is the original boundary value problem on
the unperturbed domain. In the case of a perturbation by small holes of size ε, the additional
problem is formulated on the “perturbation pattern” P, the unbounded exterior of the small
holes rescaled to size one. This extension of the space of solutions is the mechanism that
allows the embedding of the original singular perturbation problem in a regular perturbation
problem.

The dependence of the BVP solution on ε can be recovered from the dependence of U on
ε. In the ideal scenario, M is analytic in ε and, in particular, it can be written as a power
series of ε that converges for ε close to 0. Since the inverse of a convergent power series is
still a convergent power series, we can then deduce from (1.1) an analyticity result for U .

In other applications, we do not have analyticity on ε, but still, we might represent the so-
lution for ε in a one-sided neighborhood [0, ε0) of 0 in terms of analytic functions of several
variables evaluated at a vector whose entries are given by certain elementary functions of
ε. The presence of analytic functions of several variables arises in various works, for exam-
ple in [28], where the two-dimensional Dirichlet problem forces the introduction of a scale
of 1/ log ε alongside ε, or in [12, 13], where boundary value problems in a domain with
moderately close holes are studied and the size of the holes and their distance are defined
by small parameters that may be of different size. Similar results are obtained for holes
approaching the outer boundary of a domain, as [3, 4] in collaboration with Bonnaillie-Noël
and Dambrine.

From the beginning, potential theoretic methods play a crucial role in the application
of the FAA. The initial papers employing the FAA were dedicated to studying the Riemann
map in planar perforated domains (cf. [27]). These works explored both singular and regular
perturbations by analyzing specific properties of Cauchy and Cauchy-like integral operators.
Subsequently, a similar analysis was extended to harmonic layer potentials (see Lanza de
Cristoforis and Rossi [29]), enabling the study of perturbation problems for the Laplace
and Poisson equations. For instance, in [28], Lanza de Cristoforis considered a Dirichlet
problem for the Laplace equation in a domain with a small hole.

Over time, the FAA has been utilized to handle various boundary conditions and differ-
ent differential operators, all within the established framework of standard potential theory.
Noteworthy extensions include applications to the Lamé equations [10], Stokes flow [9],
and the Helmholtz equation [1].

Nowadays, the FAA is no longer the only method to obtain analyticity results of this kind.
Other approaches have been proposed, still relying on potential theory and properties of re-
lated integral operators. For instance, Henrı́quez and Schwab [19] use complex analysis
methods to prove the “shape holomorphy” of certain integral operators, leading to a (com-
plex) analyticity result for the solution of a BVP in a regularly perturbed two-dimensional
domain. Additionally, Feppon and Ammari [17] address the Dirichlet problem in a domain
with a small hole using an approach comparable to the FAA, but with a specific focus on
computational efficiency.
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However, in some cases, one may not expect analytic dependence on the perturbation
parameter ε, or even joint analytic dependence on ε and elementary functions of ε. One ex-
ample is presented in our previous paper [6]. In [6], we applied the FAA to study a Dirichlet
problem in a polygonal domain in the plane with holes that shrink to a corner point in a
self-similar manner. There the “natural” scale is a fractional power of ε whose exponent
depends on the opening angle of the corner. When the right-hand side in the Poisson equa-
tion is not vanishing in a neighborhood of the corner, a phenomenon of small denominators
appears: The integer powers of ε coming from the Taylor expansion of the right-hand side
may enter into resonance with (multiples of) the natural scale. In this case, the convergence
of the expansion of the solution can only be guaranteed by regrouping certain terms into
packets of functions that scale according to different homogeneities and are themselves not
homogeneous. The expansion does then not correspond to an analytic function of several
variables applied to different powers of ε. In domains perturbed near higher-dimensional
conical points, which is the subject of the present paper, the same difficulty appears with
higher complexity, and therefore we avoid it for the time being, by assuming that the right-
hand side is zero in a neighborhood of the tip of the cone. The analysis of the case of a
general (analytic) right-hand side will be postponed to a forthcoming paper.

In the present paper, we will introduce an ansatz on the form of the solution uε on the
perturbed domain. Specifically, we will use a two-scale “cross-cutoff” representation:

(1.2) uε(x) = Φ
(x
ε

)
u[ε](x) + φ(x)U[ε]

(x
ε

)
,

where φ and Φ are cutoff functions that are 1 and 0, respectively, near the origin and 0 and 1,
respectively, near infinity. A similar ansatz was used by Maz’ya, Nazarov, and Plamenevskij
in [32, Chap. 4] in the context of corner perturbations (very similar to the one in this paper),
but for the application of asymptotic approximation methods. This approach was also em-
ployed in [5] with Caloz and Vial, and in [16] with Tordeaux and Vial. However, these
papers did not address the convergence of the expansions.

We present now a more detailed outline of this novel way to generalize the FAA and of
the results thus obtained.

1.3. Storyline of the paper. We consider the Dirichlet problem for the Poisson equation
in an ε-dependent bounded domain Ωε in Rn. The family {Ωε}ε represents a “self-similar
perturbation” of a limiting domain Ω near its conical singularity at the origin 0. Specifically,
Ω coincides with a cone Γ near 0, and the perturbation is defined by the scaled version εP of
an unbounded perturbation pattern P. The three elements {Ω,Γ,P} (referred to as the “gen-
erating triple,” see Section 2) completely determine Ωε through the following conditions:

(i) Outside a ball B of radius r0 centered at the origin, Ωε coincides with Ω;
(ii) Inside a ball Bε of radius εR0 and centered at the origin, Ωε coincides with the

scaled pattern εP;
(iii) In the annular transition region between the concentric balls B and Bε, the domains

Γ, Ωε, Ω, and εP all coincide.
Besides this, our sole geometric assumption is the invertibility of the Dirichlet Laplace-
Beltrami operator Ldir

Γ̂
on the spherical cap Γ̂ := Γ ∩ Sn−1 of the cone Γ. In other words

the first eigenvalue µ1 of Ldir
Γ̂

is positive.

Beside this assumption, which means that the Dirichlet conditions on Γ̂ do not degenerate
due to a complement set of null capacity, we do not need to impose any regularity conditions
on the domain Ω or the cone Γ.

In Figure 1 we show an example of the rounding of a corner. The perturbation pattern P is
infinitely smooth, Ωε is also smooth, but Ω has a sharp corner. This scenario is well-known
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and notoriously hard to analyze. Due to certain technical restrictions, we had to exclude it
from our paper [6]; however, it fits well into the framework of the present paper.

FIGURE 1. Rounded corner: (a) Domain Ω, (b) Ωε (for ε = 0.2), (c) Pattern P

r0

(a)

r0 εR0

(b)

R0

(c)

Given a function f ∈ L2(Rn) that is zero in a neighborhood of the origin, we consider
for each ε the solution uε of the Dirichlet problem

(1.3)

{
uε ∈ H1

0 (Ωε) ,

∆uε = f
∣∣
Ωε

in Ωε .

Our goal is to describe the map ε 7→ uε, for ε close to 0, in terms of convergent series
expansions in powers of ε.

The two scales of the problem are the natural (slow) variable x and the scaled (rapid)
variable X := x/ε. For the transfer between these two scales, instead of traces, we use
cutoff functions x 7→ φ(x) (which is identically 1 for |x| small enough) and X 7→ Φ(X)
(which is identically 1 for |X| large enough).

We then introduce the ansatz (1.2) for the form of the solution uε. The corresponding
functions u[ε] and U[ε] are considered as independent unknowns, whereas the cutoffs φ and
Φ are fixed once and for all. By inserting the ansatz (1.2) into problem (1.3) we construct a
block 2× 2 operator matrix

(1.4) M[ε] :=

(
MΩ,Ω MΩ,P[ε]

MP,Ω[ε] MP,P

)
where the diagonal terms MΩ,Ω and MP,P are invertible operators in suitable function
spaces on Ω and P, respectively, and are independent of ε. The anti-diagonal blocks are
the transfer operators.

This matrix is directly connected to problem (1.3) in the sense that, if we find solutions
u = u[ε] and U = U[ε] for ε > 0 to the system

(1.5) M[ε]

(
u

U

)
=

(
f
∣∣
Ω

0

)
,

then the solution uε of the boundary value problem (1.3) is given by the cross-cutoff formula
(1.2) (see Theorem 3.3).

At this point, it remains to prove that M[ε] is invertible and to determine the structure of
its inverse.
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To proceed, the first ingredient is a careful analysis of the transfer operators MΩ,P[ε] and
MP,Ω[ε]. Using a basis of homogeneous harmonic functions related to the eigenfunctions of
the Laplace-Beltrami operator Ldir

Γ̂
, we derive the following expansions in operator series,

along with estimates for their terms:

MP,Ω[ε] =
∑
j≥1

ελ
+
j Cj with ∥Cj∥ ≤ Aρλ

+
j ,(1.6a)

MΩ,P[ε] =
∑
j≥1

ε−λ−
j Bj with ∥Bj∥ ≤ Aρ−λ−

j ,(1.6b)

for some constants A and ρ > 0 (cf. Theorem 4.11). Here the numbers λ±j are related to the
eigenvalues µj of Ldir

Γ̂
by the formula

(1.7) λ±j := 1− n

2
±
√(

1− n

2

)2
+ µj ,

which is well-known in the analysis of corner problems. The λ+j are the primal singular
exponents, and the λ−j are the dual ones. As we assume that the first eigenvalue µ1 is
positive, we have ±λ±j > 0 for all j. The set of numbers ±λ±j is denoted by E (the exponent
set). The set E generates the monoid E∞ given as

(1.8) E∞ := {e = e1 + · · ·+ ek, e1, . . . , ek ∈ E ∪ {0}, k ∈ N∗}.
Just like E, the set E∞ is discrete with a smallest positive element. In the two-dimensional
example of a plane sector Γ of opening ω, the set E coincides with the semigroup of positive
integer multiples of π

ω
and E∞ = E ∪ {0}. In dimension n ≥ 3, E∞ may still coincide with

N as is the case when Γ is a half-space, and there are simple examples where E∞ has two
distinct generators, see Example 5.4. But for the general case we have to face the situation
where E∞ may have an arbitrary number of generators.

Based upon the expansions (1.6a) and (1.6b), the second ingredient is the interpretation
of M[ε] as a generalized power series associated with the set of exponents E. Specifically,
we write

(1.9)

(
M−1

Ω,Ω 0

0 M−1
P,P

)
M[ε] = I+

∑
e∈E

Ae ε
e := I+ A[ε].

As E is discrete with a positive smallest element, the series I+A[ε] is invertible in the space
of formal series with exponent set E∞ and its inverse is given by a formal Neumann series,
see Theorem B.6:

(1.10) (I+ A[ε])−1 = I+
∞∑
k=1

(−A[ε])k = I +
∑

e∈E∞\{0}

Be ε
e.

Moreover, the estimates in (1.6a) and (1.6b), along with Weyl’s law for the eigenvalues of
the Laplace-Beltrami operator, imply that M[ε] is a normally convergent generalized power
series with exponent set E∞ (cf. Theorem 5.2). Namely, there exists ε⋆ > 0 such that, in a
suitable operator norm, we have

(1.11)
∑

e∈E∞\{0}

∥Be∥ εe <∞ for 0 ≤ ε < ε⋆.

This implies that we can solve equation (1.5) for all ε ∈ (0, ε⋆) and find expansions of u[ε]
and U[ε] as convergent generalized power series with exponent set E∞:

(1.12) u[ε] =
∑
e∈E∞

εe ue and U[ε] =
∑
e∈E∞

εe Ue,
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with
∑

e∈E∞∥ue∥ εe < ∞ and
∑

e∈E∞∥Ue∥ εe < ∞ in energy norms. Then we obtain a
convergent multi-scale representation of the solution uε:

(1.13) uε(x) = Φ
(x
ε

) ∑
e∈E∞

εe ue(x) + φ(x)
∑
e∈E∞

εe Ue

(x
ε

)
, ∀x ∈ Ωε.

Though simple and efficient, this representation is not intrinsic, as it depends on the choice
of the cutoff functions. Nevertheless, it allows for finding convergent inner and outer expan-
sions for uε, which are intrinsic.

The traditional notion of inner expansion refers to an expansion in rapid variables inside
a near-field region, also known as microscopical expansion. In our case, such an expansion
takes the form of a converging linear combination of canonical profile functions:

(1.14) uε(εX) =
∑
j≥1

∑
e∈E∞

cj,e ε
e+λ+

j K+
j (X) .

Here, the cj,e are scalar coefficients, and the K+
j are harmonic functions on the perturbation

pattern P, satisfying zero Dirichlet conditions and the condition at infinity:

(1.15) K+
j (X) → |X|λ

+
j ψj

(
X
|X|

)
=: h+j (X) as |X| → ∞ ,

where ψj is an eigenfunction of the Laplace-Beltrami operator Ldir
Γ̂

associated with the
eigenvalue µj , cf. (1.7). The functions h+j are the singular functions of the Dirichlet problem
on the limiting domain Ω, as known from the seminal theory of Kondrat’ev [23]. The func-
tion K+

j can be represented as the difference of Φh+j and a correcting function Y +
j living in

a variational space on P:

(1.16) K+
j (X) = Φ(X)h+j (X)− Y +

j (X), X ∈ P.

We learn from a recent paper [22, eq. (6)] that such an expression can be extended to the
framework of stochastic homogenization in sectors.

The sum (1.14) converges for X in P inside a ball of radius ≃ ε−1. We can rewrite it in
terms of the slow variable, obtaining a sum in Ωε converging inside a fixed ball of radius
independent of ε, see Theorem 6.10.

The outer (macroscopical) expansion of uε has the form:

(1.17) uε(x) = u0(x) +
∑
j≥1

∑
e∈E∞

Bj,e ε
e−λ−

j K−
j (x)

and converges for x outside some ball of radius ≃ ε (whereas traditionally x is expected
to lie outside some ball of radius ≃ 1, see Theorem 6.14). Here, u0 is the solution of the
limiting Dirichlet problem (1.3), the Bj,e are scalar coefficients, and the functions K−

j are
non-variational solutions of the Dirichlet problem on the limiting domain Ω, for which we
have:

(1.18) K−
j (x) = φ(x)h−j (x)− Y −

j (x), x ∈ Ω,

where the h−j are the dual singular functions (homogeneous of degree λ−j ) and the Y −
j are

corrector functions belonging to the variational space H1
0 (Ω). Note that such objects are

widely used for determining coefficients of singularities, see e.g. [34], [15].
A striking feature of the expansions (1.14) (written in slow variables) and (1.17) is their

convergence in a common transitional region, which forms an annulus with radii ≃ ε and
≃ 1. This convergence in a common region allows for the identification of certain com-
binations of coefficients, which coincide with those utilized in the Matched Asymptotics
method, as discussed in [16]. The distinctive aspect here is that these combinations emerge
naturally as a byproduct of our method, whereas in the Matched Asymptotics method, they
are fundamental building blocks from the outset.
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1.4. Extensions. In conclusion of this introduction, we observe that extensions of our ap-
proach are possible in several directions:

(1) We can apply our method to domains with multiple—let’s say L—perturbed ver-
tices. In such cases, instead of a 2 × 2 operator matrix forming the system M[ε] in
(1.1), we would introduce a (1 + L) × (1 + L) matrix. This matrix would include
one row for the equation on the limiting domain and L additional rows for the equa-
tions on the perturbed vertices. Apart from this modification, the approach remains
largely unchanged from the one presented here, primarily because the perturbations
do not interact with one another.

(2) We can handle mixed Dirichlet-Neumann boundary conditions, given that certain
regularity assumptions are met to ensure that the Laplace-Beltrami operator with in-
duced boundary conditions on the base of the cone Γ possesses the following prop-
erties:
(a) It is invertible with compact resolvent;
(b) Its spectral counting function grows at most polynomially.

(3) We could consider a self-similar material law within the perturbed ε-region. Specif-
ically, we might replace the bilinear form associated with ∇ ·∇ with that associated
with a (x/ε)∇ · ∇, where a is a bounded function such that a ≥ a0 for some con-
stant a0 > 0. This formulation accounts for small inclusions or defects within the
material.

By contrast, addressing pure Neumann conditions or other types of partial differential
equations would require more substantial modifications of the method. The case of small
holes in the interior of Ω is also not directly accessible. Indeed, this scenario would corre-
spond to setting Γ = Rn, where our assumption on the sign of the first eigenvalue (µ1 > 0)
would not hold.

Finally, if the right-hand side does not vanish identically but is analytic inside the per-
turbed region, it is still possible to get convergent expansions. This will require supplemen-
tary tools for grouping together terms corresponding to clusters of exponents and will be the
subject of a forthcoming paper.

1.5. Plan of the paper. The paper is organized as follows. In Section 2, we provide the
preliminaries, defining the geometric and functional setting, and the family of BVPs we
will study. Section 3 introduces the Functional Analytic Approach with cutoffs and the
operator matrix M[ε]. In Section 4, we examine the expansion of the transfer operators
MP,Ω[ε] and MΩ,P[ε]. Section 5 deals with the inverse of M[ε] and shows that it expands
to a convergent generalized power series. In Section 6, we derive global, inner, and outer
expansions of the solution of the BVP in terms of convergent generalized power series. At
the end of the section, we compare the three expansions (global, inner, and outer) to derive
a numerical iterative procedure that produces the coefficients. The paper concludes with
two appendices. Appendix A addresses the relationship between a Sobolev space in the
intersection of the cone with a ball and a weighted Sobolev space in the intersection of the
cone with the complement of a ball. Appendix B introduces a simplified and adapted version
of Hahn et al.’s theory of generalized power series, and also discusses the case of convergent
generalized power series.

2. PRELIMINARIES

2.1. Geometric setting. Throughout the paper we use the following notation:

Notation 2.1. For r > 0

• B(r) is the open ball of center 0 and radius r in Rn
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• B∁(r) = Rn \ B(r) is the complement of the closed ball B(r) in Rn

• A (r, r′) = B∁(r) ∩ B(r′) is the open annular domain of center 0 and radii r, r′.

Here are the main assumptions that the generating triple of open sets Ω, Γ, and P, involved
in the definition of our self-similarly perturbed family of domains Ωε, must satisfy.

Assumption 2.2.
(i) Γ is an infinite open cone in Rn and its section Γ̂ on the sphere Sn−1 satisfies

(2.1) the capacity of Sn−1 \ Γ̂ (as a subset of Sn−1) is positive.

(ii) Ω is a bounded connected open set in Rn such that

(2.2) Ω ∩ B(r0) = Γ ∩ B(r0)

for some r0 > 0.
(iii) P is an unbounded open set in Rn such that

(2.3) P ∩ B∁(R0) = Γ ∩ B∁(R0)

for some R0 > 0.

By Courtois [8, Proposition 2.1], we can see that condition (2.1) is equivalent to the
fact that (the space of extensions by zero of functions of) H1

0 (Γ̂) is a proper subspace of
H1(Sn−1). Moreover, by [8, Theorem 1.1 (ii)], we find that condition (2.1) is equivalent to
the fact that

(2.4) µ1 > 0

where µ1 is the first eigenvalue of the positive Dirichlet Laplace-Beltrami operator Ldir
Γ̂

on
Γ̂ or, equivalently, the best constant in the Poincaré inequality

(2.5) µ1∥u∥2
L2(Γ̂)

≤ |u|2
H1(Γ̂)

for all u ∈ H1
0 (Γ̂) .

Hence property (2.4) is very generally satisfied: as soon as Sn−1 \ Γ̂ has positive (n − 1)-
dimensional measure or even if Sn−1 \ Γ̂ is a sub-manifold of co-dimension 1 in Sn−1, (2.1),
hence (2.4), holds. This implies that cracks are allowed. However, since sub-manifolds of
co-dimension ≥ 2 have zero capacity, cf. [8, equation (7) and Proposition 2.4 (iii)], Sn−1 \ Γ̂
cannot be reduced to such sets (e.g. isolated points in dimension n = 3).

We are ready for introducing the family of self-similarly perturbed domains {Ωε} associ-
ated to the triple {Ω,Γ,P}.

Definition 2.3. Let {Ω,Γ,P} be a generating triple satisfying Assumption 2.2. Set

ε0 :=
r0
R0

,

so that r0 = ε0R0. Then the family {Ωε} is defined for any ε ∈ [0, ε0] by the following
intersection conditions

Ωε ∩ B∁(r0) = Ω ∩ B∁(r0) ,

Ωε ∩ A (εR0, r0) = Γ ∩ A (εR0, r0)

Ωε ∩ B(εR0) = εP ∩ B(εR0) .

Remark 2.4. It is obvious that the above conditions identify Ωε univocally. Moreover:
(i) Due to condition (2.2), Ωε coincides with Ω outside B(εR0). Likewise, due to (2.3), Ωε

coincides with εP inside B(r0).
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(ii) Hence, if we replace r0 by a smaller value r′0 and R0 by a larger value R′
0, then for

ε ≤ r′0
R′

0
, we obtain the same domains Ωε.

(iii) The other consequence is that, when ε tends to 0, the domain Ωε tends to Ω as a set.

Note that, besides the conditions in (2.1) on the capacity of Sn−1 \ Γ̂, we do not introduce
any further regularity conditions on Ω and P. We do not even suppose that the cone Γ or the
pattern P are connected. For instance, the union of a half-plane and a (disjoint) sector is an
admissible Γ in dimension 2, and the pattern P may join them or not.

For an admissible example in dimension 2, see Figure 2, where Γ is not connected. This
example also shows features that imply that neither Ωε nor Ω are Lipschitz: cracks and holes
touching the boundary.

FIGURE 2. Ω, Ωε (for ε = 0.5), and the perturbation pattern P

r0 εR0 r0

R0

2.2. Functional setting. We work in the standard framework of Sobolev spaces which al-
lows for a clean variational formulation of our problems. For any open set V in Rn, the space
L2(V) is the space of square integrable functions on V , and H1(V) is the space of L2(V)
functions g with gradient ∇g (in the distributional sense in V) belonging to L2(V). The
space H1

0 (V) is the closure in H1(V) of the space C∞
0 (V) of smooth functions with compact

support in V . The space H−1(V) is the dual space of H1
0 (V) with the extension of L2(V)
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scalar product ⟨·, ·⟩V . We use standard notation for the norm and semi-norm in H1(V):

|u|
H1(V) = ∥∇u∥

L2(V) ; ∥u∥
H1(V) =

(
∥u∥2

L2(V)
+ |u|2

H1(V)

) 1
2 .

On any bounded domain V , the semi-norm and norm ofH1(V) are equivalent overH1
0 (V).

From this, we deduce by the variational formulation and the Lax-Milgram theorem that the
Laplace operator associated with the Dirichlet problem in variational form

(2.6)
∆dir

V : H1
0 (V) −→ H−1(V)
u 7−→

(
v 7→

〈
∇u,∇v

〉
V

) is an isomorphism.

As an obvious particular case, we obtain that problem (1.3) has a unique solution in
H1

0 (Ωε) for any f ∈ L2(Ωε), and that the same holds for the limit problem:

Lemma 2.5. The Dirichlet problem on Ω is uniquely solvable for any right-hand side f ∈
L2(Ω).

By contrast, the Dirichlet problem for the Laplace operator on the unbounded domain P is
not solvable inH1

0 (P), but in a larger weighted spaceH1
w,0(P). For any (possibly unbounded)

domain V in Rn we introduce the weighted L2 space L2
w(V) and its dual L2

w∗(V),

(2.7)
L2
w(V) = {G ∈ L2

loc(V),
∫
V

|G(X)|2

(1 + |X|)2
dX <∞}

L2
w∗(V) = {G ∈ L2(V),

∫
V
|G(X)|2(1 + |X|)2 dX <∞}.

Then, we define H1
w(V) as the space with norm and semi-norm given by

(2.8) ∥G∥
H1

w(V)
:=
(
∥G∥2

L2
w(V)

+ ∥∇G∥2
L2(V)

) 1
2

and |G|
H1

w(V)
:= ∥∇G∥

L2(V) ,

and we define H1
w,0(V) as the completion of C∞

0 (V) with respect to the norm of H1
w(V).

The following result will be proved in Section 4.1 using the Poincaré inequality (4.8).

Lemma 2.6. Let Γ be a cone satisfying the capacity condition (2.1), and let V be a domain
coinciding with Γ outside a bounded set. Then the semi-norm and norm of H1

w(V) are
equivalent over H1

w,0(V).

By the Lax-Milgram theorem for the variational formulation of the Dirichlet problem we
see that the Laplace operator induces an isomorphism from H1

w,0(V) onto its dual. Since
this dual contains the weighted space L2

w∗(V), as a particular case we deduce the following
lemma for the pattern domain P:

Lemma 2.7. For any F such that (1 + |X|)F belongs to L2(P), the Dirichlet problem

(2.9)

{
U ∈ H1

w,0(P) ,

∆U = F in P ,

is uniquely solvable.

2.3. Families of Dirichlet problems. With the domains Ωε as in Definition 2.3, we con-
sider the following family of ε-dependent Dirichlet problems:

(2.10)

{
uε ∈ H1

0 (Ωε) ,

∆uε = fε in Ωε .



DIRICHLET PROBLEM ON PERTURBED CONICAL DOMAINS 13

The aim of this paper is to find, for small values of ε, representations of the solutions uε as
a convergent series in powers of ε, under the assumption that the right-hand sides fε have a
uniform structure.

The first level of assumption on fε is

(2.11) ∃f ∈ L2(Rn) with f
∣∣
B(r0)

≡ 0 such that fε = f
∣∣
Ωε
.

In fact, our method of FAA with cross-cutoff is perfectly adapted to this assumption, allow-
ing in a very natural way for a more general right-hand side. This is the second level of
assumption, for which fε also includes some profile function F ∈ L2(Rn) such that F ≡ 0
on B∁(R0):

(2.12) fε(x) = f(x) + ε−2F
(x
ε

)
, ∀x ∈ Ωε .

The third level of assumption would be to consider the case where the slow variable function
f , instead of being 0, is a real analytic function in the whole ball B(r0). This will be treated
in a forthcoming paper.

3. THE FUNCTIONAL ANALYTIC APPROACH WITH CROSS-CUTOFF

In our way to find representations of the solutions uε of problem (2.10), with a right-hand
side satisfying (2.11) or, more generally, (2.12), we are going to translate (2.10) into a 2× 2
system of equations in slow and rapid variables.

3.1. Dedicated function spaces. Recall that x and X denote the slow and rapid variables,
respectively. To design our FAA with cross-cutoff we need to introduce some auxiliary
functions, operators, and spaces. First of all we choose two smooth cutoff functions in
relation with radii r0 and R0 appearing in the definition of the family of domains {Ωε}:

• A cutoff function Φ : X 7→ Φ(X) that localizes in rapid variables at infinity:

(3.1) Φ = 1 on B∁(2R0) , Φ = 0 on B(R0) ,

• A cutoff function φ : x 7→ φ(x) that localizes in slow variables near 0:

(3.2) φ = 1 on B(r0/2) , φ = 0 on B∁(r0) .

Then we denote by Hε the change of variables

U 7→
(
x 7→ U

(x
ε

))
(we shall write HεU(x) for U(x/ε)), so that its inverse is given by

H−1
ε = H1/ε : u 7→ ( X 7→ u(εX) )

(and, accordingly, we write H1/εu(X) for u(εX)).
To deal with right-hand sides in Ω that vanish in a neighborhood of the vertex and with

right-hand sides in P that vanish outside a ball, we define the function spaces

FΩ := {f ∈ L2(Ω), f
∣∣
B(r0/2)

= 0} ,

FP := {F ∈ L2(P), F
∣∣
B∁(2R0)

= 0} .

On FΩ and FP we consider the norms induced by L2(Ω) and L2(P), respectively. Then, we
introduce two function spaces EΩ and EP for the solutions. The first one is defined by

EΩ := {u ∈ H1
0 (Ω), ∆u ∈ FΩ}

and we equip it with the graph norm

∥u∥2EΩ
:= ∥u∥2H1

0 (Ω) + ∥∆u∥2L2(Ω) .
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To define EP we use the space H1
w,0(P) introduced above (Section 2.2) and set

EP := {U ∈ H1
w,0(P), ∆U ∈ FP}

with
∥U∥2EP

:= ∥U∥2H1
w,0(P)

+ ∥∆U∥2L2(Ω) .

Lemma 3.1. The Laplace operator defines isomorphisms between the above spaces, i.e.,

∆x : EΩ → FΩ is an isomorphism ,(3.3a)
∆X : EP → FP is an isomorphism .(3.3b)

Proof. As the space FΩ embeds canonically in H−1(Ω), (3.3a) is an obvious consequence
of Lemma 2.5. Concerning (3.3b), the argument relies on Lemma 2.7 if we notice that the
space FP embeds in the dual of the variational space H1

w,0(P) (even if now the norm of the
embedding depends on R0). □

3.2. The operator matrix M[ε]. The equivalence between the Dirichlet problem (2.10)
and a 2× 2 system of equations on Ω or P will be proved for right-hand sides fε satisfying
the second level of assumption (2.12). So, let f ∈ FΩ and F ∈ FP be given. Both functions
can be extended by 0, thus defining elements of L2(Rn) and giving sense to the equality
fε = f + ε−2HεF in Ωε. The idea underlying the construction of the 2 × 2 system is to
consider a similar ansatz for the solution and the right-hand sides.

Let ε ∈ (0, ε0/4]. We note that, due to the specific supports of Φ and φ, we have the
equalities f = (HεΦ) f and HεF = φ (HεF ). Hence, we find it convenient to write our
family of Dirichlet problems as

(3.4)

{
uε ∈ H1

0 (Ωε) ,

∆uε = (HεΦ) f + ε−2φHεF in Ωε .

Then, for any fixed ε, we look for a representation of the solution uε of (3.4) in a form that
resembles the right-hand side. Specifically, we write

(3.5) uε = (HεΦ)u+ φHεU

(cf. (1.2)), where the functions u : x 7→ u(x) and U : X 7→ U(X) belong to EΩ and EP,
respectively. These functions u and U depend on ε and will be eventually described in terms
of convergent generalized power series of ε denoted by u[ε] and U[ε]. For the moment being,
we do not need to track the dependence in ε and just write u and U .

The next theorem relies on the calculation of the Laplace operator acting on (HεΦ)u +
φHεU . Hence the commutator of ∆ with cutoffs appears naturally:

Notation 3.2. For a smooth function ψ, let the commutator [∆, ψ] be defined as

[∆, ψ]w = ∆(ψw)− ψ∆w = 2∇ψ · ∇w + (∆ψ)w.

Theorem 3.3. Let ε ∈ (0, ε0/4] be chosen. Let M[ε] be defined as the 2× 2 block operator
matrix

(3.6) M[ε] :=

(
MΩ,Ω MΩ,P[ε]

MP,Ω[ε] MP,P

)
from EΩ ×EP to FΩ × FP, where the entries MΩ,Ω, MΩ,P, MP,Ω, and MP,P are defined by

(3.7)

MΩ,Ω : EΩ → FΩ , u 7−→ ∆xu

MP,P : EP → FP , U 7−→ ∆XU

MΩ,P[ε] : EP → FΩ , U 7−→ [∆x, φ](HεU)

MP,Ω[ε] : EΩ → FP , u 7−→ [∆X ,Φ](H1/εu) .
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Let f belong to FΩ and F to FP. If we have

(3.8) M[ε]

(
u

U

)
=

(
f

F

)
for a pair of functions (u, U) ∈ EΩ × EP, then the function

wε := (HεΦ)u+ φ(HεU)

is a solution of the boundary value problem (3.4) and, therefore, coincides with the unique
solution uε of (3.4).

Proof. We have first to check that the constitutive operators of M[ε] are well defined. Con-
cerning the diagonal entries, this is obvious. Concerning non-diagonal entries, this is an
easy consequence of the following facts

• The supports of x 7→ ∇xφ and x 7→ ∆xφ are contained in the annulus A ( r0
2
, r0),

and the supports of X 7→ ∇XΦ and X 7→ ∆XΦ are contained in A (R0, 2R0),
• The operators ∇x and ∇X are bounded from H1 to L2.

Then, we have

(3.9) ∆wε = gε,1 + gε,2 with gε,1 = ∆x{(HεΦ)u} and gε,2 = ∆x{φ(HεU)} ,

and we compute

gε,1 = (HεΦ)∆xu+ 2∇x(HεΦ) · ∇xu+ (∆x(HεΦ))u

gε,2 = φ∆x(HεU) + 2∇xφ · ∇x(HεU) + (∆xφ)HεU .

Since u is in EΩ, by definition ∆xu belongs to FΩ, so it is ≡ 0 on B( r0
2
). As HεΦ is ≡ 1 on

B∁(2εR0) and 2εR0 <
r0
2

, we find that the first term of gε,1 satisfies

(HεΦ)∆xu = ∆xu.

Concerning the first term of gε,2, we start with the identity

φ∆x(HεU) = ε−2Hε

{
(H1/εφ)∆XU

}
and, since U is in EP, we can deduce by a similar reasoning as above that (H1/εφ) is ≡ 1 on
the support of ∆XU , ending up with

φ∆x(HεU) = ε−2Hε

{
∆XU

}
,

hence
gε,2 = ε−2Hε

{
∆XU

}
+ 2∇xφ · ∇x(HεU) + (∆xφ)HεU .

Finally, noting that

2∇x(HεΦ) · ∇xu+ (∆x(HεΦ))u = ε−2Hε

{
2∇XΦ · ∇X(H1/εu) + (∆XΦ)H1/εu

}
we obtain

gε,1 = ∆xu+ ε−2Hε

{
2∇XΦ · ∇X(H1/εu) + (∆XΦ)H1/εu

}
.

Now, developing (3.8) we find

f = ∆xu+ 2∇xφ · ∇x(HεU) + (∆xφ)HεU ,

F = ∆XU + 2∇XΦ · ∇X(H1/εu) + (∆XΦ)H1/εu .

So gε,1 + gε,2 coincides with f + ε−2HεF , which in view of (3.9), concludes the proof. □
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Remark 3.4. 1) From the proof above, the rationale for the construction of M[ε] appears
more clearly. The diagonal terms have a simple structure thanks to the conditions on the
supports of Φ and φ, whereas the non-diagonal terms can be seen as transfer operators
between slow and rapid variables: Here the cutoff dictates the choice of variables (slow
when φ is present, rapid when Φ is present).

2) The solvability of equation (3.8) will be proven later on showing that M[ε] is invertible
for ε ≥ 0 small enough (cf. Theorem 5.2).

4. THE SPECTRAL EXPANSION OF TRANSFER OPERATORS

The FAA strategy boils down to understanding in which sense the matrix M[ε] can be
seen as an “analytic” function of ε as ε tends to 0. In this section we show how this is related
to the spectral expansion at 0 or at infinity of harmonic functions satisfying Dirichlet condi-
tions in the cone Γ. Consequently we will have to extend the notion of analytic structure to
generalized convergent series with non-integer exponents in ε.

4.1. Energy spaces on cones. We first have to collect some basic results about Sobolev
spaces and the Laplace operator in our conical domains, which, due to the very weak reg-
ularity assumptions, cannot just be quoted from the standard literature on domains with
conical singularities [23, 25, 26]. Recall that the spherical domain Γ̂ = Γ ∩ Sn−1 is an
arbitrary open subset of the unit sphere that satisfies the single condition that the capacity
of its complement is non-zero. Otherwise, it can have cracks, cusps, infinitely many holes
or connected components, and so on. Its boundary can be very wild. Therefore the trun-
cated cone Γ ∩ B(ρ) has a boundary with two very different parts: The lateral boundary
(∂Γ) ∩ B(ρ), where we want to impose Dirichlet conditions, does not satisfy any of the
usual conditions required for defining boundary traces in Sobolev spaces, but the remaining
part is the spherical cap ρΓ̂ that is part of a smooth manifold, and the boundary traces on
this part are well defined and will play an important role.

We begin by introducing some notation for spaces where the zero boundary condition is
imposed only on parts of the boundary.

Notation 4.1. Let ρ > 0. We define

(i) C∞
0 (Γ ∩ B(ρ)) as the space of restrictions to Γ ∩ B(ρ) of smooth functions with

support in Γ, and define similarly C∞
0 (Γ ∩ B∁(ρ)),

(ii) H1
0 (Γ ∩ B(ρ)) as the closure of C∞

0 (Γ ∩ B(ρ)) in H1(Γ ∩ B(ρ)),
(iii) H1

w,0(Γ ∩ B∁(ρ)) as the closure of C∞
0 (Γ ∩ B∁(ρ)) in H1

w(Γ ∩ B∁(ρ)).

For x ∈ Rn \ {0}, we use polar coordinates r = |x| and ϑ = x̂ = x
|x| , where we

write indifferently x̂ for a unit vector in Rn and ϑ for the same considered as a point of the
manifold Sn−1. The gradient ∇ = ∇x splits into a radial and tangential part ∇ = x̂∂r +∇T ,
which by the orthogonality relation x̂ · ∇T = 0, gives the formulas

(4.1) ∇u = ∂ru x̂+∇Tu ; ∂ru = x̂ · ∇u ; ∇Tu = ∇u− (x̂ · ∇u)x̂ .

If we write ũ(r, ϑ) = u(x) (the tilde may be omitted later on), we have

∇Tu(x) =
1

r
∇Sn−1ũ(r, ϑ) , where ∇Sn−1 is the tangential gradient on the unit sphere.

Pythagoras’ theorem implies that

|∇u|2 = |∂ru|2 +
1

r2
|∇Sn−1u|2 ,
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and integrating over an annular domain A (r1, r2) results in

(4.2) |u|2
H1(Γ∩A (r1,r2))

=

∫
A (r1,r2)

|∇u|2 dx =

∫ r2

r1

∫
Γ̂

(
|∂ru|2 +

1

r2
|∇Sn−1u|2

)
dσ rn−1 dr

for any u ∈ C∞
0 (Γ). We can choose r1 = 0 and get for any ρ > 0

(4.3) |u|2
H1(Γ∩B(ρ))

=

∫ ρ

0

∫
Γ̂

(
rn−1|∂ru|2 + rn−3|∇Sn−1u|2

)
dσ dr ,

which is, by density, valid for all u ∈ H1
0 (Γ∩B(ρ)). Likewise, we can choose r2 = ∞ and

get

(4.4) |u|2
H1(Γ∩B∁(ρ))

=

∫ ∞

ρ

∫
Γ̂

(
rn−1|∂ru|2 + rn−3|∇Sn−1u|2

)
dσ dr

for all u ∈ H1
0 (Γ ∩ B∁(ρ)).

Now we can employ the Poincaré inequality (2.5) to analyze the spherical traces on |x| = r.

Lemma 4.2. (i) For any r > 0 and v ∈ C∞
0 (Γ) define trr v as the function defined on Γ̂ by

trr v(x̂) = v(rx̂), x̂ ∈ Γ̂.

Let ρ > 0. Then for r ∈ (0, ρ], the mapping trr has an extension to a bounded operator

trr : H
1
0 (Γ ∩ B(ρ)) → L2(Γ̂)

satisfying an estimate

(4.5) ∥ trr u∥L2(Γ̂)
≤ CΓ̂ r

1−n
2 |u|

H1(Γ∩B(ρ))
.

Similarly, for r ∈ [ρ,∞), the mapping trr has an extension to a bounded operator

trr : H
1
w,0(Γ ∩ B∁(ρ)) → L2(Γ̂)

satisfying an estimate

(4.6) ∥ trr u∥L2(Γ̂)
≤ CΓ̂ r

1−n
2 |u|

H1(Γ∩B∁(ρ))
.

Here the constant CΓ̂ depends only on the dimension n and the first Dirichlet eigenvalue µ1

of the set Γ̂, cf (2.4).

(ii) Let u ∈ H1
0 (Γ ∩ B(ρ)). Then the function r 7→ ũ(r) = trr u belongs to the vector

valued weighted H1-Sobolev space H1((0, ρ);L2(Γ̂)) with norm given by

∥ũ∥2
H1((0,ρ);L2(Γ̂))

:=

∫ ρ

0

(
∥ũ(r)∥2

L2(Γ̂)
+ ∥∂rũ(r)∥2

L2(Γ̂)

)
rn−1 dr .

For almost every r ∈ (0, ρ], trr u is in H1
0 (Γ̂), and ũ belongs to the vector-valued weighted

L2 space L2((0, ρ);H1
0 (Γ̂)) with norm given by

∥ũ∥2
L2((0,ρ);H1

0 (Γ̂))
:=

∫ ρ

0

|ũ(r)|2
H1(Γ̂)

rn−3 dr.

Likewise, for the unbounded truncated cone Γ ∩ B∁(ρ) and u ∈ H1
w,0(Γ ∩ B∁(ρ)), the

analogous norms∫ ∞

ρ

∥ ũ(r)
1 + r

∥2
L2(Γ̂)

rn−1 dr ,

∫ ∞

ρ

∥∂rũ(r)∥2
L2(Γ̂)

rn−1 dr and
∫ ∞

ρ

|ũ(r)|2
H1(Γ̂)

rn−3 dr

are finite.
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Proof. (i) We first show that the bound (4.5) holds for u ∈ C∞
0 (Γ) and for r = ρ (from

which it follows for r ≤ ρ): We have with ũ(r) = trr u

ρn−2|ũ(ρ)|2 =
∫ ρ

0

∂r
(
rn−2|ũ(r)|2

)
dr

= (n− 2)

∫ ρ

0

rn−3|ũ(r)|2 dr + 2

∫ ρ

0

r
n−3
2 ũ(r) r

n−1
2 ∂rũ(r) dr .

With the Young inequality, this gives for any η > 0

ρn−2∥ũ(ρ)∥2
L2(Γ̂)

≤ (n− 2 + η)

∫ ρ

0

rn−3∥ũ(r)∥2
L2(Γ̂)

dy + 1
η

∫ ρ

0

rn−1∥∂rũ(r)∥2
L2(Γ̂)

dr .

At this point, we use the Poincaré inequality (2.5) ∥ũ(r)∥2
L2(Γ̂)

≤ 1
µ1
|ũ(r)|2

H1(Γ̂)
and compare

with (4.3) to obtain (choosing η = 1)

∥ũ(ρ)∥2
L2(Γ̂)

≤ ρ2−n

∫ ρ

0

{
rn−1∥∂rũ(r)∥2

L2(Γ̂)
+ n−1

µ1
rn−3|ũ(r)|2

H1(Γ̂)

}
dr

≤ C2
Γ̂
ρ2−n|u|2

H1(Γ∩B(ρ))
with CΓ̂ = max{1,

√
n−1
µ1

} .

Then, the estimate in (4.5) extends by continuity to all of H1
0 (Γ ∩ B(ρ)). The analogous

estimate for the unbounded truncated cone is obtained by integrating from ρ to ∞.

(ii) The proof is then easily completed: The identity (4.3) for the H1 seminorm can be
written for the H1 norm with the above definitions as

(4.7)
∥u∥2

H1(Γ∩B(ρ))
=

∫ ρ

0

∫
Γ̂

(
rn−1|ũ|2 + rn−1|∂rũ|2 + rn−3|∇Sn−1ũ|2

)
dσ dr

= ∥ũ∥2
H1((0,ρ);L2(Γ̂))

+ ∥ũ∥2
L2((0,ρ);H1

0 (Γ̂))
.

The fact that ũ(r) ∈ H1
0 (Γ̂) for almost every r ∈ (0, ρ] follows from Fubini’s theorem for

the latter integral. □

We can now prove the Poincaré inequalities that imply the proof of Lemma 2.6. We
choose as a domain the truncated cone Γ ∩ A (r1, r2), where 0 ≤ r1 < r2 ≤ +∞. The
truncated cones Γ ∩ B(r2) and Γ ∩ B∁(r1) are the special cases r1 = 0 and r2 = +∞,
respectively. From the Poincaré inequality on Γ̂, we obtain by integrating with the weight
rn−3:

(4.8)
∥ u

r
∥2
L2(Γ∩A (r1,r2))

=

∫ r2

r1

rn−3∥ũ(r)∥2
L2(Γ̂)

dr ≤ 1

µ1

∫ r2

r1

rn−3∥∇Sn−1ũ(r)∥2
L2(Γ̂)

dr

≤ 1

µ1

|u|2
H1(Γ∩A (r1,r2))

(see also (4.2)). In the bounded case r2 <∞, we can use the trivial estimate

∥u∥2
L2(Γ∩B(r2))

≤ r22∥ u
r
∥2
L2(Γ∩B(r2))

to get rid of the weight in the L2 norm, but in the unbounded case for Γ ∩ B∁(r1) we need
to keep it. In the latter case, the weight 1

r
is equivalent to the weight 1

1+r
, which is the one

used in Lemma 2.6.
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4.2. Laplace-Beltrami eigenfunction expansion. The bilinear form
〈
∇Sn−1u,∇Sn−1v

〉
Γ̂

is, on one hand, the scalar product in the Hilbert space H1
0 (Γ̂) encountered in the previous

section. On the other hand, it is the energy form associated with the Laplace-Beltrami
operator on the sphere Sn−1:〈

∇Sn−1u,∇Sn−1v
〉
Γ̂
=
〈
Ldir
Γ̂
u, v
〉
Γ̂
.

This relation defines the variational form of the Laplace-Beltrami operator on Γ̂ with Dirich-
let conditions as a bounded operator

Ldir
Γ̂

: H1
0 (Γ̂) −→ H−1(Γ̂) .

It can also be extended to an unbounded self-adjoint operator on L2(Γ̂) with domain

Dom(Ldir
Γ̂
) = {û ∈ H1

0 (Γ̂), ∆Sn−1û ∈ L2(Γ̂)} .

Due to the compact embedding of H1
0 (Γ̂) in L2(Γ̂), which is valid for any open subset Γ̂ of

Sn−1, it has a compact resolvent and therefore a discrete spectrum, and the eigenvalues can
be obtained from the min-max principle applied to the quadratic energy form.

The main tool for the analysis of elements in our special spaces EΩ and EP is the pro-
jection on an orthonormal basis of eigenfunctions of Ldir

Γ̂
. Let us therefore recall some

well-known facts about such eigenfunction expansions and then apply them to our special
situation of conical singularities.

The role of the assumption (2.1) is to ensure that Ldir
Γ̂

is positive definite, that is, its lowest
eigenvalue µ1 is non-zero.

Notation 4.3. Let
0 < µ1 ≤ µ2 ≤ . . . µj ≤ . . .

be the non-decreasing sequence of the eigenvalues of Ldir
Γ̂

(with possible repetitions accord-
ing to multiplicities) and let {ψj}∞j=1 be an associated basis of eigenfunctions orthonormal
in L2(Γ̂), i.e.

∫
Γ̂
ψiψj dσ = δi,j for all i, j ≥ 1.

The eigenfunctions ψj satisfy, by definition

∀v ∈ H1
0 (Γ̂),

〈
∇Sn−1ψj,∇Sn−1v

〉
Γ̂
=

∫
Γ̂

µjψj v dσ .

In particular, they are orthogonal in H1
0 (Γ̂):

∀k ≥ 1,
〈
∇Sn−1ψj,∇Sn−1ψk

〉
Γ̂
= δj,k µj .

Any u ∈ L2(Γ̂) has a convergent expansion

(4.9) u =
∑
k≥1

ujψj with coefficients uj =
∫
Γ̂

uψj dσ

with equality of norms

(4.10) ∥u∥2
L2(Γ̂)

=
∑
j≥1

|uj|2 .

It is also well known that u belongs to H1
0 (Γ̂) if and only if

∑
j≥1 µj|uj|2 <∞, and then the

expansion (4.9) converges in H1
0 (Γ̂) with equality of norms

(4.11) |u|2
H1(Γ̂)

=
∑
j≥1

µj|uj|2 .
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We now apply this to the description of H1
0 (Γ ∩ B(ρ)) in polar coordinates obtained in

the previous section, in particular the expression (4.7) for the norm. Let u ∈ H1
0 (Γ∩B(ρ))

and define the coefficient functions r 7→ ũj(r)

(4.12) ũj(r) =

∫
Γ̂

trr u(ϑ)ψj(ϑ) dσϑ =

∫
Γ̂

ũ(r)ψj dσ .

From Lemma 4.2, we immediately deduce that these coefficients belong to the scalar ver-
sions L2(0, ρ) := L2((0, ρ);R) and H1(0, ρ) := H1((0, ρ);R) of the weighted L2 and H1

spaces defined above. Moreover, we have the norm equalities

(4.13) ∥ũ∥2
L2((0,ρ);H1

0 (Γ̂))
=
∑
j≥1

µj∥ũj∥2L2(0,ρ)
and ∥ũ∥2

H1((0,ρ);L2(Γ̂))
=
∑
j≥1

∥ũj∥2H1(0,ρ)
.

Hence, the following result:

Proposition 4.4. For ρ > 0 and u ∈ H1
0 (Γ ∩ B(ρ)), let the coefficients ũj(r) be defined by

(4.12). Then the expansion

(4.14) u(x) =
∑
j≥1

ũj(r)ψj(ϑ), x = rϑ ∈ Γ ∩ B(ρ)

converges in H1
0 (Γ ∩ B(ρ)) and

(4.15) ∥u∥2
H1(Γ∩B(ρ))

=
∑
j≥1

(
µj∥ũj∥2L2(0,ρ)

+ ∥ũj∥2H1(0,ρ)

)
.

Here

∥ũj∥2L2(0,ρ)
=

∫ ρ

0

|ũj(r)|2 rn−3 dr and ∥ũj∥2H1(0,ρ)
=

∫ ρ

0

(
|ũj(r)|2 + |∂rũj(r)|2

)
rn−1 dr .

Similarly, for u ∈ H1
w,0(Γ∩B∁(ρ)) the expansion (4.14) converges in H1

w,0(Γ∩B∁(ρ)), and

(4.16) |u|2
H1(Γ∩B∁(ρ))

=
∑
j≥1

(
µj

∫ ∞

ρ

|ũj(r)|2 rn−3 dr +

∫ ∞

ρ

|∂rũj(r)|2 rn−1 dr
)
.

In the proof leading to this proposition, the only thing that has not yet been mentioned is
that the terms ũj(r)ψj(ϑ) in the expansion (4.14) actually belong to the spaceH1

0 (Γ∩B(ρ)).
This is an easy consequence of the following observation, because for the approximation of
ũj(r)ψj(ϑ) by C∞

0 functions, one can approximate both factors separately by C∞
0 functions.

Lemma 4.5. The subspace C∞
0 ((0, ρ]) is dense in L2(0, ρ) ∩H1(0, ρ).

Proof. The norm in L2(0, ρ) ∩ H1(0, ρ) is equivalent to the Kondrat’ev-type homogeneous
weighted H1 norm ∥v∥K1

α(0,ρ)
with α = n−3

2
defined by

∥v∥2
K1

α(0,ρ)
=

∫ ρ

0

(
r2α|v(r)|2 + r2α+2|v′(r)|2

)
dr .

A short way to prove that C∞
0 ((0, ρ]) is dense in K1

α(0, ρ) is the following:
Define v̂(t) = e−(α+ 1

2
)tv(ρe−t). Then it is easy to verify that the mapping v 7→ v̂ is an

isomorphism from K1
α(0, ρ) onto the (unweighted) Sobolev space H1(R+), and C∞

0 (R+) is
well known to be dense in H1(R+). □

The expansion presented in Proposition 4.4 can be used to further elucidate the structure
of our energy space H1

0 (Γ∩B(ρ)). We mention two results that are valid under our general
weak regularity assumptions.
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Corollary 4.6. For any ρ > 0 there holds

H1
0 (Γ ∩ B(ρ)) = L2((0, ρ);H1

0 (Γ̂)) ∩H1((0, ρ);L2(Γ̂)) .

Proof. Lemma 4.2 and the equality of norms (4.7) imply that the left-hand space is con-
tained as a closed subspace in the right-hand space. The reverse inclusion follows from the
expansion (4.14) in Proposition 4.4, because this expansion converges in the same way for
all elements of the right-hand space. □

Corollary 4.7. Another consequence is the implication

u ∈ H1
0 (Γ ∩ B(ρ)) & trρ u = 0 =⇒ u ∈ H1

0 (Γ ∩ B(ρ)) .

Proof. Indeed, if trρ u = 0, then for all j, ũj(ρ) = 0. This implies that ũj can be approxi-
mated in the weighted K1

α norm by C∞
0 functions with support in (0, ρ), and therefore every

term in the expansion (4.14) is in H1
0 (Γ ∩ B(ρ)). □

Analogous results hold on the unbounded truncated cone for H1
w,0(Γ∩B∁(ρ)). They can

be obtained without effort by using the Kelvin transformation, see Appendix A.

4.3. Expansion of harmonic functions. Let us assume that u ∈ H1
0 (Γ∩B(ρ)) is harmonic

in Γ ∩ B(ρ). We will determine the form of the coefficients ũj in the expansion (4.14) by
the method of separation of variables in polar coordinates. The function u satisfies ∆u = 0
in the distributional sense, so that

∀v ∈ H1
0 (Γ ∩ B(ρ)),

〈
∇u,∇v

〉
Γ∩B(ρ)

= 0.

Choose j. Taking v(x) = ξ(r)ψj(ϑ), we find that, for any ξ ∈ C∞
0 (0, ρ), we have∫ ρ

0

∫
Γ̂

(
∂rũ(r, ϑ) ξ

′(r)ψj(ϑ) +
1

r2
∇Sn−1ũ(r, ϑ) · ξ(r)∇Sn−1ψj

)
dϑ rn−1dr = 0 .

Combined with
〈
∇Sn−1ũ(r, ·),∇Sn−1ψj

〉
Sn−1

= µjũj , this gives the variational form∫ ρ

0

(
ũ′j(r) ξ

′(r) +
µj

r2
ũj(r) ξ(r)

)
rn−1dr = 0

of the differential equation

(4.17) −r1−n
(
rn−1ũ′j(r)

)′
+
µj

r2
ũj(r) = 0 .

The solutions have the form rλ with λ such that

(4.18) −λ(λ+ n− 2) + µj = 0.

Hence, there exist coefficients c+j and c−j such that

(4.19) ũj(r) = c+j r
λ+
j + c−j r

λ−
j

with

(4.20) λ±j := 1− n

2
±
√(

1− n

2

)2
+ µj ,

the two roots of equation (4.18).
We note that {λ+j } is a non-decreasing sequence of positive numbers and λ−j satisfies

(4.21) λ−j = 2− n− λ+j .
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One readily checks that for λ ∈ R, the function r 7→ rλ belongs to our weighted space
L2(0, ρ) ∩ H1(0, ρ) if and only if λ > 1− n

2
. Therefore, we have c−j = 0 in (4.19), and we

conclude that

ũj(r) = c+j r
λ+
j .

Taking

(4.22) h+j (x) := rλ
+
j ψj(ϑ),

we can write the expansion (4.14) as

u =
∑
j≥1

c+j h
+
j ,

where the sum converges in H1(Γ ∩ B(ρ)). We also note that for the coefficients c+j , we
have the equality

(4.23) c+j = r−λ+
j ũj(r) = r−λ+

j

∫
Γ̂

trr u(ϑ)ψj(ϑ) dσϑ.

Similarly, for a function U ∈ H1
w,0(Γ ∩ B∁(ρ)), we can find the expansion

(4.24) U =
∑
j≥1

B−
j h

−
j ,

with

(4.25) h−j (x) := rλ
−
j ψj(ϑ),

and

(4.26) B−
j = r−λ−

j

∫
Γ̂

trr U(ϑ)ψj(ϑ) dσϑ.

The series in (4.24) converges in H1
w(Γ ∩ B∁(ρ)), and the expansion can be proved fol-

lowing the same steps as in the proof for the bounded domain. In particular, we recover the
same differential equation (4.17), leading to the same solution (4.19). However, this time
we must set the coefficient of rλ

+
j to zero, because rλ

+
j does not belong to the corresponding

space L2(ρ,+∞) ∩ H1(ρ,+∞). Alternatively, a proof can be obtained using the Kelvin
transform isomorphism between H1

0 (Γ ∩ B(ρ)) and H1
w,0(Γ ∩ B∁(ρ)), see Appendix A.

For the functions h+j and h−j , we have the following:

Lemma 4.8. Let ρ > 0. The homogeneous harmonic functions h±j of (4.22) and (4.25) have
the following properties:
a) The functions h+j belong to H1

0 (Γ ∩ B(ρ)) and satisfy the orthogonality relations

(4.27a)
∫
Γ∩B(ρ)

∇h+i · ∇h+j dx = λ+j ρ
2λ+

j +n−2 δi,j .

b) The functions h−j belong to H1
w,0(Γ ∩ B∁(ρ)) and satisfy the orthogonality relations

(4.27b)
∫
Γ∩B∁(ρ)

∇h−i · ∇h−j dx = −λ−j ρ2λ
−
j +n−2 δi,j .
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Proof. The orthogonality of the families {h±j }j follows from the orthogonality of {ψj}∞j=1

in both L2(Γ̂) and H1(Γ̂). It remains to compute the H1 seminorms, using (4.3). We find
with (λ+j )

2 + µj = λ+j (2λ
+
j + n− 2)∫

Γ∩B(ρ)

|∇h+i |2 dx =

∫ ρ

0

(
|λ+j rλ

+
j −1|2rn−1 + |rλ

+
j |2rn−3µj

)
dr

=
(
(λ+j )

2 + µj

) ∫ ρ

0

r2λ
+
j +n−3 dr = λ+j ρ

2λ+
j +n−2 .

The proof for (4.27b) is similar. □

We can now summarize the result about the expansion in the basis of the harmonic ex-
tensions h±j of the Laplace-Beltrami eigenfunctions ψj . The proof of Theorem 4.9 follows
from Proposition 4.4, with the special form (4.23) and (4.26) of the coefficient functions.

Theorem 4.9. Choose ρ > 0 and recall that trρ is the trace operator defined in Lemma 4.2.
a) For all j ≥ 1, we denote by cj the functional

(4.28)
cj : H1

0 (Γ ∩ B(ρ)) → R

u 7→ ρ−λ+
j

∫
Γ̂

trρ u(ϑ) ψj(ϑ) dσϑ .

If u ∈ H1
0 (Γ ∩ B(ρ)) is harmonic, then the sequence {cj(u)} satisfies:

(4.29)
∑
j≥1

λ+j ρ
2λ+

j +n−2 |cj(u)|2 =
∫
Γ∩B(ρ)

|∇u|2 dx

and we have the representation formula for u:

(4.30) u =
∑
j≥1

cj(u)h
+
j with convergence in H1

0 (Γ ∩ B(ρ)).

b) For all j ≥ 1, we denote by Bj the functional

(4.31)
Bj : H1

w,0(Γ ∩ B∁(ρ)) → R

U 7→ ρ−λ−
j

∫
Γ̂

trρ U(ϑ) ψj(ϑ) dσϑ .

If U ∈ H1
w,0(Γ ∩ B∁(ρ)) is harmonic, then the sequence {Bj(U)} satisfies:

(4.32) −
∑
j≥1

λ−j ρ
2λ−

j +n−2 |Bj(U)|2 =
∫
Γ∩B∁(ρ)

|∇U |2 dX

and we have the representation formula for U :

(4.33) U =
∑
j≥1

Bj(U)h
−
j with convergence in H1

w,0(Γ ∩ B∁(ρ)).

An obvious consequence of expansions (4.30) and (4.33) is that coefficients cj(u) and
Bj(U) do not depend on the choice of ρ as soon as u and U satisfy the assumptions of
Theorem 4.9.
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4.4. Expansion of transfer operators. Recall the Notation 3.2 for the commutators and
the expression (3.7) of the transfer operators

MP,Ω[ε] = [∆X ,Φ] ◦ H1/ε ,(4.34a)

MΩ,P[ε] = [∆x, φ] ◦ Hε .(4.34b)

Here we are going to combine these expressions with the expansions (4.30) and (4.33)
a) Let u ∈ EΩ, set ρ = r0

2
. Then the series expansion (4.30) of u holds in Γ ∩ B(ρ). Let

ε > 0 be given. Applying the change of variables H1/ε we deduce from (4.30)

(H1/εu)(X) =
∑
j≥1

cj(u) ε
λ+
j h+j (X) with convergence in H1

0 (Γ ∩ B(ρ
ε
)).

Applying the operator [∆X ,Φ] on both sides, we find the convergence in L2(Γ ∩ B(ρ
ε
)) of

the series

(4.35a) MP,Ω[ε]u =
∑
j≥1

cj(u) ε
λ+
j [∆X ,Φ]h

+
j .

The support of [∆X ,Φ]h
+
j is contained in Γ ∩ A (R0, 2R0), which is a subset of Γ ∩ B

(
ρ
ε

)
when 0 < ε ≤ ε0

4
because, in that case, the radius 2R0 is smaller than ρ

ε
= r0

2ε
. Hence, the

series (4.35a) converges in L2(P) for ε ∈ (0, ε0
4
).

b) Let U ∈ EP, set now ρ = 2R0. Then the series expansion (4.33) for U holds in
Γ ∩ B∁(ρ). Applying the change of variables Hε we find for any given ε > 0

(HεU)(x) =
∑
j≥1

Bj(U) ε
−λ−

j h−j (x) with convergence in H1
w,0(Γ ∩ B∁(ρε)).

Hence with the weighted L2 space introduced in (2.7) the convergence in L2
w(Γ ∩ B∁(ρε))

of the series

(4.35b) MΩ,P[ε]U =
∑
j≥1

Bj(U) ε
−λ−

j [∆x, φ]h
−
j .

The support of [∆x, φ]h
−
j is contained in Γ ∩ A ( r0

2
, r0), which is, for any ε ∈ (0, ε0

4
), a

subset of Γ ∩ B∁(ρε). Whence, finally, the convergence in L2(Ω) for such ε.
In the following Proposition 4.10 and Theorem 4.11 we prove that the series (4.35a) and

(4.35b) converge in operator norms.

Proposition 4.10. For any integer j ≥ 1 define the operators Cj and Bj by

(4.36a)
Cj : EΩ → FP

u 7→ Cj[u](X) := cj(u) [∆X ,Φ]h
+
j (X), X ∈ P

and

(4.36b)
Bj : EP → FΩ

U 7→ Bj[U ](x) := Bj(U) [∆x, φ]h
−
j (x), x ∈ Ω

with the functionals cj and Bj defined in (4.28) and (4.31), respectively. Then there exist
a constant A > 0 such that, for all integer j ≥ 1, the operator norms ∥Cj∥L(EΩ,FP) and
∥Bj∥L(EP,FΩ) satisfy

∥Cj∥L(EΩ,FP)
≤ A

(
4

ε0

)λ+
j

(4.37a)

∥Bj∥L(EP,FΩ)
≤ A

(
4

ε0

)−λ−
j

.(4.37b)
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Proof. a) Let u ∈ EΩ and ρ = r0/2. On one hand, equality (4.29) can also be written as∑
j≥1

∥∇h+j ∥2L2(Γ∩B(r0/2))
|cj(u)|2 = ∥∇u∥2

L2(Γ∩B(r0/2))

≤ ∥u∥2
EΩ

,

and on the other hand we have

∥[∆X ,Φ]h
+
j ∥EP

≤ CΦ ∥h+j ∥H1(Γ∩A (R0,2R0))

from which we draw for any integer j ≥ 1

∥cj(u) [∆X ,Φ]h
+
j ∥FP

≤ CΦ

∥h+j ∥H1(Γ∩A (R0,2R0))

∥∇h+j ∥L2(Γ∩B(r0/2))

∥u∥
EΩ

.

To bound the H1-norm of h+j , we use the Poincaré inequality (4.8)

∥|X|−1 h+j ∥2L2(Γ∩B(2R0))
≤ µ−1

1 ∥∇h+j ∥2L2(Γ∩B(2R0))

which implies that

∥h+j ∥2L2(Γ∩B(2R0))
≤ µ−1

1 (2R0)
2∥∇h+j ∥2L2(Γ∩B(2R0))

hence
∥h+j ∥H1(A (R0,2R0))

≤
√
1 + µ−1

1 (2R0)2 ∥∇h+j ∥L2(Γ∩B(2R0))
.

Thus we have

∥cj(u) [∆X ,Φ]h
+
j ∥FP

≤ CΦ

√
1 + µ−1

1 (2R0)2
∥∇h+j ∥L2(Γ∩B(2R0))

∥∇h+j ∥L2(Γ∩B(r0/2))

∥u∥
EΩ

.

Using formula (4.27a), we find immediately

∥∇h+j ∥L2(Γ∩B(2R0))

∥∇h+j ∥L2(Γ∩B(r0/2))

=
( 2R0

r0/2

)λ+
j +n

2
−1

,

which ends the proof of estimate (4.37a).

b) The proof of the second estimate (4.37b) is very similar: We take U ∈ EP and ρ = 2R0,
and start with equality (4.32). Then we use the Poincaré inequality (4.8) at infinity for h−j

∥|x|−1 h−j ∥2L2(Γ∩B∁(r0/2))
≤ µ−1

1 ∥∇h−j ∥2L2(Γ∩B∁(r0/2))

which implies that (note the slight difference here)

∥h−j ∥2L2(Γ∩A (r0/2,r0))
≤ µ−1

1 (r0)
2∥∇h−j ∥2L2(Γ∩B∁(r0/2))

.

We deduce

∥Bj(U) [∆x, φ]h
−
j ∥FΩ

≤ Cφ

√
1 + µ−1

1 (r0)2
∥∇h−j ∥L2(Γ∩B∁(r0/2))

∥∇h−j ∥L2(Γ∩B∁(2R0))

∥U ∥
EP
,

and we conclude using formula (4.27b). □

Theorem 4.11. The transfer operators MP,Ω and MΩ,P are given by the operator series

(4.38) MP,Ω[ε] =
∑
j≥1

ελ
+
j Cj and MΩ,P[ε] =

∑
j≥1

ε−λ−
j Bj ,

which, for all ε ∈ [0, ε0
4
), are normally converging in L(EΩ,FP) and L(EP,FΩ), respec-

tively:

(4.39)
∑
j≥1

ελ
+
j ∥Cj∥L(EΩ,FP)

<∞ and
∑
j≥1

ε−λ−
j ∥Bj∥L(EP,FΩ)

<∞, 0 ≤ ε < ε0
4
.



26 MARTIN COSTABEL, MATTEO DALLA RIVA, MONIQUE DAUGE, AND PAOLO MUSOLINO

In view of estimates (4.37a) and (4.37b), the sums in (4.39) compare to the pseudo-
geometrical series ∑

j≥1

ελ
+
j

(
4

ε0

)λ+
j

and
∑
j≥1

ε−λ−
j

(
4

ε0

)−λ−
j

.

If the λ+j and −λ−j behave like the integer j, the convergence for ε ∈ [0, ε0
4
) is obvious,

and this occurs in dimension n = 2. But for higher dimensions n, the distance between
consecutive λ±j globally tends to 0 as j → ∞. This is quantified with the help of the
spectral counting function (Weyl’s law).

Lemma 4.12. Let #{µj ≤ µ} denote the number of eigenvalues (counting multiplicity) of
Ldir
Γ̂

that are less than or equal to µ, then we have

#{µj ≤ µ} ≤ dn µ
(n−1)/2, ∀µ ≥ 1,

for some constant dn > 0 that depends only on n.

Proof. If NSn−1(µ) is the number of eigenvalues (counting multiplicity) of the (positive)
Laplace-Beltrami operator LSn−1 on H1(Sn−1) that are smaller than or equal to µ > 0, then
we have

NSn−1(µ) ≤ 2

(n− 1)!
µ(n−1)/2 + cnµ

(n−2)/2 + cn

for some constant cn > 0 that depends only on n (cf., e.g., Shubin [39, p. 172]). Since the
j-th eigenvalue of LSn−1 on H1

0 (Γ̂) is bigger than or equal to the j-th eigenvalue of LSn−1 on
H1(Sn−1), we deduce the inequality in the lemma. □

Now, in the same spirit, we denote by #{±λ±j ≤ λ} the number of ±λ±j ’s less than or
equal to λ (with repetitions corresponding to multiple eigenvalues µj). As a consequence of
Lemma 4.12, using formulas (4.20) we find:

Corollary 4.13. There exists a constant d′n depending only on n such that, for all λ ≥ 1,

#{λ+j ≤ λ} ≤ d′n λ
n−1,(4.40a)

#{−λ−j ≤ λ} ≤ d′n λ
n−1.(4.40b)

The proof of normal convergence of the series (4.38) then relies on the fact that general-
ized power series

∑
j≥1 ξ

λj with exponents {λj} whose counting function has a polynomial
growth is converging for 0 ≤ ξ < 1, just as a standard series with integer exponents. There
is an analogous result in the framework of generalized power series, see Lemma B.10, but
although the proofs use similar arguments, we cannot just apply that result here, because the
sequences (±λ±j )j≥1 may involve nontrivial multiplicities.

Lemma 4.14. Let {λj} be a sequence of positive exponents satisfying, for some m > 0, the
distribution law

#{λj ≤ λ} ≤ d λm, ∀λ ≥ 1.

Then the series
∑

j≥1 ξ
λj is converging for all ξ ∈ [0, 1).

Proof. We organize the sum
∑

j≥1 ξ
λj by packets:∑

j≥1

ξλj =
∞∑
ℓ=0

( ∑
j, ℓ≤λj<ℓ+1

ξλj

)
.
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In each packet, ξλj ≤ ξℓ because 0 ≤ ξ < 1, so this packet can be bounded by its number of
elements multiplied by ξℓ, arriving at∑

j, ℓ≤λj<ℓ+1

ξλj ≤
(
#{λj ≤ ℓ+ 1}

)
ξℓ ≤ d (ℓ+ 1)mξℓ.

Since the sum
∑∞

ℓ=0(ℓ+ 1)mξℓ is convergent for 0 ≤ ξ < 1, the lemma is proved. □

Proof of Theorem 4.11. We only have to prove that the series∑
j≥1

ελ
+
j ∥Cj∥L(EΩ,FP)

and
∑
j≥1

ε−λ−
j ∥Bj∥L(EP,FΩ)

are converging for all ε ∈ [0, ε0
4
). Using (4.37a)-(4.37b), we have:∑

j≥1

ελ
+
j ∥Cj∥L(EΩ,FP)

≤ A
∑
j≥1

(
4ε

ε0

)λ+
j

and
∑
j≥1

ε−λ−
j ∥Bj∥L(EP,FΩ)

≤ A
∑
j≥1

(
4ε

ε0

)−λ−
j

hence the convergence using Corollary 4.13 and Lemma 4.14. □

Remark 4.15. The factor 4 dividing ε0 in the convergence range in ε comes from the choice
that we have made for the supports of the cutoff functions Φ and φ in (3.1) and (3.2). If,
instead, we impose Φ ≡ 1 on B∁(κR0) and φ ≡ 1 on B(r0/κ) for some κ > 1, then the
convergence range would be ε0/κ2, but the constant A appearing in (4.37a)-(4.37b) would
blow up as κ is closer to 1.

5. INVERSION BY A NEUMANN SERIES

5.1. Expansion of the operator M[ε]. With the converging expansions of MP,Ω[ε] and
MΩ,P[ε] at hand (Theorem 4.11), we have a converging expansion of the full operator M[ε]
(1.4) that we write in the form

M[ε] =
∑
j∈Z

Mj ε
λj

with the exponents λj defined as (recall that the µj are the eigenvalues of Ldir
Γ̂

)

(5.1) λj :=


λ+j = 1− n

2
+
√(

1− n
2

)2
+ µj if j > 0,

0 if j = 0,

−λ−j = n− 2 + λ−j if j < 0,

and the operator matrix coefficients Mj defined as

M0 =

(
MΩ,Ω 0

0 MP,P

)
and Mj =



(
0 0

Cj 0

)
if j > 0,(

0 Bj

0 0

)
if j < 0.

Each operator Mj is bounded from EΩ × EP to FΩ × FP and, as a direct consequence of
Theorem 4.11, the series

∑
j∈ZMj ε

λj converges normally for all ε ∈ [0, ε0
4
). As M0 is

invertible we may write

(5.2) M−1
0 M[ε] = I+

∑
j∈Z∗

M−1
0 Mj ε

λj
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where the operators M−1
0 Mj are bounded from EΩ × EP in itself and satisfy the estimates

(5.3) ∥M−1
0 Mj∥L(EΩ×EP)

≤ A∥M−1
0 ∥L(FΩ×FP,EΩ×EP)

(
4

ε0

)λj

,

cf. (4.37a)-(4.37b).
The series (5.2) fits within the framework of convergent generalized power series, as

introduced in Definition B.9. However, we need to switch from considering the exponents
λj as a sequence with possible multiplicities (repeated values) to using the corresponding
set of exponents.

Lemma 5.1. (i) Let E be the set of exponents consisting of all the values of the sequence
{λj}, with λj given by (5.1):

(5.4) E := {e ∈ R+, ∃j ∈ Z∗, e = λj} .
Then, for all e ∈ E, let Ae be the operator coefficient defined by

(5.5) Ae :=
∑
λj=e

M−1
0 Mj.

It holds that

(5.6) M−1
0 M[ε] = I+

∑
e∈E

Aeε
e,

and the series on the right-hand side converges normally in L(EΩ × EP) for all ε ∈ [0, ε0
4
).

(ii) Let e∗ be the smallest element of E. Then e∗ = λ1 > 0 and

(5.7)
∑
e∈E

Aeε
e = εe∗

∑
e∈E

Aeε
e−e∗ ,

where the series on the right-hand side converges normally in L(EΩ×EP) for all ε ∈ [0, ε0
4
).

(iii) There exists ε⋆ > 0 (with ε⋆ ≤ ε0
4

) such that, for all ε ∈ [0, ε⋆), there holds

(5.8)
∑
e∈E

∥Ae∥L(EΩ×EP)
εe < 1.

Proof. To prove statement (i), it suffices to write:∑
e∈E

∥Ae∥L(EΩ×EP)
εe ≤

∑
e∈E

∑
λj=e

∥M−1
0 Mj∥L(EΩ×EP)

εe

=
∑
j∈Z∗

∥M−1
0 Mj∥L(EΩ×EP)

ελj

and to note that the last sum converges for ε ∈ [0, ε0
4
) by Theorem 4.11.

The identity e∗ = λ1 is a consequence of equality λ−1 = n − 2 + λ1. The normal
convergence of the series (5.7) is proved as above, with the exponents λj replaced with
λj − λ1. Hence, point (ii). Finally, point (iii) is an obvious consequence of point (ii). □

5.2. Expansion of the inverse of M[ε]. Let

A[ε] =
∑
e∈E

Ae ε
e.

We are ready to invert I+A[ε]: In view of Lemma 5.1 and Theorem B.12, for all ε ∈ [0, ε⋆)
the Neumann series

(I+ A[ε])−1 = I+
∞∑
k=1

(−A[ε])k
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is a convergent generalized power series with exponent set E∞ defined as the additive
monoid generated by the set E in (5.4):

(5.9) E∞ :=
∞⋃
k=1

Ek ∪ {0} with Ek :=
{
e = e1 + · · ·+ ek, e1, . . . , ek ∈ E

}
.

Then, comparing with (B.2), we see that we have

(I+ A[ε])−1 = I +
∑

e∈E∞\{0}

Be ε
e, with Be :=

∑
k≥1

(−1)k
∑

e1+···+ek=e
e1,...,ek∈E

Ae1 . . .Aek ,

and the sum
∑

e∈E∞\{0}Be ε
e converges normally for all ε ∈ [0, ε⋆):∑

e∈E∞\{0}

∥Be∥L(EΩ×EP)
εe <∞ ∀ε ∈ [0, ε⋆).

As (I+ A[ε])−1M−1
0 = M[ε]−1, we have obtained the following:

Theorem 5.2. Let ε⋆ > 0 be as in Lemma 5.1. With the notations introduced above, the
following holds:

(i) The operator M[ε] is invertible for all ε ∈ [0, ε⋆).

(ii) Let E∞ be the monoid (5.9) generated by the exponents set E (5.4). Define

(5.10) N0 := M−1
0 =

(
M−1

Ω,Ω 0

0 M−1
P,P

)
and Ne := BeN0, ∀e ∈ E∞ \ {0} .

Then the inverse of M[ε] can be represented as the sum of the normally convergent gener-
alized series with exponent set E∞ and coefficients Ne:

M[ε]−1 =
∑
e∈E∞

Ne ε
e = N0 +

∑
e∈E∞\{0}

Ne ε
e,

where the series convergence normally in L(FΩ × FP,EΩ × EP) for all ε ∈ [0, ε⋆).

(iii) The set E∞ is discrete, and its smallest nonzero element is

e∗ = e1 = λ1 = 1− n

2
+

√(
1− n

2

)2
+ µ1 > 0.

Remark 5.3. (i) In our application, E is a discrete subset of R+. As stated in Appendix B, a
sufficient property at this stage is that E is a well-ordered subset of R+ (meaning that every
non-empty subset of E has a smallest element). This property is more general because it
allows for bounded increasing subsequences.

(ii) The operators Ne have finite rank because the operators Cj (4.36a) and Bj (4.36b)
have rank one.

Let Λ denote the set of exponents λ+j (the exponents corresponding to the singularities of
the variational solutions). We then have

E = Λ ∪ (n− 2 + Λ).

In certain cases where we have an explicit expression for Λ, we can use it to determine
explicit expressions for E and E∞. In what follows, Sω denotes the plane sector with opening
ω, where ω ∈ (0, 2π], and α is the quotient π

ω
.
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Example 5.4 (of sets E and E∞).
(i) When n = 2 and Γ is the cone Sω, we have Λ = αN∗, E = Λ, and E∞ = αN.

(ii) When n > 2 and Γ is a wedge with opening angle ω, meaning that Γ = Rn−2 × Sω,
we have Λ = N + αN∗ (cf. [14, §18.C]). Then, E = Λ and E∞ = N + αN∗ ∪ {0}. As
particular cases: for the half-space, for which ω = π, we have E = N∗ and E∞ = N, and for
the crack, where ω = 2π (note that this is a non-Lipschitz domain), we have E = 1

2
N∗ and

E∞ = 1
2
N.

(iii) When n = 3 and Γ is a half-wedge of opening angle ω, meaning that Γ = R+ × Sω,
we have Λ = 1 + 2N+ αN∗ (cf. [14, §18.C]). Thus E = N∗ + αN∗ = 1 + α+N+ αN and
E∞ = E∪{0}. As a particular case: for the octant (R+)

3, where ω = π
2
, we have E = 3+N

and E∞ = E ∪ {0}.

(iv) When n = 3 and Γ is a circular cone with opening angle ζ ∈ (0, π) (note that ζ = π
2

gives back the half-space, and ζ = π is excluded by the non-zero capacity condition (2.1)),
Λ consists of the roots ν of the equations

∃m ∈ N, Pm
ν (cos ζ) = 0,

where Pm
ν denotes the order-m associated Legendre function of the first kind (cf. [14,

§18.D]). Then, E = Λ ∪ (1 + Λ) and E∞ is given by the general formula (5.9). In con-
trast with the previous examples, the multiplicity of the elements of Λ is generically 1 when
ζ ̸= π

2
.

Remark 5.5. We observe that E∞ is contained in N when Γ is a half-space, or when a half-
space can be obtained by a finite number of reflections of Γ (as for a sector or a wedge of
opening π

k
, where k is an integer ≥ 2, an octant, etc.). In these cases, the series in powers of

ε is a classical power series, and its sum is real-analytic in the open sets where it converges.

6. EXPANSION OF SOLUTIONS OF THE DIRICHLET PROBLEM IN Ωε

Using the ansatz (3.5) for the solution uε, the problem of solving the Dirichlet problem
(3.4) has been transformed into the equivalent problem of inverting the block operator ma-
trix M[ε], as proven in Theorem 3.3. Then, in Theorem 5.2, we inverted M[ε] by means
of a Neumann series that takes the form of a generalized power series with exponents in
the discrete monoid E∞ defined in (5.9), generated by the set E in (5.4). In this section, we
deduce from these results several representations for uε. We will present a global represen-
tation that depends on the cutoffs Φ and φ, as well as intrinsic representations, which are
independent of Φ and φ, and are defined either close to or away from the vertex of the cone.

6.1. Global expansions. By Theorem 5.2 we readily deduce the following:

Theorem 6.1. Let f ∈ FΩ and F ∈ FP. For any ε ∈ (0, ε0
4
), let uε be the solution of

problem (3.4). Let ε⋆ > 0 be as in Lemma 5.1 and let the operator coefficients Ne be defined
as in Theorem 5.2. Then the two series

u[ε] :=
∑
e∈E∞

εeue in EΩ and U[ε] :=
∑
e∈E∞

εeUe in EP ,

with coefficients given, for all e ∈ E∞, by the identity

(6.1)

(
ue

Ue

)
= Ne

(
f

F

)
,
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converge normally in EΩ and EP, respectively, for all ε ∈ [0, ε⋆). Using these series, we can
write the following 2-scale representation of uε:

uε(x) = Φ
(x
ε

) ∑
e∈E∞

εeue(x) + φ(x)
∑
e∈E∞

εeUe

(x
ε

)
,(6.2)

which holds for a.e. x ∈ Ωε and all ε ∈ (0, ε⋆). In particular, the first coefficients u0 and U0

of each series are the solutions of the limit boundary value problems

(6.3)

{
u0 ∈ H1

0 (Ω) ,

∆u0 = f ,
and

{
U0 ∈ H1

w,0(P) ,

∆U0 = F ,

respectively, and, in both series, the next exponents with non-zero coefficients satisfy the
inequality e ≥ λ1 > 0.

Proof. Using Theorem 5.2, we introduce the two series u[ε] and U[ε] for 0 ≤ ε < ε⋆, with
terms in EΩ and EP, respectively, defined by(

u[ε]

U[ε]

)
:= M[ε]−1

(
f

F

)
=
∑
e∈E∞

εe Ne

(
f

F

)
.

Then, by Theorem 3.3, uε(x) coincides with Φ
(
x
ε

)
u[ε] + φ(x)U[ε]

(
x
ε

)
. This leads to the

representation (6.2) with coefficients ue ∈ EΩ and Ue ∈ EP defined by (6.1). The expres-
sions for u0 and U0 follow from the expression of N0 in (5.10). □

Remark 6.2. The two series u[ε] and U[ε] are not independent of each other. With the
exception of their principal terms u0 and U0, either one of them can be eliminated from
the representation of uε by taking the corresponding Schur complement. Indeed, the series
u[ε] and U[ε] are, by definition, solutions of the system{

MΩ,Ω u[ε] +MΩ,P[ε]U[ε] = f ,

MP,Ω[ε] u[ε] +MP,P U[ε] = F .

(i) Then, since MP,P is invertible, we see that

U[ε] = M−1
P,PF −M−1

P,PMP,Ω[ε] u[ε] = U0 −M−1
P,PMP,Ω[ε] u[ε],

and for the solution uε of (3.4) we obtain the formula:

(6.4) uε(x) = Φ
(x
ε

)
u[ε](x) + φ(x)

{
U0

(x
ε

)
−
(
M−1

P,PMP,Ω[ε]u[ε]
) (x

ε

)}
,

which holds for all 0 < ε < ε⋆ and a.e. x ∈ Ωε.

(ii) Similarly, we can get rid of u[ε] noting that

u[ε] = M−1
Ω,Ωf −M−1

Ω,ΩMΩ,P[ε]U[ε] = u0 −M−1
Ω,ΩMΩ,P[ε]U[ε]

and writing

(6.5) uε(x) = Φ
(x
ε

){
u0(x)−

(
M−1

Ω,ΩMΩ,P[ε]U[ε]
)
(x)
}
+ φ(x)U[ε]

(x
ε

)
for all 0 < ε < ε⋆ and a.e. x ∈ Ωε.
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6.2. Intrinsic expansions. Theorem 6.1 shows an expansion of the solution uε on the
whole of Ωε, but the form of the expansion depends on the cutoffs Φ and φ and, in this
sense, it is not intrinsic. We will see that analyzing separately the solutions in the two re-
gions “close to the vertex of the cone” and “away from the vertex of the cone”, we can write
expansions that are independent from Φ and φ.

The region “close to the vertex of the cone” is by definition the region where the geometric
perturbation is living, i.e. where Ωε coincides with εP. Recall that Ωε coincides with εP
inside B(r0) (see Remark 2.4 (i)). Thus we may expect that inside B(r0), the solutions uε
can be described by the rapid variables X = x

ε
∈ P. Paradoxically, it is formula (6.4) from

which U[ε] is eliminated that will lead to such an inner expansion.
The other region “away from the vertex of the cone” is the region of the far field with

respect to ε-perturbations, namely the region where Ωε coincides with Ω. From Remark
2.4 (i), we recall that Ωε coincides with Ω outside B(εR0), so the outer region extends in
principle to Ω∩B∁(εR0), where solutions could be described in the slow variables x. Such
an outer expansion will be obtained through formula (6.5) from which u[ε] is eliminated

Before proving the formulas for the inner and outer expansions, we introduce certain
canonical harmonic functions K+

j and K−
j satisfying homogeneous Dirichlet conditions on

∂P and ∂Ω, respectively. Since these canonical functions K+
j and K−

j are not identically 0,
they cannot belong to the variational spaces H1

w,0(P) and H1
0 (Ω), but to some larger “dual”

spaces. Their definition relies on the following lemma.

Lemma 6.3. a) Let h+ be one of the homogeneous harmonic functions h+j on Γ. Then there
exists a unique function K+ ∈ L2

loc(P) satisfying the following three conditions

∆K+ = 0 in P,(6.6a)

K+ ∈ H1
0 (P ∩ B(ρ)) for any ρ > 0,(6.6b)

K+ − h+ ∈ H1
w,0(P ∩ B∁(R0)) .(6.6c)

Here H1
0 (P∩B(ρ)) and H1

w,0(P∩B∁(R0)) are defined as in Notation 4.1 (ii) and (iii), with
P replacing Γ.

b) Let h− be any of the homogeneous harmonic functions h−j on Γ. Then there exists a
unique function K− ∈ L2

loc(Ω) satisfying the following three conditions

∆K− = 0 in Ω,(6.7a)

K− ∈ H1
0 (Ω ∩ B∁(ρ)) for any ρ > 0,(6.7b)

K− − h− ∈ H1
0 (Ω ∩ B(r0)) ,(6.7c)

where H1
0 (Ω ∩ B∁(ρ)) and H1

0 (Ω ∩ B(r0)) are also defined as in Notation 4.1, but with Ω
replacing Γ.

Let us note that, due to its behavior at infinity, h+ does not belong to H1
w,0(P ∩ B∁(R0)).

Condition (6.6c) means thatK+(X) is equal to h+(X) when |X| → ∞, modulo a correction
in H1

w,0(P). In particular, it implies that K+ ̸≡ 0. Similarly, h− does not belong to H1
0 (Ω ∩

B(r0)) due to its behavior at the vertex, and condition (6.7c) means that K−(x) is equal to
h−(x) when |x| → 0, modulo a correction in H1

0 (Ω). Then we also deduce that K− ̸≡ 0.
Conditions (6.6b) and (6.7b) mean that K+ and K−, though not belonging to variational

spaces H1
w,0(P) and H1

0 (Ω), satisfy Dirichlet conditions on ∂P and ∂Ω, respectively.
We also note that in condition (6.6c), the space H1

w,0(P ∩ B∁(R0)) can be replaced with
H1

w,0(P ∩ B∁(ρ0)) for any ρ0 ≥ R0. This is because h+ belongs, by definition, to H1
0 (P ∩
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A (ρ, ρ′)) for any ρ, ρ′ ≥ R0, and K+ belongs to the same space by condition (6.6b). A
similar remark applies as well to K−.

Proof of Lemma 6.3. a) Since ∆h+ = 0 in Γ, we can verify that the identity ∆(Φh+) =
h+∆Φ + 2∇h+ · ∇Φ holds in P. Hence, ∆(Φh+) is a function in L2(P) with compact
support, defining an element of the dual space of H1

w,0(P). We introduce the corrector Y +

as the solution of the variational problem

(6.8) Y + ∈ H1
w,0(P) and ∆Y + = ∆(Φh+).

Then we take

(6.9) K+ = Φh+ − Y +.

By construction, K+ satisfies all conditions (6.6).
Proving the uniqueness of K+ boils down to showing that if a function K̃+ satisfies

conditions (6.6a), (6.6b), and (6.6c) with h+ = 0, then K̃+ = 0. This is evident because,
in this case, we have K̃+ ∈ H1

w,0(P ∩ B∁(R0)) by (6.6c), and K̃+ ∈ H1
0 (P ∩ B(2R0)) by

(6.6b). Thus, K̃+ is a harmonic function in H1
w,0(P), and it must be identically zero.

b) The proof for K− follows the same approach. In this case, ∆(φh−) defines a function
in L2(Ω), and we can introduce the corrector Y − as the solution of the variational problem

(6.10) Y − ∈ H1
0 (Ω) and ∆Y − = ∆(φh−).

Then, we set

(6.11) K− = φh− − Y −.

The proof of uniqueness of K− follows the same lines as that for K+. □

Notation 6.4. For all j ≥ 1, we define:
a) K+

j as the solution K+ given by Lemma 6.3 when h+ = h+j . We have

(6.12) K+
j = Φh+j − Y +

j ,

with Y +
j ∈ H1

w,0(P) such that ∆Y +
j = ∆(Φh+j ).

b) K−
j as the solution K− given by Lemma 6.3 when h− = h−j . We have

(6.13) K−
j = φh−j − Y −

j ,

with Y −
j ∈ H1

0 (Ω) such that ∆Y −
j = ∆(φh−j ).

Although the correctors Y +
j and Y −

j depend on the specific choice of the cutoff functions
Φ and φ, the problems (6.6) and (6.7), which define K+

j and K−
j , are independent of Φ

and φ. Thus, K+
j and K−

j also do not depend on the specific choice of the cutoff functions
and are, therefore, intrinsic objects of the perturbation domain P and the limit domain Ω,
respectively. Explicit formulas for K+

j and K−
j are available only in specific cases.

Example 6.5. a) If
P = Γ ∩ B∁(R0) ,

which means we are removing a circular hole centered at the vertex of the cone Γ, then we
have

K+
j = h+j −R

λ+
j −λ−

j

0 h−j in P

for all j ≥ 1.
b) Similarly, if Ω is the finite sector Γ ∩ B(r0), then

K−
j = h−j − r

λ−
j −λ+

j

0 h+j in Ω
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for all j ≥ 1.

In general, although explicit formulas may not be available, we can still obtain converging
expansions for K+

j at infinity and K−
j at the origin. Specifically, by applying Theorem 4.9

b) to the corrector Y +
j , we find

(6.14) K+
j = h+j −

∑
k≥1

Bk(Y
+
j )h−k in P ∩ B∁(2R0),

and, by applying Theorem 4.9 a) to the corrector Y −
j , we find

(6.15) K−
j = h−j −

∑
k≥1

ck(Y
−
j )h+k in Ω ∩ B(r0/2),

Note that the coefficients Bk(Y
+
j ) and ck(Y

−
j ) are also intrinsic; they do not depend on the

choice of cutoff functions Φ and φ. The sums
∑

k≥1Bk(Y
+
j )h−k and

∑
k≥1 ck(Y

−
j )h+k can

be considered the primal singular parts of K+
j and K−

j , respectively. In contrast, the terms
h+j and h−j represent the dual singular parts of K+

j and K−
j , respectively.

Remark 6.6. The functions K+
j and K−

j are widely used in the literature for extracting
coefficients in corner asymptotics (see, e.g., [34, 15, 7]). We now explain in detail how
this is done for the asymptotics at the vertex of Ω for an element u ∈ EΩ. Specifically, we
will use a duality formula with K−

j against ∆u. Since, for u ∈ EΩ, we have ∆u = 0 in
Ω ∩ B(r0/2)), formula (4.30) yields the asymptotic expansion

u =
∑
k≥1

ck(u)h
+
k ,

which convergences in H1
0 (Ω ∩ B(r0/2)). Then, provided that Ω is sufficiently regular to

apply the divergence theorem, we calculate∫
Ω

K−
j ∆u dx =

∫
Ω

φh−j ∆u dx−
∫
Ω

Y −
j ∆u dx

=

∫
Ω

φh−j ∆u dx−
∫
Ω

∆Y −
j u dx

=

∫
Ω

φh−j ∆u dx−
∫
Ω

∆(φh−j )u dx

=

∫
Ω∩B∁(ρ)

φh−j ∆u dx−
∫
Ω∩B∁(ρ)

∆(φh−j )u dx , ∀ρ ∈ [0, r0
2
].

Since the only part of the boundary of Ω ∩ B∁(ρ) where non-zero traces can appear is ρΓ̂,
and on ρΓ̂ the exterior normal derivative is −∂r while φ ≡ 1, we deduce that∫

Ω

K−
j ∆u dx =

∫
ρΓ̂

∂rh
−
j u− h−j ∂ru dσ .

Replacing u with the convergent sum
∑

k≥1 ck(u)h
+
k and using the orthogonality of the

angular functions ψk, we obtain∫
Ω

K−
j ∆u dx =

∫
ρΓ̂

∂rh
−
j cj(u)h

+
j − h−j ∂r(cj(u)h

+
j ) dσ

= cj(u)

∫
ρΓ̂

∂rh
−
j h+j − h−j ∂r h

+
j dσ

= cj(u) ρ
λ+
j +λ−

j +n−2(λ−j − λ+j ) = −2cj(u)

√(
1− n

2

)2
+ µj ,
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where, for the last equality, we used formula (4.20). Hence, the extraction formula

cj(u) = − 1

2
√
(1−n

2 )
2
+µj

∫
Ω

K−
j ∆u dx .

Similarly, for the asymptotics at infinity in P of elements U ∈ EP, we can derive the follow-
ing extraction formula:

Bj(U) =
1

2
√
(1−n

2 )
2
+µj

∫
P

K+
j ∆U dX .

6.3. Inner expansion. We introduce the inner expansion operator

(6.16) IΩ,Ω[ε] : EΩ ∋ u 7−→ (HεΦ)u−Hε

(
M−1

P,PMP,Ω[ε]u
)
∈ H1

0 ((εP) ∩ B(r0/2)),

which allows us to compactly write formula (6.4) as

(6.17) uε = HεU0 + IΩ,Ω[ε]u[ε].

We recall that any function u of EΩ has an expansion

u =
∑
j≥1

cj(u)h
+
j

as in (4.30), and we wish to show that we have

(6.18) IΩ,Ω[ε]u = IΩ,Ω[ε]

(∑
j≥1

cj(u)h
+
j

)
=
∑
j≥1

cj(u) IΩ,Ω[ε]h
+
j ,

where the last series converges in a suitable sense. This amounts to proving that the operator
IΩ,Ω[ε] expands into a convergent series of bounded operators. In addition, we will prove
that the terms IΩ,Ω[ε]h

+
j only depend on j and on the shape of the perturbation P, but not on

the specific choice of the cutoffs Φ and φ.
Then, applying (6.18) to the expansion

u[ε] =
∑
e∈E∞

εeue

from Theorem 6.1, we will derive an expansion of uε from (6.17).
So, we now focus on the terms IΩ,Ω[ε]h

+
j . Recalling that MP,Ω[ε] = [∆X ,Φ] ◦ H1/ε, we

can write

(6.19) IΩ,Ω[ε] = Hε ◦
(
Φ I−M−1

P,P[∆X ,Φ]
)
◦ H1/ε

where Φ I−M−1
P,P[∆X ,Φ] is a compact notation for the operatorU 7→ ΦU−M−1

P,P([∆X ,Φ]U).
We observe the following meaningful relation:

∆X(ΦU −M−1
P,P[∆X ,Φ]U) = ∆X(ΦU)− [∆X ,Φ]U = Φ(∆XU)

which implies that if U is harmonic in Γ and satisfies Dirichlet conditions on ∂Γ, then
(Φ I−M−1

P,P[∆X ,Φ])U is harmonic on P and satisfies Dirichlet conditions on ∂P.
Taking for U any of the homogeneous functions h+j , which are harmonic in Γ, we note

that for the canonical harmonic functions K+
j and their correctors Y +

j , we have

Y +
j := M−1

P,P[∆X ,Φ]h
+
j and K+

j =
(
Φ I−M−1

P,P[∆X ,Φ]
)
h+j

(see Notation 6.4 a)). We deduce that

IΩ,Ω[ε]h
+
j = ελ

+
j HεK

+
j .

Since theK+
j are intrinsic objects of P, the last equality implies that IΩ,Ω[ε]h

+
j only depends

on j and P.
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We now proceed to prove some bounds for the L2 norms of K+
j and ∇K+

j , which in turn
provide us with a bound for the H1 norm of HεK

+
j , and hence of IΩ,Ω[ε]h

+
j .

Lemma 6.7. Let R ≥ 2R0 and j ≥ 1.
(i) We have the following bounds for K+

j in P ∩ B(R), with a constant C independent of
j and R:

∥∇K+
j ∥

L2(P∩B(R))
≤ C(λ+j + 1)1/2Rλ+

j −1+n
2 ,(6.20a)

∥K+
j ∥

L2(P∩B(R))
≤ C(λ+j + 1)1/2Rλ+

j +n
2 .(6.20b)

(ii) Let ε ∈ (0, ε0
4
) and ρ ∈ [2εR0, r0/2]. Then we have the following bound for HεK

+
j in

εP ∩ B(ρ), with a constant C independent of ε, j and ρ:

(6.21) ∥HεK
+
j ∥

H1(εP∩B(ρ))
≤ C(λ+j + 1)1/2

(ρ
ε

)λ+
j

.

Proof. In what follows, we denote by the same letter C some constants that are independent
of j and R, but may depend on Φ, R0, and P, and may vary across different inequalities.

(i) We consider separately the two terms of K+
j , namely Φh+j and Y +

j .

▶ Concerning the term Φh+j , we observe that:

∥Φh+j ∥L2(P∩B(R))
≤ C∥h+j ∥L2(Γ∩B(R))

.

An explicit calculation yields

∥h+j ∥2L2(Γ∩B(R))
=

1

2λ+j + n
R2λ+

j +n ( ≤ R2λ+
j +n) .

Hence,

(6.22) ∥Φh+j ∥L2(P∩B(R))
≤ C Rλ+

j +n
2 .

Similarly,

∥∇(Φh+j )∥L2(P∩B(R))
≤ C

(
∥∇h+j ∥L2(Γ∩B(R))

+ ∥h+j ∥L2(Γ∩A (R0,2R0))

)
.

Hence, using (4.27a) and the formula for ∥h+j ∥2L2(Γ∩B(2R0))
,

∥∇(Φh+j )∥L2(P∩B(R))
≤ C

(√
λ+j R

λ+
j −1+n

2 + (2R0)
λ+
j +n

2

)
.

Since R ≥ 2R0, we can write (2R0)
λ+
j +n

2 ≤ 2R0R
λ+
j −1+n

2 and deduce from the previous
inequality that

(6.23) ∥∇(Φh+j )∥L2(P∩B(R))
≤ C(λ+j + 1)1/2Rλ+

j −1+n
2 .

▶ Concerning the term Y +
j , set C+

j := [∆X ,Φ]h
+
j so that M−1

P,PC
+
j = Y +

j . Relying on
(3.3b), we start from the resolvent estimate:

∥Y +
j ∥

H1
w(P)

≤ ∥Y +
j ∥

EP
= ∥M−1

P,PC
+
j ∥

EP
≤ C∥C+

j ∥
FP

= C∥C+
j ∥

L2(P)
.

But, since C+
j = [∆X ,Φ]h

+
j , we have:

∥C+
j ∥

L2(P)
≤ C∥h+j ∥H1(Γ∩A (R0,2R0))

≤ C
(√

λ+j (2R0)
λ+
j −1+n

2 + (2R0)
λ+
j +n

2

)
≤ C(λ+j + 1)1/2 (2R0)

λ+
j −1+n

2 .
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Observing that for any element w of H1
w(P) there holds

∥w∥2
H1

w(P)
≥ ∥∇w∥2

L2(P∩B(R))
+

1

R2 + 1
∥w∥2

L2(P∩B(R))

we deduce for Y +
j :

(6.24) ∥∇Y +
j ∥

L2(P∩B(R))
+

1

R + 1
∥Y +

j ∥
L2(P∩B(R))

≤ C(λ+j + 1)1/2 (2R0)
λ+
j −1+n

2 .

▶ Putting (6.22), (6.23), and (6.24) together, and using the fact that R ≥ 2R0, we obtain
the bounds (6.20a) and (6.20b).

(ii) To obtain the bound (6.21) forK+
j as a function of the rapid variable x/ε, it suffices to

use estimates (6.20a) and (6.20b) with R = ρ/ε, which is greater than or equal to 2R0 due
to the assumption that ρ ≥ 2R0ε, and then use the change of variables x = εX in integrals
and derivatives. □

From estimate (6.21) we readily deduce a bound for IΩ,Ω[ε]h
+
j = ελ

+
j HεK

+
j , which leads

to a representation of the inner expansion operator IΩ,Ω as a normally convergent series:

Proposition 6.8. Let cj be the trace operator defined in (4.28). The inner expansion opera-
tor IΩ,Ω[ε] (6.16)–(6.19) satisfies

(6.25) ∀u ∈ EΩ, IΩ,Ω[ε]u =
∑
j≥1

ελ
+
j cj(u) HεK

+
j ,

with normal convergence in H1-norm in the region Ωε ∩ B(r0/2) in the following sense:
For any ε1 ∈ (0, ε0

4
), for any r1 ∈ (0, r0

2
), there exists a constant C such that

(6.26) ∀ε ∈ (0, ε1], ∀u ∈ EΩ,
∑
j≥1

ελ
+
j |cj(u)| ∥HεK

+
j ∥

H1(Ωε∩B(r1))
≤ C∥u∥

EΩ
.

Proof. By Theorem 4.9 a), the harmonic function u can be expanded in H1
0 (Γ ∩ B(r0/2))

as a series of the homogeneous harmonic functions h+j , as follows:

u =
∑
j≥1

cj(u)h
+
j .

On one hand, using the homogeneity of the h+j , we obtain

(H1/εu)(X) =
∑
j≥1

cj(u)h
+
j (εX) =

∑
j≥1

ελ
+
j cj(u)h

+
j (X).

On the other hand, we can use Theorem 4.11 to write, for ε ∈
(
0, ε0

4

)
,

MP,Ω[ε]u =
∑
j≥1

ελ
+
j cj(u)[∆X ,Φ]h

+
j .

This leads immediately to the expansion (6.25) of IΩ,Ω[ε]u:

IΩ,Ω[ε]u =
∑
j≥1

ελ
+
j cj(u) Hε

(
Φh+j −M−1

P,P[∆X ,Φ]h
+
j

)
=
∑
j≥1

ελ
+
j cj(u) HεK

+
j .

Let us check the normal convergence. Using (4.29) (with the specific choice ρ = r0/2), we
deduce that

|cj(u)| ≤ (λ+j )
−1/2

(r0
2

)−λ+
j −1+n/2

∥∇u∥
L2(Γ∩B(r0/2))

.
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Let ε ∈ (0, ε0
4
). Combining the inequality above with (6.21) for ρ ∈ [2εR0, r0/2) leads to∑

j≥1

ελ
+
j |cj(u)| ∥HεK

+
j ∥

H1(εP∩B(ρ))

≤
(r0
2

)−1+n/2

∥∇u∥
L2(Γ∩B(r0/2))

∑
j≥1

ελ
+
j
(λ+j + 1)1/2

(λ+j )
1/2

(r0
2

)−λ+
j
(ρ
ε

)λ+
j

≤ C∥u∥
EΩ

∑
j≥1

(
2ρ

r0

)λ+
j

.

As ρ < r0/2, Lemma 4.14 yields the convergence of the latter series, from which we deduce
inequality (6.26). □

Remark 6.9. From Proposition 6.8, we see more clearly how a function u, harmonic near
the vertex of Γ and with Dirichlet conditions on ∂Γ, is transformed by IΩ,Ω[ε] into another
harmonic function with Dirichlet conditions on ε∂P through the formulas

u =
∑
j≥1

ελ
+
j cj(u) Hεh

+
j and IΩ,Ω[ε]u =

∑
j≥1

ελ
+
j cj(u) HεK

+
j .

We are now ready to prove Theorem 6.10, where we finally apply IΩ,Ω[ε] to the function
u[ε] =

∑
e∈E∞ εeue from Theorem 6.1.

Theorem 6.10. Let f ∈ FΩ, F ∈ FP, and let uε be the solution of problem (3.4). Un-
der the assumptions of Theorem 6.1, and with K+

j being the canonical harmonic function
introduced in Definition 6.4 a), we have for all 0 < ε < ε⋆:

(6.27) uε(x) = U0

(x
ε

)
+
∑
j≥1

∑
e∈E∞

εe+λ+
j cj(ue)K

+
j

(x
ε

)
, a.e. x ∈ Ωε ∩ B(r0/2)

where ue are the coefficients in the series
∑

e∈E∞ εeue = u[ε], which is the slow part in the
global expansion (6.2). Moreover, for all r1 ∈ (0, r0/2) and all ε1 ∈ (0, ε⋆) the series (6.27)
converges normally in H1(Ωε ∩ B(r1)) with the estimates

(6.28)
∑
j≥1

∑
e∈E∞

εe+λ+
j |cj(ue)|

∥∥∥K+
j

( ·
ε

)∥∥∥
H1(Ωε∩B(r1))

≤ C
(
∥f ∥

FΩ
+ ∥F ∥

FP

)
,

with C a constant independent of ε, f , and F .

Proof. Recall that from (6.17) we have uε = HεU0 + IΩ,Ω[ε]u[ε], with the series u[ε] =∑
e∈E∞ εeue normally converging in EΩ. Then, the result of the Theorem follows by linearity

from Proposition 6.8. Also note that the series (6.28) is bounded byC
∑

e∈E∞ εe∥ue∥EΩ
. □

Remark 6.11. Owing to the assumptions on the support of the right-hand side of equation
(3.4), the inner expansion is rather simple: uε−HεU0 appears as a sum in j of the canonical
harmonic functions K+

j with scalar coefficients
∑

e∈E∞ εe+λ+
j cj(ue) that are generalized

power series. Analogous structures can be more or less easily recognized in other works.
In [16, Sec. 5], which considers the same problem in dimension 2, a reorganization of the
constitutive terms of the inner expansion would yield similar formulas. In [5, Th. 4.7],
which considers an angle with a coating of width ε, canonical piecewise harmonic profiles
denoted there by Kλ are a building block of asymptotic expansions. In [22], which addresses
stochastic homogenization in a plane sector, this structure of canonical profile functions
associated with standard singular functions (denoted there τ̄n) appears clearly as early as
eqs. (6) and (7) in the form of the sum τ̄n + ϕC

n with the corrector ϕC
n. By contrast, the very

broad generality of the impressive [32, Chap. 4] makes it difficult to identify constitutive
structures inside asymptotic expansions.
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6.4. Outer expansion. The strategy to obtain the outer expansion, away from the vertex of
the cone, is similar to the one used for the inner expansion. However, we adopt a different
perspective. Instead of starting from (6.5), we begin with formula (6.4), with x in the region
Ωε ∩ B∁(εR0) = Ω ∩ B∁(εR0) (where HεΦ ≡ 1):

(6.29) uε(x) = u0(x) + φ(x)HεU[ε](x)−
(
M−1

Ω,ΩMΩ,P[ε]U[ε]
)
(x).

Recalling that MΩ,P[ε] = [∆, φ] ◦ Hε, we introduce the outer expansion operator

(6.30) OΩ,P[ε] = (φI−M−1
Ω,Ω[∆, φ]) ◦ Hε,

so that

(6.31) uε = u0 +OΩ,P[ε]U[ε].

We wish to prove that OΩ,P[ε] expands into a converging series of bounded operators and
apply it to the series expansion

U[ε] =
∑
e∈E∞

εeUe

from Theorem 6.1 to obtain an expansion of uε. Since ∆(φI−M−1
Ω,Ω[∆, φ]) = φ∆, for the

canonical harmonic functions K−
j and their correctors Y −

j , we find:

Y −
j = M−1

Ω,Ω[∆, φ]h
−
j and K−

j =
(
φI−M−1

Ω,Ω[∆, φ]
)
h−j

(see Notation 6.4 b)).
The proof of the following estimates for K−

j follows the same lines as in Lemma 6.7 and
is left to the reader. (It is even simpler here because the variational space is H1

0 (Ω), so we
do not have to deal with weights.)

Lemma 6.12. Let r ≤ r0/2 and j ≥ 1 be an integer. We have the following bounds for K−
j

in Ω ∩ B∁(r), with a constant C independent of j and R:

(6.32) ∥K−
j ∥

H1(Ω∩B∁(r))
≤ C(|λ−j |+ 1)1/2 rλ

−
j −1+n

2 .

We are now ready to show that the outer expansion operator OΩ,P[ε] can be expressed as
a convergent series of bounded operators.

Proposition 6.13. Let Bj be the trace operator defined in (4.31). The outer expansion
operator OΩ,P[ε] (6.30) satisfies

(6.33) ∀U ∈ EP, OΩ,P[ε]U =
∑
j≥1

ε−λ−
j Bj(U) K

−
j ,

with normal convergence in H1-norm in the region Ωε ∩ B∁(2εR0) in the following sense:
For any ε1 ∈ (0, ε0/4) and for any R1 > 2R0, there exists a constant C such that

(6.34) ∀ε ∈ (0, ε1], ∀U ∈ EP,
∑
j≥1

ε−λ−
j |Bj(U)| ∥K−

j ∥
H1(Ωε∩B∁(εR1))

≤ C∥U ∥
EP
.

Proof. Though similar to that of Proposition 6.8, the proof is given for completeness: By
part b) of Theorem 4.9, the harmonic function U can be expanded in H1

w,0(Γ∩B∁(2R0)) as
a series of the homogeneous harmonic functions h−j according to:

U =
∑
j≥1

Bj(U)h
−
j .

On one hand, using the homogeneity of the functions h−j , we obtain

(HεU)(x) =
∑
j≥1

Bj(u)h
−
j

(x
ε

)
=
∑
j≥1

ε−λ−
j Bj(U)h

−
j (x).
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On the other hand, we use Theorem 4.11 to write, for ε ∈ (0, ε0
4
),

MΩ,P[ε]U =
∑
j≥1

ε−λ−
j Bj(U)[∆x, φ]h

−
j .

This leads to the expansion (6.33) of OΩ,P[ε]U :

OΩ,P[ε]U =
∑
j≥1

ε−λ−
j Bj(U)

(
φh−j −M−1

Ω,Ω[∆x, φ]h
−
j

)
=
∑
j≥1

ε−λ−
j Bj(U) K

−
j .

Let us check the normal convergence. Using (4.32) (with ρ = 2R0) we deduce that

|Bj(U)| ≤ |λ−j |−1/2(2R0)
−λ−

j −1+n/2∥∇U ∥
L2(Γ∩B∁(2R0))

.

Let ε ∈ (0, ε0
4
). Combining the inequality above with (6.32) for ρ ∈ (2εR0, r0/2] leads to∑

j≥1

ε−λ−
j |Bj(U)| ∥K−

j ∥
H1(Ω∩B∁(ρ))

≤ ∥∇U ∥
L2(Γ∩B∁(2R0))

∑
j≥1

ε−λ−
j |λ−j |−1/2(2R0)

−λ−
j −1+n/2∥K−

j ∥
H1(Ω∩B∁(ρ))

≤ ∥U ∥
EP

∑
j≥1

ε−λ−
j
(|λ−j |+ 1)1/2

|λ−j |1/2
(2R0)

−λ−
j −1+n/2ρλ

−
j −1+n

2

≤ C(2R0ρ)
−1+n

2 ∥U ∥
EP

∑
j≥1

(
2R0ε

ρ

)−λ−
j

.

Since ρ > 2εR0, Lemma 4.14 yields the convergence of the latter series, from which we
deduce inequality (6.34). □

Equality (6.31) can be written as uε = u0 + OΩ,P

(∑
e∈E∞ εeUe

)
, which, thanks to the

description of the operator OΩ,P as a normally converging series in Proposition 6.13, yields
the following outer expansion for uε:

Theorem 6.14. Let f ∈ FΩ, F ∈ FP, and let uε be the solution of problem (3.4). Un-
der the assumptions of Theorem 6.1, and with K−

j being the canonical harmonic function
introduced in Definition 6.4 b), we have for all 0 < ε < ε⋆:

(6.35) uε(x) = u0(x) +
∑
j≥1

∑
e∈E∞

εe−λ−
j Bj(Ue)K

−
j (x) , a.e. x ∈ Ωε ∩ B∁(2R0ε)

where
∑

e∈E∞ εeUe = U[ε] is the rapid part in the global expansion (6.2). Moreover, for all
R1 > 2R0 and all ε1 ∈ (0, ε⋆) the series (6.35) converges normally in H1(Ωε ∩ B∁(εR1))
with the estimates

(6.36)
∑
j≥1

∑
e∈E∞

εe−λ−
j |Bj(Ue)|∥K−

j ∥
H1(Ωε∩B∁(εR1))

≤ C
(
∥f ∥

FΩ
+ ∥F ∥

FP

)
,

with C a constant independent of ε, f , and F .
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6.5. Conclusion: Comparison of expansions. In conclusion of this paper, we now com-
pare the three expansions (6.2) (global), (6.27) (inner), and (6.35) (outer). As a result, we
will demonstrate that the coefficients of these expansions can be computed through a recur-
sive procedure involving a finite number of numerical operations, starting from the solutions
u0 andU0 of the limiting problems (6.3). While recursive procedures of this kind are familiar
in the framework of the Matched Asymptotic Expansion method, our approach is different:
we first establish a convergent global expansion and then derive the recursive algorithm.
This method has the advantage of identifying interaction matrices that remain the same at
each step of the procedure.

The comparison of the global, inner, and outer expansions is made possible by their con-
vergence in the common annular transition region

Aε ∩ Γ with Aε := A (2R0ε, r0/2) .

Indeed, for any ε ∈ (0, ε0/4] we have identities

Aε ∩ Γ = Aε ∩ Ω = Aε ∩ εP = Aε ∩ Ωε ,

and this transition region is the intersection between the domains of validity of inner and
outer expansions.

Let ε1 ∈ (0, ε⋆) and let ρ ∈ (2R0ε1, r0/2) (so that ρ ∈ (2R0ε, r0/2) for all ε ∈ [0, ε1]).
Choose ε ∈ (0, ε1] and let x ∈ ρΓ̂. Then x belongs to the transition region and moreover,
φ(x) = Φ(x

ε
) = 1. With f ∈ FΩ and F ∈ FP, the global, inner, and outer expansions (6.2),

(6.27), and (6.35) hold simultaneously at x. Accordingly, we have

uε(x) =
∑
e∈E∞

εeue(x) +
∑
e∈E∞

εeUe

(x
ε

)
= U0

(x
ε

)
+
∑
j≥1

∑
e∈E∞

εe+λ+
j cj(ue)K

+
j

(x
ε

)
,

= u0(x) +
∑
j≥1

∑
e∈E∞

εe−λ−
j Bj(Ue)K

−
j (x) .

We can compare these three representations by expanding each of them in the family of
homogeneous harmonic functions

{h+k , k ≥ 1} ∪ {h−k , k ≥ 1} .

Since the h+k and h−k are independent in L2(Aε ∩ Γ), we can identify the coefficients of the
h+k and h−k and obtain relations between the coefficients cj(ue) and Bj(Ue) of the original
series (see Lemma 6.15 below). Owing to Theorem 4.9 and expansions (6.14) and (6.15) of
K±

j , the functions ue, Ue, K+
j , and K−

j can be expanded as follows:

ue(x) =
∑
k≥1

ck(ue)h
+
k (x)

Ue

(x
ε

)
=
∑
k≥1

Bk(Ue)h
−
k

(x
ε

)
=
∑
k≥1

ε−λ−
k Bk(Ue)h

−
k (x)

K+
j

(x
ε

)
= h+j

(x
ε

)
−
∑
k≥1

Bk(Y
+
j )h−k

(x
ε

)
= ε−λ+

j h+j (x)−
∑
k≥1

ε−λ−
k Bk(Y

+
j )h−k (x)

K−
j (x) = h−j (x)−

∑
k≥1

ck(Y
−
j )h+k (x).



42 MARTIN COSTABEL, MATTEO DALLA RIVA, MONIQUE DAUGE, AND PAOLO MUSOLINO

Coming back to uε we obtain

uε(x) =
∑
e∈E∞

∑
k≥1

εeck(ue)h
+
k (x) +

∑
k≥1

εe−λ−
k Bk(Ue)h

−
k (x)


=
∑
k≥1

ε−λ−
k Bk(U0)h

−
k (x) +

∑
j≥1

∑
e∈E∞

εe+λ+
j cj(ue)

ε−λ+
j h+j (x)−

∑
k≥1

ε−λ−
k Bk(Y

+
j )h−k (x)


=
∑
k≥1

ck(u0)h
+
k (x) +

∑
j≥1

∑
e∈E∞

εe−λ−
j Bj(Ue)

h−j (x)−
∑
k≥1

ck(Y
−
j )h+k (x)

 .

Recalling that all these sums are normally convergent, we can reorganize them as follows:

uε(x) =
∑
k≥1

(∑
e∈E∞

εeck(ue)

)
h+k (x) +

∑
k≥1

(∑
e∈E∞

εe−λ−
k Bk(Ue)

)
h−k (x)

=
∑
j≥1

(∑
e∈E∞

εecj(ue)

)
h+j (x) +

∑
k≥1

ε−λ−
k Bk(U0)−

∑
j≥1

∑
e∈E∞

εe+λ+
j −λ−

k cj(ue)Bk(Y
+
j )

 h−k (x)

=
∑
k≥1

ck(u0)−
∑
j≥1

∑
e∈E∞

εe−λ−
j Bj(Ue) ck(Y

−
j )

h+k (x) +
∑
j≥1

(∑
e∈E∞

εe−λ−
j Bj(Ue)

)
h−j (x) .

Since the above identities are valid for all x ∈ ρΓ̂ and all ρ ∈ (2R0ε1, r0/2) (and thus for all
x ∈ Aε1 ∩ Γ), and since the functions h±j are independent in L2(Aε1 ∩ Γ), we can identify
the coefficients of the h±j and we find the following two independent relations:∑

e∈E∞

εeck(ue) = ck(u0)−
∑
j≥1

∑
e∈E∞

εe−λ−
j Bj(Ue) ck(Y

−
j ), ∀k ≥ 1

and∑
e∈E∞

εe−λ−
k Bk(Ue) = ε−λ−

k Bk(U0)−
∑
j≥1

∑
e∈E∞

εe+λ+
j −λ−

k cj(ue)Bk(Y
+
j ), ∀k ≥ 1 .

Multiplying the second equality by ελ
−
k , we obtain∑

e∈E∞

εeBk(Ue) = Bk(U0)−
∑
j≥1

∑
e∈E∞

εe+λ+
j cj(ue)Bk(Y

+
j ), ∀k ≥ 1 .

Then, subtracting ck(u0) from the first equation and Bk(U0) from the second, we arrive at∑
e∈E∞\{0}

εeck(ue) = −
∑
j≥1

∑
e′∈E∞

εe
′−λ−

j Bj(Ue′) ck(Y
−
j ), ∀k ≥ 1

and ∑
e∈E∞\{0}

εe Bk(Ue) = −
∑
j≥1

∑
e′∈E∞

εe
′+λ+

j cj(ue′)Bk(Y
+
j ), ∀k ≥ 1 .

We now identify the powers of ε and prove the following:

Lemma 6.15. With the assumptions and notations of Theorem 6.1, and with cj and Bj as
defined in Theorem 4.9, we have

(6.37a) ck(ue) = −
∑

j≥1 s.t. e+λ−
j ∈E∞

Bj(Ue+λ−
j
) ck(Y

−
j ), ∀e ∈ E∞ \ {0}, ∀k ≥ 1
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and

(6.37b) Bk(Ue) = −
∑

j≥1 s.t. e−λ+
j ∈E∞

cj(ue−λ+
j
)Bk(Y

+
j ), ∀e ∈ E∞ \ {0}, ∀k ≥ 1.

The terms present in identities (6.37a) and (6.37b) play distinctive roles: whereas the
coefficients ck(Y

−
j ) and Bk(Y

+
j ) only depend on P and Ω, and can, in this sense, be con-

sidered characteristic of the problem (see the comment after (6.15)), the other coefficients
ck(ue) and Bk(Ue) can be considered as unknowns in a recursive system. This is clarified
by writing identities (6.37a) and (6.37b) in matrix form for each e ∈ E∞ \ {0}. To do so, we
need some additional notation.

Notation 6.16 (Interaction matrices). We introduce the semi-infinite square matrices SΩ and
SP as follows:

• SΩ is the matrix with entries (SΩ)kj := ck(Y
−
j ), for k ≥ 1 and j ≥ 1;

• SP is the matrix with entries (SP)kj := Bk(Y
+
j ), for k ≥ 1 and j ≥ 1.

Once more, we recall that the entries of the matrices SΩ and SP can be obtained from
solutions of Dirichlet problems in Ω and P, respectively, and that they are intrinsic.

The concept of these matrices evokes the idea of scattering, if we read the expansion
(6.14) as describing the “total” field K+

j as the sum of the non-variational “incoming” field
h+j and a “scattered” field that has an expansion at infinity in the basis of the “outgoing”
fields h−j with expansion coefficients constituting the matrix SP. Similarly, SΩ is related via
(6.15) to a scattering problem at the vertex of the cone, with the roles of h+j and h−j inverted.

Notation 6.17. LetC be the vector space of real semi-infinite column vectors: v :=
(
vj
)
j≥1

.
Let C[[ΞE∞

]] be the (vector) space of formal series with exponent set E∞ and values in C,
so that any element of C[[ΞE∞

]] is a formal series a :=
∑

e∈E∞ ae Ξ
e with ae =

(
ae;j
)
j≥1

(cf. Appendix B). We introduce the operators Π+ and Π− on C[[ΞE∞
]] that take a formal

series a :=
∑

e∈E∞ ae Ξ
e to the series a+ = Π+a and a− = Π−a, respectively. These

operators are defined as follows:

• a+ is the formal series
∑

e∈E∞ a+e Ξe with coefficients a+e =
(
a+e;j
)
j≥1

given by

a+e;j =

{
ae−λ+

j ; j if e− λ+j ∈ E∞ ,

0 else.

• a− is the formal series
∑

e∈E∞ a−e Ξe with coefficients a−e =
(
a−e;j
)
j≥1

given by

a−e;j =

{
ae+λ−

j ; j if e+ λ−j ∈ E∞ ,

0 else.

Then, the identities (6.37a) and (6.37b) can be written in matrix-vector products as

(6.38) ce = SP B
−
e and Be = SΩ c+e , ∀e ∈ E∞ \ {0} ,

where c and B are the formal series with coefficients ce =
(
cj(ue)

)
j≥1

and Be =
(
Bj(Ue)

)
j≥1

,
respectively.

The system of equations (6.38) displays the following algorithmic feature: For any j ≥ 1,
we have e − λ+j < e and e + λ−j < e. Therefore, the values of B−

e and c+e only depend
on coefficient of c and B with exponents e′ that are strictly smaller than e, making (6.38) a
system that can be solved recursively. This leads to the following statement:
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Theorem 6.18. Let f ∈ FΩ and F ∈ FP. Under the assumptions of Theorem 6.1, the solu-
tion uε of problem (3.4) can be obtained for all ε ∈ (0, ε⋆) using the following algorithm:

Define the formal series c with coefficients ce and B with coefficients Be recursively
(with increasing e ∈ E∞) as follows:

(1) For e = 0, set c0 =
(
cj(u0)

)
j≥1

and B0 =
(
Bj(U0)

)
j≥1

, with u0 and U0 solutions
of the limit problems (6.3).

(2) For e > 0, determine ce and Be using (6.38), where the values of B−
e and c+e only

depend on exponents e′ < e.
Then the inner and outer expansions of uε are given by

U0

(x
ε

)
+
∑
j≥1

∑
e∈E∞

εe+λ+
j ce;j K

+
j

(x
ε

)
,

and
u0(x) +

∑
j≥1

∑
e∈E∞

εe−λ−
j Be;j K

−
j (x) ,

respectively, leading to the full knowledge of uε.

We also note that, since the sequences {−λ+j }j and {λ−j }j tend to −∞, for a fixed e ∈ E∞

the vectors B−
e and c+e have only a finite number of nonzero entries. Consequently, the

entries ce;j and Be;j of ce and Be can be determined with a finite number of numerical
operations.
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APPENDIX A. KELVIN TRANSFORMATION

The parallel statements for the bounded and unbounded truncated cones Γ ∩ B(ρ) and
Γ∩B∁(ρ) that we have seen in Section 4 were proved using similar reasonings and compu-
tations for both cases. There exists a clearcut method to obtain the second case directly as
a corollary from the first one, by means of the Kelvin transform. This transform is defined
using the reflection at the unit sphere Sn−1:

x 7→ X = |x|−2x.

The Kelvin transformation K maps a function u to the function U = K[u], defined by

(A.1) U(X) = K[u](X) := |X|2−nu(|X|−2X) = |x|n−2u(x).

For ρ > 0, we can use the dilation operator Hρ introduced in Section 3.1:

Hρu(x) = u(x
ρ
) ,

to define the corresponding transformation Kρ associated with the reflection at the sphere of
radius ρ:

Kρ := Hρ ◦ K ◦ H 1
ρ
.

This gives the formula
Kρ[u](X) = ( ρ

|X|)
n−2u(( ρ

|X|)
2X) .

Here is the basic fact:

Lemma A.1. Let ρ > 0. The Kelvin transformation Kρ associated with the reflection at the
sphere of radius ρ is an isomorphism between H1

0 (Γ ∩ B(ρ)) and H1
w,0(Γ ∩ B∁(ρ)).

Proof. Because Hρ provides isomorphisms between H1
0 (Γ ∩ B(1)) and H1

0 (Γ ∩ B(ρ)) as
well as between H1

w,0(Γ∩B∁(1)) and H1
w,0(Γ∩B∁(ρ)), it is sufficient to give the proof for

ρ = 1.
Writing X = Rϑ and x = rϑ, with ϑ ∈ Sn−1, we easily find that

|U(X)|2Rn−3dR = |u(x)|2rn−3dr ,

∂RU(X) = rn
(

2−n
r
u(x)− ∂ru(x)

)
,

∇TU(X) = rn∇Tu(x)

|∇U(X)|2Rn−1dR = |∇u(x)|2rn−1dr + (n− 2)∂r
(
rn−2u(x)2

)
dr .

Integrating these identities for u ∈ C∞
0 (Γ), we obtain

∥U
R
∥
L2(Γ∩B∁(1))

= ∥ u
r
∥
L2(Γ∩B(1))

,(A.2)

∥∇U ∥2
L2(Γ∩B∁(1))

= ∥∇u∥2
L2(Γ∩B(1))

+ (n− 2)∥ tr1 u∥2
L2(Γ̂)

,(A.3)

∥∇U ∥2
L2(Γ)

= ∥∇u∥2
L2(Γ)

.(A.4)

Then, combining (A.3) with the estimate (4.5) from Lemma 4.2, we obtain that

∥∇u∥2
L2(Γ∩B(1))

≤ ∥∇U ∥2
L2(Γ∩B∁(1))

≤ (1 + (n− 2)C2
Γ̂
)∥∇u∥2

L2(Γ∩B(1))
,

which implies the equivalence of the H1 seminorms of u ∈ C∞
0 (Γ) and its transform U .

Observing that K maps C∞
0 (Γ) to itself, and using a standard density argument, we obtain

the equivalence of the norms in H1
0 (Γ ∩ B(1)) of u and in H1

w,0(Γ ∩ B∁(1)) of K[u], thus
proving that K is an isomorphism betweenH1

0 (Γ∩B(1)) andH1
w,0(Γ∩B∁(1)), with inverse

given by the same formula. □
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For example, Lemma A.1 can be used to deduce the trace estimate (4.6) directly from
(4.5). It suffices to notice that the traces on ρΓ̂ of u and its transform Kρ[u] are the same.

Another straightforward consequence of equation (A.4) is the well-known classical rela-
tion:

∆K[u] = K[|x|4∆u] ,
which shows that K preserves harmonic functions.

For the special harmonic functions h±j , which form the bases for the expansion of har-
monic functions near the origin or near infinity, we have the relation

(A.5) h−j = K[h+j ] .

APPENDIX B. GENERALIZED POWER SERIES

B.1. Formal generalized power series. In this paper, we come across series of the form
∞∑
j=0

cjξ
ej

where {ej}∞j=0 is a sequence of nonnegative real exponents and {cj}∞j=0 is a sequence of
coefficients in a suitable space of functions or operators.

The study of such series has a rich history in algebra, with early contributions by Hahn
[18], MacLane [30], Mal’tsev [31], and Neumann [36]. Over time, the theory surrounding
these series has evolved and branched out into various directions, connecting with concepts
such as formal Laurent series, surreal numbers, and the Levi-Civita field, among other al-
gebraic structures. In particular, the generalization has concerned the set of exponents, that
can be an unspecified ordered monoid (i.e. ordered additive semigroup with a zero element).

For this paper, we do not require the full generality provided in the algebraic theory.
Only a few elementary facts will be sufficient. In particular, we will confine ourselves to
generalized power series with exponents in [0,+∞), which for this purpose we will denote
by E+. Although the results in this section are well known, for the sake of convenience of
the reader, we give some relevant proofs.

A generalized power series
f :=

∑
e∈E

ceΞ
e

with exponents in a set E, coefficients in C and indeterminate Ξ is simply a mapping e 7→ ce
from E to C. When the set C has additional structure, such as that of a group or ring, the set
of such series will acquire an analogous structure, as suggested by the writing as sums. In
general, we assume that C is an additive group with neutral element 0. The subset

Ef := {e ∈ E, ce ̸= 0}
is called the support of f. Let us first recall:

Definition B.1. A totally ordered set E is said well-ordered if every nonempty subset of E
has a smallest element.

Remark B.2. The proofs of the following statements are easy exercises.
(i) Any well-ordered subset of E+ is countable.
(ii) Any discrete subset of E+ (i.e. a set without finite accumulation points) is well-ordered.
(iii) There exist well-ordered sets that are not discrete (for example containing an increasing
converging sequence).
(iv) A non-empty totally ordered set E is well-ordered if and only if it does not contain
an infinite strictly decreasing sequence or equivalently, every sequence in E contains an
increasing subsequence.
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Definition B.3. Let C be an additive group. The set of generalized power series f with
exponents in E ⊂ E+ and coefficients in C such that

(B.1) the support Ef is well-ordered

is denoted by C[[ΞE]].

If E ⊂ E′, then C[[ΞE]] is in a natural way contained in C[[ΞE′
]] (extension by zero), so

that all the generalized power series we will consider here belong to C[[ΞE+ ]].
The group structure of C gives C[[ΞE+ ]] a group structure: If f :=

∑
e∈E ceΞ

e and f′ :=∑
e∈E′ c′eΞ

e, then

f+ f′ :=
∑

e∈E∪E′

(ce + c′e)Ξ
e .

The important observation is that Ef+f′ ⊂ Ef ∪ Ef′ , and this is well-ordered if Ef and Ef′ are
well-ordered. The neutral element of C[[ΞE+ ]] for the addition is the null series with empty
support.

Similarly, the structure of a vector space over a field K carries over from C to C[[ΞE+ ]].
If C is a ring, then C[[ΞE+ ]] has a ring structure, too: The product is defined by

f f′ =
∑

e∈E+E′

( ∑
e1+e2=e

e1∈E,e2∈E′

ce1c
′
e2

)
Ξe .

For the supports one has

Ef f′ ⊂ Ef + Ef′ = {e1 + e2, e1 ∈ Ef, e2 ∈ Ef′} .

At this point, the condition of the well-ordering of the supports becomes essential.

Lemma B.4. Let E1,E2 be well-ordered subsets of E+ = [0,∞). Then E1 + E2 is well-
ordered, and for any e ∈ E1 + E2 the set

{(e1, e2) ∈ E1 × E2, e1 ∈ E1, e2 ∈ E2, e1 + e2 = e}

is finite.

Proof. We use Remark B.2, (iv). Suppose that (ej)j∈N is a sequence in E1 + E2 with
ej = ej1 + ej2, ejk ∈ Ek. The sequence (ej1)j contains an increasing subsequence (ejℓ1)ℓ.
If (ej)j∈N were strictly decreasing, then (ejℓ2)ℓ would also be strictly decreasing, in contra-
diction with the well-orderedness of E2. Hence E1 + E2 is well-ordered. Suppose now there
exists e ∈ E1+E2 with an infinite number of different decompositions e = ej1+ ej2, j ∈ N,
ejk ∈ Ek. We may assume that (ej1)j is strictly increasing, implying the contradiction that
(ej2)j is strictly decreasing. □

The ring C is naturally embedded in C[[ΞE+ ]] by identifying c0 ∈ C with the series c0Ξ0,
written simply as c0. If C has a left and right multiplicative identity 1, then this yields a
multiplicative identity for C[[ΞE+ ]] as well, which we denote with the same symbol 1. One
can then talk about (left and right) inverses of formal generalized power series.

Before stating the main result of this section, we need a lemma that makes use of the
archimedian property of E+ = [0,∞).

Lemma B.5. Let E be a well-ordered subset of E+ and let

E∞ = {e = e1 + . . .+ ek, e1, . . . , ek ∈ E ∪ {0}, k ∈ N∗}.

be the monoid generated by E. Then E∞ is well-ordered.
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Proof. Let e∗ be the smallest nonzero element of E. If no such element exists, then E∞ =
{0}, which is well-ordered. Let S ⊂ E∞ and e0 ∈ S. To prove that S has a smallest element,
it suffices to prove the same for S ′ := {e ∈ S, e ≤ e0}. Since E+ is archimedian, there
exists k ∈ N such that ke∗ > e0. Let

Ek = {e1 + . . .+ ek, e1, . . . , ek ∈ E ∪ {0} } .
Then S ′ ⊂ Ek, and since Ek is well-ordered according to Lemma B.4, S ′ has a smallest
element. □

Theorem B.6. Let C be a ring with identity 1. Let f ∈ C[[ΞE+ ]] with 0 ̸∈ Ef. Then 1 + f is
invertible in C[[ΞE+ ]] with inverse given by the formal Neumann series

(B.2) (1 + f)−1 := 1 +
∞∑
k=1

(−f)k = 1 +
∑
e∈E∞

f

( ∞∑
k=1

(−1)k
∑

e1+···+ek=e
e1,...,ek∈Ef

ce1 . . . cek

)
Ξe

with support contained in the monoid E∞
f .

Proof. This is a well-defined formal generalized power series, because for any e ∈ E∞
f , the

sum defining the coefficient of Ξe is finite, see Lemma B.4. The proof is then the usual
identity:

f
(
1 +

∞∑
k=1

(−f)k
)
=
(
1 +

∞∑
k=1

(−f)k
)
f = 1 −

(
1 +

∞∑
k=1

(−f)k
)
.

□

Corollary B.7. Let f =
∑

e ceΞ
e ∈ C[[ΞE+ ]]. Then f is invertible in C[[ΞE+ ]] if and only if

c0 is invertible in C.

Proof. If f is invertible, then the constant term in f−1 is the inverse of c0. If c0 is invertible,
write c−1

0 f = 1 +
∑

e̸=0 c
−1
0 ceΞ

e and apply the theorem. □

Remark B.8. The infinite series
∑∞

k=1(−f)k converges formally in the sense that for expo-
nents below a given finite threshold, only a finite number of terms in the series are con-
tributing. This type of formal convergence can be made into a convergence with respect
to a metric if one introduces the valuation v(f) of a generalized power series f ∈ C[[ΞE+ ]]
and then the modulus |f| (not a norm!) by looking at the smallest exponent with non-zero
coefficient.

(B.3) v(f) := minEf ; |f| := e−v(f) if f ̸= 0 , |0| := 0 .

One has |f + g| ≤ max{|f|, |g|}, and with the metric d(f, g) = |f − g|, C[[ΞE+ ]] becomes a
complete ultra-metric space. In particular, if 0 ̸∈ Ef as in Theorem B.6, then |f| < 1, and
because of |f g| ≤ |f||g| and hence |(−f)k| ≤ |f|k, the convergence of the series

∑∞
k=1(−f)k

follows.
This type of convergence is, however, not the convergence that we will study in the next

section.

B.2. Convergent generalized power series. If the coefficients C are nonnegative reals,
C = E+, a formal power series f =

∑
e ceΞ

e ∈ C[[ΞE+ ]] can be evaluated at ξ > 0:

f(ξ) =
∑
e∈Ef

ceξ
e ∈ [0,∞].

The value of the sum does not depend on the order of summation, and the function ξ 7→ f(ξ)
is monotone. In particular, if f(ξ) < ∞ for some ξ > 0, then f(η) < ∞ for 0 < η ≤ ξ.
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Additionally, in this case, η 7→ f(η) is continuous on (0, ξ] and has a continuous extension
to [0, ξ], because

lim
η→0

f(η) = c0 .

Note that Ef is a well-ordered subset of [0,∞) and therefore countable, so that the series
defining f(ξ) can be understood in the usual way as the limit of finite partial sums. It is also
normally convergent on [0, ξ] in the sense that∑

e∈Ef

sup
η∈[0,ξ]

ceη
e <∞ ,

because supη∈[0,ξ] ceη
e = ceξ

e.
These properties can be used to bound series with coefficients in a normed vector space.

Let C be a normed vector space with norm ∥ · ∥. The mapping N defined by

N
(∑

e

ceΞ
e
)
=
∑
e

∥ce∥Ξe

associates a generalized power series f =
∑

e ceΞ
e in C[[ΞE+ ]] with a generalized power

series N(f) ∈ E+[[Ξ
E+ ]]. The support of N(f) is the same as the support of f.

Definition B.9. We call f ∈ C[[ΞE+ ]] a convergent generalized power series if there exists
ξ > 0 such that N(f)(ξ) < ∞. The set of convergent generalized power series with expo-
nents in E is denoted by C[[ΞE]]∗, and for ξ > 0, we write C[[ΞE]]ξ for the subset of those f
for which N(f)(ξ) <∞.

An example of a convergent generalized power series is a series that satisfies a polynomial
growth estimate for the exponents and an exponential growth estimate for the coefficients.
In what follows, we write #{e < b, e ∈ E} for the number of exponents in E ⊂ E+ that
are smaller than b. This number is finite for all b > 0 if and only if E is discrete.

Lemma B.10. Let f =
∑

e∈E ceΞ
e ∈ C[[ΞE+ ]] and assume that there are positive constants

a, d, ρ, m such that

(B.4) #{e < b, e ∈ E} ≤ a(b+ 1)m for all b > 0 and ∥ce∥ ≤ d ρe for all e ∈ E .

Then f ∈ C[[ΞE]]ξ for all ξ ∈ (0, 1
ρ
).

Proof. For k ∈ N, the number of exponents in the interval [k, k + 1) is bounded by #{e <
k + 1, e ∈ E} ≤ a(k + 2)m and the norm ∥ce∥ of the corresponding coefficients by
d max{ρk, ρk+1}. Therefore, for any ξ > 0 we have

N(f)(ξ) =
∞∑
k=0

∑
k≤e<k+1

∥ce∥ ξe ≤
∞∑
k=0

a d max{1, 1
ρ
}(k + 2)m(ρξ)k+1 .

This is convergent as soon as ρξ < 1. □

If C is a Banach space and f ∈ C[[ΞE]]ξ, then the series f(ξ) =
∑

e∈Ef
ceξ

e converges in
C, and one has ∥f(ξ)∥ ≤ N(f)(ξ). Then, the series

f(η) =
∑
e

ceη
e

converges normally in C for all η ∈ [0, ξ]. It follows that the sum does not depend on the
order of summation, that ∥f(η)∥ ≤ N(f)(ξ), and that η 7→ f(η) is a continuous function on
[0, ξ] with values in C. In particular, f(η) → c0 in C as η → 0.

It is not hard to see that
∥f∥

ξ
:= N(f)(ξ)
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is a norm that makes C[[ΞE]]ξ a normed vector space. If E is well-ordered, then one can
readily show that C[[ΞE]]ξ is a Banach space, and if C is a Banach algebra, then ∥ · ∥ξ makes
C[[ΞE]]ξ a Banach algebra. In particular, we have

(B.5) ∥f g∥
ξ
≤ ∥f∥

ξ
∥g∥

ξ
.

We observe that to prove the completeness of C[[ΞE]]ξ, we cannot relax the assumption
that E is well-ordered. As an example, consider E = E+ and let fN :=

∑N
j=1 2

−jΞ1/j . We
can verify that {fN}∞N=1 is a Cauchy sequence in R[[ΞE+ ]]ξ for any given ξ > 0, but the
support of the limiting series

∑∞
j=1 2

−jΞ1/j is not well-ordered.
For our applications, we need two further results on convergent generalized power series,

for which we will provide proofs.
The first is the identity principle, that says that the coefficients of a convergent generalized

power series f can be recovered from the function ξ 7→ f(ξ).

Proposition B.11. Let C be a Banach space. Let f, g ∈ C[[ΞE]]∗. If there exists a sequence
{ξi}i of positive real numbers such that ξi → 0 and f(ξi) = g(ξi) for all i ≥ 1, then f = g.

Proof. By considering the difference f − g, we see that it suffices to give the proof for the
case g = 0. So let f(ξi) = 0 for all i. If f ̸= 0, its support Ef is not empty and has a
smallest element e1. Let c1 be the corresponding coefficient. Set f1 :=

∑
e ceΞ

e−e1 . Then
f1 ∈ C[[ΞE+ ]]∗ with f1(ξi) = ξ−e1

i f(ξi) = 0 for all i, and we arrive at the contradiction

c1 = lim
ξ→0

f1(ξ) = 0 .

□

The second and most important result concerns the inverse of a convergent generalized
power series.

Theorem B.12. Let C be a Banach algebra and let f =
∑

e∈E ceΞ
e ∈ C[[ΞE+ ]]∗ be a

convergent generalized power series with E ⊂ E+. Assume that minEf > 0 and

∥f∥
ξ
< 1 for some ξ > 0 .

Then the formal power series (1+f)−1, which exists according to Theorem B.6, is convergent
and thus an element of C[[ΞE∞

f ]]ξ.

Proof. The Neumann series

(1 + f(ξ))−1 =
∞∑
k=0

(
− f(ξ)

)k
converges in C, because we have ∥f(ξ)∥ ≤ ∥f∥ξ < 1 and ∥(−f(ξ))k∥ ≤ ∥f∥kξ (see (B.5)).
According to the expression for the powers fk in (B.2), we have(

f(ξ)
)k

= (fk)(ξ) .

It follows that
(1 + f(ξ))−1 =

(
(1 + f)−1

)
(ξ)

and

∥
(
(1 + f)−1

)
∥
ξ
≤

∞∑
k=0

∥f∥kξ =
(
1− ∥f∥

ξ

)−1
.

Hence, (1 + f)−1 ∈ C[[ΞE∞
f ]]ξ . □
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Corollary B.13. Let C be a Banach algebra and let f =
∑

e ceΞ
e ∈ C[[ΞE+ ]]∗ be a conver-

gent generalized power series such that c0 is invertible. Then the generalized power series
f−1, which exists according to Corollary B.7, is convergent.

Proof. Let g = c−1
0 f− 1. Then

f = c0(1 + g) and 0 ̸∈ Eg .

We know that g(ξ) exists for sufficiently small ξ, and that g(ξ) → 0 in C as ξ → 0. Hence,
there exists ξ > 0 such that ∥g∥ξ < 1. We can then apply Theorem B.12 to conclude that
1 + g is invertible in C[[ΞE+ ]]ξ. The inverse of f is given by

f−1 = (1 + g)−1c−1
0 =

∞∑
k=0

(
c−1
0 (c0 − f)

)k
c−1
0 .

□
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