
HAL Id: hal-04667590
https://hal.science/hal-04667590v1

Submitted on 6 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CFI Verification System based on the RISC-V
Instruction Trace Encoder

Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre

To cite this version:
Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre. A CFI Verification System
based on the RISC-V Instruction Trace Encoder. Microprocessors and Microsystems: Embedded
Hardware Design , 2023, 103, pp.104968. �10.1016/j.micpro.2023.104968�. �hal-04667590�

https://hal.science/hal-04667590v1
https://hal.archives-ouvertes.fr

A CFI Verification System based on the RISC-V
Instruction Trace Encoder

Anthony ZGHEIB, Olivier POTIN, Jean-Baptiste RIGAUD, Jean-Max DUTERTRE
Mines Saint-Etienne, CEA, Leti, Centre CMP, F - 13541 Gardanne, France
zgheib@emse.fr, olivier.potin@emse.fr, rigaud@emse.fr, dutertre@emse.fr

Abstract—Control-Flow Integrity (CFI) is used to check a pro-
gram execution flow and detect whether it is correctly executed
and not altered by software or physical attacks. This paper
presents a CFI verification system for programs executed on
RISC-V cores. Our solution is based on the RISC-V instruction
Trace Encoder (TE) module. The TE provides information about
the execution path of the user program. Two approaches are
proposed. One is consistent with the RISC-V TE standard. It
permits to detect instruction skip attacks on function calls, on
their returns and on branch instructions. The second implies
an evolution of the RISC-V TE specifications to detect more
complex fault models as the corruption of any discontinuity
instruction. We implemented both approaches on a RISC-V core
and simulated their efficiency against Fault Injection Attacks
(FIA). As illustration, an experimental FIA using Electromagnetic
(EM) pulses on an FPGA board implementing a RISC-V core
linked to the enhanced TE is reported. The average overhead of
our solution in terms of hardware area and memory are equal to
17% and 4,29% respectively. Compared to existing CFI solutions,
our methodology does not modify the RISC-V compiler, the user
application code nor the RISC-V core.

Index Terms—RISC-V, CFI, Trace Encoder, FIA, FPGA

I. INTRODUCTION

Physical attacks are particularly effective threats to strike
confidentiality, integrity or authenticity of a system. These
attacks were firstly introduced by Boneh et al. in 1997 [1]
where they showed how to attack RSA and Rabin signatures
implementations. Fault Injection Attacks (FIA) are physical
attacks injecting faults into a system in order to alter its
intended behavior. The most common FIA techniques are
described in [2]. These attacks could lead to skip or corrupt
a vulnerable instruction in the user code to bypass system
security features [3], extract a cryptographic key [4], bypass
a PIN code [5] or have a privilege escalation [6]. Against
FIA, a Control-Flow Integrity (CFI) [7] scheme verifies that a
program is correctly executed during runtime. It checks that its
execution follows a path known to be correct in the application
Control Flow Graph (CFG). The CFG is generated by stati-
cally analyzing the source code of the program. It represents
the valid control flow changes in a normal program execution
[8]. Most of existing approaches for CFI address Code-Reuse
Attacks (CRA) such as Return-Oriented Programming (ROP)
[9] and Jump-Oriented Programming (JOP) attacks [10][11].
Hence, they only need to verify CFG integrity such as in
[7] where their method checks both source and destination

This work was partially funded by the French National Research Agency
(ANR) under grant agreement ANR-18-CE39-0003

of indirect jumps. To avoid stateless approaches (approaches
that do not associate call / forward jump to return / backward
jump), stack canaries and shadow stacks are often used in
combination for detecting bad return addresses [12]. CFI
countermeasures are also used to detect FIA [13] as presented
in section II. Compared to the state-of-the-art solutions, our
approach ensures a CFI verification without modifying the
compiler toolchain, the user application code nor the core’s
architecture. It is designed for open source Instruction Set
Architecture (ISA) RISC-V cores [14] [15]. In our study, the
RV32I base integer instruction set is used [16]. This means
that the data are represented on 32 bits and only instructions
manipulating integer values are used. As our solution is
compatible with all RISC-V cores having the TE feature, this
paper illustrates its implementation on two cores. Our CFI
verification system is based on the standardized RISC-V Trace
Encoder (TE) [17]. Our paper is divided as follows: Section
II provides insights on existing CFI solutions. Sections III
and IV describe our CFI verification methodology. Section
V illustrates a simulated and experimental FIA detection
on a VerifyPin use case. Furthermore, Section VI details
the hardware requirements for both approaches. Finally, we
discuss and conclude on our proposed solution in Sections
VII and VIII.

II. CFI VERIFICATION TECHNIQUES

Software, hardware and co-design CFI verification systems
exist. In our study, we are only interested in hardware / co-
design approaches. A classification of these state-of-the-art
CFI solutions into two categories is observed:

• Countermeasures extending the processor and / or its ISA.
• CFI monitoring modules connected to the processor.

A. Countermeasures extending the processor and / or its ISA.

a) Processor extension: In several works, an extension
to the processor is made for CFI as in SOFIA [18] where
it covers code injection, CRA such as JOP and ROP. It
protects the software integrity, performs CFI, prevents exe-
cution of tampered code and enforces copyright protection.
HAPEI [19] is inspired by SOFIA solution. It covers code
injection, code reuse and fault injection attacks on instructions.
These countermeasures involve a modification of the processor
architecture without modifying the compiler. They also ensure
the confidentiality of the user code by encrypting the code
instructions and decrypting it before execution.

DUTERTRE Jean-Max
Authors’ version
https://doi.org/10.1016/j.micpro.2023.104968
Microprocessors and Microsystems, 2023

b) Custom ISA extension: This category presents so-
lutions extending the processor’s ISA with CFI dedicated
instructions. HAFIX [20] takes part of this approach. It covers
CRA exploiting Backward Edge Attacks (BEA). This solution
was tested on bare metal codes with Intel Siskiyou Peak
core and LEON3 processor. Werner et al. [21] designed SCFP,
a solution that ensures the confidentiality of a software IP and
its authentic execution on Internet of Things (IOT) devices.
It covers code-reuse, code injection and fault attacks on the
code and control flow. Based on [21], Werner et al. [22]
also designed a protection for the conditional branches by
using encoded comparisons. De et al. [23] proposed FIXER.
It’s a solution implementing a co-processor to a RISC-V
Rocket Chip core [24]. It detects code injection [25] and
CRA such as buffer overflow and ROP attacks. Delshadtehrani
et al. [26] implemented NILE, a co-processor to a RISC-
V core that detects stack buffer overflow. Attacks skipping
FIXER and NILE custom instructions prevent CFI verification
as in HAFIX solution. Abdul Wahab et al. [27] developed
a DIFT (Dynamic Information Flow Tracking) coprocessor.
Their verification process is based on the ARM CoreSight
debug component. It protects against buffer overflows, format-
string attacks, SQL injection, cross-site scripting or data
leakage. SCI-FI [28] solution is designed for control signal,
code and CFI verification. It protects against FIA. Savry et
al. implemented CONFIDAENT [29] protecting both the data
and instructions executed in the core by encrypting them using
a light masking scheme — ASCON [30]. CONFIDAENT
detects FIA such as rowhammers [31] and glitches at the
code or data level. This solution ensures the confidentiality
and integrity of inputs and data during execution against CRA
and stack overflow attacks. From this category, all solutions
modify the user code and compiler to insert the dedicated CFI
instructions except for FIXER where its custom instructions
are provided in a binary format before compiling the code
(supported by the toolchain).

B. CFI monitoring modules connected to the processor.

This approach implies solutions connecting external blocks
to the processor without ISA extension to verify the program
CFI. CCFI-Cache countermeasure [13] is designed to check
simultaneously Code and Control-Flow Integrity (CCFI). It
verifies code and CFG (inter / intraprocedures), ensures pro-
tection against cyber and physical attacks. CCFI-Cache covers
backward edge (ROP, buffer overflow), forward edge, code
and fault injection. ATRIUM [32] is a runtime attestation
scheme targeting bare metal embedded systems software
that works in parallel to the processor. It ensures CFI and in-
struction integrity. This solution covers code injection attacks,
CRA, hardware fault attacks on instructions and TOCTOU
(Time Of Check Time Of Use) attacks [33]. HCIC [34] is
a hardware-based solution covering CRA such as JOP and
ROP. It performs CFI checking on call, return and jump
operations. All solutions in this category do not modify the
processor’s pipeline. Table I summarizes the average overhead
costs of these countermeasures in terms of code size, perfor-

So
lu

tio
n

C
od

e
Si

ze
(%

)

Pe
rf

or
m

an
ce

(%
)

H
ar

dw
ar

e
A

re
a

(%
)

Po
w

er
(%

)

SOFIA [18] 141 110 28.2 N/A
HAPEI [19] N/A N/A N/A N/A
HAFIX [20] N/A 2 N/A N/A
SCFP [21] 19.8 9.1 N/A N/A

FIXER [23] N/A 1.5 2.9 N/A
NILE [26] N/A <3 15 26
DIFT [27] <10 <335 <1 16.2

SCI-FI [28] 25.4 17.5 <23.8 N/A
CONFIDAENT [29] <36.2 <227.5 N/A N/A

CCFI-Cache [13] <30 32 10 N/A
ATRIUM [32] 0 <22.7 <20 N/A

HCIC [34] <0.8 <1 N/A N/A
Our work 0 0 17% N/A

TABLE I: State-of-the-art solutions average overheads.

mance, hardware area and power. Our solution metrics are
detailed in Section VI.

III. TE-BASED CFI VERIFICATION METHODOLOGY

A. Proposed TE-based CFI solution for RISC-V cores

This section presents a new CFI verification scheme based
on the RISC-V Trace Encoder. The TE is an instruction tracer
that compresses, at runtime, the sequence of discontinuity
instructions executed by the RISC-V core into trace packets. It
is mainly used by designers for code debugging purposes. By
having access to the program binary, they can reconstruct the
program flow. Fig. 1 illustrates the existing solution using the
TE and our CFI verification system. The use of a debugging
tool with the TE alone allows to dynamically reconstitute the
program followed flow but it does not allow CFI verification.
It constitutes a basis to perform it. Our work exploits the TE
functionality by adding external blocks reading the TE packets
in order to verify at runtime the program’s CFI. A static
analysis is done on the binary code where CFG metadata are
generated. This information is stored in a memory connected
to the CFI verification module: the Trace Verifier (TV). At
runtime, the TV receives TE packets and refers to the static
data to check the CFI of the program. The TV is connected to
the TE. Hence, the RISC-V core remains intact. Our approach
does not bring modifications to the user code nor to the RISC-
V compiler. A description of our solution modules is provided
in the following sections.

B. Trace Encoder

The so-called uninferable instructions are those applying a
change in the Program Counter (PC) whose offset could not be
determined from the compiled binary code like unpredictable
jumps (e.g. return instructions). To follow the graph of the ex-
ecuted program, the TE reports the uninferable discontinuities
in its control flow in forms of trace packets. The TE has a
3-stage pipeline to have a visibility of the current (I), previous

Fig. 1: A schematic of the RISC-V + TE (top), and the CFI verification system (bottom).

(I-1) and next (I+1) instructions. Based on these instructions,
a packet defined by the TE standard algorithm [17] is sent.
The TE could be configured to activate or deactivate packets
generation. It also has a filter to choose its operating address
range by selecting the lowest and highest PC. A packet
contains information about the path followed by the program
since the last packet sent. Based on the instructions in the TE
pipeline, packets are sent according to seven conditions:

• Based on the previous executed instruction (I-1):
a) In case of an exception or a context change within

the code with a discontinuity.
b) An instruction with an uninferable PC discontinuity.

• Based on the current executed instruction (I):
c) A first qualified instruction, a privilege / precise

context change or the resync counter reaching its
max resynchronisation value.

d) Full branch map (number of branches=31) or mis-
prediction case (when branch predictor enabled).

e) An imprecise context change.
• Based on the next instruction (I+1):

f) A simultaneous exception and retirement, or context
change with discontinuity, or notify or resync counter
has reached the maximum value and branch map not
empty (need to be reported).

g) An exception without retirement, a privilege change
or precise context change and branch map not empty
or unqualified instruction.

According to these conditions, packets are sent with a
specific format (identifier). Referring to the specification [17],
four packet formats are defined:

• Format 0 is intended for optional efficiency extensions
(like the counts of correctly predicted branches).

• Format 1 reports a branch information when the TE
branch counter reaches its maximum value. Or, when an

address needs to be reported and there has been at least
one branch since the previous packet. This format only
contains branch information.

• Format 2 reports only the address of an instruction when
no branch information need to be reported.

• Format 3 is used for synchronization, reporting context
and supporting information.

An example of a Format 1 packet is described below. It is sent
after fulfilling one of the seven mentioned conditions before.

• PACKET 1: F BRANCH FULL
– branches: n
– branch map: n map
– absolute address: PC

For instance, it can be sent after the execution of an
uninferable discontinuity (cf. condition b). This packet in-
dicates that n branch instructions have been executed since
the last sent packet. It also mentions the branch_map (bit
vector where taken / not taken status of each branch is
stored chronologically) and the address of the next executed
instruction following the uninferable discontinuity.

C. Static Analysis

A static analysis of the binary code by a custom program
produces metadata. This program is independent and is not
part of the RISC-V compilation process. The objective of
this analysis is to obtain a CFG description at disposal of
the TV in order to verify the integrity of the execution path.
These metadata concern all discontinuity instructions with
known destination addresses (e.g. Calls, Branch and Return
Instructions). In addition to the discontinuities, the metadata
contains their 32-bit Program Counter (PC) and memory
indexes corresponding to the upcoming discontinuity instruc-
tions. These information are stored in a dedicated Random
Access Memory (RAM). Its structure is shown in Fig. 2.
The monitoring of the control flow is done by following

a sequence of addresses corresponding to the discontinuity
instructions. Each of these instructions requires 88-bit memory
place: 32-bit for its address, 32-bit for the instruction and
2*12-bit for memory indexes. In case of an unconditional
discontinuity instruction, only one memory index is used to
refer to the next discontinuity instruction. The second index
is unused and fixed to FFF. In case of a conditional branch
instruction, 2 memory indexes are stored (one referring to the
next discontinuity instruction if the branch is taken and the
other one in case of a non taken branch). As an example

{ { {
{ {{ { {

{ { { {

Fig. 2: Metadata content stored in RAM.

detailed in Fig. 2, a jump instruction is stored at index 20
and points to index 22 as the next discontinuity instruction.
At this index, the branch instruction (BGE) is listed with its
corresponding branch indexes.

D. Trace Verifier

The Trace Verifier is the core of our designed verification
system. It wakes up as soon as a TE packet is emitted. As
shown earlier, a sent packet contains the destination address
(e.g. the address of the next valid executed instruction) and
data depending on the packet format. It may contains the
number of executed branch instructions with a branch map in
case of Format 0 or 1. The TV navigates through the static data
according to the packet content and checks the consistency
with a faultless path. In case of a path inconsistency, having
a difference between the TV obtained information and the
packet content, an error flag will be raised reporting a CFG
violation. According to fault model detection, we declined our
methodology in two approaches: a first one strictly compatible
with the TE standard and a second one with an enhancement
of the specifications.

IV. CFI SOLUTIONS DESCRIPTION

A. Verification based on the RISC-V TE Standard [17]

In this approach, a packet is sent according to the conditions
explained in section III-B. Fig. 3 shows the architecture of

the TV module. The verification process starts when the TV
receives a packet which activates its Finite State Machine
(FSM) (1). The TV core retrieves the packet from its FIFO
memory (2). Subsequently, in case of a Format 2 or 3 packet,
the packet is decoded in order to extract the reported address
(3). In case of Format 0 or 1, the branch number and branch
map are also extracted. This step requires 2 clock cycles.
Having a starting address and packet information, a navigation
through the RAM metadata is done to constitute the path
followed by the program (4). The last step of the FSM is to

Fig. 3: Architecture of the TV.

check the address stored in the packet and the static address
computed from the navigation process (5). If the addresses are
not equal, an error flag will be raised.

a) TV behavior on BEA and on instruction skip attacks
on function calls: With this approach, attacks changing return
addresses (BEA) and instruction skip attacks on function calls
are detected. A return instruction induces a packet containing
the address of the next executed instruction. In the normal
behavior, it must point out to the PC+4 of the function call.
In case of a BEA, the sent packet will report a different
address as shown in Fig. 4. However, based on this packet,

Fig. 4: BEA with a faultless packet and the packet sent due
to the FIA.

the TV will navigate the metadata, meet a function call and
store its return index in a LIFO used as shadow stack (cf.
Fig. 3). In the verification process, the LIFO return address is
compared with the packet address which reflects the FIA. In
case of an instruction skip attack on a function call (cf. Fig. 5),
the next called function will send a packet containing branch
number and / or the destination address different from the
expected ones. Based on these information, the TV navigation

Fig. 5: Instruction Skip Attack with a faultless packet and the
packet sent due to the FIA.

process will lead to a different destination address and an error
could be detected. The main advantage of the solution is that
it is independent from the RISC-V core implementation as
soon as a TE is present. The drawback is that the navigation
through the RAM and verification process will only initiate
after receiving a packet. Hence, if a FIA was done between
two sent packets, a detection of this fault will be extremely late
(3 clock cycles — more in case of a multicycle instructions
— related to the packet retrieval + the extraction and check
integrity process time + the navigation time). The navigation
time is not negligible. It is the time required by the TV
to reach the destination address. This time depends on the
number of discontinuity instructions encountered in the static
data between two instructions inducing packets to be sent.

b) Decrease latency by accessing the PC: A way to
reduce the latency between the packet emission and verifica-
tion step is to navigate through the metadata and constitute
the path followed by the program before the TV receives
the packet. For this improvement, the TV is adapted and
connected to the PC of the RISC-V core (the PC is already
connected to the TE, no modification is made inside the core).
Having the instruction address at each clock cycles allows an
access to the metadata and a faster constitution of the path the
program followed. This TV instance gives us the destination
address and eventually the number of branches and branch
map encountered before the packet emission. As soon as it
is received, 6 clock cycles are needed to check the CFG. In
addition, this improvement makes it possible to detect any
instruction skip targeting a branch instruction because the next
TE packet will report a number of branch instructions different
from that given by the metadata. It has indeed no effect on
the ability to detect the skip of call instructions or BEA.

c) Fault Model Limitation: With this approach, discon-
tinuity instructions corruption is not covered which is a major
advantage for an attacker. For instance, modifying the bit
indexes [14:12] of a branch instruction - the funct3 field -
from 000 to 001, changes the functionality of the instruction
from Branch if Equal (BEQ) to Branch if Not Equal (BNE).
This issue is resolved in the second approach of our TV.

B. Extending the RISC-V TE Standard

We also propose an extension of the TE — thanks to
the open-source specification — to cover more fault models
and to reduce the CFI verification time. This extension is
compatible with the current TE. It consists in adding an

option to send a packet after each (I-1) executed discontinuity
instruction. In this version, the TE emits more packets for
a same program compared to the first approach. The 32-
bit executed instruction (already connected to the TE) is
also retrieved where the discontinuity ones are stored in an
additional FIFO as illustrated in Fig. 3. An adjustment in the
TV FSM is done in order to verify the stored instruction which
permits to detect any discontinuity instruction corruption with
the static data stored in the RAM (cf. Fig. 2). Once a packet
is received, 6 clock cycles are needed on average to verify
the executed discontinuity instruction and destination address.
The CFI verification is faster and more accurate since it is
done after each discontinuity instruction. Table II sums up the
threats covered by each solution. We refer respectively to TV

SFC BEA SBI CDI VL
TV 3 3 (7) 7 --

TV with PC 3 3 3 7 -
TV for CFI 3 3 3 3 +

TABLE II: Threats detected by the solutions:
SFC: Skip on function calls
BEA: Backward Edge Attack
SBI: Skip on branch instructions
CDI: Corruption of a discontinuity instruction
VL: Verification Latency.

the solution respecting the TE specifications and TV with
PC the one respecting the standard and accessing the PC.
Additionally, we refer to TV for CFI as the countermea-
sure detecting corruption of any discontinuity instructions. A
qualitative comparison of our solution with the state-of-the-art
CFI solutions is given in table III. Our approaches have zero
impact on the user code and compilation process. Moreover, no
modification inside the RISC-V pipeline is made. Compared
to ATRIUM [32] which has similar CFI features, our CFI
verification is performed on chip. Unlike our solutions that do
not interact with the core, ATRIUM may stall the processor if
the hash of the current instruction block is not completed and a
new block arrives (28 cycles are needed to hash a block). The
generated signature is sent at the end of the code region chosen
by the trust verifier vrf for CFI verification. In contrast, TV
and TV with PC do CFI verification after each uninferable
instruction and TV for CFI after each discontinuity one
reducing the verification latency.

V. EXPERIMENTAL STUDY ON A VERIFYPIN USE CASE

As an illustration of our CFI verification mechanisms, this
section deals with an example of FIA detection on a VerifyPin
use case from the FISSC collection [35]. This application
aims to authenticate an user by comparing an user PIN to
a card PIN code. L. Dureuil et al. [35] demonstrated that
the VerifyPin version using hardened booleans and fixed-
time loop as countermeasures has vulnerabilities to FIA. 4
attacks scenarios against authentication have been found. Two
of these attacks consist in inverting the condition of a sensitive
branch instruction via a single fault injection. To illustrate
one of these vulnerabilities, a FIA is simulated on one of the

So
lu

tio
n

N
o

U
se

r
C

od
e

M
od

ifi
ca

tio
n

N
o

C
om

pi
le

r
M

od
ifi

ca
tio

n

N
o

Pi
pe

lin
e

M
od

ifi
ca

tio
n

E
xt

er
na

l
B

lo
ck

s
A

dd
iti

on

N
o

E
xe

cu
tio

n
Ti

m
e

Pe
na

lty

B
ac

kw
ar

d
E

dg
e

Pr
ot

ec
tio

n

Fo
rw

ar
d

E
dg

e
Pr

ot
ec

tio
n

C
od

e
C

on
fid

en
tia

lit
y

SOFIA [18] 7 3 7 7 7 3 7 3
HAPEI [19] 7 3 7 7 N/A 3 7 3
HAFIX [20] 7 7 7 7 7 3 7 7
SCFP [21] 7 7 7 7 7 3 3 3

FIXER [23] 7 3 3 3 7 3 3 7
NILE [26] 7 7 3 3 7 3 7 7
DIFT [27] 7 7 3 3 7 3 7 7

SCI-FI [28] 7 7 7 7 7 3 7 7
CONFIDAENT [29] 7 7 7 7 7 3 3 3

CCFI-Cache [13] 7 7 3 3 7 3 7 7
ATRIUM [32] 3 3 3 3 7 3 7 7

HCIC [34] 7 3 3 3 7 3 3 7

This Work 4 4 4 4 4 4 8 8

TABLE III: Comparison of our solution with related works.

identified branch conditions as shown in Fig. 6. This condition
compares a variable diff to BOOL_FALSE. If the condition
is true then the variable status will indicate that there is
no difference between the user and card PIN. Authentication
could be granted. Inverting or skipping this instruction affects
status to BOOL_TRUE regardless of the user PIN. Hence,
authentication could be granted with a wrong code PIN.

Fig. 6: ByteArrayCompare function in the VerifyPin Code.

A. FIA Detection with the TV

Fig. 6 illustrates the byteArrayCompare function con-
tained in the VerifyPin code [35]. Its return instruction (an
uninferable instruction) induces a packet to be sent. Fig. 7
illustrates the content of the packet sent in a faultless behavior
and the one sent when a skip attack is made on the identified
branch instruction discussed in the previous section. Our
TV expects 18 branches to be reported in a faultless code
execution. Nevertheless, only 17 are reported in the Format
1 packet sent if the BNE is skipped (cf. Fig. 7). The TV
navigation process computes the expected address from the

Fig. 7: Packet received by TV in case of an instruction skip
attack on the VerifyPin identified branch instruction.

static data by following the branch map of the sent packet.
In case of a faulted behavior, the navigation process will stop
computing after the 17th branch and reports the address of
the faulted instruction 0x288. The address returned by the
navigation process differs from the packet’s address which
leads to detect a CFI violation. An error flag is raised.

B. FIA Detection with the TV for CFI

In this approach, a packet is sent after each discontinuity
instruction. For instance, a branch instruction will cause a
packet emission. In case of the VerifyPin program, the TV
for CFI expects a packet to be sent after the identified
BNE instruction. Skipping this instruction will not cause an
emission of a packet. Referring to Fig. 6, the TV is expected
to receive a packet related to the branch instruction that points
on the address of 0x288 with 0x00f71863 as instruction
and 0x28c or 0x298 as destination address depending on
the branch condition. In case of FIA, a packet will be sent at
the next discontinuity instruction encountered by the core, the
j 2a0 instruction at 0x294 address (cf. Fig. 8). The fault
can be detected by comparing the packet information and the
TV expected metadata. If a corruption occurred within this
instruction, for instance by changing the branch condition (e.g.
opcode or immediate value), the comparison of this instruction
with the one stored in the RAM also raises an error flag.

Fig. 8: Packet received by TV for CFI in case of an instruc-
tion skip attack on the VerifyPin identified branch instruction.

C. Simulation of a FIA on the bne instruction

We simulated a FIA corrupting the BNE instruction. As il-
lustration, the branch instruction 0x00f71863 is transformed
to a Load Immediate (LI) instruction 0xf0b30793 as shown
in Fig. 9. The LI instruction stores the value 1 in the RISC-
V A5 register. The fault induces an instruction skip on the
branch condition as it failed to fulfill its expected function.
Fig. 10 shows a simulation of the verification of the concerned
packet by the TV for CFI solution. The TV was expecting
to verify the bne instruction 0x00f71863 with the address
0x28c (branch not taken — diff = BOOL_FALSE). The
FIA replaced the discontontiuity instruction with a non discon-
tinuity instruction. Therefore, the TE sent a packet only after

Fig. 9: FIA simulation on the BNE instruction.

1 2 4 53.

Fig. 10: Simulation of a packet’s verification by the TV.

executing a discontinuity — the jump instruction j 2a0 at
address 0x294. The packet reporting the destination address
2a0 is different than the predicted address by the TV 0x28c.
In addition, the executed discontinuity 00c0006f is different
from the expected instruction 00f71863. Hence, an error
flag is raised detecting the FIA. The enumerated steps (as
described in Fig. 3) lead to the CFI verification of the program.

D. Experimental FIA using Electromagnetic (EM) pulse

From the FIA techniques, Electromagnetic (EM) pulse at-
tacks are used to inject transient faults in the circuit disrupting
the code execution [36]. Dehbaoui et al. [37] used EM pulses
for injecting faults into the calculations of a hardware and
software AES. Koffas et al. [38] performed clock glitches and
FIA on a RISC-V core of the HiFive1 board [39] studying
the influence of CPU clock frequency on the attacks results.
They showed that the success rate of an attack increases as
the clock frequency increases. In our experiment, we used EM
pulses to fault the VerifyPIN execution on a RISC-V core
running on a 50 Mhz clock frequency implemented on FPGA.
The experimental setup is described in Fig. 11. The computer

X Y

Z

SET

V/⬆

Pulse generator

Settings

UART Nexys Board
Artix-7 FPGA

E
M

 P
u

ls
e

Tr
ig

g
e
r

Motorized XYZ stage

Oscilloscope

GPIO

Fig. 11: EM fault injection bench.

control the motorized XYZ stage and the pulse generator. For
this experiment, the pulse generator provides a –605V pulse
with a pulse width of 10ns. The used antenna is composed
of few turns with a diameter of 1.5 mm. The TV for CFI
solution connected to the IBEX core and the enhanced TE is
implemented on the Artix-7 FPGA of the Nexys board.

Fig. 12 shows the used board under the EM antenna. The

x
Y

Z

Fig. 12: Nexys board used in the FIA campaign.

constrained floorplan during Vivado implementation process of
the IBEX core connected to its instruction memory (RAM),
the TE and the TV is shown in Fig. 13. We read the
executed discontinuity instructions and generated TE packets
via UART (Universal Asynchronous Receiver Transmitter)
communications. In our experiment, we have intentionally
separated the IBEX and its RAM from the CFI solution to
attack the IBEX core — target of our EM experiment. Our
objective is to skip the bne instruction. A cartography is made
on the FPGA board to locate the IBEX, RAM, TE and TV
modules by swiping the EM pulse voltage, width and the XYZ
coordinates. The IBEX core and TV for CFI placements
have been identified in the board by:

1) Checking FIA effects on discontinuity instructions (via
UART) inducing faulted packets generation.

RAMIBEX

TVTE

UART
Fig. 13: Floorplan of the FPGA circuit.

• Comparing the program flow (defined by the dis-
continuities) to the binary code stating the position
of the IBEX and not the 32-bit instruction bus of
the TE nor the 32-bit instruction UART.

2) Observing FIA only on generated packets without fault-
ing the executed instructions. Hence, the TE connected
to the TV for CFI is located.

Fig. 14 depicts our FIA campaign on the IBEX core for
2 pulse delays (9227ns and 9230ns). 2 tries are made on
each XY position at a fixed pulse voltage (-605V). Yellow
circles (100%) indicate successful attacks in both trials, green
circles (50%) indicate only one successful trial, and finally
blue circles (0%) denote a non-faulty effect. This experience
permits to locate sensitive positions in the IBEX in order to
fault instruction executions. In addition to all discontinuity
instructions, we retrieved the executed instructions before and
after the BNE instruction at address 0x288 via an UART
module. Following the analysis and our simulations, we were
able to detect a range of pulse delays faulting the BNE
instruction to bypass the VerifyPIN functionality. We were able
to perform the skip attack at a probe coordinate of X=6500 µm
and Y=6800 µm with a pulse delay of 13 µs. Table IV shows
the corrupted instruction 0xf0b30793 which lead to execute
a li instruction rather than the expected branch instruction
0x00f71863. Referring to Fig. 6, the variable status is
equal to BOOL_True (0xaa) when there is no difference
between the user PIN and card PIN. Otherwise, status is
equal to BOOL_False (0x55) indicating the non equality.
Bypassing the branch instruction attributes the status value
to BOOL_True indicating an authentication. The status
value is stored in the A5 register. The content of this register is
sent via UART at the end of the program execution of each FIA
campaign. A 0xaa value was read after the FIA on the BNE
instruction. Therefore, authentication has been granted with a
wrong code PIN. An acquisition of the circuit signals during
the FIA experiment is illustrated in Fig. 15. The packet sent
after the execution of the j 2a0 instruction at address 0x294
is verified after 6 clock cycles. An error flag is raised due to the

PC
Address

VerifyPIN
code

instructions

Executed Instructions
on the IBEX core

0x284 0x05500793 0x05500793
0x288 0x00f71863 0xf0b30793
0x28c 0xfaa00793 0xfaa00793
0x290 0x00f10da3 0x00f10da3
0x294 0x00c0006f 0x00c0006f

TABLE IV: Extracted executed instructions

skip attack on the branch instruction. This experiment shows
efficiently the detection capability of our CFI solution based
on the enhanced TE.

VI. HARDWARE METRICS

All our simulations target the Nexys Artix-7 FPGA board.
This Integrated Circuit (IC) contains 33,650 logic slices. Each
slice is composed of four 6-input LUTs, 8 flip-flops, multiplex-
ers and carry units. In the following parts, a description of the
hardware requirements of our system is provided.

A. Target Core

Our CFI solutions were implemented to a RISC-V IBEX
core [40]. IBEX is a 32-bit open source RISC-V Central
Processing Unit (CPU) core. It is a low power and small pro-
cessor suitable for IOT applications. It has a 2-stage pipeline:
Instruction Fetch (IF) and Instruction Decode / Execute (ID
/ EX). The implementation of this core requires 640 Slices.
As our solutions are independent of the chosen RISC-V core,
they can be implemented on any core compatible with the TE.
For example, we can mention the CV32E40P (RI5CY) RISC-
V core [41]. It is a 32-bit in-order 4-stage core. The pipeline
is composed of an: Instruction Fetch (IF), Instruction Decode
(ID), Instruction Execute (EX) and Writeback (WB) stage.
The RI5CY implementation requires 1171 Slices.

B. Trace Encoder

The TE module is extracted from the pulp-platform project
[42]. Its software model could be found in [43]. Its implemen-
tation requires 184 slices. For the TV for CFI, we made an
enhancement to the standard in a way to send a packet after
each discontinuity instruction. This improvement adds 2 extra
slices in the TE module which therefore requires 186 slices.

C. Trace Verifier Components

The TV is composed of its core (FSM and processes),
configurable modules (FIFO, LIFO) and a Block Random
Access Memory (BRAM) as a Field-Programmable Gate
Array (FPGA) implementation to store the static metadata.
Table V provides the area of the TE and TV core in slices.
The TV with PC solution is the most demanding in terms

Solution TE TV core
TV 184 95

TV with PC 184 107
TV for CFI 186 100

TABLE V: TE and TV core area (slices)

5500 6000 6500 7000 7500 8000
X (um)

5800

6000

6200

6400

6600

6800

7000

FIA on the IBEX core
Amplitude=-605V
Delay=9230ns

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

FI
A

 T
R

IE
S

Y
 (

u
m

)

5500 6000 6500 7000 7500 8000
X (um)

5800

6000

6200

6400

6600

6800

7000

FIA on the IBEX core
Amplitude=-605V
Delay=9227ns

Fig. 14: Experimental FIA detection on the RISC-V core using EM pulses

of slices. This is due to the fact of receiving continuously the
PC, computing the navigated branch number and dedicated
branch map. The BRAM size depends on the user application
code (i.e. the number of discontinuity instructions). Our CFI
solutions were tested on several classic benchmarks like the
tiny-AES, CRC32 [44], Memcmp, Memcpy and VerifyPin
[35]. All the programs are compiled with the RISC-V GCC
toolchain. The chosen architecture in the compilation process
is the RV32I - 32bit RISC-V core. Two different compilations
were done with no optimization O0 and O3 for code size and

execution time optimization. Fig. 16 shows a diagram of the
ratio between their code size and generated metadata on a log
scale. The metadata represent 10% to 26% of the size of the
application code. Each benchmark code was loaded into a 256-
block BRAM memory connected to the IBEX. Our metadata
were intentionally stored in an external RAM attached to the
TV in order not to alter the program code or its memory. The
implementation of the TV memory requires only 11 BRAM
blocks. Therefore, the BRAM metadata overhead is equal to
4,29% for a TV BRAM index on 12 bits. The total slice area

1 2 4 53

Fig. 15: Experimental FIA on the RISC-V core detected by the TE for CFI verification system.

Fig. 16: Ratio between the metadata vs code size.

for a TV could be represented as the sum of:

TV area = TV core+ TV configurable blocks (1)

where TV_core is the FSM and processes. The
TV_configurable_blocks is the FIFO and LIFO
modules. A memory block is a set of slices. Each slice can
store a byte. 2 slices by return index, 4 slices by RISC-V
instruction and 9 slices by TV packet are required. The
following equation allows to size the TV configurable blocks
area:

TV configurable blocks = (LIFO Depth ∗ 2)+
(Trace FIFO Depth ∗ 9)+
(Instr FIFO Depth ∗ 4) (2)

In (2), _Depth represents the number of data the FIFO
or LIFO needs to store. This parameter depends on the
application user code. Fig. 17 illustrates the slice require-
ments of the configurable blocks for benchmarks compiled
with O3. The TV and TV for CFI solutions are presented.
All benchmarks with TV for CFI are bigger because the

Fig. 17: TV configurable block slice requirements for TV and
TV for CFI solutions.

discontinuity information are stored in the extra FIFO. As
mentioned earlier, our TV could be implemented to any RISC-
V core connected to the TE. In our simulations, the TE is
connected to an IBEX core. In this case, the TV represents
approximately 17% in terms of slices with respect to the IBEX
+ TE requirements. On the CV32E40P, the TV represents 10%
of the (CV32E40P + TE) area.

VII. APPROACH DISCUSSION

A. Trace Encoder

Our experiments covered the CFI of all the program. Never-
theless, the designer may need to cover just a sensible section
of the code (e.g. authentication function). This could be done
by using the filter of the TE. It allows us to specify the lower
and higher addresses where we need packets to be generated.
Activating this functionality reduces the static data and TV
configurable modules area cost.

B. Trace Verifier

In the TV version, instruction skip attacks on branch in-
structions are detected under certain circumstances. It can be
detected if no other branch instruction is executed instead in
the user code, leading to the same destination address. In this
case, the packet total number of branches is different and the
TV is able to check that the path has been altered. Our TV
with PC version could also be improved by detecting a FIA
before receiving a packet. This could be done by decoding
the BRAM instruction corresponding to the pulled PC. This
operation gives the address of the next expected instruction
address. A comparison between this address and the pulled
PC detects a FIA before the emission of a packet.

VIII. CONCLUSION

In this paper, we propose solutions to verify the CFI of
application codes executed on RISC-V cores. Our verification
modules are based on the RISC-V TE, a debug module
that allows to catch the execution path of a program. Two
approaches were developed where each one achieves a cer-
tain granularity and fault coverage for CFI protection. We
demonstrated how discontinuity instructions within a code are
protected against FIA. As illustration, an experimental FIA
using EM pulses on an FPGA board implementing a RISC-V
core and our TV for CFI solution has been performed showing
its detection efficiency. All of our solutions do not generate
software overheads. Their average hardware area and memory
overheads are equal to 17% and 4,29% respectively. Their
implementations do not make any changes to the RISC-V
compiler nor the user code nor the core’s architecture. They are
modular, non-invasive and do not depend of the RISC-V core.
Our perspectives are to enhance our Trace Verifier to handle
interruptions and core exceptions. In a future step, we aim
to check the program CFI with the IBEX branch prediction
enabled. Another perspective is to verify programs containing
compressed discontinuity instructions.

REFERENCES

[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in International con-
ference on the theory and applications of cryptographic techniques,
Springer, 1997, pp. 37–51.

[2] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injec-
tion attacks on cryptographic devices: Theory, practice, and counter-
measures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076,
2012.

[3] N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm
using fault injection,” in 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), IEEE, 2016, pp. 25–35.

[4] J. Breier, D. Jap, and C.-N. Chen, “Laser profiling for the back-side
fault attacks: With a practical laser skip instruction attack on aes,”
in Proceedings of the 1st ACM Workshop on Cyber-Physical System
Security, 2015, pp. 99–103.

[5] P. Kiaei, C.-B. Breunesse, M. Ahmadi, P. Schaumont, and J. Van
Woudenberg, “Rewrite to reinforce: Rewriting the binary to apply
countermeasures against fault injection,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC), IEEE, 2021, pp. 319–324.

[6] N. Timmers and C. Mune, “Escalating privileges in linux using
voltage fault injection,” in 2017 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), IEEE, 2017, pp. 1–8.

[7] M Abadi, M Budiu, U Erlingsson, and J Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans-
actions on Information and System Security, vol. 13, 2009.

[8] R. De Clercq and I. Verbauwhede, “A survey of hardware-based
control flow integrity (cfi),” arXiv preprint arXiv:1706.07257, 2017.

[9] H. Shacham, “The geometry of innocent flesh on the bone,” in 14th
Conference on Computer and communications security, ACM Press,
2007.

[10] M. Payer, A. Barresi, and al., “Fine-grained control-flow integrity
through binary hardening,” in 12th Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, Springer, 2015,
pp. 144–164. http://dx.doi.org/10.1007/978-3-319-20550-2 8.

[11] W. A. andBen Mehne andal., “Getting in control of your control flow
with control-data isolation,” in 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, IEEE Computer
Society, 2015. http://dx.doi.org/10.1109/CGO.2015.7054189.

[12] L. Szekeres, M. P. andTao Wei, and D. Song, “Sok: Eternal war in
memory,” in Symposium on Security and Privacy, SP, IEEE Computer
Society, 2013, pp. 48–62. http://dx.doi.org/10.1109/SP.2013.13.

[13] J. Danger, A. Facon, S. Guilley, et al., “Ccfi-cache: A transparent and
flexible hardware protection for code and control-flow integrity,” in
2018 21st Euromicro Conference on Digital System Design (DSD),
2018, pp. 529–536.

[14] D. Patterson and A. Waterman, The RISC-V Reader: an open archi-
tecture Atlas. Strawberry Canyon, 2017.

[15] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

[16] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, and V. I. U. level
Isa, “The risc-v instruction set manual,” Volume I: User-Level ISA’,
version, vol. 2, 2014.

[17] RISC-V International. (2020). Efficient trace for risc-v, https://github.
com/riscv/riscv-trace-spec.

[18] R. d. Clercq, R. D. Keulenaer, B. Coppens, et al., “Sofia: Software
and control flow integrity architecture,” in 2016 Design, Automation
Test in Europe Conference Exhibition (DATE), 2016, pp. 1172–1177.

[19] G. T. Ronan Lashermes Hélène Le Bouder, “Hardware-assisted pro-
gram execution integrity: Hapei,” 23rd Nordic Conference on Secure
IT Systems, Nov 2018, Oslo, Norway, 2018.

[20] L. Davi, M. Hanreich, D. Paul, et al., “Hafix: Hardware-assisted
flow integrity extension,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), 2015, pp. 1–6.

[21] M. Werner, T. Unterluggauer, D. Schaffenrath, and S. Mangard,
“Sponge-based control-flow protection for iot devices,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS P), 2018,
pp. 214–226.

[22] M. Werner, R. Schilling, T. Unterluggauer, and S. Mangard, “Pro-
tecting risc-v processors against physical attacks,” in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), 2019,
pp. 1136–1141.

[23] A. De, A. Basu, S. Ghosh, and T. Jaeger, “Fixer: Flow integrity
extensions for embedded risc-v,” in 2019 Design, Automation Test
in Europe Conference Exhibition (DATE), 2019, pp. 348–353.

[24] K. Asanović, R. Avizienis, J. Bachrach, et al., “The rocket chip
generator,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, 2016. http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[25] C. H. Kim and J.-J. Quisquater, “Faults, injection methods, and fault
attacks,” IEEE Design Test of Computers, vol. 24, no. 6, pp. 544–545,
2007.

[26] L. Delshadtehrani, S. Eldridge, S. Canakci, M. Egele, and A. Joshi,
“Nile: A programmable monitoring coprocessor,” IEEE Computer
Architecture Letters, vol. 17, no. 1, pp. 92–95, 2018.

[27] M. A. Wahab, P. Cotret, M. N. Allah, et al., “A small and adaptive
coprocessor for information flow tracking in ARM SoCs,” in 2018
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Cancun, Mexico: IEEE, Dec. 2018, pp. 1–8. https : / /
ieeexplore.ieee.org/document/8641695/ (visited on 09/26/2022).

[28] T. Chamelot, D. Couroussé, and K. Heydemann, “Sci-fi: Control sig-
nal code and control flow integrity against fault injection attacks,” in
2022 Design, Automation & Test in Europe Conference & Exhibition,
IEEE, 2022, pp. 556–559.

[29] O. Savry, M. El-Majihi, and T. Hiscock, “Confidaent: Control FLow
protection with instruction and data authenticated encryption,” in 2020
23rd Euromicro Conference on Digital System Design (DSD), Aug.
2020, pp. 246–253.

[30] I. T. L. Computer Security Division. (Jan. 3, 2017). Round 2 -
lightweight cryptography | CSRC | CSRC, CSRC | NIST, https://csrc.
nist . gov /Projects /Lightweight - Cryptography /Round- 2 - Candidates
(visited on 10/19/2022).

[31] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug
to gain kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

[32] S. Zeitouni, G. Dessouky, O. Arias, et al., “Atrium: Runtime at-
testation resilient under memory attacks,” in 2017 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), 2017,
pp. 384–391.

[33] J. Wei and C. Pu, “Tocttou vulnerabilities in unix-style file systems:
An anatomical study.,” in FAST, vol. 5, 2005, pp. 12–12.

[34] J. Zhang, B. Qi, Z. Qin, and G. Qu, “Hcic: Hardware-assisted control-
flow integrity checking,” IEEE Internet of Things Journal, vol. 6,
no. 1, 458–471, 2019. http://dx.doi.org/10.1109/JIOT.2018.2866164.

[35] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. d.
Choudens, “Fissc: A fault injection and simulation secure collection,”
in International Conference on Computer Safety, Reliability, and
Security, Springer, 2016, pp. 3–11.

[36] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller,” in 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography, 2013, pp. 77–88.

[37] A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria, “Electro-
magnetic transient faults injection on a hardware and a software
implementations of aes,” in 2012 Workshop on Fault Diagnosis and
Tolerance in Cryptography, IEEE, 2012, pp. 7–15.

[38] S. Koffas and P. K. Vadnala, “On the effect of clock frequency on
voltage and electromagnetic fault injection,” in Applied Cryptography
and Network Security Workshops: ACNS 2022 Satellite Workshops,
AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI, SecMT, SiMLA,
Rome, Italy, June 20–23, 2022, Proceedings, Springer, 2022, pp. 127–
145.

[39] (). Fe310-g000 manual, SiFive, https://static.dev.sifive.com/FE310-
G000.pdf (visited on 03/03/2023).

[40] Lowrisc. (2021). Ibex documentation, https://ibex-core.readthedocs.
io/en/latest.

[41] OpenHW Group. (2022). Cv32e40p, https://github.com/openhwgroup/
cv32e40p.

[42] Pulp-platform. (2020). Trace debugger for risc-v core, https://github.
com/pulp-platform/trace\ debugger.

[43] TRDB – library and CLI tools for RISC-v processor tracing, original-
date: 2019-03-15T16:43:20Z, Oct. 4, 2021. https://github.com/pulp-
platform/trdb (visited on 09/29/2022).

[44] J. Pallister, S. Hollis, and J. Bennett, “Beebs: Open benchmarks
for energy measurements on embedded platforms,” arXiv preprint
arXiv:1308.5174, 2013.

