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ON THE VOLTAGE-CONDUCTANCE KINETIC EQUATION

CLAUDIA FONTE SANCHEZ AND STÉPHANE MISCHLER

Abstract. We consider the nonlinear Voltage-Conductance kinetic equation arising in neu-
roscience. We establish the existence of solutions in a weighted L8 framework in a weak
interaction regime. We also prove the linear asymptotic exponential stability of the steady
state making constructive a recent estimate of [18]. Both results are based in a fundamental
way on some ultracontractivity property of the flow associated to the linear (possibly time
dependent) Voltage-Conductance kinetic equation.
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1. Introduction

The integrate-and-fire (IF) neuron model has proven to be a valuable tool in computational
neuroscience for simulating the behavior of individual cortical neurons [31, 42, 5]. However,
scaling this approach to model large cortical regions presents significant challenges. Both the
computational demands of simulating vast networks and the qualitative analysis of their complex
dynamics become increasingly difficult. In this context, the Voltage-Conductance kinetic (VCk)
equation emerges as a population-level representation of the neuronal activity [7, 6, 43, 44],
analogous to the approach of classical kinetic theory for charged particles [16, 3, 12, 33, 39], and
as an alternative to the kinetic Fitzhugh-Nagumo model [20, 37, 34, 30].

Consider a network of IF neurons, where each neuron (indexed by j out ofN total) is described
by two state variables: voltage, vj , and conductance, yj. The dynamics of the jth neuron during
periods between spikes are governed by the following equations:

dvj

dt
“ ´pvj ´ vRq ´ yjpvj ´ vEq,(1.1)

dyj

dt
“ ´yj ` y˚ `

c

N

ÿ

l,k‰j

δpt ´ tℓkq.(1.2)
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Here, vR represents the resting voltage (set to 0 for convenience), vE is the excitatory reversal
potential, and y˚ ą 0 corresponds to the constant external stimulus originating in the lateral
geniculate nucleus (LGN) from the visual sensors (e.g., [7]). The term δpt´tℓkq in (1.2) represents
a Dirac delta function that models the synaptic input received by neuron j from the ℓth spike
of neuron k. The parameter c ě 0 scales the strength of these synaptic interactions.

In the absence of any external or network input, the voltage of the neuron naturally decays
towards its resting state (vR) due to the first term in the first equation. The neuron can,
however, receive excitatory input from two sources, the external stimulus (y˚) and the input
that arises from the activity of other neurons in the network, captured by the summation term
in the second equation. These combined inputs influence the voltage of the neuron indirectly by
affecting its conductance (yj). The conductance acts like a gain control mechanism, modulating
how effectively the neuron translates these inputs into changes in its voltage. In complement
with this dynamic, when the neuron’s voltage reaches a threshold, vF , it is assumed to spike.
At this point (say, time t), the voltage is reset to the resting value, vjpt`q “ vR.

The VCk model is derived from this system by applying a closure in the mean-field limit of
a large number of weakly connected neurons [7, 6, 43]. It describe the evolution of the neuronal
network though the probability Ftpv, yq to find neurons at time t ě 0 with a membrane potential
v P p0, vF q and a conductance y P p0,8q. We refer to [41, 19, 45, 18] for previous mathematical
analysis papers, discussions and further references.

1.1. The VCk equation. The core mathematical formulation of the VCk model is a partial
differential equation (PDE) known as the Voltage-Conductance kinetic equation. This equation
governs the time evolution of the probability density function Ftpv, yq and reads

(1.3) BtF ` BvpJF q ` BypKFF q ´ aF B2
yyF “ 0 in p0,8q ˆ O

with the shorthand pv, yq P O :“ p0, vF q ˆ p0,8q and where the the coefficients are given by

J :“ ypvE ´ vq ´ yLv,

KF :“ y˚ ` cNF ´ y,

aF :“ a˚ ` c2NF ,

with 0 ă vF ă vE , yL, a˚, y˚ ą 0, c ě 0. The definition of J aligns with equation (1.1), while KF

and aF are derived from equation (1.2) and the closure process. The interaction term in (1.2)
becomes a global firing rate NF of the limit system. It influences the evolution of F through two
mechanisms: a current and an internal noise. For Ft : Ō Ñ R, the global firing rate is defined
as the current generated by all the neurons spiking at time t, that is

(1.4) NF ptq :“

ż 8

0

JpvF , yqFtpvF , yqdy.

It is worth noticing that the equation’s nonlinearity, driven by the term NF , is controlled by
the connectivity parameter c. In fact, the equation becomes linear when there is no connection
between neurons, which corresponds to c “ 0. Additionally, similar to classical kinetic models,
the noise term in the VCk equation solely affects the conductance variable.

We complement the VCk equation (1.3) with an initial condition

(1.5) F p0, ¨q “ F0 in O,

specifying the probability distribution at time zero. Additionally, boundary conditions are
imposed to capture specific behaviors:

F “ 0 on Γ1 :“ p0,8q ˆ Σ1,(1.6)

pJF qp0, yq “ pJF qpvF , yq for any y ą yF ,(1.7)

KFF ´ aF ByF “ 0 on Γ0 :“ p0,8q ˆ Σ0,(1.8)
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where we define yF :“ yLvF {pvE ´ vF q,

Σ0 :“ p0, vF q ˆ t0u, Σ1 “ pt0u Y tvF uq ˆ p0, yF q.

The first condition ensures that there is no net movement of the probability density across the
boundary at low conductance values. Note that yF is the solution of the equation Jpy, vF q “ 0,
and more precisely, it is the point where the function y ÞÑ Jpy, vF q changes of sign. For values
of y ď yF , the vector field J is negative near vF so that the trajectories move away from the
boundary at vF , i.e., for conductance values smaller than yF , the neuron does not receive enough
current to spike. On the other hand, as y pass the value yF the voltage of the neuron may reach
vF , spiking. In that case, it is reset to zero instantaneously, from were the second boundary
condition for y ą yF . The condition in Γ0 follows to assure mass conservation.

We note Σ12 :“ Σ1 Y Σ2, Σ2 :“ pt0u Y tvF uq ˆ pyF ,8q, Σ :“ Σ12 Y Σ0, Γ “ p0,8q ˆ Σ,
Γi “ p0, T q ˆ Σi, i “ 0, 1, 2, 12, and nv :“ `1 for v “ vF , nv :“ ´1 for v “ 0, n0 :“ ´1. For
further references, we also denote

Σ˘
i :“ tpv, yq P Σi; ˘Jnv ą 0u,

so that
Σ`

1 “ H, Σ´
1 “ Σ1, Σ

´
2 “ t0u ˆ pyF ,8q, Σ`

2 “ tvF u ˆ pyF ,8q,

and we next define similarly Σ´
12 “ Σ´

1 Y Σ´
2 , Γ

˘
i :“ p0, T q ˆ Σ˘

i . We will sometime summarize
(1.8)-(1.6)-(1.7) with the shorthand

(1.9) RF γF “ 0 on Γ :“ p0,8q ˆ Σ,

where γF denotes the trace on Γ of the function F in order to recall that RF acts on the
boundary.

The two important general properties of the model are that (at least formally) any solution
is mass conservative, that is

(1.10) xF pt, ¨qy “ xF0y, @ t ě 0, xF y :“

ż

O

Fdvdy,

and it conserves positivity, that is

(1.11) F pt, ¨q ě 0, @ t ě 0, if F0 ě 0.

1.2. Main results. We introduce a class of weight functions that will be useful in the sequel.
We say that ω : r0,8q Ñ r0,8q is an admissible weight function if

ωpyq :“ xyyk, k ą 1, or ωpyq :“ eαy, α ą 0,

with xyy2 :“ 1 ` y2. We then define the weighted Lebesgue space Lpω associated to the norm

}f}Lp
ω
:“ }fω}Lp.

On the one hand, we establish the existence of a solution to the nonlinear problem.

Theorem 1.1. For any admissible weight function ω, there exists a constant η “ ηpωq P p0,8q
such that for any initial datum 0 ď F0 P L8

ω and any connectivity parameter c ě 0 such that
pc ` c2q}F0}L8

ω
ă η, there exists at least one solution F P L8p0,8;L8

ω q X Cpr0,8q;L2
ωq to

the Voltage-Conductance kinetic (VCk) equation (1.3), (1.4), (1.5), (1.8), (1.6), (1.7) which
furthermore satisfies (1.10) and (1.11).

Inspired by [29, 16, 33, 21, 10], the precise definition of solutions will be given in Section 5.
Our result provides in a weak interaction regime the existence of a quite strong solution. Under
the normalization hypothesis that F0 is a probability measure, so that is F pt, ¨q for any t ě 0, that
corresponds to a weak connectivity regime, namely c ą 0 small enough. Another framework of
possible weak solutions has been developed in [41, Sec. 6]. The proof of Theorem 1.1 is based on
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the construction of an invariant bounded set for the uniform norm and a compactness argument
(Tyknonv fixed point theorem).

It has been established in [41, Theorem 3] that in a weak connectivity regime, and more
precisely when 0 ď c ă vF {vE , there exists a probability measure M on O such that

BvpJM q ` BypKM M q ´ aM B2
yyM “ 0 on O,(1.12)

RMγM “ 0 on Σ,(1.13)

and that furthermore

M P Lq, @ q P r1, 8{7q.

This stationary state has been proved to be uniformly bounded and linearly asymptotically
stable in [19] and next linearly asymptotic exponentially stable in [18]. We recover and slightly
improve these results.

Theorem 1.2. For ω0 :“ xyyk0 and c ă ηpω0q}ω´1
0 }L1, there exists a probability measure M

which satisfies the stationary equation (1.12), (1.13). Furthermore, for any admissible weight
function ω, the stationary state M satisfies

M P L8
ω pOq X CpOq

and it is linearly asymptotic exponentially stable with constructive constants. More precisely,
there exist C ě 1, λ ą 0 constructive constants such that for any f0 P L2

ω XLpω, p P r1,8s, such
that xf0y “ 0, there exists a unique solution f P Cpr0,8q;L2

ωq to the linear equation

Btf ` BvpJfq ` BypKMfq ´ aM B2
yyf “ 0 on p0,8q ˆ O,(1.14)

RMγf “ 0 on p0,8q ˆ Σ,(1.15)

and this one satisfies
}ft}Lp

ω
ď Ce´λt}f0}Lp

ω
, @ t ě 0.

The proof is in the spirit of the recent works [21, Sec. 11], [11] and [9] where the linear asymp-
totic exponential stability for the kinetic Fokker-Planck equation set in a domain is established
by either taking advantage of hypocoercivity structure (see [46, 2]) or either taking advantage
of positivity apparence (through mixing ans spreading) and confinement mechanism. We rather
follow that second way and more precisely we establish and use a variant of Doblin-Harris
theorem as developed recently in [23, 8, 21, 9].

Both above results use in a fundamental way the ultracontractivity property of solutions to
the linear (with possibly time dependent coefficients) VCk equation

(1.16) Btf “ La,Kf :“ ´BvpJfq ´ BypKfq ` aB2
yyf in p0,8q ˆ O,

where, for some a˚ ą maxpa˚, y˚q,

K :“ b ´ y, a, b P L8p0,8q, y˚ ď b ď a˚, a˚ ď a ď a˚,

and the evolution equation is complemented with the boundary conditions (1.6), (1.7) and

(1.17) Kf ´ aByf “ 0 on Γ0.

We will sometime summarize (1.6)-(1.7)-(1.17) with the shorthand

(1.18) Ra,Kγf “ 0 on Γ.

Theorem 1.3. For any exponential weight function ω :“ eαy, α ą 0, and any initial datum
f0 P L2

ω, the solution f to the linear Voltage-Conductance kinetic equation (1.16), (1.18) satisfies
the ultracontractivity estimate

(1.19) }fpt, ¨q}L8
ω
.

eκpt´sq

pt ´ sqν
}fps, ¨q}L1

ω
,
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for any t ą s ě 0, some constants ν ą 0 and κ such that 0 ď κ . 1 ` }a}L8 ` }b}L8.

Here and below, we use the usual notation a . b and b & a when a ď Cb for some constant
C P p0,8q and a » b when a . b and b . a.

This result is a variant of the ultracontractivity results for the kinetic Fokker-Planck (KFP)
equation in a domain established in [11, 9], see also [10]. For general parabolic equations in
the whole space, ultracontractivity estimates are a consequence of the De Giorgi-Nash-Moser
theory [15, 38, 35, 36], although the notion of ultracontractive semigroup has been introduced
later by Davies and Simon [14] (see also [13]). For the classical KFP equation is the whole space,
ultracontractivity property is a direct consequence of the representation of the solution thanks
to the Kolmogorov kernel [26], of some regularity estimates through Fourier analysis [25, 4] or of
some modified energy estimates [24]. Some local uniform estimate of a similar kind for a larger
class of KFP equations in the whole space has been established in [40, Theorem 1.2] by using
Moser iterative scheme and in [22, Theorem 2.1] by using De Giorgi iterative scheme. We refer
to the above mentioned papers, in particular to [11], for more references on the subject as well as
to [1] for a general survey about these issues. The proof of Theorem 1.3 is similar to the one of
[11, Theorem 1.1] although some steps must be modified. For the gain of integrability L1 Ñ L2,
the strategy is based on Nash’s gain of integrability argument [38] which is performed however
on the time integral inequality as in Moser’s work [36] what is more convenient in order to use
the interior gain of integrability deduced from an adaptation of Hérau regularity result [24]. As
in [11], the key argument consists in exhibiting a suitable twisted weight function which makes
possible to obtain a priori growth estimate in weighted Lp space and a nice control (through a
penalization term) of the boundary region. Last, the gain of integrability L2 Ñ L8 is obtained
by adapting Moser iterative scheme as in [35, 36, 40].

The organization of the paper is as follows. Section 2 is dedicated to the proof of some
weighted Lp a priori growth bounds and the well-posedness of the linear VCk equation in a
weighted L2 framework. Section 3 is devoted to the proof of the ultracontractivity property
as stated in Theorem 1.3. In section 4, we establish some useful interior Holder regularity and
up to the boundary compactness results. Section 5 is dedicated to the proof of the existence
result for the nonlinear problem. In Section 6, we state and prove a constructive version of
the Doblin-Harris theorem in a general lattice Banach framework, which is used in Section 7 in
order to prove Theorem 1.2.

2. Growth estimates and well-posedness in L2

2.1. Growth estimates on the primal problem. We establish some a priori growth esti-
mates in weighted Lebesgue spaces for a solution f to the linear VCk equation.

Lemma 2.1. For any admissible weight function ω “ ωpyq, there exist a modified weight func-
tion rω “ rωpv, yq » ω and a constant κ ě 0 such that any solution f to the linear VCk equation
(1.16), (1.18) satisfies (at least formally)

(2.1) }ft}Lp

rω
ď eκt}f0}Lp

rω
, @ t ě 0,

and κ ď Cp1 ` }a}L8 ` }b}L8q for some constant C “ Cω P p0,8q.

Proof of Lemma 2.1. For simplicity and because the linear VCk equation is (at least formally)
positivity preserving, we may focus on the case f “ fpt, v, yq ě 0. For p P r1,8q, we write

1

p

d

dt

ż

O

fprωp “

ż

O

Bvp´Jfqfp´1rωp `

ż

O

BypaByf ´Kfqfp´1rωp “: A `B,



6 C. FONTE SANCHEZ AND S. MISCHLER

and we then consider each term separately. For the first term, we have

A “ ´

ż

O

fprωpBvJ ´
1

p

ż

O

JrωpBvpfpq

“

ż

O

fp
`1
p

BvprωpJq ´ rωpBvJ
˘

´
1

p

ż

Σ

Jfprωpnv

“

ż

O

fprωp
`
J

Bvrω
rω ` p

1

p
´ 1qBvJ

˘
´

1

p

ż

Σ2

Jfprωpnv,

where we have used the Green formula in the second line and the boundary condition on Σ1 in
the last line. On the other hand, we compute

B “

ż

O

pKf ´ aByfqByppfrωqp´1qrωq

“

ż

O

KfrωByppfrωqp´1qq `

ż

O

KfpByrωqpfrωqp´1

´

ż

O

aByfrωByppfrωqp´1qq ´

ż

O

aByfpByrωqpfrωqp´1

“

ż

O

KfrωByppfrωqp´1qq `

ż

O

KfpByrωqpfrωqp´1

´

ż

O

aBypfrωqByppfrωqp´1qq `

ż

O

afpByrωqByppfrωqp´1qq

´

ż

O

aBypfrωq
Byrω

rω pfrωqp´1 `

ż

O

apfrωqp
´ Byrω

rω
¯2

“

ż

O

rp1 ´
1

p
qK ` p1 ´

2

p
qa

Byrω
rω sByppfrωqpq `

ż

O

K
Byrω

rω pfrωqp

´4
p´ 1

p2

ż

O

apBypfrωqp{2q2 `

ż

O

apfrωqp
´Byrω

rω
¯2

,

where we have used the Green formula and boundary condition on Σ0 in the first line and
we have then just rearrange the terms in order to forcing the dependence on the function frω.
Using once more the Green formula in the first integral of the term B and gathering the two
contributions, we obtain

1

p

d

dt

ż

O

fprωp “ ´
4pp´ 1q

p2

ż

O

apBypfrωqp{2q2 `

ż

O

fprωp̟

`

ż

Σ0

rp1 ´
1

p
qK ` p1 ´

2

p
qa

Byrω
rω sn0pfrωqp ´

1

p

ż

Σ2

Jfprωpnv,

with

(2.2) ̟ :“ 2p1 ´
1

p
qa

`Byrω
rω

˘2
` p

2

p
´ 1qa

B2
yyrω
rω `K

Byrω
rω ` J

Bvrω
rω ` p

1

p
´ 1qByK ` p

1

p
´ 1qBvJ.

In order to make negative the boundary contribution, we define first

(2.3) w :“ χ ` p1 ´ χqω,

with χ “ χpyq P C2pRq, 1r0,yF {2s ď χ ď 1r0,yF s, and next

(2.4) rωp :“ pχ` p1 ´ χqJp´1
ξ y1´pqwp, Jξ :“ ξJp0, yq ` p1 ´ ξqJpv, yq,

with ξ “ ξpyq P C2pRq, 1r0,yF s ď χ ď 1r0,2yF s.
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With this choice, we have rω “ 1 on p0, vF q ˆ p0, yF {2q, thus

p1 ´
1

p
qK ` p1 ´

2

p
qa

Byrω
rω “ p1 ´

1

p
qK ě p1 ´

1

p
qy˚ ě 0 on Σ0,

and the contribution of the boundary term on Σ0 is non positive. On the other hand, the
contribution of the boundary term on Γ2 is

´
1

p

ż

Σ2

Jfprωpnv “
1

p

ż 8

yF

pJfprωpqp0, yq ´ pJfprωpqpvF , yq

“
1

p

ż 8

yF

ppJpfpqp0, yq ´ pJJp´1
ξ fpqpvF , yqqwpy1´p

ď
1

p

ż 8

yF

ppJfqpp0, yq ´ pJfqppvF , yqqw2y1´p “ 0,

where we use that Jξ ě J in the second line and the boundary condition in the last line. Now,
from the very definition of rω, we have

̟ ď κ1 :“ Cp1 ` }a}L8 ` }b}L8q on p0, T q ˆ p0, vF q ˆ p0, 2yF s

uniformly on p P r1,8q and for some constant C “ Cprωq ě 0. On the other hand, we have
rω “ Q1´1{pω on p0, vF q ˆ p2yF ,8q, Q :“ J{y “ vE ´ v ´ yLv{y, so that

Bvrω
rω “ p1 ´

1

p
q

BvJ

J

Byrω
rω “ p1 ´

1

p
q

ByQ

Q
`

Byω

ω
“

Byω

ω
` Opxyy´1q

B2
yyrω
rω “ ´

1

p
p1 ´

1

p
q
`ByQ

Q

˘2
` p1 ´

1

p
q

B2
yyQ

Q
` 2p1 ´

1

p
q

ByQ

Q

Byw

w
`

B2
yyw

w
.

Observing that

Q “ vE ´ v ´ yLv{y,
ByQ

Q
“ Opy´2q,

B2
yyQ

Q
“ Opy´3q,

BvQ

Q
“ ´

1

vE ´ v
` Opy´1q,

because ω is an admissible weight function, we deduce

Byrω
rω „

Byω

ω
,

B2
yyrω
rω „

B2
yyw

w

and next

̟ “ 2p1 ´
1

p
qa

`Byrω
rω

˘2
` p

2

p
´ 1qa

B2
yyrω
rω `K

Byrω
rω ` 1 ´

1

p

„ 2p1 ´
1

p
qa

`Byω

ω

˘2
` p

2

p
´ 1qa

B2
yyω

ω
´ y

Byω

ω
` 1 ´

1

p

as y Ñ 8. When ω “ yk, we have

(2.5) ̟ „ ´k ` 1 ´
1

p
.

When ω “ eαy, α ą 0, we have

̟ „ ´αy.

More precisely, in both cases, we have

(2.6) ̟ ď κ2 ´ ς on p0, T q ˆ p0, vF q ˆ p2yF ,8q
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uniformly on p P r1,8q, with

κ2 :“ Cp1 ` }a}L8 ` }b}L8q

ς :“ k ´ 1 `
1

p
if ω “ xyyk, ς :“ αy if ω “ eαy.

All together, we have established

(2.7)
1

p

d

dt

ż

O

fprωp ď ´
4pp´ 1q

p2

ż

O

apBypfrωqp{2q2 `

ż

O

fprωp̟,

and from (2.5) and (2.6), we deduce

(2.8)
1

p

d

dt

ż

O

fprωp ď ´
4pp´ 1q

p2

ż

O

apBypfrωqp{2q2 ` κ

ż

O

fprωp,

with κ :“ maxpκ1, κ2q. We conclude thanks to the Gronwall lemma in the case p P r1,8q and
passing to the limit p Ñ 8 in the resulting estimate for dealing with the case p “ 8. �

2.2. About the well posedness. In this section, we build a solution to the Cauchy problem
associated to the linear VCk equation in a L2 framework. We denote dξ1 :“ rω2|J |dtdy and
dξ2 :“ ω2J2{xyy2dtdy the Borel measures on the boundary Γ12 and also dξ1 :“ rω2Kdtdv the
Borel measures on the boundary Γ0.

Theorem 2.2. For any admissible weight function ω and any initial datum f0 P L2
ω Ă L1, there

exists a unique solution f P Cpr0, T s;L2
ωq XL2pp0, T q ˆ p0, vF q;H1p0,8qq, @T ą 0, to the linear

VCk equation (1.16)-(1.18) and this one satisfies the growth estimate (2.1) (for p “ 2). More
precisely, there exists a trace function γf P L2pΓ12; dξ2q such that f is a renormalized solution,
in the sense thatż

O

βpfT qψ `

ż

Γ

Jβpγfqψ `

ż

U

βpfqrBtψ ` BvpJψqs ´

ż

U

pBvJqfβ1pfqψ(2.9)

“ ´

ż

U

pKf ´ aByfqBypβ1pfqψq `

ż

O

βpf0qψ,

for any β P W 1,8pRq and any ψ P C1
c pŪq, and where γf satisfies the boundary conditions (1.6),

(1.7) in the a.e. sense. The additional boundary condition (1.17) is encapsulated in the fact
that ψ does not necessarily vanish on the boundary set Γ0. Furthermore, if f0 ě 0, the solution
f satisfies

fpt, ¨q ě 0 and }fpt, ¨q}L1 “ }f0}L1, @ t ě 0.

Proof of Theorem 2.2. The proof is a bit tedious but classical. It is split into 7 steps.

Step 1. We define Γ´
2 :“ tpt, v, yq P Γ2, Jnv ă 0u “ p0, T q ˆ t0u ˆ pyF ,8q. Given a function

g P L2pΓ´
2 ; Jω

2dtdyq, we solve the inflow problem (1.16), (1.17), (1.6) and

(2.10) f “ g on Γ´
2

thanks to Lions’ variant of the Lax-Milgram theorem [29, Chap III, §1]. More precisely, we
define the Hilbert space H associated to the Hilbert norm } ¨ }H defined by

}f}2H :“ }f}2L2
ω1

pUq ` }Byf}2L2
ωpUq,

with ω1 “ ω in the polynomial case and ω1 “ ωxyy1{2 in the exponential case, and we define the
bilinear form Eλ : H ˆ C1

c pr0, T q ˆ pO Y Σ´qq Ñ R, by

Eλpf, ϕq :“

ż

U

fpλ´ Bt ´ JBv ´KByqpϕrω2q `

ż

U

aByfBypϕrω2q,
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where λ ą 0, Σ´ :“ Σ0 YΣ1 YΣ2´ and rω is defined during the proof of Lemma 2.1. Proceeding
as during the proof of Lemma 2.1, we have

ż

U

ϕp´JqBvprω2ϕq “

ż

U

prωϕq2
`1
2

BvJ ´ J
Bvrω

rω q ´
1

2
BvpJprωϕq2q

“ ´

ż

Γ12

1

2
nvJprωϕq2 `

ż

U

prωϕq2
`1
2

BvJ ´ J
Bvrω

rω q

and similarly
ż

U

ϕp´KqByprω2ϕq “ ´

ż

Γ0

1

2
nyKprωϕq2 `

ż

U

prωϕq2
`1
2

ByK ´K
Byrω

rω q.

Observing that ż

U

aByϕBypϕrω2q “

ż

U

apBypϕrωqq2 ´

ż

U

apϕrωq2
pByrωq2

rω2
,

we get

Eλpϕ, ϕq “

ż

U

pλ´̟qprωϕq2 `

ż

U

apByprωϕqq2 `
1

2

ż

O

prωϕqp0, ¨q2

´
1

2

ż

Γ12

prωϕq2Jnv ´
1

2

ż

Γ0

prωϕq2Kny,

for any ϕ P C1
c pU Y Γ´q, and where ̟ is defined (for p “ 2) in (2.2). We choose λ ą 0 large

enough, in such a way that λ´̟ ě 1. Because each contribution is then nonnegative separately,
the above quadratic form is coercive in the sense that

Eλpϕ, ϕq ě minpa˚, 1q}ϕ}2H , @ϕ P C1
c pU Y Γ´q.

We define the linear form

ℓλpϕq :“

ż

Γ2´

p´Jnvqge´λtrω2ϕ`

ż

O

f0rω2ϕp0, ¨q, @ϕ P C1
c pU Y Γ´q,

and we observe that |ℓpϕq| . Eλpϕ, ϕq1{2 for any ϕ P C1
c pU Y Γ´q. The above mentioned Lions’

theorem implies the existence of a function fλ P H which satisfies the variational equation

Eλpfλ, ψq “

ż

Γ2´

ge´λtrω2ψ `

ż

O

f0rω2ψp0, ¨q, @ψ P C1
c pU Y Γ´q.

Defining f :“ fλe
λt and testing this variational equation with ψ :“ ϕeλt, we deduce

(2.11)

ż

U

fp´Bt ´ JBvqpϕrω2q `

ż

U

paByf ´KqBypϕrω2q “

ż

Γ2´

p´Jnvqgϕrω2 `

ż

O

f0ϕp0, ¨qrω2,

for any ϕ P C1
c pU YΓ´q, and thus for any ϕ P H1

0 pU YΓ´q, the closure of C1
c pU YΓ´q in H1pUq.

That last variational equation is classically a weak formulation of the fact that f P HT , @T ą 0,
is a global solution to the inflow problem (1.16), (1.17), (1.6), (2.10). It is worth emphasizing
that here and always below the no flux condition (1.17) has to be understood in the weak sense,
namely by the fact that the test functions do not necessarily vanish on Γ0.

Step 2. At least formally, multiplying the equation (1.16) by β1pfqψ for a renormalizing function
β : R Ñ R and a test function ψ : U Ñ R, we have

Btpβpfqψq ´ βpfqBtψ ` BvrJβpfqψs ´ βpfqBvpJψq ` pBvJqfβ1pfqψ

`Byrβ1pfqψpKf ´ aByfqs ´ rBypβ1pfqψqspKf ´ aByfq “ 0.
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When suppψ Ă U YΓ0 “ p0, T q ˆ p0, vF q ˆ r0,8q and using the no flux condition (1.17), we get
after integration

(2.12) ´

ż

U

βpfqrBtψ ` BvpJψqs `

ż

U

pBvJqfβ1pfqψ ´

ż

U

pKf ´ aByfqBypβ1pfqψq “ 0.

This step is devoted to sketch a rigorous proof of (2.12) by using some classical arguments in
the spirit of DiPerna and Lions [17]. For β P C1 X W 1,8, ψ P C1

c pU Y Γ0q and a symmetric
mollifier pρεq in DpR2q, we choose ϕε :“ rω´2ρε ˚ pβ1pf ˚ ρεqψq as a test function in (2.11), where
˚ “ ˚t,v denotes the convolution operator in the t and v variables. Denoting fε “ f ˚ ρε, for
ε ą 0 small enough, we have

(2.13)

ż

U

fp´Bt ´ JBvqpϕεrω2q “ ´

ż

U

fεBtpβ
1pfεqψq ´

ż

U

pfJq ˚ ρεBvpβ1pfεqψq.

Observing that fε P H1
0 pU Y Γ0q, so that we may used the chain rule, we have

´

ż

U

fεBtpβ
1pfεqψq “

ż

U

Btfεβ
1pfεqψ

“

ż

U

Btβpfεqψ “ ´

ż

U

βpfεqBtψ.

We similarly have

´

ż

U

pfJq ˚ ρεBvpβ1pfεqψq “ ´

ż

U

βpfεqBvpJψq `

ż

U

fεβ
1pfεqψBvJ `Rε,

with

Rε :“

ż

U

rεβ
1pfεqψ, rε :“ BvrpfJq ˚ ρε ´ Jpf ˚ ρεqs.

For the last term, we write rε “ r1ε ` r2ε , with

r1ε :“ pfBvJq ˚ ρε ´ pBvJqfε, r2ε :“ pJBvfq ˚ ρε ´ JBvfε,

where r1ε Ñ 0 in L2 straightforwardly and r2ε Ñ 0 in L2 thanks to DiPerna-Lions commutator
Lemma [17, Lemma II.1]. We easily pass to the limit in (2.13) and we get

lim
εÑ0

ż

U

fp´Bt ´ JBvqpϕεrω2q “ ´

ż

U

βpfqBtψ ´

ż

U

βpfqBvpJψq `

ż

U

fβ1pfqpBvJqψ.

From the above definition and the fact that β1pfq P L2
vL

2
t,locH

1
y,loc, we also have

lim
εÑ0

ż

U

paByf ´KqBypϕεrω2q “ ´

ż

U

pKf ´ aByfqBypβ1pfqψq.

All together, we have thus established (2.12).

Step 3. We assume furthermore that f is smooth up to the boundary and we establish three
additional estimates. Taking βpsq :“ s2 and ψ “ χ1ptqχ2pvq, χ1 P Dpp0, T qq, χ2 P Dpp0, vF qq,
χi ě 0, in (2.12), we get

d

dt

ż

O

f2χ2 “

ż

O

If , If :“ f2rJBvχ2 ´ χ2BvJs ` 2pKf ´ aByfqpByfqχ2,

and integrating twice in the time variable, we obtain

(2.14) sup
r0,T s

ż

O

f2χ2 ď T

ż

U

If . T }χ2}W 1,8 }f}2H .
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Taking now ψ :“ χ1ptqχ2pvq, χ2 :“ pvF {2´vq`, in the equation preceding (2.12) or equivalently
taking ψ :“ χ1ptqχ2pvqχ2εpvq in (2.12) with χ2ε Ñ 1, χ1

2ε á ´δ0 and passing to the limit ε Ñ 0,
we get ż

Γ0
12

f2Jχ1

vF

2
“

ż

U

f2rBtψ ` JBvψ ´ ψBvJs ` 2

ż

U

ψpKf ´ aByfqByf,

with Γ0
12 :“ p0, T q ˆ Σ0

12, Σ
0
12 :“ t0u ˆ p0,8q. We deduce

(2.15)

ż

Γ0
12

f2Jχ1 . }χ1}W 1,8 }f}2H .

We finally take ψ :“ χ1ptqχ2pvq, χ2 :“ Jpv ´ vF {2q`, in the equation preceding (2.12) and we
get ż

Γ
vF
12

f2J2χ1

vF

2
“

ż

U

f2r´Btψ ´ JBvψ ` ψBvJs ` 2

ż

U

ψpaByf ´KfqByf,

with ΓvF12 :“ p0, T q ˆ ΣvF12 , Σ
vF
12 :“ tvF u ˆ p0,8q. We deduce

(2.16)

ż

Γ
vF
12

f2J2χ1 . }χ1}W 1,8 }f}2H .

Step 4. Using the same suitably modified convolution trick as in the trace theory developed in
[32, 33, 21, 10] for the Vlasov equation and the kinetic Fokker-Planck equation, we can take up
again the arguments used in Step 2 and we easily establish the existence of a sequence pfεq of
H1pUq such that fε Ñ f strongly in H and a.e. on U , and such that

´

ż

U

βpfεqrBtψ ` BvpJψqs `

ż

U

pBvJqfεβ
1pfεqψ ´

ż

U

pKf ´ aByfqByϕε “

ż

U

rεβ
1pfεqψ,

for any ε ą 0, any ψ P C1
c pUq and any β P C1 XW 1,8, with rε Ñ 0 in L1

locpŪq and ϕε Ñ β1pfqψ
in H . The above relation is the same as the one leading to (2.12) except on the fact that we
do not impose any smallness condition on ε ą 0 which should depend on ψ. As a consequence,
for ψ P C1

c pŪq, we may deduce from it the Green formula which tells us that
”ż

O

βpfεtqψ
ıt2
t1

`

ż t2

t1

ż

Σ12

Jhεψ ´

ż t2

t1

ż

O

rβpfεqpBtψ ` BvpJψqq ´ pBvJqfεβ
1pfεqψs(2.17)

´

ż t2

t1

ż

O

pKf ´ aByfqByϕε “

ż t2

t1

ż

O

rεβ
1pfεqψ.

The same identity holds with fε replaced by fεε1 :“ fε ´ fε1 because this identity has been
established starting from the weak formulation (2.11) which depends linearly on f . Using
(2.14), (2.15) and (2.16) in Step 3, we deduce that pfεε1 q tends to 0 in Cpr0, T s;L2

locpOqq, in
L2ppτ, T ´τqˆΣ0

12; Jdydtq, @ τ P p0, T q, and in L2ppτ, T ´τqˆΣvF12 ; J
2dydtq, @ τ P p0, T q, so that

pfεq is a Cauchy sequence in the same spaces. In other words, there exist a function t ÞÑ ft P
Cpr0, T s;L2

locpOqq, and a function γf defined on Γ12 satisfying γf P L2ppτ, T ´ τq ˆΣ0
12; Jdydtq,

@ τ P p0, T q, and γf P L2ppτ, T ´ τq ˆ ΣvF12 ; J
2dydtq, @ τ P p0, T q, such that

fεpt, ¨q Ñ ft in Cpr0, T s;L2
locpOqq and a.e. on O, @ t P r0, T s;

fε Ñ γf in L2ppτ, T ´ τq ˆ Σ0
12; Jdydtq,@ τ P p0, T q, and a.e. on Γ0

12;

fε Ñ γf in L2ppτ, T ´ τq ˆ ΣvF12 ; J
2dydtq,@ τ P p0, T q, and a.e. on ΓvF12 .

Passing to the limit in (2.17), we get

´

ż t2

t1

ż

O

rβpfqpBtψ ` BvpJψqq ´ pBvJqfβ1pfqψs ´

ż t2

t1

ż

O

pKf ´ aByfqBypβ1pfqψq(2.18)

`
”ż

O

βpfpt, ¨qqψ
ıt2
t1

`

ż t2

t1

ż

Σ12

Jnvβpγfqψ “ 0,
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for any ψ P C1
c pŪq and any β P C1 X W 1,8, and we use indifferently the notations ft “ fpt, ¨q.

Because f P H , the function f admits a trace on Γ0, also denoted by γf P L2pΓ0; dtdvq, and
integrating twice by part, we have

´

ż t2

t1

ż

O

KfBypβ1pfqψq “ ´

ż t2

t1

ż

Σ0

nyKγfβ
1pγfqψ `

ż t2

t1

ż

O

β1pfqψBypKfq

“

ż t2

t1

ż

Σ0

Kγfβ1pγfqψ `

ż t2

t1

ż

O

rβ1pfqfψByK ` ψKByβpfqs

“

ż t2

t1

ż

Σ0

Kpγfβ1pγfq ´ βpγfqqψ `

ż t2

t1

ż

O

rβ1pfqfψByK ´ βpfqBypψKqs.

Together with (2.18), we also have

”ż

O

βpfpt, ¨qqψ
ıt2
t1

`

ż t2

t1

ż

Σ12

Jnvβpγfqψ `

ż t2

t1

ż

Σ0

Krγfβ1pγfq ´ βpγfqsψ(2.19)

´

ż t2

t1

ż

O

rβpfqpBtψ ` BvpJψq ` BypψKqq ´ pBvJ ` ByKqfβ1pfqψs

`

ż t2

t1

ż

O

aByfBypβ1pfqψq “ 0,

for any ψ P C1
c pŪq and any β P C1 XW 1,8.

Step 5. Because of the previous estimates on f , ft and γf , we may take βpsq “ s in (2.18) by
using an approximation procedure in the three following cases (and more precisely, we apply
(2.18) to a renormalized function βn P C1 X W 1,8, we assume that βnpsq Ñ s, β1

npsq Ñ 1,
with |βnpsq| ď |s|, |β1

npsq| ď 1, and we pass to the limit as n Ñ 8). Taking ψ “ χ1ptqχ2,
χ1 P C1

c pr0, T qq, χ2 P C1
c pOq, we have

´

ż

O

fp0, ¨qψp0, ¨q ´

ż

U

fpBtψ ` JBvψq ´

ż

U

pKf ´ aByfqByψ “ 0.

Together with (2.11), we deduce that fp0, ¨q “ f0. Taking now ψ P C1
c pp0, T q ˆ pO Y Σ´

12qq, we
also have ż

Γ
´
12

Jnvγfψ ´

ż

U

fpBtψ ` JBvψq ´

ż

U

pKf ´ aByfqByψ “ 0,

Together with (2.11), we deduce that γf “ 0 on Γ1 and γf “ g on Γ´
2 .

Because of the above identification of the trace functions, the renormalized equation (2.18)
writes now ż

O

βpfT qψ `

ż

Γ
`
2

Jβpγfqψ “

ż

U

βpfqrBtψ ` BvpJψqs ´

ż

U

pBvJqfβ1pfqψ(2.20)

`

ż

U

pKf ´ aByfqBypβ1pfqψq `

ż

Γ
´
2

Jβpgqψ `

ż

O

βpf0qψ,

for any β P C1 X W 1,8 and ψ P C1
c pŪq. Using that f P H , f0 P L2

ω and J1{2g P L2
ωpΓ´

2 q at
the RHS, we may take ψ “ rω2 and a sequence pβnq of C1 X W 1,8 such that 0 ď βnpsq ď s2,
|β1
npsq| ď 2|s|, βn Ñ s2, β1

npsq Ñ 2s, and passing to the limit we deduce
ż

O

f2
T rω2 `

ż

Γ
`
2

Jγf2rω2 `

ż

Γ0

Kγf2rω2 `

ż

U

apBypωfqq2 `

ż

U

f2̟´rω2

ď

ż

U

f2̟`rω2 `

ż

O

f2
0 rω2 `

ż

Γ
`
2

Jg2rω2, @T ą 0.
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Applying the Gronwall lemma to the function t ÞÑ }ft}
2
L2

ω̃

which belongs to L1p0, T q (because

f P Hq and is lsc (because of the regularity of f obtained in Step 4), we deduce

}ft}
2
L2

ω̃
`

ż t

0

´
}γfs}

2

L2
ω̃

pΣ`
2 YΣ0;dξ1q

` }f}2
H

1,:
ω̃

¯
eλ0pt´sq ds(2.21)

ď }f0}2L2
ω̃
eλ0t `

ż t

0

}gs}
2

L2
ω̃

pΣ´
2 ;dξ1q

eλ0pt´sq ds,

for any t ą 0, with λ0 :“ sup̟` ă 8 and

}f}2
H

1,:
ω̃

:“

ż

O

a˚pBypωfqq2 `

ż

O

f2̟´rω2.

Step 6. With that last estimate at end, we may pass to the limit in (2.18) written with βn Ñ s2

and ψn Ñ rω2 and we deduce the identity

}ft2}2L2
ω̃

`

ż t2

t1

ż

Σ
`
2

Jγf2rω2 `

ż t2

t1

ż

Σ0

Kγf2rω2 `

ż t2

t1

ż

O

apBypωfqq2

“

ż t2

t1

ż

O

f2̟rω2 ` }ft1}2L2
ω̃

`

ż t2

t1

ż

Σ
´
2

Jg2rω2,

for any 0 ď t1 ď t2 ă 8, in particular t ÞÑ }ft}
2
L2

ω̃

is continuous. Together with the already

known weak continuity property, we classically deduce that f P CpR`;L2
ω̃q. Similarly, taking

βn Ñ s2´ and ψn Ñ rω2 in (2.18), we deduce

}f´ptq}2L2
ω̃

ď

ż t

0

ż

O

f2
´̟rω2 ` }f0´}2L2

ω̃
`

ż t2

t1

ż

Σ
`
2

Jg2´rω2, @ t ą 0.

Thanks to the Gronwall lemma, we deduce the positivity property: fptq ě 0 if g ě 0 and f0 ě 0.
Similarly, for two solutions f1 and f2 to the inflow problem (1.16), (1.17), (1.6), (2.10) in the
sense of the variational formulation (2.11), the difference f :“ f2 ´ f1 is also a solution to the
variational problem (2.11) but associated to f0 “ g “ 0. Applying the conclusion (2.21) to that
solution, we get f “ 0, and we have thus proved the uniqueness of the solution to the inflow
problem (1.16), (1.17), (1.6), (2.10).

Step 7. We briefly explain how we may deduce the existence and uniqueness of a solution to
the linear VCk equation (1.16), (1.18). We define g0 “ 0 and next recursively the sequence pgkq
defined for k ě 1 as the solution to the equation

Btgk ` BvpJgkq ` BypKgk ´ aBygkq “ 0 in U ,

gkp0q “ f0 in O, Kgk ´ aBygk “ 0 on Γ0,

γgk “ 0 on Γ1, Jp0, ¨qγ´gk “ JpvF , ¨qγ`gk´1 on Γ2´

provided by the previous steps. The Cesaro means

fk :“
1

k
pg1 ` ¨ ` gkq

is then a solution to the equation

Btfk ` BvpJfkq ` BypKfk ´ aByfkq “ 0 in U ,

fkp0q “ f0 in O, Kfk ´ aByfk “ 0 on Γ0,

γfk “ 0 on Γ1, Jp0, ¨qγ´fk “ p1 ´ 1{kqJpvF , ¨qγ`fk´1 on Γ2´.

Using repeatingly the estimates (2.21) corresponding to the equations on pgkq, we deduce that
pgkq is bounded in HT , @T ą 0. Similarly, summing up the estimates (2.21) corresponding to
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the equations on g1, . . . , gk and using the elementary inequality

` 1
k

pg1 ` ¨ ` gkq
˘2

ď
1

k
pg21 ` ¨ ` g2kq,

we deduce

}fkptq}2L2
ω̃

`

ż t

0

}fkpsq}2
H

1,:
ω̃

eλ0pt´sq ds ď }f0}2L2
ω̃
eλ0t, @ t ą 0.(2.22)

We deduce that the exist f P HT X L8p0, T ;L2
ωq, @T ą 0, and a subsequence pfknq such that

fnk
á f in HT X L8p0, T ;L2

ωq. Passing first to the limit in the variational formulation of the
equation on pfknq with test functions in C1

c pU Y Γ0q, we deduce
ż

U

fp´Bt ´ JBvqψ `

ż

U

paByf ´KqByψ “ 0,

for any ψ P C1
c pU Y Γ0q. Repeating the arguments of sections 2, 3 and 4, we know that there

exists a trace function γf on Γ connected to f through the renormalized formulations (2.18) and
(2.19). Proceeding as in section 3, we also get that pγgknq and pγfknq are bounded in L2pΓ0

12, dξ1q
and in L2pΓvF12 , dξ2q. Passing to the limit in the variational formulation of the equation on pfknq
with test functions in C1

c pU Y Γ0
12q and in C1

c pU Y ΓvF12 q, we then deduce first

γfkn á γf in L2pΓ0
12, dξ1q X L2pΓvF12 , dξ2q as k Ñ 8

and next

γfkn´1 “
kn

kn ´ 1
γfkn ´

1

kn ´ 1
γgkn á γf in L2pΓvF12 , dξ2q as k Ñ 8.

We may then pass to the limit in the variational formulation associated to the equation on fkn
with test functions in C1

c pU Y Γ´q and we deduce that f is a variational solution to the linear
VCk equation (1.16), (1.18), and more precisely

(2.23)

ż

U

fp´Bt ´ JBvqψ `

ż

U

paByf ´KqByψ “

ż T

0

ż 8

yF

pJγfqpt, vF , yqψpt, 0, yq,`

ż

O

f0ψp0, ¨q

for any ψ P C1
c pU Y Γ´q. Repeating the arguments of Step 6, we similarly establish the further

properties of the solution f . �

3. Ultracontractivity

This section is dedicated to the proof of the ultracontractivity Theorem 1.3, in weighted
Lebesgue spaces Lpω for a strongly confining weight function ω :“ eαy, α ą 0.

3.1. A boundary penalization L2 estimate. We take back the L2 estimate established in
Section 2.1 and improve it by introducing a penalization of the neighborhood of the boundary
Σ12 thanks to a suitable power of the distance δpvq :“ minpv, vF ´ vq.

Lemma 3.1. Assume ω :“ eαy, α ą 0. There exist a weight function qω “ qωpv, yq » ω and a
constant qκ ě 0 such that any solution f to the linear VCk equation (1.16)-(1.18) satisfies

(3.1)

ż T

0

ϕ2

ż

O

!
f2ω2

” J2

δ1{2xyy2
` αxyy

ı
` pBypfqωqq2

)
ď qκ

ż T

0

pϕϕ1
` ` ϕ2q

ż

O

f2ω2,

for any ϕ P C1
c p0, T q and where qκ only depends on a˚, a˚, y˚.
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Proof of Lemma 3.1. We come back to the proof of Lemma 2.1. We define

(3.2) qω2 :“ rω2P, P :“ 1 ´
1

2

δ1{2

δ
1{2
˚

δ1J

xJy2
,

with δ˚ :“ suprδpδ1q2s, rω2 defining during the proof of Lemma 2.1 and where we abuse notation
by rather denoting δ P C2pRq such that δ ą 0 on p0, vF q and δpvq “ minpv, vF ´ vq for any
v P p0, vF {3q Y p2vF {3, vF q so that it is equivalent to establish (3.14) for the previously defined
δ or this smooth variant. Proceeding exactly as during the proof of Lemma 2.1, we have

1

2

d

dt

ż

O

f2qω2 “ ´

ż

O

apBypfqωqq2 `

ż

O

f2qω2̟

`

ż

Σ0

1

2
Kn0pfqωq2 ´

1

p

ż

Σ2

Jf2rω2nv,

with

̟ :“ a
`Byω̌

ω̌

˘2
`K

Byω̌

ω̌
` J

Bvω̌

ω̌
´

1

2
ByK ´

1

2
BvJ,

and thus again

1

2

d

dt

ż

O

f2qω2 `

ż

O

a˚pBypfqωqq2 ď

ż

O

f2qω2 q̟ .

We observe that
Bzω̌

ω̌
“

Bzrω
rω `

1

2

BzP

P

for z “ y, v, and thus

q̟ “ r̟ ` a
Byrω

rω
ByP

P
`
K

2

ByP

P
`
J

2

BvP

P

with r̟ defined by (2.2),

BvP “ ´
1

4

1

δ1{2

pδ1q2

δ
1{2
˚

J

xJy2
`

φ1

xJy
, φ1 P L8pOq,

and

ByP “ ´
1

2

δ1{2

δ
1{2
˚

δ1By
J

xJy2
“

φ2

xJy2
, φ2 P L8pOq.

We deduce that

(3.3) q̟ ď κ̌´
1

8δ
1{2
˚

1

δ1{2

J2

xyy2
´ αxyy

with κ̌ ď Cp1 ` }a}L8 ` }b}L8q and where we observe that xJy » xyy. The previous estimate
gives

1

2

d

dt

ż

O

f2qω2 `

ż

O

f2qω2
´ 1

8δ
1{2
˚

1

δ1{2

J2

xyy2
` αxyy

¯
`

ż

O

a˚pBypfqωqq2 ď κ̌

ż

O

f2ω2.

We conclude by multiplying the above equation by ϕ2 and integrating in the time variable. �

We reformulate that last result in a more tractable one by using several times the following
estimate

(3.4)

ż c

a

1

|y ´ b|µ
h2dy .

ż c

a

ppByhq2 ` h2qdy,

for µ P p0, 1q and any h P H1pa, cq, a, b P R, c P R Y t`8u, a ď b ď c. The estimate (3.4) is an
immediate consequence of the classical embedding H1pa, cq Ă L8pa, cq used in the region where
|y ´ b| ď 1 in the LHS integral of (3.4).
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Lemma 3.2. Assume ω :“ eαy, α ą 0. With the notations of Lemma 3.1, any solution f to
the linear VCk equation (1.16)-(1.18) satisfies

ż T

0

ϕ2

ż

O

f2 1

δ1{9

ω2

xyy2
.

ż T

0

pϕϕ1
` ` ϕ2q

ż

O

f2ω2

for any ϕ P C1
c p0, T q

Proof of Lemma 3.2. We define O “ O1 Y O2 Y O3 Y O4 with

O1 :“ tpv, yq; 0 ă v ă 1
2
vF ,

1
2
vE ď v ` yLv

29{36, y ą v7{36u,

O2 :“ tpv, yq; 0 ă v ă 1
2
vF ,

1
2
vE ą v ` yLv

29{36, y ą v7{36u,

O3 :“ tpv, yq; 0 ă v ă 1
2
vF , y ď v7{36u,

O4 :“ tpv, yq; 1
2
vF ď v ă vF , 0 ď y ă 1

2
yF u,

O5 :“ tpv, yq; 1
2
vF ď v ă vF , y ą 1

2
yF u,

and we estimate separately each of the term
ż T

0

ż

Oi

ϕ2f2 ω
2
0

δ1{9
,

for i “ 1, . . . , 5 and where we use the shorthand ω0 :“ ω{xyy.

‚ On O1, we have δ ě δ1 ą 0, so that
ż T

0

ż

O1

ϕ2f2 ω
2
0

δ1{9
.

ż T

0

ż

O1

ϕ2f2ω2
0 .

‚ On O2, we observe that

J ě ypvE ´ v ´ yLv
29{36q ě 1

2
vEy,

so that
J2

δ1{2
&

y2

v1{2
&

1

v1{9
&

1

δ1{9
,

where we have used y ą v7{36 and next v “ δ in the two last inequalities. We deduce
ż T

0

ż

O2

ϕ2f2 ω
2
0

δ1{9
.

ż T

0

ż

O2

ϕ2f2ω2
0

J2

δ1{2
.

‚ On O3, we have

ż T

0

ż

O3

ϕ2f2 ω
2
0

δ1{9
.

ż T

0

ż vF {2

0

ż v
7{36
F

0

ϕ2pωfq2
1

y4{7

.

ż T

0

ż vF {2

0

ż 8

0

ϕ2pBypωfqq2

where we have used that y4{7 ď δ1{9 on the first line and the inequality (3.4) in the last line.

‚ On O4, we observe that there exists v˚
F P r 1

2
vF , vF q and J˚ ą 0 such that

J2 ě J2
˚ ą 0 if pv, yq P pv˚

F , vF q ˆ p0, yF {2q,

so that

1

δ1{9
ď

1

δpv˚
F q1{9

1văv˚
F

`
J2

J2
˚

1

δ1{9
1vąv˚

F
. 1 `

J2

δ1{2
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on O4. We deduce
ż T

0

ż

O4

ϕ2f2 ω
2
0

δ1{9
.

ż T

0

ż

O4

ϕ2f2ω2
0

´
1 `

J2

δ1{2

¯
.

‚ On O5, we first observe that
1

δ1{9
ď

J2

δ1{2
`

1

|J |4{7
,

thanks to the Young inequality, and that
ż 8

yF {2

f2

|J |4{7
ω2
0dy .

ż 8

0

pBypfωqq2dy

from the inequality (3.4) again and the fact that we may write |Jpv, yq| “ ζ|y ´ c|, with ζ “
ζpvq P rζ˚, ζ

˚s, c “ cpvq P rc˚, c
˚s, ζ˚, ζ

˚, c˚, c
˚ P p0,8q. We deduce

ż T

0

ż

O5

ϕ2f2 ω
2
0

δ1{9
.

ż T

0

ż vF

vF {2

ż 8

0

ϕ2
´

pBypfωqq2 ` f2ω2
0

J2

δ1{2

¯
.

We conclude by gathering the above five contributions and by using the previous estimate
(3.14). �

Interpolating the two previous estimates, we conclude with the following formulation of pe-
nalization of the boundary (in the v variable) and the infinity (in the y variable).

Proposition 3.3. Assume ω :“ eαxyy, with α ą 0. Any solution f to the linear VCk equation
(1.16)-(1.18) satisfies

ż T

0

ϕ2

ż

O

f2ω2
” 1

δ1{27
` xyy

ı
.

ż T

0

pϕϕ1
` ` ϕ2q

ż

O

f2ω2

for any ϕ P C1
c p0, T q.

Proof of Proposition 3.3. The estimate immediately follows from the Young inequality

1

δ1{27
“

1

δ1{27xyy2{3
xyy2{3 ď

1

δ1{9xyy2
` xyy,

together with Lemma 3.1 and Lemma 3.2. �

3.2. Gain of integrability estimate. We introduce the function

(3.5) f̄ :“ fψ, ψ :“ ϕptqχpvqω0pyq,

with ϕ P C1
c pp0, T qq, χ P C1

c pp0, vF qq, 0 ď ϕ, χ ď 1, ω0 :“ eαy for y ě y0 ą 0, α ą 0,
0 ď ω0 P C1

c pp0,8qq, which is a solution to

(3.6) Btf̄ ` ĴBvf̄ ` ǨBy f̄ ´ aB2
yyf̄ ` αxyyf̄ “ F

on R` ˆ R
2, with

Ĵ :“ Jpv, yq, if y ą 0, Ĵ :“ Jpv,´yq, if y ă 0,

Ǩ :“ Kpv, yq, if y ą 0, Ǩ :“ ´Kpv,´yq, if y ă 0,

F :“ pBtϕqχω0f ` ĴϕpBvχqω0f ´ pBvĴqϕχω0f ` ǨϕχpByω0qf ´ pByǨqϕχω0f

´aϕχpB2
yyω0qf ´ 2aϕχpByω0qpByfq ` αxyyϕχω0f

We first focus on the homogeneous equation

(3.7) Btg ` J̄Bvg ` K̄Byg ´ aB2
yyg ` αxyyg “ 0, on R` ˆ R

2,

complemented with the initial condition

gp0q “ g0, on R
2,
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where

K̄, J̄ P C1
c pp0, vF q ˆ Rq, K̄ “ Ǩ, J̄ “ Ĵ on suppχˆ R.

More precisely, we take K̄ “ χ̄Ǩ, J̄ “ χ̄Ĵ , χ̄ P C1
c pp0, vF qq, 1suppχ ď χ̄ ď 1, and α ą

}χ̄1}pvE`yLvF`1q. We establish the following series of growth estimates and gain of integrability
result.

Lemma 3.4. For any p P r1,8s, any solution g to the homogeneous equation (3.7) satisfies

(3.8) }gt}Lp ď }g0}Lp , @ t ě 0.

Proof of Lemma 3.4. For p P p1,8q, any nonnegative solution g to (3.7) satisfies

1

p

d

dt

ż

R2

gp “
1

p

ż

R2

gppBvJ̄ ` ByK̄ ´ pαxyyq ´ pp ´ 1qa

ż

R2

pBygq2gp´2 ď 0,

because BvJ̄ ` ByK̄ ď χ̄1J̌ ď αxyy. We conclude to (3.8) thanks to the Gronwall lemma when
p P p1,8q and by passing to the limit p Ñ 1 and p Ñ 8 in (3.8) for the two limit cases. �

Proposition 3.5. Any solution g to the homogeneous equation (3.7) satisfies

(3.9) }gt}H1
vL

2
yXL2

vH
2
y
.

1

t2
}g0}L2 , @ t P p0, 1q.

Proof of Proposition 3.5. We use a regularization argument in the spirit of Hérau [24] (see also
Villani [46, Appendix]). More precisely, we define

Fpt, gq :“ ε´3}g}2L2 ` ε4t4}Bvg}2L2 ` ε3t3pBvg, BygqL2 ` εt2}Byg}2L2 ` ε4t4}B2
yyg}2L2,

for t, ε P p0, 1q, and for a solution g to the homogeneous equation (3.7), we estimate the derivative
quantity d

dt
Fpt, gtq. For that purpose, we start computing each square of norm or scalar product

on g involved separately.

Step 1. From Lemma 3.4, we already know that

1

2

d

dt
}g}2L2 ď ´}gxyy1{2}2L2 ´ a}Byg}2L2.

Similarly, we compute

1

2

d

dt

ż

R2

pBvgq2 “

ż

R2

pBvgq2
´1

2
ByK̄ ´

1

2
BvJ̄ ´ αxyy

¯
´ a

ż

R2

pB2
vygq2,

so that

1

2

d

dt
}Bvg}2L2 ď C1}Bvg}2L2 ´ }xyy1{2Bvg}2L2 ´ a}B2

vyg}2L2.

We next compute

d

dt

ż

R2

BvgByg “

ż

R2

´
´
1

2
BvJ̄pBygq2 ´

1

2
ByJ̄pBvgq2 ´ 2aB2

vygB2
yyg ´ 2αxyyBvgByg

¯
,

so that

d

dt

ż

R2

BvgByg ď ´C21}Bvg}2L2 ` C22}xyy1{2Byg}2L2

`C23}Bvyg}L2}Byyg}L2 ` C24}xyy1{2Bvg}L2}xyy1{2Byg}L2.

We also compute

1

2

d

dt

ż

R2

pBygq2 “

ż

R2

pBygq2
´1

2
BvJ̄ ´

1

2
ByK̄ ´ αxyy

¯

`

ż

R2

g2
α

2
B2
yyxyy ´

ż

R2

ByJ̄BygBvg ´ a

ż

R2

pB2
yygq2,
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so that
1

2

d

dt
}Byg}2L2 ď ´}xyy1{2Byg}2L2 ´ a}B2

yyg}2L2

`C31}Byg}2L2 ` C32}g}2L2 ` C33}Bvg}L2}Byg}L2 .

We finally compute

1

2

d

dt

ż

R2

pByygq2 “

ż

R2

pByygq2
´1

2
BvJ̄ ´

3

2
ByK̄ ´ αxyy

¯
`

ż

R2

pBygq22αB2
yyxyy

´

ż

R2

g2
α

2
B4
yyyyxyy ´ a

ż

R2

pB2
yyygq2 ´ 2

ż

R2

ByJ̄BvygByyg,

so that
1

2

d

dt
}Byyg}2L2 ď `C41}B2

yyg}2L2 ` C42}Byg}2L2 ` C43}g}2L2 ` C44}Bvyg}L2}Byyg}L2.

Step 2. The derivative of F takes the form

d

dt
Fpt, gtq “ ε´3 d

dt
}g}2L2 ` 4ε4t3}Bvg}2L2 ` ε4t4

d

dt
}Bvg}2L2

`3ε3t2pBvg, BygqL2 ` ε3t3
d

dt
pBvg, BygqL2

`2εt}Byg}2L2 ` εt2
d

dt
}Byg}2L2

`4ε4t3}Byyg}2L2 ` ε4t4
d

dt
}Byyg}2L2,

for any ε, t P p0, 1q. Using the estimates established in the first step and the Young inequalities

pε3t3C23 ` 2ε4t4C44q}Bvyg}L2}Byyg}L2

ď pε3{2t2C23 ` ε3t4C44q}Byyg}2L2 ` pε9{2t4C23 ` ε5t4C44q}Bvyg}2L2,`
2εt2C33 ` 3ε3t2

˘
}Bvg}L2}Byg}L2

ď
`
ε4t4C33 ` 2ε4t4

˘
}Bvg}2L2 `

`
ε´2C33 ` 2ε2

˘
}Byg}2L2

ε3t3C24}xyy1{2Bvg}L2}xyy1{2Byg}L2

ď ε3{2t2C24}xyy1{2Byg}2L2 ` ε9{2t4C24}xyy1{2Byg}2L2,

we immediately deduce

d

dt
Fpt, gtq ď }gxyy1{2}2L2p´2ε´3 ` 2εC32t

2 ` 2ε4C43t
4q

`}Byg}2L2p´2aε´3 ` 2εC31t
2 ` 2ε4C42t

4 ` 2εt` ε´2C33 ` 2ε2q

`}xyy1{2Byg}2L2pε3{2t2C24 ` ε3t3C22 ´ 2εt2q

`}Bvg}2L2p4ε4t3 ` 2ε4t4C1 ` ε4t4C33 ` 2ε4t4 ´ C21ε
3t3q

`}Byyg}2L2p´2εat2 ` 4ε4t3 ` 2ε4t4C41 ` ε3{2t2C23 ` ε3t4C44q

`pε9{2t4C23 ` ε5t4C44 ´ 2ε4t4aq}Bvyg}2L2

`pε9{2t4C24 ´ 2ε4t4q}xyy1{2Bvg}2L2.

Choosing ε P p0, 1q small enough, all the terms are nonnegative separately, and we thus obtain

Fpt, gtq ď Fp0, g0q “ ε´3}g0}2L2 , @t P p0, 1q.

Observing that
Fpt, gq ě 1

2
ε4t4

`
}g}2L2 ` }Bvg}2L2 ` }Byg}2L2 ` }B2

yyg}2L2q,

we then conclude to (3.9) with C1 :“ p2ε´7q1{2. �
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Corollary 3.6. Any solution g to the homogeneous equation (3.7) satisfies

}gt}L8 .
1

t2
}g0}L2 , @ t P p0, 1q.

Proof of Corollary 3.6. We first observe that the following Sobolev type embedding

H1
vL

2
y X L2

vH
2
y Ă L8pR2q

holds true. We may indeed write

}f}L8 . }f̂}L1 . AB

using the Cauchy-Schwarz inequality in the second inequality, with

A2 :“

ż

R2

p1 ` |ξ|2 ` |η|4q|f̂ |2dξdη

“

ż

R2

p|f̂ |2 ` |yBvf |2 ` |zB2
yyf |2qdξdη ď }f}2H1

vL
2
yXL2

vH
2
y
,

where we have used the Plancherel identity in the last inequality, and

B2 :“

ż

R2

1

1 ` |ξ|2 ` |η|4
dξdη “

ż

R

dη

p1 ` |η|4q1{2

ż

R

dz

1 ` z2
ă 8,

by performing the change of variables z :“ ξ{p1 ` |η|4q1{2. We then conclude the proof thanks
to (3.9). �

We come back to the analysis of the linear VCk equation (1.16)-(1.18).

Proposition 3.7. Assume ω :“ eαy, α ą 0. For any solution f to the linear VCk equation
(1.16)-(1.18), the function f̄ defined by (3.5) satisfies

(3.10)

ż T

0

}f̄}2L5{2dt . }χ}2W 1,8

ż T

0

}fω}2L2pϕ2 ` pϕ1q2qdt,

for any T P p0, 1q, ϕ P C1
c p0, T q and χ P C1

c p0, vF q.

Proof of Proposition 3.8. We denote by S0
t the semigroup associated to homogeneous equation

(3.7) which is well defined by arguing as in Theorem 2.2 taking advantage of the estimates
established in Lemma 3.4. From Lemma 3.4 and Corollary 3.6, we have

}S0
t }L2ÑL2 . 1, }S0

t }L2ÑL8 .
1

t2
,

for any t P p0, 1q. By interpolation (Holder inequality), we deduce

}S0
t }L2ÑL5{2 .

1

t2{5
,

for any t P p0, 1q. Because f̄ satisfies (3.6), we may use the Duhamel formula together with the
fact that f̄p0, ¨q “ 0 on R

2, and we get

f̄t “

ż t

0

S0
t´sFsds.
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As a consequence, we have

}f̄t}L5{2pR2q ď

ż t

0

}S0
t´s}L2ÑL5{2}Fs}L2ds

.

ż t

0

1

pt ´ sq2{5
}Fs}L2ds

.
´ż t

0

ds

pt ´ sq4{5

¯1{2´ż t

0

}Fs}
2
L2ds

¯1{2

ď t1{10}F }L2pUq,

for any t P p0, 1q, where we have used the previous estimate in the second line, the Cauchy-
Schwarz inequality in the third line and the very definition of F in the last line. We deduce
(3.10) by observing that

|F | . |Btϕfω| ` |ϕBvχfω| ` |ϕfω| ` |ϕBypfrωq|,

with rω defined by (2.4), next by integrating the above estimate in the time variable and by
using Lemma 3.1. �

We then come back on the analysis of a solution f to the linear VCk equation (1.16)-(1.18).

Proposition 3.8. For any β ą 5{2, there exists C such that
ż T

0

}fδ2β{5 ω

xyy
}2L5{2ϕ

2dt ď C

ż T

0

}f}2L2pϕ2 ` pϕ1q2qdt

Proof of Proposition 3.8. We take χ “ χk with }∇χk}2´k . 1 uniformly in k, and we repeat
the proof of Step 2 in [11, Proposition 3.5]. �

We are now able establish the cornerstone estimate of gain of integrability in pv, yq vari-
ables for a solution f to the linear VCk equation (1.16)-(1.18) by gathering the last result and
Proposition 3.3.

Proposition 3.9. There exists r ą 2 such that
ż T

0

ϕ2}fω}2LrpOqdt . }pϕ` |ϕ1|qfω}2L2pUq,

for any ϕ P C1p0, T q X C0p0, T q, T P p0, 1q.

Proof of Proposition 3.9. We set ∆ :“ δ2β{5{xyy, so that Proposition 3.8 writes

(3.11)

ż T

0

}fω∆}2
L5{2pOqϕ

2dt .

ż T

0

}fω}2L2pOqpϕ2 ` pϕ1q2qdt.

From Proposition 3.3 and the Holder inequality, we have next

}fϕω
xyyθ{2

δp1´θq{12
}L2 ď }fϕωxyy1{2}θL2}fϕω

1

δ1{12
}1´θ
L2

. }pϕ ` |ϕ1|qfω}L2 ,

for any θ P p0, 1q. Choosing θ “ θ0 such that

p1{θ0 ´ 1q{6 “ 2β{5

and setting µ :“ θ0{2, we thus deduce

(3.12)

ż T

0

}fω∆´µ}2L2pOqϕ
2dt .

ż T

0

}fω}2L2pOqpϕ
2 ` pϕ1q2qdt.

We conclude by interpolating (3.11) and (3.12) as in [11, Proposition 3.7]. �
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3.3. Half ultracontractivity estimate using Nash’s argument. In the spirit of Nash
work [38], we deduce a time pointwise gain of integrability estimate.

Corollary 3.10. There exists ν1 ą 0 such that

(3.13) }fpt, ¨q}L2
ωpOq .

1

tν1
}f0}L1

ωpOq, @ t P p0, 1q.

Proof of Corollary 3.10. For ϕ P C1p0, T q X C0p0, T q, T P p0, 1q, using first an interpolation
inequality and next an Holder inequality, we have

ż T

0

pϕ2 ` pϕ1q2q}f}2L2
ω
dt ď

ż T

0

p1 ` pϕ1{ϕq2qϕ2θ}f}2θL1
ω
ϕ2p1´θq}f}

2p1´θq
Lr

ω
dt

ď
´ż T

0

p1 ` pϕ1{ϕq2q1{θϕ2}f}2L1
ω
dt

¯θ´ż T

0

ϕ2}f}2Lr
ω
dt

¯1´θ

,

with r ą 2 given by Proposition 3.9 and θ P p0, 1q such that 1{2 “ θ` p1 ´ θq{r. Gathering this
estimate and the estimate of Proposition 3.9, we obtain after simplification

ż T

0

pϕ2 ` pϕ1q2q}f}2L2
ω
dt .

ż T

0

p1 ` pϕ1{ϕq2q1{θϕ2}f}2L1
ω
dt.

Using the estimates

}fpT, .q}L2
ω
. }fpt, .q}L2

ω
, }fpt, .q}L1

ω
. }f0}L1

ω
,

for any 0 ă t ă T ă 1 established in Lemma 2.1, we deduce that

C2pϕ, T q}fpT, ¨q}L2
ω
. C1pϕ, T q}f}L1

ω
,

with

C2pϕ, T q2 :“

ż T

0

pϕ2 ` pϕ1q2qdt, C1pϕ, T q2 :“

ż T

0

p1 ` pϕ1{ϕq2q1{θϕ2dt.

We finally take ϕptq :“ ϕ0pt{T q, ϕ0psq “ s1{θp1 ´ sq1{θ, and we observe that

C2pϕ, T q2 ě C2pϕ0, 1q2T´1, C1pϕ, T q2 ď C1pϕ0, 1q2T´1´2{θ

and p1 ` pϕ1
0{ϕ0q2q1{θϕ2

0 P L8p0, 1q, from what we immediately conclude that (3.13) holds with
ν :“ 1{θ. �

3.4. The other half ultracontractivity estimate using Moser’s argument. With Corol-
lary 3.10, we have made half of the proof of Theorem 1.3. In order to cover the other half of the
way, we may proceed using one of De Giorgi, Nash or Moser approaches. We briefly present the
Moser approach based on a iterated scheme.

Lemma 3.11. Assume ω :“ eαy, α ą 0. There exists a constant rκ ě 0 such that any (nonneg-
ative) solution f to the linear VCk equation (1.16)-(1.18) satisfies

(3.14)

ż T

0

ϕ2

ż

O

!
pfrωqp

” J2

δ1{2xyy2
` αxyy

ı
` pBypfrωqp{2q2

)
ď prκ

ż T

0

pϕϕ1
` ` ϕ2q

ż

O

pfrωqp,

for any p P r2,8q and ϕ P C1
c p0, T q, where rκ “ rκpa˚, y˚, a

˚q and rω is defined in (2.4).

Proof of Lemma 3.11. We adapt the proofs of Lemma 2.1 and Lemma 3.1. We set

qωp :“ rωpP,
with now P defined by

P :“ 1 ´ ℘δ1{2 δ1J

xJξy2
, ℘ :“

1

2
min

` 1

δ˚
,
y˚

a˚

1

δ7

¯
,
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where we define δ27 :“ suprδpδ1q2pvE ´ vq2s and we recall that δ2˚ :“ suprδpδ1q2s. Proceeding
exactly as during the proof of Lemma 2.1, we have

1

p

d

dt

ż

O

fpqωp “ ´
4pp´ 1q

p2

ż

O

apBypfqωqp{2q2 `

ż

O

fpqωp q̟

`

ż

Σ0

rp1 ´
1

p
qK ` p1 ´

2

p
qa

Byω̌

ω̌
sn0pfqωqp ´

1

p

ż

Σ2

Jfpqωpnv,

with

q̟ :“ 2p1 ´
1

p
qa

`Byω̌

ω̌

˘2
` p

2

p
´ 1qa

B2
yyω̌

ω̌
`K

Byω̌

ω̌
` J

Bvω̌

ω̌
` p

1

p
´ 1qByK ` p

1

p
´ 1qBvJ.

It is worth emphasizing that because of the definition of ℘, we have P ě 1{2 on O, we have

|ByP| “ ℘δ1{2|δ1|pvE ´ vq ď ℘{δ7 on Σ0, and thus

p1 ´
1

p
qK ` p1 ´

2

p
qa

Byω̌

ω̌
“ p1 ´

1

p
qb ` p1 ´

2

p
qa

ByP

P

ě p1 ´
1

p
qy˚ ` p

2

p
´ 1qa˚2

℘

δ7
ě 0

on Σ0. As a consequence, the arguments in Lemma 2.1 remain valid for the two terms involving
the boundary sets Σ0 and Σ2 and these ones are thus nonpositive. Also observing that

´

ż

O

apBypfqωqp{2q2 ď ´
1

2

ż

O

apBypfrωqp{2q2P `

ż

O

apfrωqppByP
1{2q2,

we deduce that

1

p

d

dt

ż

O

fpqωp ď ´
pp´ 1q

p2

ż

O

apBypfrωqp{2q2 `

ż

O

fprωp r̟ ,

with

r̟ :“ P q̟ ` apByP
1{2q2.

Observing that
Bω̌

ω̌
“

Bω̃

ω̃
`

1

p

BP

P

and that
B2
yyω̌

ω̌
“

B2
yyω̃

ω̃
`

2

p

Byω̃

ω̃

ByP

P
`

1 ´ p

p2
Byω̃

ω̃

ByP

P
`

1

p

B2
yyP

P
,

we get

r̟ “ P̟ ` a
!2

p

Byω̃

ω̃
ByP `

´1

2
`

1

p
´

1

p2

¯pByPq2

P
`

2 ´ p

p2
B2
yyP

)
`

1

p
KByP `

1

p
JBvP,

where ̟ is defined by (2.2) and thus uniformly bounded in p. Moreover, as

p
ByP

P
q2 „

1

y4
,

Byrω
rω

ByP

P
„

1

y2
,

ByyP
1{2

P1{2
„

1

y2
, Kp

1

2

ByP

P
q „

1

y2

and

BvP “ ´
℘

2

pδ1q2

δ1{2

J

xJy2
`

φ

xJy
, φ P L8pOq,

we conclude that

r̟ ´
1

p
JBvP „ ̟P „ ´Pαy



24 C. FONTE SANCHEZ AND S. MISCHLER

when y Ñ 8 and any value of α uniformly in p. Because xJy » xyy, the previous estimate gives

d

dt

ż

O

fpqωp `

ż

O

fprωp
´1

2

1

δ1{2

J2

xyy2
`
α

2
xyy

¯
`

ż

O

a˚pBypfrωqp{2q2 . p

ż

O

fprωp.

We conclude by multiplying the above equation by ϕ2 and integrating in the time variable. �

Lemma 3.12. Assume ω :“ eαy, α ą 0. There exists a constant C “ Cpa˚, a
˚q P p0,8q such

that any solution f to the linear VCk equation (1.16), (1.18) satisfies
ż T

0

ϕ2

ż

O

pfrωqp
” 1

δ1{27
` xyy

ı
ď pC

ż T

0

pϕϕ1
` ` ϕ2q

ż

O

pfrωqp,

for any ϕ P C1
c p0, T q and any p P r2,8q.

Proof of Lemma 3.12. The proof is straightforward by using Lemma 3.11 and by following step
by step the proof of Lemma 3.2 and Proposition 3.3. �

Similarly as in Section 3.2, for a weight function ω :“ eαy, α ą 0, a solution f to the linear
VCk equation (1.16)-(1.18) and an exponent p ě 2, we define

(3.15) q :“ p{2, h :“ pfrωqq, h̄ :“ hϕptqχpvqω0pyq,

with ϕ P C1
c pp0, T qq, χ P C1

c pp0, vF qq, 0 ď ϕ, χ ď 1, ω0 “ 1
xyy . The function h̄ is a solution to

the modified VCk equation

(3.16) Bth̄` ĴBvh̄ ` ǨByh̄´ aB2
yyh̄` αxyyh̄ “ H ´ aχϕω0qpq ´ 1qf q´2pByfq2rωq

with coefficients

Ĵ :“ Jpv, yq, if y ą 0, Ĵ :“ Jpv,´yq, if y ă 0,

Ǩ :“ Kpv, yq, if y ą 0, Ǩ :“ ´Kpv,´yq, if y ă 0,

and source term

H :“ pBtϕqχω0h` ĴϕpBvχqω0h´ qpBvĴqϕχω0h ` ǨϕχpByω0qh ´ qpByǨqϕχω0h

´aϕχpB2
yyω0qh ´ 2aϕχpByω0 ` qω0

Byω̃

ω̃
qpByhq ` αxyyϕχω0h

`qp
Bvω̃J

ω̃
`

Byω̃K

ω̃
qϕχω0h` apq ` 1qqhp

Byω̃

ω̃
q2ϕχω0 ´ aqh

B2
yyω̃

ω̃
ϕχω0.

We note that the associated homogeneous equation is again (3.7). Moreover, since

(3.17) |H | . |Btϕh| ` |ϕBvχh| ` q2|ϕh| ` q|ϕByphq|,

and the term ´aqpq´1qf q´2pBfq2ωp is negative, a result analogous to Proposition 3.8 holds for
the function h̄.

Proposition 3.13. The function h̄ defined in (3.15) satisfies

(3.18) }h̄}2L5{2pUq . q3}χ}2W 1,8

ż T

0

}h}2L2pϕ2 ` pϕ1q2qdt,

for any T P p0, 1q, ϕ P C1
c p0, T q and χ P C1

c p0, vF q.

Proof of Proposition 3.13. As in Proposition 3.8, we may use Duhamel formula to obtain

h̄ “

ż t

0

S0
t´sHsds´ qpq ´ 1q

ż t

0

S0
t´spaf

q´2pByfq2ωqqpsqds,

for t P p0, 1q. We can ignore the second term since it is negative, which allows us to proceed as
before to obtain

}h̄}L5{2pR2q ď t1{10}H}L2pUq.
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We use then Proposition 3.12 and observation (3.17), to get

}h̄}L5{2pR2q ď t1{10q3}χ}2W 1,8

ż T

0

}h}2L2pϕ2 ` pϕ1q2qdt.

From where, we deduce

}h̄}L5{2pUq ď q3}χ}2W 1,8

ż T

0

}h}2L2pϕ2 ` pϕ1q2qdtp

ż T

0

t1{4q2{5dt,

and then immediately conclude. �

Proposition 3.14. There exists r ą 2 such that the function h defined in (3.15) satisfies

}ϕh}2LrpUq . q3}pϕ` |ϕ1|qh}2L2pUq,

for any ϕ P C1
c pp0, T qq.

Proof of Proposition 3.14. On the one hand, from Proposition 3.13 and arguing as during the
proof of Proposition 3.8, for any β ą 5{2 and setting ∆ :“ δ2β{5{xyy, we have

}ϕ∆h}2
L5{2pUq . q3}pϕ ` |ϕ1|qh}L2pUq.

On the other hand, arguing as during proof of Proposition 3.9, we may rewrite the conclusion
of Lemma 3.12 as

}ϕ∆´µh}2L2pUq . q}pϕ` |ϕ1|qh}2L2pUq,

for some suitable µ ą 0. We cocnclude thanks to an interpolation argument. �

Proposition 3.15. Assume ω :“ eαy, α ą 0. Any solution f to the linear VCk equation
(1.16)-(1.18) satisfies

}fTω}L8 . T´ r
r´2 }f0ω}L2 , @T P p0, 1q,

where r ą 2 is defined in Proposition 3.14.

Proof of Proposition 3.15. We follow Moser’s iterative method and thus introduce the following
sequences

tk :“
T

2
´
T

2k
, Uk :“ ptk, T s ˆ O, pk :“ pr{2qk2,

where r is defined in Proposition 3.14 and T P p0, 1s.

Step 1. In Proposition 3.14, we take q “ pk{2 and ϕ P C1
c p0, 1q such that 1ptk`1,T q ď ϕ ď 1ptk,T q

and |ϕ1| ď 2 1
tk`1´tk

. We obtain then

}pfrωqpk{2}2LrpUk`1q . p3k
1

ptk`1 ´ tkq2
}pfrωqpk{2}2L2pUkq.

Noticing that pk`1 “ pk
r
2
, we may rewrite equivalently the above estimate as

(3.19) }frω}Lpk`1pUk`1q ď

ˆ
Cp3k

22k

T 2

˙ 1
pk

}frω}LpkpUkq.

Step 2. Observing that
8ÿ

k“1

1

pk
“

1

2

8ÿ

j“0

ˆ
2

r

˙j

“
r

r ´ 2
,

8ÿ

k“1

k

pk
“

1

2

8ÿ

j“0

j

ˆ
2

r

˙j

“ c1 ă 8,

and
8ź

k“1

p
3{pj
j “ e

3
ř8

k“1

log pj
pj “ e3 log p r

2
q

ř8
k“1

jp 2
r

qj “ e3 log p r
2

qc1 ,
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we deduce that
kź

j“1

ˆ
Cp3j

22j

T 2

˙1{pj

. T´2 r
r´2 .

As a consequence, we have

}frω}L8pU8q ď lim inf
kÑ8

}frω}LpkpUkq

ď lim inf
kÑ8

kź

j“1

ˆ
Cp3j

22j

T

˙1{pj

}frω}Lp1pU1q

. T´2 r
r´2 }frω}L2pU1q.

We conclude by using Lemma 2.1 with p “ 2 in order to bound the RHS term. �

We finally come to the

Proof of Theorem 1.3. We may reduce the proof to the case s “ 0 by using a mere time trans-
lation. From (3.13) and Proposition 3.15, we deduce that

(3.20) }fpt, ¨q}L8
ω pOq .

1

tν
}f0}L1

ωpOq, @ t P p0, 1q,

with ν :“ ν1 ` 2r{pr´ 2q. Estimate (1.19) is then just a combination of (3.20) used on the time
interval p0, 1q and the estimate (2.1) for p “ 8 used on the time interval r1,8q. �

4. Interior Holder, Harnack and compacteness estimates

We briefly explain how we can establsih that any solution f to the linear kinetic equation
(1.16) enjoys some further regularity estimates.

Theorem 4.1. For any 0 ă t0 ă t1 ă 8 and any relatively compact region O ĂĂ O, there
exist two constants C, β ą 0 such that any solution f to the linear Voltage-Conductance kinetic
equation (1.16), (1.18) satisfies

}f}Cβppt0,t1qˆOq ď C}f0}L1
ω1
.

Proof of Theorem 4.1. Introducing the localization f̄ as in (3.6), we write

(4.1) Btf̄ ` JBvf̄ `KByf̄ ´ aB2
yyf̄ “ F ´ αxyyf̄ “: F in p0,8q ˆ O.

We introduce the change of variables

ḡpt, w, zq “ f̄pt, v, yq, Gpt, w, zq “ Fpt, v, yq,

with w “ wpv, yq and z “ zpv, yq. Assuming

(4.2) Byz “ 1, Byw “ 0,

we straightforwardly obtain

G “ Btf̄ ` JBv f̄ `KByf̄ ´ aB2
yyf̄

“ Btḡ ` JBvwBw ḡ ` JBvzBzḡ `KBzḡ ´ aB2
zz ḡ.

The previous conditions on w and z are equivalent to

(4.3) w :“ φpvq, z :“ y ` ψpvq,

and we look for φ and ψ such that
JBvw “ z,

or in other words
pypvE ´ vq ´ yLvqφ1pvq “ y ` ψpvq.
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A convenient choice is

(4.4) φpvq :“ ´ logpvE ´ vq, ψpvq :“ ´
yLv

vE ´ v
.

As a conclusion, with this change of variables, the function ḡ is a solution to

(4.5) Btḡ ` zBwḡ `QBzḡ ´ aB2
zz ḡ “ G,

with Q :“ Jψ1 ` K. Because of the compact support condition on ḡ, we may for instance
understand the equation on R` ˆ R

2 by defining Q P W 1,8pR2q arbitrarily outside of the
support of ḡ. By definition and using Theorem 1.3, we have ḡ,G P L8pR` ˆ R

2q.

We introduce a mollifier pρεq in DpR2q and the regularization sequence ḡε :“ ḡ ˚wz ρε which
satisfies

Btḡε ` zBwḡε `QBz ḡε ´ aB2
zz ḡε “ Gε,

with Gε :“ G ˚ ρε ` rρε, zBw ` QBzsḡ. Using [17, Lemma II.1], we have Gε Ñ G in any LppR2q
space, 1 ď p ă 8. We may multiply the above equation by ḡε and integrate in all variables.
Using the Green formula and the fact that the boundary term vanishes because of the compact
support of ḡε, we get

ż

U

pBz ḡεq
2 “

ż

U

r
1

2
ḡ2εBzQ` ḡεGεs . }ḡ}2L2pUq ` }G}2L2pUq.

Passing to the limit, we deduce Bz ḡ P L2pUq. We may thus apply [22, Theorem 1.3], from
which we immediately conclude that ḡ P Cβ , for some β P p0, 1q, so that f̄ and f are also Cβ

functions. �

Using the same change of variables as above and the Harnack inequality for the standard
kinetic Fokker-Planck equation as developped in [22, 27, 28, 9], we deduce the Harnack inequality
for the VCk equation (1.16).

Theorem 4.2. For ε P p0, 1q, we define Oε :“ tpv, yq P O; δpvq ą ε, y ă 1{εu. For every
T ą T0 ą 0, and ε ą 0, there exists C such that any solution 0 ď f P L8pUq to the linear VCk
equation (1.16) satisfies

(4.6) sup
Oε

fT0
ď C inf

Oε

fT .

Proof of Theorem 4.2. We define gpt, w, zq “ fpt, v, yq with the previous change of variables
(4.3) and (4.4). The function g thus satisfies

Btg ` zBwg ´ aB2
zzg `QBzg `Ag “ 0

on U :“ p0,8q ˆ O, with Q defined during the proof of Theorem 4.1, A :“ BvJ ` ByK and
O :“ ΞpOq, Ξpv, yq :“ pφpvq, y ` ψpvqq. Because Ξ is a homeomorphism, the set Oε :“ ΞpOεq is
relatively compact in O. We may thus use the Harnack inequality established in [9, Theorem 6.1]
which tells us that there exists a cosntant C “ Cpε, T, T0q such that

sup
Oε

gT0
ď C inf

Oε

gT ,

from what (4.6) immediately follows. �

We conclude this section by formulating the following compactness result.

Theorem 4.3. Consider a sequence pfnq bounded in L8
ω pUq X Hω such that

Btfn ` BvpJfnq ` BypKnfnq ´ anB2
yyfn “ 0 in U ,

Ran,Kn
γfn “ 0 on Γ, fnp0q “ f0n in O,
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with Kn :“ bn ´ y, panq and pbnq bounded in L8p0, T q, an ě a˚, bn ě y˚ and f0n Ñ f0 in
L1pOq. There exist f P L8

ω pUq X Hω and a, b P L8p0, T q such that, up to the extraction of a
subsequence, fn Ñ f strongly in L1pUq, an á a and bn á b weakly in L8p0, T q and

Btf ` BypJfq ` BypKfq ´ aB2
yyf “ 0 in U ,

Ra,Kγf “ 0 on Γ, fp0q “ f0 in O,

in the variational sense with K :“ b ´ y.

Proof of Theorem 4.3. Step 1. We define the sequence pf̄nq as in (3.6) for a localization function
ψ P C1

c pUq. From Theorem 4.1, we have

}f̄n}CβpUq ď C

for some β P p0, 1q and any U ĂĂ U . From the Ascoli theorem and a Cantor diagonal process,
the sequence pf̄nq and next the sequence pfnq belong to a strong compact set of L1pUq. Up to
the extraction of a subsequence, there exists thus f P L8

ω pUq X Hω such that fn Ñ f strongly
in L1pUq and Byfn Ñ Byf weakly in L2pUq. We may also assume that, up to the extraction of
the same subsequence, an á a and bn á b weakly in L8p0, T q.

Step 2. We claim that for any ψ P C1
c pU Y Γ´q, we have

(4.7)

ż

O

ByfnByψ Ñ

ż

O

ByfByψ strongly L1p0, T q.

We first assume ψ P C4
c pUq and we denote

Ψn :“

ż

O

ByfnByψ.

We clearly have pΨnq is bounded in L2p0, T q from the fact that pfnq is bounded in Hω. On the
other hand, we compute

d

dt
Ψn “

ż

O

ByfnBtByψ ´

ż

O

BtfnB2
yyψ

“

ż

O

fnrJB3
vyyψ ´KnB2

yyyψ ´ anB4
yyyyψ ´ B3

tyyψs,

where the RHS is bounded in L8p0, T q. From the Rellich theorem, we deduce that pΨnq is
relatively compact in L1p0, T q and thus (4.7) holds. For a general function ψ P C1

c pU Y Γ´q, we
may introduce an approximation family pψεq of C

4pUq such that }ψ´ψε}W 1,8 ď ε for any ε ą 0.
We obvious notations, we have already established that the associated sequence pΨn,εqně1 is
relatively compact in L1p0, T q for any ε ą 0. On the other hand, we compute

}Ψn,ε ´ Ψn}L1p0,T q ď

ż

U

|ByfnpByψ ´ Byψεq| ď }fn}H }Byψ ´ Byψε} . ε

for any n ě 1. That precisely mean that the sequence pΨnq is relatively pre-compact in L1p0, T q,
from what we classically deduce (4.7).

Step 3. Proceeding as in Step 7 of the proof of Theorem 2.2, we also know that γfn á γf weakly
in L8pΓq. From the variational formulation (2.23) of fn, we have

(4.8)

ż

U

fnp´Bt´JBvqψ`

ż

U

panByfn´KnqByψ “

ż T

0

ż 8

yF

pJγfnqpt, vF , yqψpt, 0, yq`

ż

O

f0nψp0, ¨q

for any ψ P C1
c pU Y Γ´q. Because of the strong convergence properties of pfnq and pΨnq as well

as the weak convergence properties of panq, pKnq and pγfnq, we may pass to the limit in the
above formulation, and we get that f satisfies the variational formulation (2.23). �
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5. Existence result for the nonlinear problem

In this section, we present the proof of Theorem 1.1 that we split into four steps

Step 1. We fix an admissible weight function ω, a constant a˚ ą 2pa˚ ` y˚q and c, N˚ ą 0
such that N˚p2c ` 2c2q ď a˚. For any function 0 ď N P L8pR`q such that }N}L8 ď N˚, we
define the three functions a :“ a˚ ` c2N P ra˚, a

˚s, b :“ y˚ ` cN P ry˚, a
˚s and K :“ b ´ y. We

introduce the splitting

(5.1) L :“ La,K “ A ` B, Af :“ MχRf,

From the proof of Lemma 2.1, we see that we may choose M “ Mpa˚q ą 0 and R “ Rpa˚q ą 0
large enough in such a way that

̟B

ω “ ̟L

ω ´MχR ď ´1

and for ω :“ eαy, α ą 0,

̟B

ωα
“ ̟L

ωα
´MχR ď ´1 ´ α1y, α1 P p0, αq.

We denote by SBpt, sq and SLpt, sq the associated semigroups and we use the shorthand SBptq :“
SBpt, 0q, SLptq :“ SLpt, 0q. Repeating the proof of Lemma 2.1, we know that

(5.2) }SBpt, sqfs}Lp

ω̃
ď e´pt´sq}fs}Lp

ω̃
, @ t ě s ě 0.

Let us introduce ωα “ eαy, α ą 0, such that ωα ě ω. Repeating the proof of Theorem 1.3, we
also have

(5.3) }SBpt, sqfs}L8
ωα

ď C1

e´pt´sq

pt ´ sqν
}fs}L1

ωα
, @ t ě s ě 0,

for a constant C1 P p0,8q only dependent of a˚. Introducing the notations

pU ‹ V qpt, sq :“

ż t

s

Upt, τqV pτ, sqdτ,

U‹1 “ U , U‹k “ U‹pk´1q ‹ U , the Duhamel identity writes

(5.4) SL “ V `W ‹ SL, V :“ SB ` ¨ ¨ ¨ ` pSBAq‹pN´1q ‹ SB, W :“ pSBAq‹N .

As a consequence of (5.2), (5.3) and the fact that A : L1 Ñ L1
ωα

, we have

(5.5) }V ptq}BpL8
ω q ď CV e

´t, }W pt, sq}BpL1,L8
ω q ď CW e

´pt´sq.

For any f0 P L8
ω , we deduce

}SLptqf0}L8
ω

ď CV e
´t}f0}L8

ω
`

ż t

0

CW e
´pt´sq}SLpsqf0}L1ds

ď CV e
´t}f0}L8

ω
`

ż t

0

CW e
´pt´sqds}f0}L1,

and thus

(5.6) }SLptqf0}L8
ω

ď C2}f0}L8
ω
,

for a constant C2 P p1,8q only dependent of a˚.

Step 2. We set

C3 :“

ż

yF

JpvF , yqω´1dy, η˚ :“ a˚{p2C2C3q,

and

N :“ tN P L8p0, T q; 0 ď N ď N˚u.
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For 0 ď F0 P L8
ω , we define f “ fN ptq :“ SLptqF0 which is then the solution to the linear VCk

equation

(5.7) Btf “ La,Kf in p0,8q ˆ O, Ra,Kf “ 0 in p0,8q ˆ Σ, fp0q “ F0 in O.

Observing that

0 ď N pfN q ď C3}γfN}L8
ω

ď C3}fN }L8
ω

ď C3C2}F0}L8
ω
,

we have thus

Λ : N Ñ N, N ÞÑ ΛpNq :“ N pfN q,

under the smallness condition }F0}L8
ω

pc ` c2q ď η˚.

Step 3. We endow N with the weak L2 convergence. We claim that Λ is continuous. Take indeed
pNℓq a sequence of N such that Nℓ áN in L2, and denote by fℓ the corresponding solution of
(5.7) so that pfℓq is bounded in F X H with

F :“ tf P L8
ω ; f ě 0, }f}L1 “ }F0}L1 , }f}L8

ω
ď C2}F0}L8

ω
u.

Thanks to Theorem 4.3, there exists a subsequence pfℓnq such that fℓn Ñ f , where f P F X H

is a solution to (5.7) associated to N . By uniqueness of f in Theorem 2.2, it is the full sequence
pfℓq which converges to f . On the other hand, because pγfℓq is bounded in L8

ω pΓq, there exists
a subsequence pγfℓnq such that γfℓn Ñ g weakly in L8

ω pΓq. Passing to the limit in the Green
formula which defines the trace function, we get that g “ γf , and thus it is the full sequence
pγfℓq which converges to γf . We thus deduce that

ΛpNℓq “ N pγfℓq áN pγfq “ ΛpNq,

so that Λ is indeed continuous.

Step 4. The set N being obviously convex and compact for the weak L2 convergence, we may
use the Schauder-Tykonov theorem which claims in that situation that there exists N̄ such that
ΛpN̄q “ N̄ . The function F :“ fN̄ is thus a solution to the nonlinear problem (1.5), (1.8), (1.6),
(1.7). �

6. Doblin-Harris Theorem in a Banach lattice

We formulate a general abstract constructive Doblin-Harris theorem in the spirit of the ones
presented in the recent works [21, Section 6] and [9, Theorem 7.1], see also [23, 8] for similar
results and approaches in the classical probability measures framework.

The proof is a consequence of the previous estimates and of some Doblin-Harris techniques
developed in [8, 21] (see also [23] and the references therein).

We consider a Banach lattice X , which means that X is a Banach space endowed with a
closed positive cone X` (we write f ě 0 if f P X` and we recall that f “ f` ´f´ with f˘ P X`

for any f P X . We also denote |f | :“ f` ` f´). We assume that X is in duality with another
Banach lattice Y , with closed positive cone Y`, so that the bracket xφ, fy is well defined for any
f P X , φ P Y , and that f P X` (resp. φ ě 0) iff xψ, fy ě 0 for any ψ P Y` (resp. iff xφ, gy ě 0
for any g P X`), typically X “ Y 1 or Y “ X 1. We write ψ P Y`` if ψ P Y satisfies xψ, fy ą 0
for any f P X`zt0u.

We consider a positive and conservative (or stochastic) semigroup S “ pStq “ pSptqq on X ,
that means that St is a bounded linear mapping on X such that

‚ St : X` Ñ X` for any t ě 0,
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‚ there exist φ1 P Y``, }φ1} “ 1, and a dual semigroup S˚ “ S˚
t “ S˚ptq on Y such

that S˚
t φ1 “ φ1 for any t ě 0. More precisely, we assume that S˚

t is a bounded linear
mapping on Y such that xSptqf, φy “ xf, S˚ptqφy, for any f P X , φ P Y and t ě 0, and
thus in particular S˚

t : Y` Ñ Y` for any t ě 0.

We denote by L the generator of S with domain DpLq. For ψ P Y`, we define the seminorm

rf sψ :“ x|f |, ψy, @ f P X.

In order to obtain a very accurate and constructive description of the longtime asymptotic
behaviour of the semigroup S, we introduce additional assumptions.

‚ We first make the strong dissipativity assumption

}Sptqf} ď C0e
λt}f} ` C1

ż t

0

eλpt´sqrSpsqf sφ1
ds,(6.1)

for any f P X and t ě 0, where λ ă 0 and Ci P p0,8q.

‚ Next, we make the slightly relaxed Doblin-Harris positivity assumption

ST f ě ηε,T gεrST0
f sψε

, @ f P X`,(6.2)

for any T ě T1 ą T0 ě 0 and ε ą 0, where ηε,T ą 0, g P X`zt0u and pψεq is a bounded and
decreasing family of Y`zt0u. We say that the above condition is relaxed because we possibly
have T0 ą 0 while the condition (6.2) holds with T0 “ 0 in the usual Doblin-Harris.

‚ We finally assume the following compatibility interpolation like condition

rf sφ1
ď ξε}f} ` Ξεrf sψε

, @ f P X, ε P p0, 1s,(6.3)

for two positive real numbers families pξεq and pΞεq such that ξε Œ 0 as ε Œ 0.

We refer to [9] for a detailed discussion about these assumptions.

Theorem 6.1. Consider a semigroup S on a Banach lattice X which satisfies the above condi-
tions. Then, there exists a unique normalized positive stationary state f1 P DpLq, that is

Lf1 “ 0, f1 ě 0, xφ1, f1y “ 1.

Furthermore, there exist some constructive constants C ě 1 and λ2 ă 0 such that

(6.4) }Sptqf ´ xf, φ1yf1} ď Ceλ2t}f ´ xf, φ1yf1}

for any f P X and t ě 0.

Sketch of the proof of Theorem 6.1. We just allude the proof which is very similar to the proof
of [9, Theorem 7.1]

Step 1. The Lyapunov condition. On the one hand, we classically have

(6.5) rSptqf sφ1
ď rf sφ1

, @ t ě 0, @ f P X.

For f P X , we may indeed write f “ f` ´ f´, f˘ P X`, and then compute

|Stf | ď |Stf`| ` |Stf´|

“ Stf` ` Stf´ “ St|f |,

where we have used the positivity property of St in the second line. We deduce

rStf sφ1
ď xSt|f |, φ1y “ x|f |, S˚

t φ1y

and thus (6.5), because of the stationarity property of φ1.

On the other hand, from (6.1) and (6.5), we have

}Stf} ď C0e
λt}f} ` C1

ż t

0

eλpt´sqrf sφ1
ds,
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and we may thus choose T ě T1 large enough in such a way that

(6.6) }ST f} ď γL}f} `Krf sφ1
,

with

γL :“ C0e
λT P p0, 1q, K :“ C1{λ.

Step 2. The Doblin-Harris condition. Take f ě 0 such that }f} ď Arf sφ1
with A ą K{p1´ γLq.

We have

}ST0
f} ď pγL `Kq}f}

ď pγL `KqArf sφ1

“ pγL `KqArST0
f sφ1

ď pγL `KqApξε}ST0
f} ` ΞεrST0

f sψε
q

for any ε ą 0, where we have used successively the growth estimate (6.6) in the first line, the
condition on f in the second line, the stationarity property of φ1 in the third line and the
interpolation inequality (6.3) in the last line. Choosing ε ą 0 small enough, we immediately
obtain

}ST0
f} ď 2pγL `KqAΞεrST0

f sψε
.

Together with

rf sφ1
“ rST0

f sφ1
ď }ST0

f}

and the relaxed Doblin-Harris positivity condition (6.2), we conclude to the conditional Doblin-
Harris positivity estimate

ST f ě cgεrf sφ1

for all T ě T1, with c´1 “ c´1
A :“ 2pγL ` KqAΞεη

´1
ε,T . We may now classically improve the

non-expensive estimate (6.5) on the set N :“ tf P X ; xφ1, fy “ 0u. Take indeed f P N such
that }f} ď Arf sφ1

. Observing that rf˘sφ1
“ rf sφ1

{2 and thus }f˘} ď }f} ď 2Arf˘sφ1
, the

previous estimate tells us that

ST f˘ ě ̺gε ̺ :“ c2Arf sφ1
.

Slightly modifying the arguments of Step 1, we compute now

|Stf | ď |Stf` ´ ̺gε| ` |Stf´ ´ ̺gε|

“ St|f | ´ 2̺gε.

We deduce

rStf sφ1
ď x|f |, φ1y ´ 2̺ xφ1, gεy,

and thus conclude to the conditional coupling estimate

(6.7) rStf sφ1
ď γH rf sφ1

,

with γH :“ 1 ´ 2c2Axφ1, gεy P p0, 1q.

Step 3. We introduce a new equivalent norm ||| ¨ ||| on X defined by

(6.8) |||f ||| :“ rf sφ1
` β}f}.

Using the three properties (6.5), (6.6) and (6.7), we may prove that there exist β ą 0 small
enough and γ P p0, 1q such that

(6.9) |||STf ||| ď γ|||f |||, for any f P N .

We refer to [9, Proof of Theorem 7.1] where this claim is established, and to [23, 8] for previous
variants. We then classically conclude, see again for instance [9, Proof of Theorem 7.1]. �
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7. Convergence in the large time asymptotic

In this section, we prove Theorem 1.2 as a consequence of the previous analysis of the linear
VCk equation, in particular Theorem 1.3, and of the constructive Doblin-Harris stability result
stated in Theorem 6.1.

Proof of Theorem 1.2. We split the proof into fours steps, checking first that the conditions of
Theorem 6.1 are met.

Step 1. The stochastic semigroup and the strong dissipativity condition. We proceed similarly
as during the proof of Theorem 1.1. We fix an admissible weight function ω and we consider the
Banach lattice X :“ L2

ω. We fix a constant a˚ ą 2pa˚ ` y˚q and for any two constants N, c ě 0
such that pc` c2qN ď a˚{2, we set a :“ a˚ ` c2N P ra˚, a

˚s, b :“ y˚ ` cN P ry˚, a
˚s, K :“ b´ y

and L :“ La,b. Because of Theorem 2.9, we know that L generates a semigroup on L2
ω which is

associated to the linear equation (1.16) with boundary conditions (1.18) and which is mass and
positivity conservative, so that SL is stochastic and φ1 “ 1. Introducing next the same splitting
(5.1) and using (5.2), the L2 variant of (5.3), (5.4), the L2 variant of (5.5), we deduce that

}SLptqf0}L2
ω

ď CV e
´t}f0}L2

ω
`

ż t

0

CW e
´pt´sq}SLpsqf0}L1ds

which is nothing but the strong dissipativity condition (6.1).

Step 2. The Doblin-Harris condition and the Doblin-Harris Theorem. For 0 ď f0 P L2
ω, let us

denote ft :“ SLptqf0. From the Harnack inequality (4.6), for any T ą T0 ą 0 and ε ą 0, there
exists a constant C P p0,8q, independent of f0, so that

fT ě inf
Oε

fT1Oε

ě
1

C

1

|Oε|
1Oε

ż

Oε

fT0
,

what is nothing but (6.2) with gε “ ψε :“ 1Oε
. On the other hand, for any f P L2

ω, we have
ż

O

|f | “

ż

Oc
ε

|f | `

ż

Oε

|f |

ď
´ż

Oc
ε

ω´2
¯1{2

}f}L2
ω

`

ż
|f |1Oε

,

so that (6.3) holds true with Ξε :“ 1, ξε :“ }1Oc
ε
}L2

ω
Ñ 0 because ω´1 P L2pOq. As a conse-

quence, of Theorem 6.1, there exists a nonnegative and normalized steady state MN which is
furthermore asymptotically exponential stable.

Step 3. The fixed point argument. Take 0 ď F˚ P L8
ω such that }F˚}L1 “ 1. Choosing c ą 0

small enough in such a way that pc ` c2q}F˚}L8
ω

ď η˚, we see that

F˚ :“ tf P L8
ω ; f ě 0, }f}L1 “ 1, }f}L8

ω
ď C2}F˚}L8

ω
u

is not empty because F˚ P F˚. From Steps 1 & 2, we may apply Theorem 6.1 and we deduce
that SLptqF˚ Ñ MN as t Ñ 8. On the other hand, from (5.6), we have SLptqF˚ P F˚ for any
t ě 0. We deduce that MN P F˚, and in particular

0 ď N pMN q ď C3}γMN}L8
ω

ď C3}MN }L8
ω

ď C3C2}F˚}L8
ω

ď
C3C3

c ` c2
η˚ “ N˚.

We have thus built a mapping

Λ˚ : r0, N˚s Ñ r0, N˚s, N ÞÑ Λ˚pNq :“ N pMN q

From Step 3 in the proof of Theorem 1.1, the mapping Λ is continuous. As a consequence, there
exists at least a fix point N 7 P r0, N˚s, so that Λ˚pN 7q “ N 7. The function M :“ MN7 is then
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a nonnegative normalized stationary solution to the nonlinear VCk equation (1.3)-(1.9) and it
is linearly asymptotically exponential stable by construction. �
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[12] José A. Carrillo. Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-
Planck system. Math. Methods Appl. Sci., 21(10):907–938, 1998.

[13] Edward B. Davies. Spectral properties of metastable Markov semigroups. J. Functional Analysis, 52(3):315–
329, 1983.

[14] Edward B. Davies and Barry Simon. Ultracontractivity and the heat kernel for Schrödinger operators and
Dirichlet Laplacians. J. Funct. Anal., 59(2):335–395, 1984.
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