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Solid and 3D beam finite element models for the nonlinear elastic

analysis of helical strands within a computational homogenization

framework

Fabien Ménard, Patrice Cartraud

Institut de Recherche en Génie civil et Mécanique (GeM), UMR CNRS 6183 Ecole Centrale de Nantes, BP
92101, 44321 Nantes cédex 3, France

Abstract

This paper proposes a computational approach for studying the overall behaviour and local
stress state of strand-type structures. This method is based on the homogenization theory
of periodic beamlike structures, with the local problem posed on the strand axial period be-
ing solved using the finite element method. This approach fully utilises the strand’s helical
symmetry, thus minimising the size of the computational domain. Consequently, accounting
for geometric complexity and contact interactions, which are of paramount importance for
bending loads, is more straightforward. The numerical model mesh size can also be reduced
thanks to the use of beam elements, and one objective of this paper is to assess the accuracy
of such a model in comparison with solid element models and analytical results. These com-
parisons are performed on both single-layer and multi-layer strands. Results demonstrate
the capability of the proposed computational approach to accurately capture the nonlinear
bending behaviour stemming from the stick-slip transition as well as local stress distribu-
tions. As for the beam model, it apparently offers a very good compromise between accuracy
and numerical efficiency.

Keywords: Homogenization, Helical symmetry, Strand, Cable, Bending, Contact, Finite
element method

1. Introduction1

Metal cables are widely used in various industrial fields due to their high tensile strength2

relative to bending stiffness. Applications extend from electrical power given their ability to3

transmit electrical current to civil engineering structures like bridges or anchored retaining4

walls. The components of metal cables commonly consist of an arrangement of helically-5

wound wires, in creating strands from an assembly of several layers of wires. The cable6

cross-section can be quite complex, with strand arrangements possibly involving simple and7

double helical paths, or simpler featuring a single straight strand, as is the case for the cables8

considered in this work.9

Strand structural analysis raises modelling challenges due to the geometric complexity10

and nonlinearities resulting from friction between components, especially for a bending load.11
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Given the objective of a service life design of these structures, it is therefore necessary to be12

able to accurately predict the overall behaviour and local stress state within the strand.13

Strand behaviour can be studied by means of analytical approaches, in modelling indi-14

vidual components as curved beams and introducing some approximations and assumptions.15

In [1], a nonlinear formulation was established to take into account the radial contraction16

of the various components due to the Poisson effect. This formulation has been linearised17

in the single-layer strand case (see [2]). A concise formulation has been proposed in [3]18

that takes into account the stiffness matrix symmetry. A more recent model incorporating19

both radial contraction of the wires due to the Poisson effect and wire flattening effects was20

proposed in [4]. Most of the works dedicated to analytical models have been focused on the21

axial cable behaviour, while an interesting loading case is obtained when combining a tensile22

force with bending. Depending on the stress state within the cable, the contact between its23

components can be in either a stick or slip state, which leads to nonlinear bending stiffness.24

Such a consideration has been factored into the models proposed by Papailiou [5] and Foti25

[6], in which a nonlinear transition state is defined between the stick and slip states. Some26

analytical formulations provide stress estimations within wires for axial-torsional loads [1] as27

well as for bending with an initial tensile load [5]. However, addressing all mechanical and28

contact issues in an analytical formulation can prove to be cumbersome, especially when the29

strand cross-section is composed of many layers.30

Over the last twenty years, several authors have developed numerical models that con-31

sider geometric complexity and contact interactions. Single-layer strands have been studied32

with solid finite element models in the cases of axial loading [7], pure bending [8] and tension-33

bending loading [9] and [10]. Multi-layer strands have been considered in [11], [12] and [13].34

The inclusion of contact interactions significantly increases computation time, especially35

when solid elements are being used. One way to reduce the computational cost is to use36

beam models. In [14], [15], [16] and [17], a small sliding assumption between strand com-37

ponents has been adopted, in turn leading to a low computation time. Contact resolution38

is done by a node to node approach using contact elements between strand layers. A finite39

sliding has been assumed in [18], [19] and [20] where contacts are solved by a beam-to-beam40

algorithm firstly developed in [21]. Another approach to decreasing the computational cost41

calls for taking advantage of helical symmetry in order to reduce the structural analysis to42

just a small portion of the cable. If the loading also fulfils helical symmetry, then a 2D43

model is an eligible option, as performed in [22] and [23] to study the axial behaviour of44

single strands. However, once bending is considered, a 3D model is required, e.g. [8].45

The main objective of this work is to propose a computational approach based on the46

periodic homogenization method developed in [24] involving this time contact nonlinearities.47

The size of the computational domain is thus reduced to an axial strand period using specific48

periodic boundary conditions. In addition, two types of finite element models featuring49

solid and beam elements will be studied in order to compare the numerical results for axial,50

torsional and bending loadings. These comparisons will be drawn on the overall strand51

behaviour and local stress distributions, in focusing on bending with an initial tensile load.52

To validate the method, both single-and multi-layer strands will be examined and the results53

compared to the literature.54
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2. Description of the mechanical problem55

2.1. Multi-layer strand geometry56

The strand geometry considered herein consists of m concentric wire layers and a central57

core, comprising respectively a helical and rectilinear mean line, see Figure 1a, with the58

layers being wound around each other. In most strands, the winding angle on two successive59

layers has opposite signs. Each layer j is defined by: its number of wires nj, the wire radius60

Rsj, the mean layer radius Rhj, and its lay angle αj. The core of the strand is defined by61

its radius, denoted Rc, see Figure 1b.62

Figure 1: Representation over the length (a) and cross-section (b) of a strand composed of two layers and
a core

The helix pitch length of a layer j, denoted pj, is determined according to both the lay63

angle and mean layer radius, such that:64

pj =
2πRsj

tan(αj)
. (1)

As detailed in [18] and [25] for a z-axis strand, the mean line of a wire i belonging to a65

layer j can be defined by the following parametric equations:66

xij = Rhjcos

(
φi +

2π(i− 1)

nj

+
tan(αj)pj

Rhj

t

)
, (2)

yij = Rhjsin

(
φi +

2π(i− 1)

nj

+
tan(αj)pj

Rhj

t

)
, (3)

zj = pjt, (4)

with t ∈ [0, 1] and φi being the initial angular position of the wire in the strand section, see67

Figure 1b.68
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2.2. Contact interactions within a multi-layer strand69

During operations, various contact interactions appear between the strand components,70

see Figure 2a, namely [7]:71

• Intra-layer contacts involving a circumferential normal: contacts between wires of the72

same layer established along contact lines, see Figure 2b.73

• Inter-layer contacts involving a radial normal: contact between wires of two successive74

layers. In the non-deformed state, these contacts can be considered as contact points,75

see Figure 2c, i.e. in the case of overlapping layers. They are established along contact76

lines in the case of contact between layer and core.77

Figure 2: Representation of possible contact interactions within a strand section: radial and circumferential
contact (a); contact line (b); and a contact point (c)

Depending on the pressure present between layers, the contact plays an important role,78

in particular in the case of bending. Significant contact forces will in fact tend to stiffen79

the structure. Conversely, for low intensities, the contact forces are negligible and allow80

for relative displacement between components. Contact interactions therefore have a major81

influence in the study of strand behaviour.82

Contact problems are solved within the framework of general contact theory, according83

to which normal contact is translated under the conditions of Hertz-Signorini and tangential84

contact is approximated by Coulomb’s Law with friction coefficient μ, [26].85

The relative sliding of strand wires varies depending on their angular position in the86

section [27]. For bending loading, the first wire in a slip state occurs for the closest wire to87

the bending axis on the outer layer. Subsequently, adjacent wires of the same layer also slip.88

This phenomenon evolves from the outer layer to the inner layer until reaching a full slip.89

The longitudinal slip u of a strand wire i in layer j in pure bending can be approximated90

analytically by means of a loxodromic curve, such that:91
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u = R2
hj

cos2αj

sinαj

κcosφi, (5)

where κ is the strand curvature.92

It is important to note that in certain cases, the manufacturing process or loading in-93

tensity generates spaces between wires of the same layer or between wires of two adjacent94

layers, see [4] and [28]. Under these circumstances, the contact surfaces can be heterogeneous95

between layers or within a layer, thus modifying the final behaviour and sliding state of the96

strand. In this work however, the initial deformations tied to the manufacturing process are97

not taken into account, and a homogeneous contact is assumed.98

2.3. Homogenization method for periodic beams99

The homogenization method has already been employed in the past for strand or periodic100

beam like structures ([24], [29], [30], [31], [32] and [33]). This method offers an efficient101

and rigorous means for reducing the size of the Boundary Value Problem (BVP) domain,102

thanks to the structural axial periodicity, which stems from the helical geometry of cable103

components.104

This method is suitable for the case of helical wire assembly, whereby the helix axis105

is parallel to the slenderness direction or is itself a helix. The helical structure is then106

considered as a slender 3D structure, with geometric heterogeneities repeating periodically107

along its main axis, see Figure 3.108

Figure 3: Strand representation with a periodic structure

In the case of a helical strand, the period is defined by the helical symmetry of the layer.109

The axial period lj of layer j is obtained by dividing the pitch, (1), by the number of wires110

nj in the layer, such that:111

lj =
pj
nj

. (6)
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An example of a period is presented in Figure 3 for a 3-wire strand: nj = 3. In order112

to determine the length l of the axial strand period with several layers, a common period113

between layers must first be defined, i.e.:114

l = kj
pj
nj

= kj+1
pj+1

nj+1

= ... = km
pm
nm

, (7)

with kj ∈ N.115

This homogenization approach is based on the asymptotic expansion method, in taking116

into account that the initial 3D problem, posed on the cable structure, involves two small117

parameters, defined as: 1) the ratio of the size of the axial period to the cable length, and 2)118

the inverse of the cable slenderness. The latter parameter is also the ratio of cable diameter119

to cable length. Without any restrictions imposed, these two parameters can be considered120

equal and are denoted ε:121

ε � l

L
� d

L
. (8)

A microscopic scale y can now be introduced such that y = x/ε.122

The asymptotic expansion method consists of searching for the displacement solution123

to the initial 3D problem in the form of an expansion in increasing powers of ε. The124

initial 3D problem is then decomposed into a series of microscopic 3D problems, posed on125

the cable axial period, as well as a series of macroscopic 1D problems, see [31], [32] and126

[33]. The lower-order macroscopic 1D problem is a Navier-Euler-Bernoulli-Saint-Venant127

beam problem, with a homogenised behaviour obtained from the solution to the microscopic128

problem. This problem can be expressed as follows, with more details available in [24]: Find129

the displacement field y3 periodic uper, strain ε and stress σ from the macroscopic strain130

state corresponding to extension EE, curvatures EFα , with α = [1, 2], and torsion rate ET ,131

such that:132 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divyσ = 0,
σ = a(y) : e,
eαβ = eyαβ

(uper), [α, β] = [1, 2],
e13 = ey13(u

per)− y2E
T/2,

e23 = ey23(u
per) + y1E

T/2,
e33 = ey33(u

per) + EE − yαE
Fα ,

σ.n = 0 on ∂Y,
uper periodic and σ.n anti-periodic,

(9)

where a is the elastic modulus, and divy and ey the equilibrium and strain operators at the133

microscopic scale. Periodic signifies l-periodic in variable y3, while anti-periodic means that134

σ.n are opposite on opposite sides ∂Y + and ∂Y − in the strand axis direction. Microscopic135

problems with imposed macro-deformations (9) are solved using the finite element method136

with specific periodic boundary conditions.137

As explained previously, the lower-order macroscopic problem is a 1D beam problem.138

This problem is derived from compatibility conditions which express that microscopic prob-139
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lems admit a solution. These conditions lead to a lower-order macroscopic problem which140

turns out to be a beam problem involving internal forces which are the macroscopic axial141

force N , the macroscopic bending moments Mα, as well as the macroscopic torsional mo-142

ment M3. They are defined by both integrating microscopic stresses over the strand section143

and averaging on the period length, i.e. [24]:144 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(x3) = 〈σ33〉,
Mα(x3) = 〈−yασ33〉,
M3(x3) = 〈−y2σ13 + y1σ23〉,
〈.〉 = 1

l

∫
Y
.dy1dy2dy3.

(10)

The strain variables of this 1D macroscopic problem are the macroscopic strains EE,145

EF1 , EF2 and ET introduced previously. Thus, from the solution of the microscopic problem146

(9), the homogenised behaviour can thus be written in the following form:147 ⎧⎪⎪⎨
⎪⎪⎩

N
M1

M2

M3

⎫⎪⎪⎬
⎪⎪⎭ =

[
ahom

]
⎧⎪⎪⎨
⎪⎪⎩

EE

EF1

EF2

ET

⎫⎪⎪⎬
⎪⎪⎭ , (11)

where [ahom] defines the homogenised stiffness matrix. Each column of the homogenised148

stiffness is obtained from the solution of microscopic problem (9), considering four elemen-149

tary macroscopic strain states with only one non zero component of the macroscopic strain150

{EE, EF1 , EF2 , ET}.151

The mathematical framework of the homogenization method is well established for per-152

fectly bonded components, for which convergence results are available, see e.g. [32]. Its153

extension to a structure comprising several components with contact interactions is ques-154

tionable. In order to investigate this question, the microscopic problem (9) with periodic155

boundary conditions have been solved for the axial period, but also for larger domains built156

with three or five axial periods. For the most critical bending loading considered in the study157

regarding the amplitude of the longitudinal slip, it has been found that the homogenised158

behaviour was not sensitive to the size of the domain, since the deviation between results of159

one and five axial periods is about 0.1 %. Moreover the local stress state obtained from the160

solution of the microscopic problem on one axial period exhibits only negligible departure161

from that obtained on the central axial period of larger domains. These results therefore162

justify the extension of the classical framework of homogenisation theory to the case of163

periodic structure with non-linear contact.164

3. Finite element models165

The helical strand study is presented here through three finite element analyses based166

on models with solid or beam elements. The ABAQUS software has been used as an FEA167

solver within the framework of linear elasticity and in considering small displacements and168

small deformations. Moreover, the finite element solution takes contact nonlinearities into169
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account. The assumptions and construction of the relevant finite element models indicate170

how to solve problems resulting from the homogenization method on a strand period.171

3.1. Geometry and meshing172

The geometry and mesh for these finite element models are generated using in-house173

software developed in MATLAB. The strand period length used for modelling is defined174

by equation (7). The coordinate system, correlated with the period, is such that the main175

strand axis coincides with �y3-axis, whereby the origin lies at the strand centre, see Figure 4.176

Figure 4: Depiction of the strand period, composed of two layers with: l =
p1
n1

=
p2
n2

Solid element model177

In the case of a finite element model using solid elements, the first step consists of178

building a wire section mesh with quadrangle elements in the plane (�y1,�y2). By neglecting179

the initial deformations, which may be due to the manufacturing process, the layer wire180

section can be approximated, in (�y1, �y2), by an elliptical section while the core section is181

circular, see Figure 5a. Subsequently, the mean wire line is defined using equations (2),182

(3) and (4). The wire section mesh is then translated along the mean component line183

by applying a translation defined by means of the axial discretisation and a rotation θ in184

order to orient the wire section radius according to the strand section radius, see Figure185

5b. Treatment of the contact by the finite element method is highly dependent on both the186

axial and circumferential discretisation of each wire. The number of finite elements should187

thus be sufficiently large to obtain a good representation of the contact surface and reduce188

the geometric discontinuities. This last step entails building a connectivity table that allows189

creating a 3D mesh of hexahedral elements, C3D8 in ABAQUS, see Figure 5c. The material190

properties are defined in the elastic domain, as characterised by Young’s modulus E and191

Poisson’s ratio ν.192

8



Figure 5: Generation of the mesh of a helical wire composed of solid elements: (a) generation of the mean
line and surface mesh, (b) translation and rotation of the surface mesh along the mean line, and (c) building
of the 3D mesh

Beam element model193

For the finite element model composed of beam elements, the mesh is directly generated194

from equations (2), (3) and (4). The cross-section perpendicular to the mean wire line is195

defined in ABAQUS as being circular with radius Rsj for a layer wire and Rc for the central196

core. Timoshenko beam elements are used to account for shear forces resulting from contact197

interaction. The material properties are defined in the elastic domain, as characterised by198

Young’s modulus E and Poisson’s ratio ν.199

3.2. Contact modelling200

For the normal contact solution of the two models presented herein with either solid or201

beam elements, linear penalisation method is used because of the large number of contact202

involved in order to reduce computational time. Two methods were preliminary studied in203

order to determine the penalty stiffness in the normal direction. One can use Hertz theory204

[34] as mentioned in [14]. The second method consists to scale the representative underlying205

element stiffness in contact as used in Abaqus, see [35]. The penalty stiffness increases206

linearly from the initial penalty stiffness, equal to the representative underlying element207

stiffness, to the final penalty stiffness evaluated at 10 times the initial penalty stiffness.208

A comparison between those two methods in terms of contacts penetration, homogenised209

stiffness and numerical convergence showed no significant deviation. Thus, the software210

method is retained thereafter.211

Tangential contact resolution is also performed based on the penalty method in regu-212

larising Coulomb’s Law, see Figure 6. The contact tangential stress σT , proportional to213

displacements, can be written at increment i as follows:214

σTi
= σTi−1

+
μσN

γcrit
γi, (12)

where γcrit is the critical relative displacement between the components in contact, in de-215

lineating the stick behaviour and slip behaviour. This expression is defined as a fraction of216
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the characteristic length le of the element surface in contact:217

γcrit = βle. (13)

The value of β must be defined by the user. The choice of a low parameter β will tend218

to generate more flexible behaviour, by decreasing the transition threshold from the slip-to-219

stick state. In the case of a large parameter, Coulomb’s Law will be better approximated220

but may cause convergence problems.221

Figure 6: Tangential contact resolution with the penalty method in regularising Coulomb’s Law from critical
relative displacement γcrit

Contact algorithm for solid elements222

The type of contact interactions differs depending on which model is being considered.223

When taking strand geometry into account, a node-surface algorithm is chosen to solve224

contact problems for solid elements. In addition, this approach enables reducing model size225

and considerably simplifying the mesh, which avoids mesh matching at the contact interface.226

Contact algorithms for beam elements227

The beam-to-beam contact modelling is widely studied in the literature, see for example228

[19], [21] [36] and [37] which provide developpments that are contained in the proposed229

commercial code. Beam-to-beam contact can be used in the case of a helical strand, e.g. [18]230

and [16]. Beam element nodes are located on the mean line, while the contact is established231

on the section boundary. An initial formulation of the beam-to-beam contact, called cross232

formulation, serves to solve the contact point problem by projecting the contact point onto233

the beam elements, see Figure 7a. The radial formulation of the beam-to-beam contact234

is used in the case of a contact line where contact conditions are evaluated in each node,235

see Figure 7b. For this latter formulation, it is necessary to generate one additional node236

at each section in contact. Combining these two formulations resolves all types of contact237

present in a multi-layer strand under the small displacements assumption and with a regular238

mesh. However, it has been shown in [38] that beam-to-beam contact is time-consuming for239

a multi-layer strand, and moreover convergence is elusive especially for a bending load.240
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Figure 7: Contact formulation for beam-to-beam contact: (a) cross formulation, and (b) radial formulation

A second approach, inspired by the work reported in [38], is developed here to solve241

contact problems with beam elements. The cross-section boundary of the beam elements242

has been discretised using 4-node surface elements called SFM3D4 in ABAQUS. This surface243

is solely dedicated to the contact and has neither stiffness nor thickness. In order to link244

the contact surface with the beam, each node of the surface is rigidly constrained to the245

displacement (by translation and rotation) of its projection node on the beam element.246

The connection is carried out using a rigid beam (”Multipoint constraints”), see Figure 8.247

The contact area discretisation is performed with a node-surface algorithm. Since contact248

surfaces have no stiffness, it is necessary to combine the penalty method with the Lagrangian249

method in order to limit contact surface penetration and define the contact stiffness. A fine250

discretisation of the contact zone can be conducted using this approach without increasing251

computation time.252

It is important to note that the contact between beam elements assumes a constant253

radius section, making it impossible to account for section contraction due to the Poisson’s254

effect and section deformation due to contact forces, see [18].255

Figure 8: Connection between surface elements and beam elements using rigid beam elements
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Contact tracking approaches256

Regarding the slip between the various strand component, one can adopt small sliding257

assumption as in [14], [15] and [16]. Contrary to finite sliding approach, with small sliding258

method the contact relationships are established just once, at the beginning of the analysis,259

thus leading to computational savings. However, small sliding tracking approach is not260

available for beam-to-beam formulation and one objective of this paper is to compare the261

numerical results obtained from different finite element models. Therefore, although finite262

sliding tracking approach increases the calculation times, this method will be used in the263

following.264

3.3. Boundary conditions265

Microscopic problems (9) are solved using the finite element method, with implementa-266

tion being based on introducing additional nodes whose degrees of freedom are the macro-267

scopic strains, see [39] and [40]. Other methods can also be employed, see e.g. [41]. In268

our case the finite element solution corresponds to the total displacement field �u, i.e. the269

sum of a periodic displacement field denoted �uper and a displacement field related to the270

macroscopic strains. It can be defined as:271 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1 = uper
1 +

1

2
y23E

F1 − y2y3E
T ,

u2 = uper
2 +

1

2
y23E

F2 + y1y3E
T ,

u3 = uper
3 + y3E

E − yαy3E
Fα , α = [1, 2].

(14)

The periodic boundary conditions on uper are taken into account through linear relations,272

in connecting each degree of freedom of two opposite nodes belonging to the boundary ∂Y +
273

and ∂Y − in the axial strand direction, see Figure 3.274

In the case of solid elements, the translational degrees of freedom of the boundaries ∂Y +
275

and ∂Y −, denoted U+
i and U−

i , are linked by the following equations [24]:276

U+
1 − U−

1 = l(y3E
F1 − y2E

T ), (15)

U+
2 − U−

2 = l(y3E
F2 + y1E

T ), (16)

U+
3 − U−

3 = l(EE − yαE
Fα), α = [1, 2], (17)

with y3 =
1

2
(y+3 + y−3 ) and yα = y+α = y−α .277

In the case of beam elements, three other equations apply for the rotational degrees of278

freedom of the boundaries ∂Y + and ∂Y −, denoted θ+i and θ−i [42]:279

θ+1 − θ−1 = lEF1 , (18)

θ+2 − θ−2 = lEF2 , (19)

θ+3 − θ−3 = lET . (20)
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In order to calculate the solution to problem (9) for an arbitrary macroscopic strain, two280

reference nodes A and B are created with respectively one and three degrees of freedom:281

A =
{
EE

}
and B =

{
EF1 ;EF2 ;ET

}
.282

It can be shown, see [39] and [40] in the case of homogenizing 3D periodic material, that283

the problem to be solved can be written as follows:284

[K]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{U}⎧⎪⎪⎨
⎪⎪⎩

EE

EF1

EF2

ET

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0}

l

⎧⎪⎪⎨
⎪⎪⎩

N
M1

M2

M3

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (21)

where [K] is the stiffness matrix. The loading is therefore imposed in the form of a given285

macroscopic strain, through the corresponding degrees of freedom. Computation of the286

right-hand side then provides the macroscopic axial force and moments. From (11), one can287

thus calculate the homogenised stiffness matrix [ahom].288

As mentionned at the end of section 2, even if we have contact interaction, it is assumed289

that periodic boundary conditions can be applied. They are two set of boundary conditions,290

one for each components of the wire strand.291

The solution to the problem (9) is defined up to a rigid body displacement, namely292

through three translations along the three main axes and a rotation around the main axis �y3.293

It is necessary therefore to properly constrain this displacement to each strand component so294

as to obtain a unique solution. For this type of problem, the two possibilities consist of either295

using kinematic conditions [8] or solving the problem using an explicit integration scheme296

[9]. To simplify the generation of finite element models, an alternative method has been297

adopted here. Adding a viscous damping coefficient, as presented in [43], integrated into298

the classical Newton-Raphson scheme enables dissipating rigid body displacements. This299

viscous damping coefficient is evaluated throughout the simulation in order to guarantee a300

ratio of damping energy to total energy of less than 5 %, thus ensuring a negligible influence301

on the final solution.302

4. Single-layer strand validation303

A single-layer strand analysis, focusing on 6 helical wires and a central core,will first304

be presented to validate the models with solid and beam elements in a simple case. This305

configuration has been the subject of numerous studies based on analytical models [1], [4], [5]306

and numerical results [8], [9]. The various analyses pertain to the strand in tension, bending307

and torsion, as well as in a combined tension-bending state to highlight the nonlinear nature308

of the contact. The validation is based on the property that the solution of the microscopic309

problems provides, with the exception of edge effects, the stress state that would be obtained310

on a global structure subjected to a uniform strain state. Therefore, thanks to the periodic311

boundary conditions, it is not necessary to perform this global analysis on a large length312

of cable, but only to consider an axial period. One can then compare the solution of the313
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microscopic problems with analytical solutions that are valid for a uniform strain state. This314

comparison will be made on the contact forces and stress fields.315

4.1. Case study316

The strand considered here is single-layer and composed of 7 steel wires. The geometric317

and material properties considered are listed in Table 1. To apply the periodic boundary318

conditions, model length is l = 38.35 mm, which corresponds to 1/6 of the layer pitch.319

Table 1: Geometric and material properties of the single-layer strand

Rs [mm] Rc [mm] α [deg] E[GPa] ν
2.590 2.675 8.18 210 0.3

According to [4], lateral contact is neglected within the outer wire layer when two geo-320

metric conditions are met, namely:321 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ0 =
Rs

Rc

< 1

α < αmax = arcos

(√
tan2(π/2− π/n)

(1 + ξ−1
0 )2 − 1

)
, (22)

where ξ0 is the ratio between the wire radius of the outer layer and the core radius, and322

αmax is the maximum angle defining the beginning of lateral contact within the outer layer.323

In the present case, the conditions (22) are verified (ξ0 = 0.97 and αmax = 11.86 ◦), hence324

a purely radial contact within the strand can be assumed. The contact surface between the325

outer layer and the core reduces to a contact line. A friction coefficient μ = 0.3 is set for326

tangential contact interactions.327

Figure 9: Display of the various meshes of the strand: (a) solid element model composed of 102,907 nodes
and 92,400 C3D8 elements, (b) beam element model with 427 nodes and 420 B31 elements, and (c) beams
with a surface element model containing 26,047 nodes, 420 B31 and 25,200 SFM3D4 elements

The various meshes are displayed in Figure 9. According to [9], mesh size may influence328

both global and local quantities such as strand stiffness, contact distribution and contact329

pressure between layers. Here, the element size has been chosen thanks a convergence330

study of two quantities of interest: the global homogenised stiffness and the contact normal331

transmission through its line load distribution over the core layer interface. The latter332
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is computed for a tensile test. Three mesh densities: coarse, medium and fine have been333

considered and the medium one was found to provide the best compromise between accuracy334

and computation time.335

By taking into account the rigid body constraints connecting the beam elements to the336

surface elements displayed in Figure 9.c, the number of independent degrees of freedom on337

the surface beam model is equal to that of the beam model with beam-to-beam contact.338

4.2. Single-layer strand under a tensile load339

An initial validation proposed consists of studying the strand under a tensile strain. For340

this purpose, an elongation of 0.1 % is applied to the strand. Figure 10a shows the strand’s341

linear behaviour in tension. The stiffness results of the proposed models are compared with342

those of the theory developed by [1] and [4] with a relative difference of less than 2 %. The343

helical geometry of the outer layer implies a tension-torsion coupling, see Figure 10b. A344

comparison with results from the analytical models detailed in [3] and [4] shows a small345

relative difference of less than 2 %. Numerical models composed of beam elements seem to346

be slightly stiffer than the numerical model composed of solid elements.347
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(a) Tensile behaviour

Solid element: K11 = 30.01.106 N

Beam element: K11 = 30.47.106 N

Beam and surface element: K11 = 30.48.106 N
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(b) Tension-torsion behaviour

Solid element: K14 = 19.14 KN.m
Beam element: K14 = 19.44 KN.m
Beam and surface element: K14 = 19.45 KN.m
Labrosse theory: K14 = 19.49 KN.m
Foti theory: K14 = 19.23 KN.m

Figure 10: Single-layer strand behaviour under a tensile strain

The small difference in stiffness observed between numerical and analytical results can348

be explained by the contact problem solution. The influence of the friction coefficient during349

a tensile loading is negligible because small or no slip is present between strand components350

[44]. Only normal contact plays an important role in the tensile case. Contact forces351

summed over the contact line between the core and a layer wire are in good agreement with352

the theory developed in [5] and [14], with a relative difference of less than 2 %, see Figure353

11a. This comparison validates application of the penalty method to solve normal contact354

problems for models with solid and beam elements. Use of the augmented Lagrangian355
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method, coupled with the penalty method, also yields good results for the model featuring a356

beam with surface elements. The line load distribution in the normal direction is represented357

in Figure 11b. The contact surface discretisation with solid elements involves a periodic358

distribution of the contact forces. In the presence of a node-to-node contact, the contact359

force is indeed maximised, whereas when a node comes into contact with a surface, the360

contact force is minimised. Hence, the overall strand stiffness is reduced due to this variation361

along the contact line. A finer discretisation is necessary to approximate a contact line,362

therefore increasing the computation time [9]. The contact lineload distribution is better363

approximated with beam element models.364
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Figure 11: (a) Evolution in contact forces summed over the strand length between the core and a layer wire
vs. axial tension, and (b) line load distribution between the core and a layer wire

The axial stress field, obtained in the central section of each numerical model, is displayed365

in Figure 12. As observed for the model with solid elements, axial stress concentrations result366

from contact. For models with beam elements, this phenomenon has not been captured since367

the axial stress is determined at each integration node of the section from beam theory. The368

maximum axial stress occurs at the central core, while the minimum stress is located on the369

outer layer wires. These wires work in bending, which therefore reduces their contribution to370

axial stiffness. Table 2 shows good agreement between the numerical models and Costello’s371

analytical model. Costello’s model is based on curved beams and is thus closer to the beam372

finite element model than to the solid element model.373

Table 2: Layer wire axial stress of a single-layer strand subjected to a tensile strain: EE = 0.001.

Model σ33max [MPa] σ33min [MPa]
Solid 204.9 185.0
Beam 207.8 203.7
Beam with surface 207.7 203.7
Costello 207.1 197.2
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Figure 12: Axial stress field σ33 at y3 = 0 for the single-layer strand subjected to a tensile strain: EE = 0.001

4.3. Single-layer strand under a torsional load374

A torsion angle of 0.1 rad.m−1 is now imposed through the periodic boundary conditions.375

Figure 13 shows the linear behaviour in strand torsion. The numerical models are slightly376

stiffer in torsion than the models proposed by [1] and [4], with a relative difference of less377

than 4 %. A verification conducted on the torsion-tension coupling indicates that numerical378

results restore the stiffness matrix symmetry, i.e. K14 = K41.379
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Solid element: K44 = 56.01 N.m2
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Beam and surface element: K44 = 56.48 N.m2

Costello theory: K44 = 56.16 N.m2

Foti theory: K44 = 56.36 N.m2

Figure 13: Single-layer strand behaviour under a torsional load

Figure 14 depicts the axial stress field obtained on the central section for a torsional380

strain. Due to the helical geometry of the outer layer, the wires are subjected to tension,381

bending and torsion. The maximum axial stress occurs in the outer fibre of each wire in382

the radial direction. The axial stress in the core equals zero since the core is not subjected383

to any elongation. In this configuration, the contact pressure exerted by the outer layer on384

the core is negligible. The maximum and minimum stress values are listed in Table 3. The385

lower stress values for the model with solid elements result from a more flexible torsion-386

tension behaviour. As regards the models with beam elements, numerical models tend to387

approximate the analytical model of [1] by relying on curved beams. The shear stresses for388
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the central section are shown in Figure 15. The maximum and minimum shear stress values389

are located on the central core, which has the largest radius. A comparison of the maximum390

and minimum values of the numerical models and Costello’s theory is drawn in Table 4,391

which reveals a good level of agreement.392

Table 3: Layer wire axial stress of a single-layer strand subjected to a torsional strain: ET = 0.1 rad.m−1

Model σ33max [MPa] σ33min [MPa]
Solid 23.47 5.40
Beam 30.48 0.60
Beam and surface 30.38 0.01
Costello 30.20 0.00

Table 4: Layer wire shear stress of a single-layer strand subjected to a torsional strain: ET = 0.1 rad.m−1

Model σ13max [MPa] σ13min [MPa]
Solid 23.58 -23.58
Beam 20.10 -20.10
Beam and surface 20.16 -20.16
Costello 20.28 -20.28

Figure 14: Axial stress field σ33 at y3 = 0 for the single-layer strand subjected to a torsional strain: ET = 0.1
rad.m−1.

Figure 15: Shear stress field σ13 at y3 = 0 for the single-layer strand subjected to a torsional strain: ET = 0.1
rad.m−1.
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4.4. Single-layer strand under a bending load393

Let’s now consider a pure bending load. A curvature of 0.1 m−1 is applied to the strand394

around the �y1-axis. The behaviour obtained for the numerical models is compared with395

Papailiou’s theory, see Figure 16, with a relative difference of less than 0.5 %. In the case396

of pure bending, normal contact stresses are negligible, and each layer wire is free to slip397

[8]. Due to the very low frictional stresses, the influence of the friction coefficient is also398

negligible. Strand behaviour in pure bending is therefore linear and bending stiffness is399

minimal. Figure 17 shows that the longitudinal sliding of layer wires is in good agreement400

with the equation of a loxodromic curve, see Eq.(5).401

The axial stress field, see Figure 18, indicates that each wire is in pure bending. As402

demonstrated in [8], when the cable is subjected to pure bending, all the wires are also403

subjected to pure bending. Maximum stress occurs in the core by virtue of having the404

largest radius. The maximum and minimum stresses in a layer wire are listed in Table 5.405

Once again, the numerical values are very similar to those from the theory proposed by406

Papailiou [5].407
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Figure 16: Single-layer strand behaviour in bending subjected to a curvature EF1 = 0.1 m−1

Table 5: Layer wire axial stress of a single-layer strand subjected to pure bending: EF1 = 0.1 m−1

Model σ33max [MPa] σ33min [MPa]
Solid 51.97 -51.97
Beam 53.71 -53.70
Beam with surface 53.69 -53.11
Papailiou 53.84 -53.84

19



0 100 200 300 400
−2

−1

0

1

2
·10−2

Angular position [deg]L
o
n
g
it
u
d
in
a
l
d
is
p
la
c
e
m
e
n
t
[m

m
]

Solid element
Beam element
Beam and surface element
Loxodromic Curve

Figure 17: Longitudinal slip along �y3 of a layer wire for a curvature EF1 = 0.1 m−1.

Figure 18: Axial stress field σ33 at y3 = 0 for the single-layer strand subjected to pure bending: EF1 = 0.1
m−1

4.5. Single-layer strand under a bending load with an initial tensile load408

To highlight contact nonlinearity, a study of the strand subjected to a tension-bending409

loading will now be presented. The strand is initially loaded in tension by an elongation of410

0.1%, then a curvature of 0.1 m−1 is applied around the �y1-axis.411

The overall behaviour obtained for each numerical model is presented in Figure 19. This412

behaviour can be separated into several regions, depending on curvature intensity. Initially,413

the bending stiffness is maximised because all strand components are maintained by the414

normal contact forces produced by tensile loading. In this case, the layer wires and core415

behave as a single solid, and the cross-section undergoes overall bending, see Figure 20. The416

bending stiffnesses obtained by numerical models in the stick state are lower than the bending417

stiffness computed by analytical models, see Table 6. This finding is explained by the fact418

that analytical models are based on a perfect geometry and assumed to contain perfectly419

bonded components at the initial state, in excluding any sliding. On the other hand, small420

slips are always present in numerical models that tend to decrease strand stiffness in the stick421
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state. To more closely approximate analytical models, it would be necessary to refine the422

mesh of the contact areas, see [9], which would greatly increase computation time, especially423

for solid elements. One can also check that the discrepancy between solid element model424

and analytical solution reported in Table 6 is close to that obtained in [9]. From a critical425

curvature, i.e. around 0.015 m−1, layer wires close to the bending axis start to slip. Each426

wire then undergoes pure bending, and bending stiffness decreases to its minimum value,427

which corresponds to that obtained in the previous section, see Figure 21.428
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Figure 19: Single-layer strand behaviour in bending with an initial tensile load for several values of β.

Table 6: Single-layer strand bending stiffness under bending with an initial tensile load for both the stick
and slip states, with β = 0.0005.

Model K22 stick state [N.m2] K22 slip state [N.m2]
Solid 320.55 52.30
Beam 411.00 51.83
Beam and surface 378.58 52.99
Papailiou 409.43 52.52
Foti 408.54 51.63

A strong influence from the numerical coefficient β on numerical behaviour is obtained.429

With the default value of β given in ABAQUS, i.e. β = 0.005, stick state behaviour is poorly430

reproduced. It is therefore necessary to define the lowest possible coefficient β to approximate431

Coulomb’s Law while ensuring solution convergence. In the present case, convergence of the432

moment-curvature curve is obtained for β = 0.0005.433

For the stick behaviour, the axial stress distribution is shown in Figure 20. As explained434

previously for the beam model, axial stress varies linearly across the cross-section, while for435

a model with solid elements, the effect of contact forces can be observed. Stress values in436

the outer layer of the numerical models are listed in Table 7 and compared with Papailiou’s437
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theoretical output in the stick state. Given that some slip occurs in the numerical models,438

the maximum stress values are slightly lower than those of the analytical model.439

Figure 20: Axial stress field σ33 for the single-layer strand under bending with initial tensile load: EE = 0.001
and EF1 = 0.00875 m−1, in the stick state

Figure 21: Axial stress field σ33 for the single-layer strand under bending with an initial tensile load:
EE = 0.001 and EF1 = 0.1 m−1, in the slip state

For sliding behaviour, as observed in Figure 21, each wire undergoes pure bending. The440

maximum stress is located on the strand core due to its larger radius. The numerical values441

are listed in Table 8 and compared to the analytical results stemming from Papailiou’s442

theory, in showing a good level of agreement.443

The computational efficiency of each numerical model is presented in Table 9. For the444

single-layer strand, the beam model significantly reduces model size and computation time445

by a factor of 30, in comparison with the solid element model. Beam elements associated446

with surface elements slightly improve contact modelling and reduce computation time by447

a factor of 16, in comparison with the solid element mesh. The beam-to-beam contact448

solution seems to be more efficient than a beam with surface elements in solving the line449

contact problem.450
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Table 7: Layer wire axial stress of a single-layer strand under bending with an initial tensile load: EE = 0.001
and EF1 = 0.00875 m−1 in the stick state

Model σ33max [MPa] σ33min [MPa]
Solid 213.1 177.7
Beam 220.4 187.8
Beam and surface 221.7 186.0
Papailiou 221.4 192.7

Table 8: Layer wire axial stress of a single-layer strand under bending with an initial tensile load: EE = 0.001
and EF1 = 0.1 m−1 in the slip state

Model σ33max [MPa] σ33min [MPa]
Solid 257.3 134.6
Beam 267.8 143.0
Beam and surface 268.2 139.7
Papailiou 276.1 139.6

Table 9: Computation time comparison between finite element models for a tensile and bending loading
(i7-6700HQ CPU 2,60 GHz with 8 Go Ram)

Model CPU time [s]
Solid 1395
Beam 46.4
Beam with surface 89

5. Multi-layer strand validation451

Let’s now consider a simple multi-layer strand, composed of 2 helical wire layers and452

a cylindrical circular core. Two contact types are present, in the form of a contact line453

between the core and the first layer, while contact points are also present between the first454

and second layers. The axial strand behaviour is analysed through a tensile loading, and455

contact nonlinearities will be highlighted through a loading in both tension and bending.456

5.1. Case study457

The strand currently studied is composed of 19 steel wires, including 12 on the outer458

layer, 6 on the inner layer and one central wire for the core. The geometry used and material459

properties are presented in Table 10.460

Table 10: Geometric and material properties of the multi-layer strand

Layer R[mm] α[deg] E[GPa] ν
Core 2.675 - 210 0.3
1 2.590 -8.24 210 0.3
2 2.590 8.18 210 0.3
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The multi-layer strand chosen here satisfies the two geometric conditions, see Eq. (22),461

making it possible to neglect the lateral contact between wires of the same layer, i.e.:462

• For the inner layer: ξ0 = 0.97 < 1 and αmax = 11.86◦.463

• For the outer layer: ξ0 = 0.33 < 1 and α < αmax = 17.20◦.464

Therefore, only the radial contact between the core and the inner layer and between the465

inner layer and the outer layer is taken into account. The former is established along a466

contact line while the latter is a series of contact points. A friction coefficient μ = 0.3 is467

chosen for all contact interactions.468

The various meshes are shown in Figure 22. Using the same wire geometric properties469

than the single layer strand, 60-element axial discretisation is selected for each model pre-470

sented here. By taking into account the rigid body equations connecting beam elements to471

surface elements, the number of independent degrees of freedom for both beam models is472

the same.473

Figure 22: Display of the various meshes of the multi-layer strand: (a) solid element model composed
of 520,391 nodes and 478,800 C3D8 elements, (b) beam element model with 1,159 nodes and 1,140 B31
elements, and (c) beams with surface elements model containing 70,699 nodes, and 1,140 B31 and 68,400
SFM3D4 elements

5.2. Multi-layer strand under a tensile load474

For the first analysis, an axial deformation of 0.1% is applied to the strand. A comparison475

of numerical simulations with analytical models from [1] and [4] reveals a very good level476

of agreement, see Table 11. It can be noticed that despite opposite lay angles for the inner477

and outer layers, the larger number of wires in the outer layer produces a tension-torsion478

coupling.479

Table 11: Tension and tension-torsion stiffness from the multi-layer strand at EE = 0.001

Model K11 [107 N] K14 [KN.m]
Solid 7.97 56.25
Beam 8.11 56.97
Beam and surface 8.12 57.05
Costello 8.16 57.71
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For a tensile strain, only normal contact influences strand behaviour. As for the single-480

layer strand, see 11a, a very good level of agreement has been obtained with Papailiou’s481

model for contact forces. The contact pressure generated by the outer layer on the inner482

layer greatly influences contact pressure between the latter and the core. However, the line483

load distribution differs from one model to another, see Figures 23 and 24. The contact force484

distribution between the core and the inner layer depends on the contact points between485

the inner and outer layers. For models with beam elements, the maximum values of normal486

contact forces between the core and inner layer are in good agreement with the axial con-487

tact positions between the inner and outer layers. For the model with solid elements, this488

observation is less obvious. As in the case of the single-layer strand, the contact resolution489

for a model with solid elements will strongly depend on the mesh. Therefore, one of the490

advantages of 3D models, i.e. the ability to take contact forces into account for stress com-491

putations, is offset by the requirement of a very fine mesh for obtaining accurate stresses in492

the vicinity of contact zones.493
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Figure 23: Line load distribution between the inner layer wire and the core

The axial stress field for a tensile loading is shown in Figure 24 for the inner layer and494

in Figure 25 for the outer layer. Each model reveals the impact of a contact point on the495

axial stress distribution within the outer layer. When the outer layer wire is not in contact496

with an inner layer wire, the wire section works in bending, with a maximum stress at the497

lower fibre of the wire in the radial direction. Conversely, when the outer layer wire is in498

contact with an inner layer wire, the wire is still subjected to a bending moment, such that499

the maximum stress lies on the upper fibre of the wire in the radial direction. Therefore,500

the outer layer wire section undergoes local bending with a moment whose sign changes as501

a function of the contact position between the two layers.502

The minimum and maximum axial stress values are listed in Table 12. In the outer503

layer, the maximum stress values obtained from numerical models are consistent with one504

another. Significant differences appear between solid element and beam element results with505

respect to minimum stress values. These differences can also be seen for the minimum and506
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maximum stresses in the inner layer. In this inner layer, the stress distribution is similar507

to that observed for the single-layer strand, with higher stress variations in the contact508

areas between the outer and inner layers. For the maximum stress value in the outer layer,509

numerical results from the various models are again consistent. The minimum stress value510

in the outer layer differs between the solid element models and beam element models. As511

noted earlier, this difference stems mainly from the capability of the solid element model to512

account for the local stress concentrations due to contact. Compressive stresses can also be513

locally observed in elements making contact with the inner layer in the solid element model.514

Figure 24: Axial stress field σ33 in the inner layer and the core for the multi-layer strand under a tensile
load: EE = 0.001, thus highlighting contact position between the inner and outer layers

Figure 25: Axial stress field σ33 in the outer layer for the multi-layer strand under a tensile load: EE = 0.001

Axial stress values given by Costello’s model are given in Table 12 for information pur-515

poses. Although the beam model results lie close to Costello’s theory for the inner layer, a516

departure can be noticed in the outer layer; this discrepancy originates from contact points,517

which are not taken into account in Costello’s model.518
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Table 12: Layer wire axial stress of a multi-layer strand subjected to a tensile strain: EE = 0.001. (*)
Contact line assumption between inner and outer layer.

Model
Outer layer Inner layer

σ33max
[MPa]

σ33min
[MPa]

σ33max
[MPa]

σ33min
[MPa]

Solid 233.0 78.2 230.1 -48.8
Beam 234.5 175.3 211.5 199.8
Beam and surface 232.9 177.6 214.0 197.2
Costello* 205.1 201.0 207.1 197.6

5.3. Multi-layer strand under a bending load with an initial tensile load519

The strand is now subjected to both a tensile and bending strain. The contacts are520

initialised by an axial strain of 0.1%; next, a curvature of 0.1 m−1 is applied to the structure521

around the �y1-axis.522

The bending behaviour is presented in Figure 26. Three phases can be identified: first523

the stick state, then slipping of the outer layer, and lastly slipping of the inner layer. Ac-524

cording to Papailiou’s theory [5], the critical curvature of sliding is defined by a mean critical525

curvature for each wire layer. The analytical bending moment is therefore piecewise linear.526

For numerical models, wire sliding is evaluated throughout the simulation, which leads to527

smoothing the behaviour.528

The influence of coefficient β can once again be noticed. For low values of β, numerical529

behaviour tends to be stiffer in the stick state, approaching the maximum stiffness estimated530

by Papailiou’s theory, see Table 13. These results converge when β reaches a value of 0.0005.531

The various contact models also influence bending behaviour. The results obtained from532

both the beam-to-beam contact model and the beam with surface elements model lie close533

to the analytical values. As in the case of the single-layer strand, the discrepancy between534

solid element model and analytical solution is large. However, the numerical models are in535

good agreement with the bending stiffness in the total sliding state, see Table 13.536

A cyclic loading in bending, with an amplitude of 0.2 m−1, is proposed in Figure 27,537

thereby highlighting the hysteresis cycle of the strand. The difference between analytical and538

numerical results tends to increase during both the discharge and second charge phases. A539

good level of agreement can be observed between the finite element results and the analytical540

model.541

Table 13: Multi-layer strand bending stiffness under bending with an initial tensile load for the stick and
slip state with β = 0.0005.

Model K22 stick state [N.m2] K22 slip state [N.m2]
Solid 1738.4 139.5
Beam 3366.7 148.9
Beam and surface 2912.9 140.3
Papailiou 3306.8 140.8
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Figure 26: Multi-layer strand behaviour in bending with an initial tensile load for several values of β.
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Figure 27: Hysteresis strand behaviour with a curvature amplitude of 0.2 m−1: Comparison between the
numerical model with β = 0.005 and Papailiou’s theory

Figure 29 shows the axial stress field in the various layers for a sliding behaviour. As in542

the case of the single-layer strand, it can be remarked that all strand wires are subjected to543

pure bending. The variation between maximum and minimum stresses therefore increases544

with a sliding behaviour, see Table 15. The two beam element models output the same545

results. As opposed to beam element models, the axial stresses with the solid element model546

are locally greater for a contact position in the inner layer.547

The axial stress values obtained by Papailiou’s theory are given for information in Tables548

14 and 15. The beam models agree with the theory for stresses within the inner layer.549

However, Papailiou’s theory, which does not consider contact points, does underestimate550

the axial stresses in the outer layer.551

As indicated in Table 16, the computation time associated with beam models is very low552

compared to that of solid element models. In comparison with the beam-to-beam contact553
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model, use of the beam with surface elements model reduces computation time by a factor554

of 5 and seems to be more efficient in solving the contact point problem.555

Figure 28: Axial stress field σ33 for the multi-layer strand under bending with an initial tensile load:
EE = 0.001 and EF1 = 0.005 m−1, in the stick state

Figure 29: Axial stress field σ33 for the multi-layer strand under bending with an initial tensile load:
EE = 0.001 and EF1 = 0.1 m−1, in the stick state

Table 14: Layer wire axial stress of a multi-layer strand under bending with an initial tensile load: EE =
0.001 and EF1 = 0.005 m−1, in the stick state (*) Contact line assumption between inner and outer layers.

Model
Outer layer Inner layer

σ33max
[MPa]

σ33min
[MPa]

σ33max
[MPa]

σ33min
[MPa]

Solid 258.8 67.0 247.5 -48.9
Beam 248.6 169.7 214.7 201.8
Beam and surface 243.7 172.7 213.8 201.2
Papailiou* 221.2 194.5 215.9 199.8
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Table 15: Layer wire axial stress of a multi-layer strand under bending with an initial tensile load: EE =
0.001 and EF1 = 0.1 m−1, in the slip state (*) Contact line assumption between inner and outer layers.

Model
Outer layer Inner layer

σ33max
[MPa]

σ33min
[MPa]

σ33max
[MPa]

σ33min
[MPa]

Solid 318.9 -71.3 338.0 -116.8
Beam 299.4 166.2 283.6 122.3
Beam and surface 300.9 162.6 287.0 112.3
Papailiou* 276.1 139.6 290.9 125.2

Table 16: Computation time comparison between finite element models for a tensile and bending load (8-core
Intel Xeon (Haswell) E5-2680v3 CPUs 2.50GHz with 128 Go Ram)

Model CPU time [min]
Solid 367
Beam 38
Beam and surface 7

6. Conclusion556

This paper has proposed a new computational approach for studying the overall be-557

haviour and local stress state of strand-type structures. This method is based on the ho-558

mogenization theory of periodic structures, with the local problem posed on the strand axial559

period being solved using the finite element method. This approach fully utilises the strand’s560

helical symmetry, thus minimising the size of the computational domain. Consequently,561

accounting for geometric complexity and contact interactions, which are of paramount im-562

portance for bending loads, is more straightforward. The size of the numerical model can563

also be reduced thanks to the use of beam elements, and one objective of this paper has564

been to assess the accuracy of such a model, in comparison with solid element models and565

analytical results.566

An initial validation case study was performed on a single-layer strand; it was shown567

that for each loading case, the various numerical models, with both solid elements and beam568

elements, reproduced the single-layer strand behaviour in close agreement with several an-569

alytical models. The three numerical models all led to very similar results. The differences570

stem mainly from the contact model, which differs from one model to another. For a model571

with solid elements, a finer mesh becomes necessary in the vicinity of contact zones in order572

to obtain accurate stresses. This configuration increases computation time, especially with573

sections containing a large number of wires. Beam models provide a very good compromise574

between accuracy and numerical efficiency. In addition, the use of a contact surface associ-575

ated with the beam elements appears to be more efficient than beam-to-beam contact. This576

formulation facilitates contact detection and improves solution convergence even in the case577

of large sliding. Nevertheless, beam modelling does not allow taking local contact forces into578

account during stress computations.579
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For the second example, a multi-layer strand was studied to show the influence of a second580

layer of wires on strand behaviour. In addition to the contact line between the core and the581

inner layer, a contact point distribution exists between the inner and outer layers. It has582

also been demonstrated that the overall behaviour in tension and tension-bending obtained583

by the analytical model can be reproduced by each numerical model. In contrast, regarding584

local axial stresses, a discrepancy was found between numerical and analytical results; the585

numerical models indeed suggest a significant influence of contact points between the inner586

and outer layers on the axial stress distribution. Stress concentrations occur at each contact587

location, thereby locally increasing the maximum stress value and decreasing the minimum588

stress value. In this case, analytical models prove to be inadequate since they fail to take589

contact points into account.590
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� Helical strands analysis is addressed rigorously with homogenization theory 

� Strand response is non-linear due to contact interactions between its components 

� Different models with solid and beam finite elements are used 

� Numerical results are compared to those coming from analytical models     

 




