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Abstract 

Background  Managing genetic diversity is critically important for maintaining species fitness. Excessive homozy-
gosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production 
performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which 
may contribute to the specific characteristics regarding the health, production and physical appearance of a breed 
or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), 
parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, 
effective population size (Ne), runs of homozygosity (ROH) and Wright’s fixation index (FST) outlier approach to identify 
differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs).

Results  Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe 
and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature 
of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region 
contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have 
biological roles related to milk production and growth traits. The outlier regions identified through the FST compari-
sons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis 
resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related 
to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. 
Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, 
which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signal-
ing mechanisms.

Conclusions  In this paper, we describe signatures of selection within diverse and economically important U.S. sheep 
breeds. The genes contained within these signatures are proposed for further study to understand their relevance 
to biological traits and improve understanding of breed diversity.
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Background
Genetic diversity is an important resource in animal 
production and conservation. Loss of genetic diver-
sity can impact a species or a breed’s ability to adapt 
to changing environmental or production pressures [1] 
and can lead to the accumulation of lethal or deleteri-
ous alleles with detrimental effects on health and pro-
duction [2]. Adaptability of animal production requires 
the preservation of genetic diversity, and the identifi-
cation of signatures of selection can provide essential 
insights that can be useful for conservation and breed 
improvement objectives [3, 4].

Artificial and natural selection both result in changes 
in allele frequencies that can lead to the fixation of cer-
tain alleles [5]. The neutral regions that surround alleles 
under selection tend to lose genetic variation due to the 
hitchhiking effect, which increases linkage disequilib-
rium (LD) and can result in the formation of selective 
sweeps [6–9]. Analyses of runs of homozygosity (ROH) 
can be used to detect regions that have experienced loss 
of heterozygosity due to the presence of selective pres-
sures [10]. Analysis based on Wright’s fixation index 
(FST) identifies differences in allele frequencies between 
populations and is one of the most commonly used 
methods to identify single nucleotide polymorphisms 
(SNPs) under selection [11–13]. In sheep, these analy-
ses have been used to understand the genomic regions 
under selection for traits such as environmental adap-
tion [14–17], parasite resistance and susceptibility [18], 
morphological traits [19–21], wool quality [22], and 
production traits [23] in many breeds.

The purpose of this study was to evaluate measures 
of genetic diversity and signatures of selection in three 
popular U.S. sheep breeds (Rambouillet, Katahdin, and 
Dorper) with diverse characteristics. The U.S. Ram-
bouillet was first established in 1840 with the import 
of fine-wool sheep from France [24]; today, Rambouil-
let is a multi-purpose breed that is noted for wool and 
carcass quality. Compared to the other breeds of this 
study, Rambouillet is a larger framed, later-maturing 
breed [25] and is prominent in the semi-arid west-
ern states where much of the U.S. sheep production is 
concentrated [26]. The Katahdin is a composite hair 
breed that was developed in the 1950s from St. Croix 
hair sheep and wool breeds including the Suffolk and 
Wiltshire Horn [27, 28]. Katahdin is a fast-growing and 
prolific breed that is regarded for parasite resistance 
and suitability to warm, tropical environments [29, 30]. 
Dorper sheep are early-maturing and produce heavily 
muscled carcasses with many favorable palatability and 
tenderness characteristics [31]. To develop the Dorper 
breed, Dorset Horn and fat-rumped Blackhead Persian 
breeds were crossed to combine maternal traits with 

wool-shedding ability and adaptability to harsh envi-
ronmental conditions [32].

Genotype data of Rambouillet, Katahdin, and Dorper 
animals were analyzed for inbreeding, effective popula-
tion size (Ne), and signatures of selection (through FST 
and ROH) in order to gain understanding of the selec-
tion pressures that affect these breeds. Genes present in 
regions under selection were further evaluated to iden-
tify the biological pathways that are most likely affected. 
The results of this study provide insights into the genetic 
variation present in breeds commonly raised in the U.S. 
for their meat and wool quality (Rambouillet), para-
site resistance (Katahdin), and environmental hardiness 
(Dorper).

Methods
Animal sampling and DNA genotyping
Sheep belonging to the Rambouillet, Katahdin, and Dor-
per breeds were selected for analyses of inbreeding and 
genetic diversity. These breeds were chosen to facilitate 
analyses of sheep that have been selected for diverse pur-
poses, including fine wool (Rambouillet), parasite resist-
ance (Katahdin), and environmental hardiness (Dorper). 
In total, 745 Rambouillet sheep were sampled from the 
Texas A&M AgriLife Research flock (TAMU; N = 403) 
and from central performance ram tests held at the 
North Dakota State University (NDSU; N = 159) and Uni-
versity of Wyoming (UWY; 183), representing more than 
30 seedstock producers located in Colorado, Montana, 
North Dakota, South Dakota, and Wyoming. The Katah-
din sheep (N = 581) were sampled from 20 flocks located 
across the U.S. (Arkansas, Georgia, Idaho, Indiana, Mis-
souri, New York, Ohio, Oregon, Texas, Virgina, West Vir-
ginia, and Wisconsin). The Dorper sheep were sampled 
from the TAMU research flock (N = 265), which was 
founded from Dorper or White Dorper rams and ewes 
incorporated from over 20 producers throughout the 
U.S. in the early 2000s [33]. Over the last two decades, 
this flock has been managed as one cohort. In total, 1591 
sheep were analyzed in the current study.

Sample collection and genotyping of these sheep have 
been described previously [34–36]. Briefly, DNA extrac-
tion and genotyping of Katahdin sheep were conducted 
at Neogen Corporation-GeneSeek Operations, Lincoln, 
NE, USA, whereas DNA from the Rambouillet and Dor-
per animals was extracted from whole blood samples 
using the phenol–chloroform method or from tissue 
samples by AgResearch (GenomNZ, AgResearch, New 
Zealand) [37]. Genotyping was conducted with the high-
density (HD) Illumina 600K SNP BeadChip (Illumina 
Inc., San Diego, CA, USA) that includes 606,006 SNPs, 
the Applied Biosystems™ Axiom™ Ovine Genotyping 
Array (50K) that includes 51,572 SNPs (Thermo Fisher 
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Scientific, catalog number 550898), or the AgResearch 
Sheep Genomics 60K SNP chip that includes 68,848 
SNPs (GenomNZ, AgResearch, New Zealand). In total, 
132 Dorper and 243 Rambouillet samples were geno-
typed on the AgResearch chip, 133 Dorper and 502 
Rambouillet samples were genotyped on the Applied Bio-
systems array, and the 581 Katahdin samples were geno-
typed on the HD Illumina chip.

Duplicate markers within a panel were filtered to retain 
the SNPs with the highest call rate (CR) at each unique 
position. Compatible SNPs across panels were merged 
using the Plink v1.9 software [38, 39]. Non-autosomal 
SNPs and SNPs with a CR lower than 90% were removed, 
which resulted in a dataset of 36,113 SNPs. The 1591 
sheep had a genotype CR ≥ 90%. Removing SNPs with a 
low minor allele frequency (MAF) or that are in high LD 
can hinder the detection of ROH [40] and MAF thresh-
olds can affect the comparison of structure between pop-
ulations [41]. For these reasons, no further filtering was 
applied to the data prior to principal component analysis 
(PCA), ROH analyses, Wright’s fixation index (FST) out-
lier approach, and Ne estimation.

The Rambouillet and Katahdin sheep analyzed in this 
study were sampled from geographically distant flocks 
and can be considered representative of their breed in 
the context of the U.S. sheep industry. Due to a limited 
representation of the current breed diversity in the sam-
pled Dorper animals, the allele frequencies reported in 
these sheep are not anticipated to be representative of 
the U.S. Thus, for the Dorper breed, although analyses of 
these animals are still valuable and worth reporting, care 
should be taken to avoid over interpretation. For this rea-
son, the Dorper ROH and Ne results are shared as supple-
mentary data. The Dorper data were used in the pairwise 
FST signatures of selection analyses to facilitate interpre-
tation of outlier SNPs that are potentially under selection 
in the Rambouillet and Katahdin breeds.

Population structure, inbreeding, and effective population 
size
The population structure between breeds was visualized 
through PCA that was conducted with the Plink v1.9 
software. The results were visualized with the package 
ggplot2 in R version 4.2.3, with the first principal com-
ponent (PC1) plotted on the x-axis and PC2 plotted on 
the y-axis [42–44]. The proportions of variance explained 
(PVE) by PC1 and PC2 were calculated by dividing the 
first and second eigenvalues, respectively, by the sum of 
all eigenvalues.

To understand the level of inbreeding within each 
breed, homozygosity was evaluated through the pro-
portion of observed and expected homozygous SNPs 
and through two methods of inbreeding calculations. 

The number of expected and observed homozygous 
SNPs and the method-of-moments inbreeding coeffi-
cient (F) were calculated using Plink v1.9 (–het) for each 
animal [45]. The F statistic is calculated as ([observed 
homozygous count] − [expected count])/([total observa-
tions] − [expected count]). ROH-based inbreeding coef-
ficients were calculated with the package detectRuns 
using the parameters described for the ROH analysis. 
The genome-wide ROH-based inbreeding coefficient, 
FROH, was calculated as the sum of the individual’s ROH 
length over the length of the genome [46]. The distribu-
tion of FROH by breed was visualized with ggplot2. The 
Kruskal–Wallis test was used as a non-parametric alter-
native to the one-way analysis of variance (ANOVA) to 
determine whether there were statistical differences in 
F or FROH between breeds [47]. The Kruskal–Wallis test 
was followed by the Dunn’s test to calculate P-values for 
pairwise breed comparisons [48].

The Ne of each breed was estimated using three meth-
ods. Historic Ne was estimated using the LD-based 
method in the SNeP software version 1.11 for each breed 
[49]. Default parameters were set for each analysis. LD 
was measured using r2, the squared correlation coeffi-
cient between pairs of SNPs [50]. The rate of the decline 
in Ne was calculated between each consecutive reported 
generation and for the overall distribution. The NeEsti-
mator v2.1 software was used to estimate current Ne for 
each breed using the LD method within the random mat-
ing model [51]. For comparison, current and historic Ne 
were also estimated using the GONe software [52], with 
default parameters. Results of SNeP, NeEstimator, and 
GONe were visualized in R with ggplot2.

Runs of homozygosity and FST analyses
Analysis of ROH was conducted to identify regions 
which may be under selection pressure in the Rambouil-
let, Katahdin, and Dorper breeds. The ROH were identi-
fied using the sliding window method with the R package 
detectRuns [46]. Each window comprised 15 SNPs with 
a maximum of two opposite SNP genotypes (heterozy-
gous/homozygous) and one missing SNP allowed per 
window. A ROH was required to have a minimum length 
of 250,000 bp and to contain at least 30 SNPs. There was 
a minimum density of one SNP per every 10,000 kb and 
a maximum gap between SNPs of 10,000 kb. A homozy-
gous window threshold of 0.05 was used to determine 
SNP inclusion in a ROH. Results were visualized using 
the CMPlot, ggplot2, and patchwork packages in R [53, 
54]. The regions that contained a ROH in more than 50% 
of the individuals of a breed were selected for further 
analyses.

The average length of ROH called in Katahdin and 
Rambouillet were investigated for significant differences 
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between breeds. All data were evaluated for normality 
with the Shapiro-Wilks test prior to model selection with 
the ‘shapiro.test’ function in R [44, 55]. The Wilcoxon 
unpaired two-sample test was performed using the ‘com-
pare_means’ function in the ggpubr package of R [43, 56].

To better understand the genetic differences between 
breeds, Wright’s fixation index (FST) was calculated 
in Plink v2.0 using the method proposed by Weir and 
Cockerham [39, 57]. Analysis with Plink v2.0 was pre-
ferred over Plink v1.9 because of its ability to generate 
pairwise FST output files simultaneously for all compari-
sons. Per-variant FST estimates were generated for each 
SNP and genome-wide FST estimates were reported as 
ratio-of-averages between each pair of breeds, which 
were calculated from the ratio of the average variance 
components [58]. Fisher’s exact test in R was used to 
estimate p-values from contingency tables constructed 
with genotype counts for each SNP and each pair of 
breeds. Outlier SNPs with FST estimates greater than 
three standard deviations above the mean and with sig-
nificant Fisher’s test P-values (< 0.05) were considered to 
differ greatly between breeds. For each pairwise breed 
analysis, FST regions of interest were defined by sig-
nificant outlier SNPs located within 200,000  bp of each 
other, ± 100,000 bp before and after the flanking markers. 
For the purpose of comparison, FST was also estimated 
through the BayeScan 2.1 software with default param-
eters [59]. Genotype files were prepared for import into 
BayesScan using the ‘genomic_converter’ tool in the R 
package radiator [60].

The identified ROH and FST regions were queried 
through the National Center for Biotechnology Infor-
mation (NCBI) genome browser tool [61, 62]. The ARS 
UI_Ramb_v2.0 genome assembly [63] was used for all 
SNP positions and gene region analyses. Characterized 
genes falling within a ROH or FST region were recorded 
for pathway enrichment analyses. Where possible, the 
predicted human ortholog of Ovis aries genes containing 
the LOC symbol (pseudo or uncharacterized genes) were 
recorded.

Pathway analyses
Genes of interest from ROH and FST analyses were 
investigated to identify associated biological pathways. 

Pathway enrichment analyses were conducted through 
the Gene Ontology (GO) and the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) Mapper search tools 
[64–67]. Due to reference database availability, queries 
through GO for biological process, molecular function, 
and cellular component were made against the Bos tau-
rus reference database and queries of KEGG Mapper 
were made against the Homo sapiens reference. Path-
way analyses were conducted for genes located within 
Rambouillet, Katahdin, or Dorper ROH islands and for 
genes located within Katahdin-Rambouillet, Katahdin-
Dorper, or Rambouillet-Dorper FST regions. In addition, 
pathway analyses were conducted for genes which were 
in common between both FST analyses of Rambouillet 
(Katahdin-Rambouillet and Rambouillet-Dorper) or both 
FST analyses of Katahdin (Katahdin-Rambouillet and 
Katahdin-Dorper). To better understand the biological 
implications of genes within ROH islands and FST outlier 
regions, the STRING database was queried for protein–
protein interaction networks and functional enrichment 
analysis of these genes [68].

Results
Population structure, inbreeding, and effective population 
size
The population structure of the studied animals was 
first evaluated through PCA. The analysis revealed three 
clearly distinct clusters, with Rambouillet, Katahdin, and 
Dorper sheep clustering more closely with individuals 
of the same breed than individuals of other breeds (see 
Additional file 1: Fig. S1). The model’s PC1 had an eigen-
value of 179.82 and was estimated to explain 35.99% of 
all the variation while PC2 had an eigenvalue of 116.82 
and was estimated to explain 23.38% of the variation. The 
largest principal component separated the Katahdin and 
Rambouillet breeds, while PC2 separated Dorper from 
both Katahdin and Rambouillet. The placement of these 
breeds is similar to the results of previous PCA, which 
have shown the separation of breeds originating from 
West Africa, South Africa, and the Iberian Peninsula [69, 
70].

The average proportion of expected and observed 
homozygous SNPs for Rambouillet, Katahdin, and Dor-
per are reported in Table 1. The observed homozygosity 

Table 1  Homozygosity and inbreeding coefficients for the Dorper, Katahdin, and Rambouillet breeds

F is the method-of-moments inbreeding coefficient, FROH is the ROH-based inbreeding coefficient

Hom.: homozygosity; SD: standard deviation

Breed Expected Hom. AVG ± SD Observed Hom. AVG ± SD F AVG ± SD Range F FROH AVG ± SD Range FROH

Rambouillet 0.6216 ± 0.0002 0.6620 ± 0.0218 0.1069 ± 0.06 − 0.057 to 0.389 0.1690 ± 0.06 0.044–0.442

Katahdin 0.6216 ± 0.0002 0.6628 ± 0.0169 0.1090 ± 0.04 − 0.057 to 0.364 0.1865 ± 0.04 0.027–0.428

Dorper 0.6215 ± 0.0001 0.6619 ± 0.0182 0.1067 ± 0.05 0.016 to 0.374 0.1875 ± 0.05 0.099–0.437
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was similar to previous estimates for Rambouillet [71] 
and was slightly higher than previous estimates for 
Katahdin and Dorper [72, 73]. For each breed, the aver-
age FROH estimate was higher than the average F estimate. 
The Kruskal–Wallis P-value for ‘F ~ Breed’ was 4.90e−04, 
and for ‘FROH ~ Breed’ was 2.89e−25. Based on the Dunn’s 
test, Katahdin had significantly higher F inbreeding 
coefficients than Rambouillet; for FROH, the Rambouil-
let breed had significantly lower inbreeding coefficients 
than both Dorper and Katahdin (Fig.  1). Overall, FROH 
estimates were higher than previously reported estimates 
for worldwide sheep populations [74, 75]. Previous stud-
ies have sampled fewer individuals per breed, which may 
contribute to these observations. 

Estimates of Ne were calculated using the SNeP, NeEs-
timator, and GONe software. The Ne of the Rambouillet 
and Katahdin breeds were estimated from 759 genera-
tions ago to 13 generations ago using SNeP, from 741 

generations ago to one generation ago using GONe, and 
for the current generation (given the notation 0) with 
NeEstimator (Fig. 2). Estimations with GONe were non-
linear, while estimations with SNeP showed a consistent 
decline in Ne from the furthest generation to the most 
recent. These general observations of SNeP and GONe 
trajectories are similar to the Ne results reported in the 
Master thesis work of D Adepoju with cattle data [76]. 
The GONe and SNeP estimates began to show more 
agreement approximately 30 generations ago (Fig. 2a). In 
the most recent generation, Katahdin were estimated to 
have an Ne of 161.4 by NeEstimator or 436.1 by GONe, 
while Rambouillet had Ne estimates of 56.9 by NeEstima-
tor or 111.8 by GONe (Fig. 2b).

The rate of change (m) of Ne size over generational time 
can give insight into the rate of diversity loss. These cal-
culations were made with the results of SNeP, as these 
estimates followed a linear pattern. The overall rate of 

Fig. 1  Distribution of F and FROH inbreeding coefficients by breed. Boxplots of the distribution of F and FROH for Dorper, Katahdin, and Rambouillet 
breeds. The horizontal black line represents the overall mean inbreeding coefficient calculated from both F and FROH estimates
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change was m = 3.02 for Rambouillet and m = 2.76 for 
Katahdin, suggesting that the Rambouillet breed has lost 
genetic diversity at a slightly more rapid rate than the 
Katahdin breed. The most rapid decrease in Ne occurred 
between 80 and 98 generations ago for the Katahdin 
(m = 5.11; Table  2) and between 15 and 17 generations 
ago for the Rambouillet breed (m = 9.00; Table 3). Katah-
din also had a high rate of change 15 to 17 generations 
ago (m = 5, Table  3). In addition, both Rambouillet and 
Katahdin showed higher rates of change between 20 
and 23 generations ago, with Rambouillet having an 
m of 7.33, and Katahdin having an m of 5.00 between 
these intervals. Each subsequent generation had a lower 
Ne estimate than the preceding generation, and in each 
generation the estimate for Rambouillet was greater 
than that for Katahdin. The Ne estimates for these breeds 
became more similar as the generations became closer 
to the current one. Analysis results for the Dorper sheep 
are reported as supplementary data (see Additional file 2: 
Table  S1). The greatest rate of change for Dorper was 
estimated from 17 to 20 generations ago, with m = 4.00, 
and the overall rate of change was m = 2.05.

Runs of homozygosity and Wright’s FST analyses
There were 51,992 and 72,946 ROH called for Katahdin 
and Rambouillet, respectively. The ROH were catego-
rized into five classes by length, with classes defined by 
0–6 Mb, 6–12 Mb, 12–24 Mb, 24–48 Mb, and > 48 Mb. 
The majority of the ROH identified were shorter than 
6  Mb in length; 86% of the Rambouillet total ROH 
and 75% of the Katahdin total ROH were within this 

class (see Additional file  3: Table  S2). The percentages 
of 6–12  Mb and 12–24  Mb long ROH were greater in 
Katahdin than in Rambouillet (see Additional file  4: 
Fig. S2). The average lengths of ROH called in Katahdin 
and Rambouillet were significantly different (Wilcoxon 
P-value = 1.29e−82), with Rambouillet having signifi-
cantly shorter mean ROH than Katahdin (Fig.  3). The 
differences observed in mean ROH length and in per-
centage of ROH by class may reflect differences in LD 
decay at signatures of selection between these breeds. 
As LD breaks down rapidly over distance, short ROH 
can indicate more ancient inbreeding or selection 
events while long ROH are indicative of more recent 
selection [77, 78].

A ROH island was defined by the presence of SNPs 
called within a ROH in 50% or more of the animals of a 
breed (Fig. 4). The ROH analysis identified three ROH 
islands in Rambouillet and two ROH islands in Katah-
din (Table 4). The ROH island identified in Rambouillet 
on chromosome 6 had both the largest number of SNPs 
called in an ROH island (202 SNPs) and the highest per-
centage of animals called in an ROH at the same SNP 
(94.23%). ROH islands in Rambouillet were identified 
on chromosome 3 (Fig.  5a), chromosome 6 (Fig.  5b), 
and chromosome 7 (Fig. 5c), and those in Katahdin on 
chromosome 23 (Fig. 6a) and chromosome 25 (Fig. 6b). 
There was some overlap between ROH islands called 
in Rambouillet and Dorper sheep on chromosome 6, 
although the ROH called in Rambouillet were both 
longer and more highly conserved within the breed (see 
Additional file 5: Table S3).   

Fig. 2  Recent and historic Ne estimated through three methods. a Ne estimates from 30 generations ago to the current one for Katahdin 
and Rambouillet, estimated with GONe, NeEstimator, and SNeP; b Historic Ne estimates for Katahdin and Rambouillet estimated with GONe 
and SNeP
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The genomic regions of ROH islands were evaluated 
for the presence of known and predicted genes. Seventy-
six genes were identified in the Katahdin ROH islands, 
including 20 uncharacterized LOC genes without pre-
dicted Homo sapiens orthologs, and two copy number 
variants (CNV) of the TRNAC-GCA​ gene. Fifty-five 
unique genes were used for pathway enrichment queries 
(see Additional file  6: Table  S4). For Rambouillet, 117 
unique genes, multiple copies of tRNA genes TRNAS-
GGA​, TRNAH-AUG​, TRNAW-CCA​, and TRNAC-GCA, 
and 37 uncharacterized LOC genes were identified 
between the ROH islands on chromosomes 3 and 6 (see 
Additional file 7: Table S5). The ROH island identified on 
chromosome 7 was intergenic. Known or predicted pro-
tein–protein interactions of genes located within ROH 
islands were identified through query of the STRING 
database. For genes within the Rambouillet ROH island 
on chromosome 6, the largest number of interactions was 
found for FAM184B (9 proteins), FAM13A (7 proteins), 
and for CCSER1, LAP3, LCORL, MED28, and NCAPG, 
all of which had interactions with six proteins. Within 
the ROH island on chromosome 3, the largest number 
of interactions was found for TMEM117 (7 proteins), 

ZCRB1 (6 proteins), and HNRNPA1 (5 proteins). Analy-
sis of protein–protein interactions for the Katahdin ROH 
island on chromosome 23 identified four interactions 
with NDUFV2, and analysis of the ROH island on chro-
mosome 25 contained only interactions of ARID4B with 
TOMM20 and RBM34 (see Additional file 8: Table S6).

Pairwise FST of 0.140, 0.156, and 0.161 were estimated 
between Katahdin and Rambouillet, between Ram-
bouillet and Dorper, and between Katahdin and Dorper, 
respectively. Thresholds of + 3 standard deviations above 
the average were calculated for each breed comparison to 
identify outlier SNPs that showed the greatest amount of 
differentiation. As expected from the pairwise estimates, 
the Katahdin-Rambouillet SNP comparisons showed the 
lowest average FST and smallest standard deviation. The 
FST threshold for Katahdin-Rambouillet outlier SNPs was 
0.52, and for both Rambouillet-Dorper and Katahdin-
Dorper comparisons, the threshold was 0.58 (Table  5). 
The pairwise FST statistics for each SNP in the Katahdin-
Rambouillet analysis were compared against ROH island 
results (Fig. 4).

The nearest gene of the ten SNPs with the high-
est FST estimates from each pairwise FST analysis was 

Table 2  Effective population size (Ne) for Katahdin sheep

The rate of change in Ne (m) was calculated as the change in Ne over the change in generations ago (∆Ne/∆generation). The greatest rates of change are indicated with 
(*) and the overall rate of change is given in italics

Generations ago Ne Average distance 
(bp)

Average LD ( r2) ± SD Number of pairwise 
comparisons

Rate of change (m)

13 178 3,749,388 0.0361 ± 0.05 38,212 0.50

15 179 3,272,881 0.0410 ± 0.06 34,640 5.00*

17 189 2,843,420 0.0445 ± 0.07 31,503 1.67

20 194 2,460,514 0.0497 ± 0.07 28,092 5.00*

23 209 2,116,735 0.0535 ± 0.08 25,271 2.00

27 217 1,811,459 0.0597 ± 0.08 22,366 4.40

32 239 1,541,337 0.0637 ± 0.09 19,760 2.67

38 255 1,303,408 0.0700 ± 0.10 17,620 4.14

45 284 1,095,495 0.0745 ± 0.10 15,484 3.67

54 317 914,182 0.0795 ± 0.11 13,424 4.55

65 367 757,894 0.0825 ± 0.11 11,640 3.40

80 418 623,867 0.0876 ± 0.12 10,128 5.11*

98 510 509,861 0.0878 ± 0.12 8529 3.27

120 582 413,447 0.0941 ± 0.13 7034 4.07

150 704 333,299 0.0962 ± 0.13 5838 2.59

187 800 266,817 0.1049 ± 0.14 4792 4.43

234 1008 213,215 0.1042 ± 0.14 3832 3.20

293 1197 170,203 0.1093 ± 0.14 3189 2.03

366 1345 136,424 0.1199 ± 0.16 2460 3.24

454 1630 110,075 0.1223 ± 0.16 1872 1.00

554 1730 90,236 0.1380 ± 0.18 1428 1.82

657 1917 76,085 0.1464 ± 0.19 939 1.45

759 2065 65,804 0.1554 ± 0.20 698 Overall 2.76
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determined (Table 6). The SNP OAR2_231739122.1 had 
the highest FST (0.9069) in the Katahdin-Rambouillet 
analysis and was positioned 935  bp downstream of the 
CXCR2 gene. For the Katahdin-Dorper analysis, the SNP 
OAR2_88734520.1 had an FST value of 0.9735 and was 
within the CCDC171 gene, and for Rambouillet-Dorper, 
the SNP OAR1_292866363.1 had an FST value of 0.8829 
and was positioned within the METTL6 gene. Among the 
top ten SNPs identified in the Rambouillet-Dorper anal-
ysis, four were located within or near the LCORL gene. 
In addition, all pairwise FST comparisons identified out-
lier SNPs within the region of the FRY and RXFP2 genes 
(Table 7 and Fig. 7).

In total, 554 outlier SNPs were identified in the Katah-
din-Rambouillet FST analysis. Of these 554 SNPs, 157 
were positioned within 200,000 bp of at least one other 
outlier SNP, which together defined 63 FST regions con-
taining 233 unique and characterized genes (see Addi-
tional file  9: Table  S7). These genes included the tRNA 
genes TRNAC-GCA​ (four CNV), TRNAW-CCA​ (three 
CNV), TRNAE-CUC​ (two CNV), and TRNAS-GGA​ (one 
CNV). The FST regions were in part consistent with the 
ROH results, with seven SNPs being identified through 

both the Katahdin ROH and Katahdin-Rambouillet out-
lier FST analyses, and 18 SNPs being identified through 
both the Rambouillet ROH and Katahdin-Rambouillet 
outlier FST analyses (see Additional file 10: Table S8). The 
GO pathway enrichment analysis of these genes iden-
tified significant enrichment for biological processes 
including regulation of cellular glucuronidation and glu-
curonosyltransferase activity, and significant enrichment 
for the molecular function pathway UDP-glycosyltrans-
ferase activity (see Additional file  11: Table  S9). KEGG 
Mapper pathway analysis revealed genes that are involved 
in many pathways, including, among others, B cell recep-
tor signaling, taste transduction, circadian rhythm, 
cytokine-cytokine receptor interaction, endocytosis, 
growth hormone synthesis/secretion/action, hematopoi-
etic cell lineage, HIF-1 signaling, IL-17 signaling, and 
longevity regulation pathways. In addition, there were 
a number of pathways related to viral infection, such as 
herpes simplex virus 1, human immunodeficiency virus 
1, and human cytomegalovirus (see Additional file  12: 
Table S10).

Analyses with the Dorper breed were used to bet-
ter understand allelic differentiation in the Katahdin 

Table 3  Effective population size (Ne) for Rambouillet sheep

The rate of change in Ne (m) was calculated as the change in Ne over the change in generations ago (∆Ne/∆generation). The greatest rates of change are indicated with 
(*) and the overall rate of change is given in italics

Generations ago Ne Average distance 
(bp)

Average LD ( r2) ± SD Number of pairwise 
comparisons

Rate of change (m)

13 268 3,748,453 0.0243 ± 0.04 39,003 4.00

15 276 3,272,995 0.0269 ± 0.04 35,589 9.00*

17 294 2,843,334 0.0291 ± 0.04 31,860 5.67

20 311 2,459,704 0.0316 ± 0.05 28,845 7.33*

23 333 2,116,548 0.0343 ± 0.05 25,565 6.50*

27 359 1,810,664 0.0370 ± 0.05 23,218 5.00

32 384 1,541,490 0.0406 ± 0.06 20,609 5.83

38 419 1,303,677 0.0437 ± 0.06 18,002 4.86

45 453 1,095,627 0.0479 ± 0.07 15,746 6.00

54 507 914,251 0.0512 ± 0.07 13,836 5.45

65 567 757,660 0.0550 ± 0.08 11,965 3.20

80 615 623,577 0.0612 ± 0.09 10,246 5.89

98 721 509,735 0.0637 ± 0.09 8553 3.39

121 799 413,170 0.0704 ± 0.10 7279 6.68*

149 986 333,486 0.0707 ± 0.10 5903 4.08

187 1141 267,022 0.0758 ± 0.10 4976 2.62

234 1264 213,570 0.0848 ± 0.12 4033 3.80

293 1488 170,488 0.0897 ± 0.12 3228 2.27

367 1656 136,133 0.0998 ± 0.14 2507 2.63

454 1885 110,105 0.1075 ± 0.14 1972 2.65

554 2150 90,160 0.1143 ± 0.16 1415 0.63

657 2215 75,994 0.1293 ± 0.17 959 0.69

759 2285 65,817 0.1425 ± 0.18 702 Overall 3.02
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and Rambouillet breeds. All FST regions were analysed 
to identify the genes that were present in both pairwise 
comparisons of a breed: for example, genes identified in 
both the Rambouillet-Dorper and Katahdin-Rambouillet 
FST analyses were further explored to give context to the 
FST signals associated with the Rambouillet. Fifty-one 
genes were in common for the Rambouillet, 31 for the 
Katahdin, and 21 for the Dorper comparisons (Table 8). 
Many of these genes were previously identified in stud-
ies on signatures of selection or are candidate genes for 
production and/or health traits in sheep. The genes 
reported in Table 8 for each breed were queried through 
KEGG. These analyses identified pathways for metabolic 
pathways, olfactory transduction, and cytokine-cytokine 
receptor interaction (Table 9). In addition, genes in com-
mon between ROH islands and FST regions were evalu-
ated for Katahdin and Rambouillet breeds (Table 10).  

The Katahdin-Dorper analysis identified 513 outlier 
SNPs, including 109 SNPs located near to each other, 
which defined 49 regions. The 144 genes contained 
within these regions were used for pathway analysis. 
Genes in these regions were part of KEGG pathway 
terms, including chemokine signaling and cytokine-
cytokine receptor interaction (see Additional file  13: 
Table  S11). In the Rambouillet-Dorper analysis, 569 
outlier SNPs were identified, with 167 SNPs defining 
73 FST regions. In total, 264 genes were located within 
these regions. Some of the pathways identified by 
KEGG Mapper analysis included biosynthesis of unsat-
urated fatty acids, neutrophil extracellular trap forma-
tion, olfactory transduction (with nine related genes), 
and prion disease (see Additional file  14: Table  S12). 

Fig. 3  Length of ROH called by breed. a Plot of the average length 
of ROH (x-axis) by the total number of ROH called per individual 
(y-axis), with the Katahdin sheep plotted in blue and the Rambouillet 
sheep in purple; b Average length of ROH by breed, with the overall 
mean indicated by the horizontal line and breed means indicated 
by black points. The Wilcoxon P-value of ’average length ~ breed’ 
is 1.29e−82

Fig. 4  Manhattan plot of ROH and FST results for Katahdin and Rambouillet sheep. The top of the plot (scale 0 to 100) is the percentage 
of SNPs called in an ROH in Katahdin (blue) and Rambouillet (purple) breeds. The bottom of the plot (scale 0 to 1.0) contains the results 
of the Katahdin-Rambouillet pairwise FST of each SNP (gray)
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The pathway analyses of the Dorper ROH results are 
provided as supplementary material (see Additional 
file  15: Table  S13; Additional file  16: Table  S14; Addi-
tional file 17: Table S15; Additional file 18: Table S16). 
In addition, the outlier FST results described here from 
the Weir and Cockerham model implemented in Plink 
were compared against the results of a BayeScan FST 
analysis (see Additional file 19: Table S17).

Table 4  Regions comprised of SNPs called within a ROH in 50% or more of the animals of a breed

Chr: chromosome number; AVG: average; Max: maximum

In Katahdin sheep, 50 SNPs were called within an ROH in 50% or more of Katahdin sheep in a region on chromosome 23 and 18 SNPs were called in a region on 
chromosome 25. In Rambouillet, a region on chromosome 3 contained 71 SNPs, chromosome 6 contained 202 SNPs, and chromosome 7 contained three SNPs

Breed Chr Number of SNPs AVG % SNPs in run Max % SNPs in run Range (bp)

Katahdin 23 50 65.82 68.67 40,163,730–45,746,963

25 18 51.54 51.81 6,929,232–7,836,577

Rambouillet 3 71 55.70 60.67 138,563,593–148,939,496

6 202 68.38 94.23 32,795,860–47,985,710

7 3 52.62 53.56 60,566,239–60,647,707

Fig. 5  Chromosomes with ROH called in 50% or more of the Rambouillet sheep. a ROH called on chromosome 3; b ROH called on chromosome 6; 
c ROH called on chromosome 7. The ROH called in Katahdin are plotted in blue and the ROH in Rambouillet are plotted in purple

Fig. 6  Chromosomes with ROH called in 50% or more of the Katahdin sheep. a ROH called on chromosome 23; b ROH called on chromosome 25. 
The ROH called in Katahdin are plotted in blue and the ROH in Rambouillet are plotted in purple

Table 5  Average FST estimates between Katahdin, Dorper, and 
Rambouillet breeds

The threshold for calling outlier values was the average (AVG) + 3 standard 
deviation (SD)

Katahdin-
Rambouillet

Katahdin- Dorper Rambouillet-
Dorper

AVG 0.1149 0.1319 0.1294

SD 0.1345 0.1493 0.1506

Threshold 0.5184 0.5799 0.5813
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Protein–protein interactions were identified for genes 
implicated by pairwise FST analyses with STRING. Query 
with the genes from the Katahdin-Rambouillet FST out-
lier regions revealed the largest number of interactions 
with ribosomal proteins RPL23A (19 proteins), RPL5 
(18 proteins), and RPL10A, RPL6, and RPL7, each with 
15 protein–protein interactions. Query with the genes 
from the Rambouillet-Dorper FST outlier regions iden-
tified 19 protein–protein interactions with RPL8, 18 
interactions with RPL6, and 17 interactions each with 
RECQL4 and RPL10A. The largest number of interac-
tions in the Katahdin-Dorper FST outlier regions were 
with EIF4A3, KCNQ1, NPM1, and TSSC4, all of which 

had seven protein–protein interactions (see Additional 
file 8: Table S6).

Discussion
In this study, we analyzed the genetic diversity and sig-
natures of selection of Rambouillet, Katahdin, and Dor-
per sheep through within-breed (ROH approach) and 
pairwise breed (FST outlier approach) comparisons. The 
results reported here concern genomic regions that are 
under selection in the considered U.S. sheep. In addi-
tion, this study identified commonalities with previously 
identified signatures of selection from a diverse range 
of breeds, which allows our findings to contribute to a 

Table 6  Genomic information for 10 SNPs with the highest FST in each pairwise breed comparison

Pairwise breed comparison Chr:bp FST Gene

Katahdin-Rambouillet

 OAR2_231739122.1 2:220,204,274 0.9069 935 bp downstream of C-X-C motif chemokine receptor 2 (CXCR2)

 OAR3_138331159.1 3:129,837,912 0.8236 24,522 bp from mitochondrial ribosomal protein L42 (MRPL42)

 OAR3_146778162.1 3:137,510,701 0.7882 KAT8 regulatory NSL complex subunit 2 (KANSL2)

 s39351.1 3:183,889,776 0.8339 8508 bp from DENN domain containing 5B (DENND5B)

 OAR4_19418235.1 4:19,933,519 0.7842 1464 bp upstream of PHD finger protein 14 (PHF14)

 OAR6_42557643.1 6:39,000,766 0.796 207,018 bp from protein SET-like (LOC10110458)

 OAR6_44450940.1 6:40,475,050 0.8022 Slit guidance ligand 2 (SLIT2)

 OAR8_78922714.1 8:73,722,766 0.8178 TGF-beta activated kinase 1 (MAP3K7) binding protein 2 (TAB2)

 s01826.1 8:81,097,505 0.8236 65,227 bp from AT-rich interaction domain 1B (ARID1B)

 OAR23_46900744.1 23:44,502,153 0.7756 3397 bp from heterogeneous nuclear ribonucleoproteins A2/B1-like 
(LOC101108009)

Katahdin-Dorper

 OAR2_88734520.1 2:84,038,487 0.9735 Coiled-coil domain containing 171 (CCDC171)

 OAR3_92705824.1 3:87,616,185 0.8486 Cysteine rich transmembrane BMP regulator 1 (CRIM1)

 s70203.1 4:35,066,909 0.9462 Glutamate metabotropic receptor 3 (GRM3)

 OAR6_64114132.1 6:58,970,273 0.8836 KELCH like family member 5 (KLHL5)

 OAR8_29480020.1 8:27,186,942 0.852 methyltransferase like 24 (METTL24)

 OAR14_25081675.1 14:24,402,748 0.8856 Nucleoporin 93 (NUP93)

 OAR14_53703182.1 14:51,456,105 0.9254 742 bp upstream of zinc finger protein 575 (ZNF575)

 s30024.1 25:6,684,555 0.8544 31,987 bp from TAR (HIV-1) RNA binding protein 1 (TARBP1)

 s44881.1 25:6,938,538 0.8551 27,307 bp from small nucleolar RNA SNORA40 (LOC114110918)

 OAR25_17689768.1 25:16,484,790 0.8508 49,538 bp from transmembrane protein 26 (TMEM26)

Rambouillet-Dorper

 s41709.1 2:16,050,607 0.8904 48,461 bp from zinc finger protein 462 (ZNF462)

 OAR6_41003295.1 6:37,533,595 0.8818 1873 bp upstream of matrix extracellular phosphoglycoprotein (MEPE)

 OAR6_41709987.1 6:38,197,739 0.896 Ligand dependent nuclear receptor corepressor like (LCORL)

 OAR6_41768532.1 6:38,248,979 0.9007 26,028 bp from LCORL

 OAR6_41850329.1 6:38,330,994 0.9009 108,043 bp from LCORL

 OAR6_41925630.1 6:38,397,839 0.8971 174,888 bp from LCORL

 s01370.1 9:27,800,948 0.8827 9194 bp from tribbles pseudokinase 1 (TRIB1)

 OAR14_25081675.1 14:24,402,748 0.8733 Nucleoporin 93 (NUP93)

 OAR16_42184944.1 16:39,117,011 0.9006 131,081 bp from prolactin receptor (PR)

 OAR24_27348134_X.1 24:25,380,060 0.8806 12,165 bp from interleukin 4 receptor (IL4R)
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Table 7  Fixation index (FST) scores for SNPs in the region harboring the FRY and RXFP2 genes

*Denotes that the FST score is above the breed comparison threshold of either 0.58 (Katahdin-Dorper and Rambouillet-Dorper) or 0.52 (Katahdin-Rambouillet) and is 
significant by Fisher’s exact test

SNP Gene Chr:bp FST

Katahdin-Dorper Rambouillet-Dorper Katahdin-
Rambouillet

s24045.1 FRY, ZAR1L 10:29,041,335 0.0531 0.6995* 0.4769

OAR10_29065568.1 FRY 10:29,071,493 0.0034 0.6139* 0.4614

OAR10_29223007.1 FRY 10:29,230,973 0.1191 0.3418 0.5809*

s02289.1 FRY 10:29,244,858 0.0007 0.5767 0.6366*

OAR10_29274817.1 FRY 10:29,281,423 − 0.0012 0.5676 0.6031*

OAR10_29341212.1 FRY 10:29,347,138 0.0921 0.8234* 0.6517*

OAR10_29448537.1 Downstream of RXFP2 10:29,458,417 0.6443* 0.7264* 0.0164

OAR10_29469450.1 Downstream of RXFP2 10:29,479,765 − 0.0001 0.6992* 0.7510*

OAR10_29654158.1 Upstream of RXFP2 10:29,654,912 0.8321* 0.7709 0.0094

OAR10_29737372.1 Upstream of RXFP2 10:29,753,249 0.5008 0.0115 0.5895*

s18834.1 Upstream of RXFP2 10:29,847,303 0.7320 0.0479 0.5521*

Fig. 7  SNPs with high FST in the region of the FRY and RXFP2 genes. a Stacked bar chart representing genotype frequencies at SNP s24045.1; 
b Stacked bar chart representing genotype frequencies at SNP OAR10_29065568.1; c Stacked bar chart representing genotype frequencies 
at SNP OAR10_29223007.1; d Stacked bar chart representing genotype frequencies at SNP s02289.1; e Stacked bar chart representing genotype 
frequencies at SNP OAR10_29274817.1; f Stacked bar chart representing genotype frequencies at SNP OAR10_29341212.1; g Stacked bar chart 
representing genotype frequencies at SNP OAR10_29448537.1; h Stacked bar chart representing genotype frequencies at SNP OAR10_29469450.1; 
i Stacked bar chart representing genotype frequencies at SNP OAR10_29654158.1; j Stacked bar chart representing genotype frequencies at SNP 
OAR10_29737372.1; k Stacked bar chart representing genotype frequencies at SNP s18834.1. D: Dorper; K: Katahdin; R: Rambouillet
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broad conversation about the signatures of selection and 
breed diversity of worldwide sheep.

A landmark paper in sheep genetic diversity research 
was published in 2012 by Kijas and colleagues [115]. Their 
study analyzed population structure and signatures of 
selection of 2819 sheep sampled from 74 breeds, includ-
ing 102 Rambouillet sheep. The inbreeding coefficient (F) 
and Ne reported for these Rambouillet sheep were 0.14 
and 709, respectively. These statistics are quite different 
from those of the Rambouillet analyzed in the current 
study. While a larger number of Rambouillet (N = 745) 
were sampled in this paper, the average inbreeding 

coefficient (FROH) was found to be higher (0.169) and 
the current Ne was smaller (NeEstimator: 56.9, GONe: 
111.8) than those reported previously [115]. It is possi-
ble that these differences result from differences between 
the F statistic and Ne calculation methods. A previous 
study found that two genotype-based inbreeding coeffi-
cients (FSNP and FROH) had correlation coefficients rang-
ing from 0.78 to 0.88, indicating that while related, the 
degree of inbreeding is not entirely comparable between 
subcategories of F statistics [116]. The results of the cur-
rent study found that F and FROH showed different lev-
els of inbreeding, with pairwise breed differences being 

Table 8  Genes that were in common between FST comparisons

Genes that were present in all FST comparisons of a breed (e.g., for Rambouillet, genes that were present in both the Katahdin-Rambouillet and Rambouillet-Dorper 
comparisons). The list numbers of the relevant literature references for genes identified as candidate genes or within signatures of selection for production and/
or health traits in sheep are in brackets. *indicates that the gene is present in more than one breed list. tRNA genes may be members of the same family located at 
multiple loci between breeds or analyses

Breed (number of genes) Genes within all FST analyses of a breed [reference]

Rambouillet (51) ADIRF [79], BMPR1A [80], CCSER1 [81], CSF3 [82], EEF1A1* [83], EIF2S2* [84], EVI2A [85], EVI2B [85], FAM25A, FRY* [86], GSDMA 
[87], GSDMB, LDB3 [88], LRRC3C, MED24, MMRN2, MRPS18C, MSL1, MTIF2, NF1 [89], NR1D1 [90], OMG [91], OPN4, OR10A2, 
OR10A5, OR2AG1 [92], OR2D3, OR8S1, ORMDL3, PCED1B, PSMD3 [93], RAB11FIP4 [94], RASGEF1B, RPL10A [95], RPL6 [96], 
RXFP2* [83], SCAMP2, SLC38A1, SLC38A2, SNCG [97], SNORD124, THRA [93], TMA7, TNFSF18 [98], TRNAC-ACA​, TRNAC-GCA* [99], 
TRNAG-UCC*, TRNAS-GGA* [100], TRNAW-CCA* [101], UAP1, ZPBP2

Katahdin (31) ADCY6 [102], B3GALNT2, B3GLCT, CACNB3 [103], CCNT1 [91], DDX23, EEF1A1* [83], EIF2S2* [84], FBXL14, FRY* [86], INPP4A, 
IRF2BP2, KANSL2 [104], LALBA [97], MGAT4A, MRPL42 [105], NUDT4 [105], RND1, RXFP2* [83], SNORA40, SOCS2 [106], ST13, 
TARBP1, TEX49, TRNAC-GCA* [99], TRNAE-CUC​, TRNAG-UCC*, TRNAS-GGA* [100], TRNAW-CCA* [101], UBE2N [107], UNC50

Dorper (21) ANO6 [108], ATXN7L3B, DIP2C [81], EEF1A1* [83], EIF2S2* [84], EPB41L4B [109], FRY* [86], GRIN2B [110], MFF [111], PTPN3 [112], 
RXFP2* [83], SLIT2 [113], SNORD31, TRNAC-GCA* [99], TRNAG-CCC​, TRNAG-UCC*, TRNAH-AUG​, TRNAS-GCU​, TRNAS-GGA* [100], 
TRNAW-CCA* [101], ZMYND11 [114]

Table 9  KEGG results for genes which were in common between both comparisons of Rambouillet or Katahdin

Genes present within the Rambouillet FST analyses (i.e. the Katahdin-Rambouillet and Rambouillet-Dorper FST comparisons) or the Katahdin FST analyses (i.e. the 
Katahdin-Rambouillet and Katahdin-Dorper FST comparisons) were queried through KEGG Mapper to identify pathways of interest. The Dorper sheep did not have 
KEGG mapper pathways enriched with three or more gene search terms

Breed KEGG Mapper pathway (number of genes) Enriched genes

Rambouillet Olfactory transduction (5) OR2D3, OR10A5, OR2AG1, 
OR10A2, OR8S1

Ribosome (3) RPL10A, MRPS18C, RPL6

Cytokine-cytokine receptor interaction (3) CSF3, BMPR1A, TNFSF18

Coronavirus disease—COVID-19 (3) CSF3, RPL10A, RPL6

Katahdin Metabolic pathways (3) ADCY6, B3GALNT2, LALBA

Table 10  Genes that were called within the ROH islands and pairwise FST comparison regions

The Katahdin genes are present in the Katahdin ROH islands as well as the FST region(s) between Katahdin-Rambouillet and/or Katahdin-Dorper, the Rambouillet 
genes are present in Rambouillet ROH islands and the FST region(s) between Katahdin-Rambouillet and/or Rambouillet-Dorper

Breed Genes in common between ROH and FST regions

Katahdin ARID4B, ATMIN, B3GALNT2, GGPS1, GNG4, LYST, RBM34, TBCE, TOMM20, TRNAC-ACA​, TRNAC-GCA​, TRNAR-CCU​, TRNAW-CCA​

Rambouillet ADGRA3, AMIGO2, ANO6, CCSER1, COL2A1, DCAF16, EIF2S3, FAM184B, GBA3, GRID2, HDAC7, KCNIP4, LAP3, LCORL, LRRK2, 
MED28, MFF, NCAPG, PCED1B, RAN, RPL10A, RPL37, SLC2A13, SLC38A1, SLC38A2, SLC38A4, SLIT2, SNCA, STIM2, TBC1D19, 
TMA7, TMEM106C, TRNAA-CGC​, TRNAC-GCA​, TRNAG-CCC​, TRNAH-AUG​, TRNAS-GGA​, TRNAW-CCA​, VDR
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most significant in FROH estimates. The Ne reported in 
our study are estimated for current and historic genera-
tions while the Ne estimates reported previously by Kijas 
and colleagues [115] are not described in terms of gen-
erational distance and are therefore difficult to compare 
directly.

A previous study was conducted with genotype data 
from 4884 Katahdin sheep [72]. The 581 Katahdin sheep 
used in our study were also analyzed as part of this larger 
population, although the genotype data used between 
these publications were collected from separate plat-
forms. In spite of the difference in sample sizes between 
these studies, the SNeP Ne estimations 13 generations 
ago were very similar (Ne of 172 or 178 estimated from 
4884 or 581 sheep, respectively). This agreement between 
Ne estimations supports the validity of these estimates.

The Ne estimates reported between the SNeP, GONe, 
and NeEstimator approaches varied. Based on SNeP, 
Rambouillet had consistently larger Ne than Katahdin, 
and both breeds showed a decline in Ne between each 
subsequent generation. This ranking of the Rambouillet 
and Katahdin breeds was also observed in the historic Ne 
reported through GONe, although in more recent gen-
erations there were multiple reranking events in which 
the Ne of Katahdin exceeded that of Rambouillet, and 
in the current generation, both NeEstimator and GONe 
calculated a larger Ne for Katahdin than for Rambouil-
let. However, Katahdin had significantly higher average F 
and FROH compared to Rambouillet, which suggests com-
paratively less current breed diversity. While the largest 
and most conserved ROH was identified in Rambouil-
let, Katahdin had a greater proportion of ROH within 
the larger 6–12  Mb class. The presence of more ROH 
of greater length suggests recent inbreeding events in 
the history of the Katahdin breed. Taken together, these 
results support the importance of evaluating evidence 
from multiple inbreeding and Ne models, since relying 
on a single estimate might bias interpretation of genetic 
diversity.

The largest ROH Island was positioned between 32.8 
and 48.0  Mb on chromosome 6 and encompassed 64 
unique genes. This region was previously reported to be 
under selection in sheep and cattle [23, 117–120] and 
many of the associated genes were suggested as candi-
dates for production traits. In cattle, the ABCG2, IBSP, 
PIGY, PKD2, and MEPE genes have been associated 
with yearling weight [121]; NCAPG, LCORL, and LAP3 
with body weights and calving ease [122]; and ABCG2, 
LAP3, NCAPG, DCAF16, and LCORL with milk total 
solid percentage [123]. Similarly in sheep, quantitative 
trait loci (QTL) associated with the DCAF16, LAP3, 
LCORL, NCAPG, NAP1L5, and PPARGC1A genes have 
been reported for somatic cell score or milk yield in dairy 

sheep [124]; DCAF16, LCORL, and NCAPG genes associ-
ated with body weight [125]; SPP1 and LAP3 genes asso-
ciated with weight [126]; LCORL associated with meat 
productivity [127]; SLIT2 and ABCG2 genes  associated 
with fat deposition and milk production, respectively 
[115, 128]; and genes HERC3, HERC5, HERC6, IBSP, and 
SPP1 associated with parasite resistance [129]. In the cur-
rent study, the ROH island identified in this region was 
highly conserved, with more than 94% of the Rambouil-
let animals having a ROH called. Rambouillet sheep are 
raised for their carcass and wool characteristics and, as a 
breed, are generally considered to be susceptible to para-
site infection [130]. The ROH island in this region may 
be the result of past selection for weight or carcass traits 
and the homozygosity at genes relating to milk yield or 
parasite resistance may have occurred through hitchhik-
ing [131].

Similarly, the ROH island identified on chromo-
some 3 contains genes that were previously described 
within signatures of selection in goats and cattle, includ-
ing ADAMTS20, GXYLT1, IRAK4, PRICKLE1, PUS7L, 
TWF1, YAF2, and ZCRB1 [132–134]. Expression of 
ADAMTS20 has been reported to be upregulated in ewes 
with endometritis [135], and members of the ADAMTS 
family have been associated with divergent prolificacy of 
sheep and goats [136]. In goats, the ADAMTS20 gene has 
also been associated with coat color [137]. The IRAK4 
gene encodes interleukin-1 receptor-associated kinase 
4, a key regulator of innate immune signaling responses 
[138]. In addition, the GXYLT1, PRICKLE1, YAF2, and 
ZCRB1 genes have been associated with resistance/sus-
ceptibility to Mycobacterium avium spp. paratuberculosis 
infection (responsible for Johne’s disease) in Holstein cat-
tle [139]. An association study in dogs identified TWF1 as 
a candidate gene for deafness, and this gene has potential 
roles in hair-bundle development and melanocyte den-
dricity [140]. Both IRAK4 and TWF1 were implicated as 
genes of interest by Tajima’s D analysis with two strains 
of Qinchuan cattle [133]. The occurrence of these genes 
within signatures of selection in other species and the 
associations with reproduction, coat color, and animal 
health suggest potential traits which may be under selec-
tion in the Rambouillet breed.

Genes that were previously reported in signatures 
of selection in worldwide sheep breeds were identified 
through FST analysis of the U.S. Rambouillet, Katah-
din, and Dorper sheep in the current study. These genes 
include NF1, a negative regulator of the ras pathway 
(identified in the Katahdin-Rambouillet and Rambouil-
let-Dorper FST comparison), OR2AG1 (identified in the 
Katahdin-Rambouillet and Rambouillet-Dorper FST com-
parison, and other olfactory receptor genes identified in 
all FST comparisons); and RXFP2, associated with horn 
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phenotypes in sheep (present in all FST comparisons), 
which were reported by Kijas et  al. [115]. A number of 
the genes identified in both FST comparisons with Katah-
din (Katahdin-Rambouillet and Katahdin-Dorper) have 
been associated with milk production or resistance and 
susceptibility for mastitis. These genes included CCNT1, 
previously associated with milk and cheese-making traits 
[91]; LALBA, associated with milk production traits 
[141]; MRPL42, a candidate gene for mastitis resistance 
[105]; and the gene suppressor of cytokine signaling 2 
(SOCS2) associated with mastitis susceptibility [106, 
142]. Genes present in both Rambouillet FST compari-
sons (Katahdin-Rambouillet and Rambouillet-Dorper) 
have been shown to be connected with wool growth, 
including: FRY, involved in wool development through 
a previous FST analysis [78]; NR1D1, found to be differ-
entially expressed and differentially methylated at differ-
ent stages of hair follicle development [90]; TNFSF18, 
a candidate gene for staple length and fiber diameter 
traits [98]; and RXFP2, which may be linked to hair fol-
licle growth through the cAMP synthesis pathway [143]. 
The NF1, EVI2A, EVI2B, and OMG genes were also iden-
tified in both of the Rambouillet FST analyses and were 
previously associated with adaptive response to physical 
exhaustion and fat deposition [85].

Copies of the EIF2S2 gene were identified in FST regions 
on chromosomes 13 and 25 in the Rambouillet-Dorper 
and Katahdin-Rambouillet FST analyses, respectively. The 
copy-number variant of EIF2S2 on chromosome 25 is 
caused by retrotransposition (retroCNV), which results 
in an insertion of the EIF2S2 retrogene into the 3′ UTR 
of IRF2BP2. This insertion has been found to be respon-
sible for the “wooly” fleece phenotype of modern sheep 
[84, 144]. As a hair breed, the coats of Katahdin sheep 
are more similar to those of ancestral sheep breeds, in 
which an inner coat of fine wooly fibers lays below an 
outer coat comprised of hair fibers. Modern wooly sheep, 
such as the Rambouillet, lack the double coat of hair and 
ancestral sheep breeds, and instead possess a single coat 
comprised of wooly fibers of mostly uniform dimension 
[84]. It is unclear what is the biological mechanism that 
is responsible for Rambouillet having differentiation in 
the regions of both  the retroCNV and the EIF2S2 gene, 
but the high FST in the region on chromosome 25 is likely 
related to differences between hair and wool coat types.

The ROH island identified on chromosome 25 in the 
Katahdin sheep overlapped partly with the Katahdin-
Rambouillet FST region containing the IRF2BP2 gene. 
The FST region ranged from 6.6 to 7.0 Mb while the ROH 
island ranged from 6.9 to 7.8 Mb, creating an overall sig-
nature of selection encompassing a region from 6.6 to 
7.8  Mb on chromosome 25. Three SNPs positioned at, 
respectively, 6.94 Mbp, 7.67 Mbp, and 7.73 Mbp, were 

identified by both the ROH and FST outlier analyses. This 
region contains the TOMM20, RBM34, ARID4B, GGPS1, 
TBCE, B3GALNT2, ATMIN, GNG4, and LYST genes, 
which were previously implicated in tail fat deposition, 
the ancestral-like coarse wool phenotype, coat color 
regulation, and response to Brucella ovis infection [145–
149]. The identification of this signature of selection 
through both FST and ROH analyses, which encompasses 
genes that are important for both immune pathways and 
hair type, suggests a potential relationship between the 
genetic control of these traits in Katahdin sheep.

The ROH island identified on chromosome 23 in 
Katahdin sheep harbors genes compiled in KEGG 
immune pathways, including the LAMA1 gene in the 
ECM-receptor interaction, toxoplasmosis, and viral myo-
carditis pathways; TUBB6 in the phagosome, Salmonella 
infection and pathogenic E. coli infection pathways; and 
PTPRM in the adherens junction and cell adhesion mole-
cules pathways. In a study with Scottish Blackface lambs, 
the LAMA1 gene was found to be divergently expressed 
between lambs with low versus high fecal egg count phe-
notypes [150]. The PTPRM gene has been described to 
have a role in the telogen phase of hair follicle growth 
in Dorper sheep [151], and in studies with humans and 
biomedical models, it has been shown to be expressed by 
T cells and to have a dysregulated expression in patients 
with immune-mediated skin disease [152, 153]. While 
there is no current evidence for a specific immune role 
for TUBB6 in sheep, transcription of TUBB6 and other 
phagosome-associated genes were found to be down-
regulated in the pituitary gland of nutrient-restricted 
ewes during late gestation [154], and enhanced transcrip-
tion was identified during the late phase of Eimeria bovis 
infection in culture with host bovine cells [155].

The SNP with the highest FST score for the Katahdin-
Rambouillet analysis was OAR2_231739122.1, which is 
positioned 935 bp downstream of the CXCR2 gene. This 
gene encodes the principal membrane-bound chemokine 
receptor that is responsible for mediating neutrophil 
recruitment [156]. In sheep, CXCR2 has been implicated 
in clinical mastitis and resistance to gastrointestinal nem-
atode infection [157, 158]. A number of immune-related 
pathways were revealed through KEGG Mapper pathway 
analysis of the genes present within the Katahdin-Ram-
bouillet FST regions. These pathways included leukocyte 
transendothelial migration (AFDN gene), B cell recep-
tor signaling (CD79B gene), cytokine-cytokine recep-
tor interactions (CSF3, GH1, BMPR1A, GDF5, TNFSF18 
genes), IL-17 signaling (CSF3 gene), inflammatory media-
tor regulation of TRP channels (ADCY6, NTRK1, TRPM8 
genes), and NF-kappa B signaling (BCL2L1, MAP3K14 
genes), among others. The high level of FST associated 
with these genes and pathways may reflect differences 
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in allele frequencies contributing to the more robust 
immune response attributed to Katahdin sheep [33, 157].

Through KEGG Mapper pathway analysis for Katah-
din-Dorper FST regions, pathways including chemokine 
signaling (ADCY6) and cytokine-cytokine receptor 
interaction (TNFRSF13B), NOD-like receptor sign-
aling (NLRP3 and PANX1), B cell receptor signaling 
(CD81), and phagosome pathways (STX7) were identi-
fied. These results are of particular interest in light of 
the divergent immune abilities of Dorper and Katahdin 
sheep [159, 160]. In addition, KEGG cytokine-cytokine 
receptor interaction pathways were identified in all 
FST comparisons, although the genes involved differed 
between analyses (see Additional file 20: Fig. S3). In the 
Katahdin-Rambouillet comparison, the CSF3, GH1, 
BMPR1A, GDF5, and TNFSF18 genes were identified; in 
the Rambouillet-Dorper comparison, the IL31RA, CSF3, 
IL17RA, GHR, IL6ST, BMPR1A, and TNFSF18 were iden-
tified; and in the Katahdin-Dorper comparison, only the 
TNFRSF13B was identified, as previously stated. About 
half of the pathway genes overlapped between the Ram-
bouillet comparisons (CSF3, BMPR1A, and TNFSF18), 
suggesting that these FST regions were most strongly asso-
ciated with differentiation of allele frequencies in Ram-
bouillet sheep. There were no overlapping genes between 
the two Katahdin comparisons, which suggests that the 
greatest amount of differentiation between Katahdin and 
Rambouillet and between Katahdin and Dorper occur in 
different regions of the cytokine-cytokine receptor inter-
action pathways. These FST results may have a role in the 
overall immune response of Katahdin sheep compared to 
the Rambouillet and Dorper breeds that are susceptible 
to parasites.

The sheep used in this study were not phenotyped for 
coat color or the presence or absence of horns or scurs. 
However, Rambouillet are well-known for their light-
colored coat [161], with variation being observed in dif-
ferent propensities for yellowing rather than pigment 
[162]. Dorper sheep have a white body and a black head 
and neck, while White Dorper sheep have an entirely 
white coat [163]. The Dorper analyzed in this study were 
from a flock founded by both Dorper and White Dorper 
sheep and showed a variety of color patterns, including 
some animals with black heads and/or black spotting and 
others with solid white coats. Katahdin sheep do not have 
a definite coat color and may have a variety of colors and 
patterns [164]. These breed-specific differences in coat 
color may have influenced the identification of signa-
tures of selection that contain genes associated with coat 
pigment in the present study. Horn phenotypes are also 
expected to differ between these breeds. Many Katah-
din producers prefer their sheep to be polled, although 
scurred and horned animals are permitted by breed 

standards [164]. The horn/polled phenotype in Ram-
bouillet has been described as strictly sex-linked [165]. 
Rams in the African Dorper breed are variable and can 
have horns, scurs, or be polled, while females are scurred 
or polled [165]. These known differences may explain 
why multiple FST outlier SNPs were detected near the 
RXFP2 gene in all pairwise comparisons of this study.

Conclusions
This study provides insights into the signatures of selec-
tion and genetic diversity of three popular U.S. sheep 
breeds. The results described here support previous 
reports on genes that underlie signatures of selection in 
sheep and provide additional insights into the biological 
differences between Rambouillet, Katahdin, and Dorper 
sheep. The results of the FST analyses indicated strong 
population differentiation associated with genes relevant 
to milk production in Katahdin sheep and wool growth 
in Rambouillet sheep. A large and highly conserved ROH 
island was identified in Rambouillet sheep that contained 
genes of known importance for growth and carcass traits, 
including LCORL and NCAPG. Signatures of selec-
tion were identified in genes relevant to ancestral versus 
wooly coat types (IRF2BP2, retroCNV EIF2S2) and horn/
polled phenotypes (RXFP2) in addition to many genes 
involved in immune-related pathways. These findings 
likely have relevance to the variations in physical appear-
ance and parasite resistance ability of these breeds. Fur-
ther analysis of these FST and ROH signatures of selection 
may provide greater insight into the selection pressures 
being exerted on these important breeds in the U.S. 
sheep industry.
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