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FLOW CHART FOR NUMERICAL COUPLING OF 

DYNAMIC PROBLEMS IN ELASTIC MEDIA 

VINCENT MARTIN• 
Laboratoire de Mecanique et d' Acoustique, CN RS, 13402 Marseille Cedex 20, France, 

BERNARD PESEUX 
Ecole Centra/e de Nantes, 44072 Nantes Cedex 03, France 

From the starting point of dynamic coupling problems in the harmonic field, such as fluid/fluid, 
fluid/structure, fluid/structure/fluid problems, a single procedure capable of resolving the couplage is shown 
when only one domain is under study. The notions of impedance transfer familiar in analytical methods in 
the dynamic harmonic field are introduced into numerical methods especially when transferring the 
structure to the fluid. The proposed work goes beyond the problems themselves and the methods currently 
applied to solve them (modal series, integral method, finite element method) and suggests how the ideas 
developed here could simplify greatly the way more complex problems might be tackled. 

1. INTRODUCTION

The general purpose of the paper and a succinct description of the state of the art in the field of 
media coupling are first given. After defining a particular approach in this field and after 
emphasizing some of the ideas at the origin of the present work, one of which is of particular 
interest here, the stress is laid on the objective and the way it can be reached. Finally, the 
originality of the work is defined. 

Over the past few years, several dynamic problems concerning fluid/structure coupling have 
been solved, by the authors among others, in the harmonic field. The physics of these problems 
and the numerical results can be found in the publications cited and shall not be reiterated here. 
Instead, a deeper insight into the way the calculations were carried out constitutes the purpose of 
this paper, aiming at defining a single flow chart valid for all the problems previously solved, each 
having had in the past its own specific technical approach. It appears that no work has yet been 
published in the area of the systematic organization of such calculations-a fortiori under the 
form offlow charts such as suggested here-whereas the coupling problems have received a lot of 
attention both for themselves and for the methods used to solve them. The work presented in this 
paper was entirely supported by the "Calcul des Structures" Research Group (GRECO). 

Presented below are some works in the field of coupling of various media, especially 
fluid/structure, using numerical methods. It is possible to put light or heavy fluids into separate 
categories. Alternatively, the criterion of confined or infinite fluids could be adopted. Finally, the 
classification could depend on the methods used for analysis and resolution. With a numerical 

• Current Address: JMT 13451 Marseille Cedex 20, France.

1 | 24



approach only the two latter classifications are appropriate but with a physical approach the first 
is probably the most reasonable. Nevertheless all these classifications are taken into account here 
to help situate some of the numerous authors. For coupling with heavy fluids, the structure is 
often the medium under study. R. Ohayon and R. Valid dealt with filled tanks by the finite 
element method (FEM) and showed how to formulate the problem in order to obtain symmetri
cal forms. 1 In the case of fluids of infinite extent�ncountered essentially in the sea medium for 
ships-the medium near the structure may be described by the FEM and far from it by infinite 
elements, as developed by Bettess and Zienckiewicz. 2 Other work has been done in the field of
hydrodynamics by Orsero and Armand. 3 The method of singularities is also appropriate for this 
type of problem and may be combined with the FEM.4

-
6 

For confined and external light fluids separated by a structure, Astley and Cummings used the 
modal series and the FEM both for the structure and for the external fluid near the structure. 7 

M. A. Hamdi used the boundary integral method (BIM) and the FEM to describe the acoustical
field inside and outside an open-ended duct with elastic walls.8 For confined fluids the FEM with
the modal series, and later the FEM for the fluid when associated with the FEM for the structure,
were used by one of the authors.9• 10 

The problems dealt with in this paper have one point in common: the fields (and not the 
eigenvectors and the eigenvalues) are sought only in one specific domain, which is called the 
primary domain, and the variables attached to it are the primary variables. The secondary 
variables which describe the other domains are eliminated so that only the primary ones remain. 
At this stage the number of domains determines the number of steps necessary in the calculations. 
The next point to be emphasized regarding the organization of the calculations is the way in 
which the domains are connected as this property determines the procedure at certain stages of 
the chart. This fundamental aspect of the work described here requires some explanation. The 
way calculations are carried out varies enormously depending on whether all or only a part of 
a medium loads another. The first case where the entire medium bears on another will be called 
a direct transfer and the second situation (i.e. partial load) will usually necessitate a substructura
tion process in the matrices, called basic matrices, which describe the secondary medium. For 
example, when the flexible contour of a cavity containing a fluid belongs entirely to the interior 
contour of the cavity the transfer is direct (cf. Figure 1 ). On the contrary, the unbounded domain 
that loads the external contour of the cavity loads not only the flexible part of the contour but 
also its rigid part and a substructuration process is necessary. This notion of the transfer of one 
medium to another will now be seen to be closely linked to the methods used to describe the 
loading medium. 

At this level, the physical nature of the media is given only to define the variables under study. 
From a matricial point of view the mathematical representation (variational, integral, differential) 
of the media with their geometry defines the type of processing (e.g. substructuration) appropriate 

direct transfer 

flexible walls 

a. 
rigid walls 

n.. 

substructuration 

Figure l. Geometrical configuration of a fluid-filled cavity with flexible boundary and external fluid load 
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for the transfer of impedances (boundary conditions of Dirichlet, Neumann, of impedance, of Sommerfeld) to the boundary of the primary domain. Finally, the third aspect of the chart: the basic matrices are built with the help of physical descriptions of the media and will be modified by the above processing. Thus our priorities are as follows: the geometrical configuration, i.e. the number of media and the number of interfaces in the problem (number of steps in the flow chart); the nature of the interfaces and the chosen representation in each domain (type of processing needed to transfer the impedances to the boundary of the primary domain); the physical behaviour inside the domains (building of the basic matrices). Conversely, the problems from which the study derives are described in the usual manner: differential equations for the mechanical behaviour of the media; choice of the modelling and matricial form; numerical organization of the calculations. Following these ideas, the goal of the present paper is to emphasize the elements necessary to devise almost systematically the calculation procedure for complex coupling problems. Inside this organization the most important notion concerns the partial or total transfer of one medium to another. Each problem chosen is given here to throw light on each of the elements that are to contribute to the flow chart for calculations. First the quite classical case of transferring the fluid to the structure is analysed. Then Section 3 describes the problems where the fluid is the primary domain, and constitutes the major part of the paper as this approach is more original than the previous one. The single flow chart, the goal of this work, is illustrated with an imaginary complex problem that shows the usefulness and the efficiency of the flow charts obtained. The originality of the work lies in the attempt to find a systematic procedure applicable to the class of problems under study, in clarification of the notion of direct or partial transfer of one medium to another and its connection with the methods of calculation chosen, and finally in implementation of cases where the fluid is the primary domain. In addition the basic matrices will be defined when the method chosen is the modal series representation as they are not known in this case. 
2. COUPLING WITH THE STRUCTURE AS PRIMARY DOMAINTwo coupling problems where the fluid(s) load(s) the structure are presented. Such an approach is not new and allows in the present context to emphasize some of the notions discussed in this paper. (The application of the notions to the case where the fluid is the primary domain will constitute Section 3). In the first case with two media, fluid and structure, the interest lies in the partial transfer of the fluid to the structure with the subsequent substructuration in the basic fluid matrices. The second case shows two fluids loading a structure on each side. Here the aim is in the parallel procedure with partial transfers. The reasons why the problems have been solved are briefly given but not the numerical results-which are published in the publications cited-as only the calculation procedure constitutes the present goal and has not yet been published. Although the notations for each specific problem are explicited, we have attempted to present all the different problems in a similar manner as far as possible. 

2. I. Problem of sand loaded by incompressible fluidThis problem arose from the study of the influence of sediment on the behaviour of ships atberth. Such a question was first seen from an academic point of view with an elementary experiment that was to validate the type of calculation to be used to modelize the real situation. At that time attention was focused on the sand of the seabed described as an elastic solid constituting the primary domain. 11 
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The geometrical configuration (Figure 2) has two domains: '1 1 (solid), '12 (fluid) deriving froma rigid open tank with an elastic solid at the bottom that supports a column of water. The boundary of '12 is composed partly of the rigid walls of the tank, partly of the free surface (zero normal constraint) and partly of a prescribed velocity (excitation at the surface of the fluid). Finally, the interface r is only a portion of o'12 , and the method used to describe the fluid '12 , theBIM, results in a substructuration to obtain the impedance relation to be applied to r, allowing the problem in '1 1 to be entirely defined. The basic matrices and the interfacing matrices are obvious. The processing by substructuration necessary to bring '12 to the interface r is now developed. For the sake of generality a source is imposed in '1 1 and '12 , although the original problem only dealt with the excitation at the surface of the fluid. 
2.1 . 1 .  Equations of motion. The present problem has no loss of energy and the total operator isreal. (a) For the elastic solid the field of displacements u is the unknown. It satisfies:

(l + µ)V (div u) + µ Au +  p1ro2 u + r. = 0 in '1 1 

u = 0 on the rigid part of o'1 1 

A., µ are the Lame coefficients, p. is the density of the structure, ro is the circular frequency. (b) For the incompressible fluid, the unknown function is the velocity potential </> such that thevelocity V of the fluid satisfies: 
V = V</> 

From Bernoulli's law, the pressure p is such that p + pgi = - p o�/ot, g is the gravity, <I> (or¢ where <I> = ¢e;.,, ) is the solution of the following equations: 
in '12 
on the rigid part of o'12

On<P = v · n where the velocity is imposed, n is directed outward '12 

gon<P - w2</> = 0 on the free surface
(c) The coupling at the interface r is written as

dpl 
CDIIIDUI' 

a • n  = pn 
U that is U • D  = n 

- nz

r 

sand 

iw 
- - Un 
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Figure 2. Original problem and equivalent geometrical configuration 
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where Un is the normal displacement of the fluid and a the stress tensor. Indeed the continuity ofdisplacements and stresses must be satisfied. <1" is the normal component of a •  n on r and p is thefluid density. 
2. 1 .2. Methods. The elastic solid is described by the FEM and expressed in a variational form with the principle of virtual displacements. The fluid is described by the boundary integral method and needs to be written with an integral formulation. (a) For the solid we have
i 0 {1: f {u} d'11 - p.w2i b {u f  {u} d'11 - f  o {u} T {a • n } ctr - r o {u f { J. }  d'11 = 0

n, n, an , Jn ,  Whatever the admissible bu. { 1:} is  the strain tensor written in the form of a vector with six components. Due to the boundary conditions, the integral on 80 1 is calculated only on r with the help of an operator written {an } = !f(o.<f,, <f, )  which will be explained later.The nodal approximation occurs in '1 1 and the collocation method on r. With the subscripti indicating the nodal values of the fields and with the subscript c indicating the values of the fields at the points of collocation, we obtain the matricial form o {a; }T ' ( [K.J  - p.w2 [M.J ) · { a; }  = £5 { Wc }T ' [QJ ' {anc } + £5 {a; }T ' { J.; }{ad is the vector of the nodal degrees of freedom, [K.] and [M.] are the stiffness and mass matrices for the solid respectively, we is the normal displacement at the centre of the boundaryelements on r. (b) For the fluid, the third Green formula with the outward normal leads to
- !2 + I <P .  OnG dr = f G • on</J dr - r G ·f2 d'12

ari, ari, J ri, where the Green function G satisfies the operator A with radiation condition at infinity. The collocation method leads to the following matricial form for the fluid: [DJ '  {<Pc } = [SJ •  {on</>,: } + U2c }[DJ and [SJ are the double and simple layer matrix for the fluid, respectively. 
2. 1 .3. Transfer of the.fluid to the structure and interfacing. The goal is to obtain the form </>(on</>)only on r. Indeed the operator !f(<f,, on </>) would give rise to another operator !f ' (on</J), hence!f'(un ), and the problem in the solid would be entirely written in terms of displacements in 0 1 . The impedance relation on the interface r is reached with the help of substructuration processing. On the whole of 002 we have

where k0 = w2/g and B = 802\r. (On the rigid boundary a.<f, = v. = 0.) Knowing that SL c B, {<l>sL } is written with {<f,8 } . Substructuring the resulting matrices leads to[BBJ {</>s }  + [Br] {4>r } + [Br 'J {on</>r } = [BCJ {v }  + Us } [rBJ {<f,8 }  + [rr] {c/>r}  + [rr 'J {o"<f,r }  = [rC] { v }  + { fr} 
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and { </J8 } coming from the second equation, inserted in the first, results in the impedance relationsought: 

where
{</Jr } + [UJ {o.</Jr } = [ VJ { V} + [ T] { JB } + [R J { Jr }

[R] = ( - [fB] · [BBr 1 • [Bf ' ]  + [fr ] ) - 1 

[uJ  = [RJ (  - [fBJ · [BBr 1 .  [Bf ' J  + [ff J )
[ V] = [R] (  - [fB] · [BBr 1 • [BC] + [fC] )
[ T ]  = [R ] ( - [fB] · [BBr 1 ) 

Inserting the impedance relation in the formulation of the primary domain results in
c5 { a; }  T · ( [K.] - p,ro2 [M.J ) · { a; } = t5 { we }T · [Q] • { - �! { 8.</Jr } - irop {<Pr } } + c5 {a; }  T · { J.; }

or
t5 {ai f( [K. J - p,al [M,] ) {a; }  + <5 {we f [Q] ( pg [J ] + ro2 p [U J ) {we }

= - iropb {we }T {J'.i e } + <> {a;f { .[.; }
Working in 0 1 with the FEM, i.e. with a nodal approximation, the mesh on f seen from 02 hasto be harmonized with the mesh of f seen from 0 1 , and the column vector of the unknowns at thepoints of collocation { we } has to be expressed in terms of the nodal unknowns {ai } .  Let [VN] be the rectangular matrix of transformation such that {we } =  [VN] {a1 },  this matrixis built from the co-ordinates of the collocation points (which are the centre of the facets thatdiscretize the integral equation) and from the calculation of the values of the nodal interpolationfunctions at those points. Let [ W] be the square matrix that establish a correspondence between each element on01 with a side on f and each facet on f. Then 

{ae } = [VNJ {a; } 1r = [VN] [ WJ {a; } 1o,

D, S 

[Cl] 

X X 

SE sr 

As 

n:solution 

I 

Figure 3. Flow chart corresponding to the equivalent geometrical configuration of Figure 2 
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Finally, the formulation in n 1 is 

where 

([A.] + [SE] ) {a; } = ( { /.; } + {sf } ) 

[A, ] = ( [K,] - p1ro2 [M1] )

[SE] = [C 1 ]T [Q] (pg [J ]  + ro2 p [U ] ) [C 1 ] with [C 1 ] = [VN] [ W]

{sf } = - irop [C 1 ]T [Q] ([ V] {v } + [T] { /s } + [R ] { fr } ) 

2. 1 .4. Calculation procedures. This flow chart includes two steps as the problems involves two
media but has a particular type of processing-shown with an asterix-due to the substructura
tion necessary because r is only a part of an2 and n2 is dealt with using the boundary integral 
method (Figure 3). 

2.2. Problem of cavity walls loaded by compressible fluids on each side 

Having had to deal with the problem of guided acoustic waves in a duct with yielding walls and 
outer radiation 1 2-which will be described in Section 3-we were also interested in the behaviour 
of the structure which closes the cavity. 

The structure n 1 is modelized by the FEM. Both fluids (inside in n2 , outside in n3 ) load the 
structure and are described by the BIM (Figure 4). From an algorithmic point of view the 
calculations are carried out simultaneously as they need exactly the same operations for both 
fluids and the information subsequently brought to each side of the structure. The flow chart will 
show clearly the loads in parallel (Figure 5). 

2.2. 1 .  Equations of moti on. Since the outer compressible fluid has a radiation at infinity with 
loss of energy, the problem is not conservative and the total operator is complex. 

(a) For the thin elastic two-dimensional (2D) structure (plates), the normal displacement w is
the unknown variable. The excitation f1 is applied at the outer surface of n 1 and the plates are 
clamped at their edges: 

Dll.llw - p 1 ro2 w = (p2 - p3 )  - f1 in n i (or on r, the middle-plane of the plates)

w = on , w = O on ar

p2 and p3 are the acoustic pressure inside and outside the cavity; n' is the normal to r directed
outwards. 

air 03 

0 1  Dlate 

n air 
l 

Oeidble walls 

Figure 4. Original problem and equivalent geometrical configuration 

rigid walls 
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(b) For the compressible fluid (gas) contained in the cavity the unknown variable is theacoustic pressure p2 such that (A +  k� )P2 = !2 in '12 , o,,p2 = 0 on an2 \r 2 , o,,p2 = p2 w2 u2with r 2 the inner face of n 1 , k2 the acoustic wave number, p2 the density of the internal fluid,u2 the normal displacement of the fluid particles on r 2 • (c) For the compressible fluid (gas) outside the cavity the unknown variable is the acousticpressure p3 such that(A + k; )p3 = /3 in '13 , o,,p3 = 0 on o'13 \r 3
o,,p3 = p3W2 U3 on r3 , lim r (o,p3 + ik3 p3 ) = 0 at infinity

r- oo with r 3 the external face of n 1 , k3 the acoustic wave number, p3 the density of the external fluid,u3 the normal displacement of the fluid particles on r 3 . (d) The coupling of the media requires continuity of normal displacements and normal stressesat the interfaces. The latter continuity is partially written in the equation of the plate. 
U2 = W on r2 , U3 = W on r3 a · n  = P2D on r2 , cr · n  = - p3n on r3 

2.2.2. Methods. The structure is analysed by the principle of virtual work giving 1 3

Sr t5 {e Y [Dp] {e } dr - P1W2 t ()w • w dr = t i5w(p2 - p3 )  dr + t ()w •/1 drand the nodal approximation allows the matricial form 
Both internal and external fluids call for an integral representation. Let E be the point of '12 and C of '13 where acoustic sources q2e;.,, and q3e'.,1 exist, and let G be the Green functionsatisfying the Helmholtz equation in the infinite space. For each fluid, we have in terms of acoustic pressure: 

{ 0 si M ff. 02 V o'12 f oG i op2 p2 ( P) -
0 

dS(P )  - G(M, P) -;- dS(P) + q2 G(M, E )  = ½ p2 (M) si M e  802
c102 np r, unp pi (M ) si M e 02 

{ 0 si M ff. 03 V 0'23l ac J op3 - p3 (P ) -;- dS(P)  + G(M, P) -;- dS (P) + q3 G(M, C )  = ½ p3 (M )  si M e iJQ3 
m, u� G �P p3 (M )  si M E  '23 The internal fluid possesses an outward normal at its boundaries, the external fluid an inward normal Each contour an is discretized with plane facets, whose surfaces are ani supporting constantpressure and normal derivative of the pressure (this means that these two items are independent). 
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It results in the matricial form: [D2 ] { P2 } = [SJ { 8.P2 } - q2 {G (M; , E) }  [03 ] { p3 } = [S J {8.p3 } + q3 {G (M;, C) }The terms of the matrices are explicited only to emphasize the difference between internal and external basic fluid matrices: 
S; i  = i G(M; , P )  dS(P )J rmJ regardless of which side of the structure we consider, contrary to 

which clearly depends on the side. 
2.2.3. Transfer of the.fluids to the structure and interfacing. r 2 is a part of an2 and r 3 is a part of 8Q 3 • Thus substructurations are expected. A common and practical method in transferring the fluid to the structure, whose less prosaic form has been given in Section 2. 1 .3, is proposed here. It is in the more original case where the structure is transferred to the fluid that the development will be given again. Due to the continuity of the normal velocities at the level of the plates we have {8.p2 }r2 = P2W2 [VN] {a; }, {8.p3 }r3 = p3w2 [VN] {a; }bearing in mind that {a; } is the vector of nodal displacement of the structure using the FEM, and [VN] the coupling matrix already described. As for { p2 } , { p3 },  all values on an2 and an3 are calculated although, finally, only the values applied to r 2 and r 3 will be extracted. This procedure constitutes the prosaic form of the substructuration. { P2 }ao2 = [D2r 1 ( [S] {o.p2 }r2 - q2 {G(M; , E ) } ){ p3 } ao3 = (D3r 1 ( [S] {o.p3 } r3 + q3 { G(M; ,  C ) } )On an element with n, outward normal, the pressure applied is { p }  = { p2 - p3 } . Let us wri\e 

where [ P2 ] and [P3 ] make it possible to extract the pressure at the centre of the facets identical to the plate elements. Writing [Q] the diagonal matrix of the facet' surfaces, the generalized force applied to the structure is {cph }  = [VN]T [Q ] ( [P2 ] { pi } ,m, - [ P3 J { p3 }.;0J{cph } = [VNF [Q ] ( [P2 J ( [D2 r 1 [S] {o.p2 }r, - q2 [D2 r 1 {G (M; , E ) } - [P3 ] ( [D3 r 1 [S] {8.p3 }r3 - q3 [D 3r 1 { G (M; ,  C) } )
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Figure S. Flow chart corresponding to the equivalent geometrical configuration of Figure 4 

and the matricial equation for the loaded structure processed by FEM is < [A 1 J - P2w2 [VNJT [QJ [ P2 J [D2 r 1 [sJ [VN J 

or 
+ p3w2 [VN]T [Q] [P3 J [D3 r 1 [S] [VN] ){a; }

= q2 ( [VNJT [Q J [P2 ] [D2r 1 ) {G(M. , E) }- q3 ( [VNJT [Q ] [P3 J (D3 r 1 ) { G (M;, C) }
( - w2(P 1  [M1 J  + P2 [M2 ] - p3 [M3) ) + [K1 J ) {ai }  = {s/2 }  + {s/3 }= ( [A 1 ] + [SE2 ] + [SE3 J ) {a; } [M 1 ] and [K 1 ] are the structural mass and stiffness matrices, respectively. The added mass matrices are complex and dependent on the pulsation w. Having solved the loaded structure, the available {ai } allows us to find, for example, the internal pressure byP2 (P )  = (D2 (P) ) { p2 } - ( S(P )) {onP2 } + q2 G (P, E)

2.2.4. Calculation procedures. The basic matrices and the development of the substructuration are described in Section 2. 1 .  As only a part of the boundaries of each fluid loads the structure, here again substructurations are needed and their prosaic form is shown above. The parallel procedure implemented to solve the problem actually calls the subroutines for both fluids at the same point in the calculation program. Indeed both fluids are taken into consideration in the same way (Figure 5). 
3. COUPLING WITH THE FLUID AS PRIMARY DOMAINThree coupling problems where the fluid is the domain of interest are presented. The first is elementary since the basic matrices deriving from the FEM are obvious and the transfer of the 
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structure to the fluid is direct. In fact, this first case constitutes an introduction to the more original situation where the structure loads the fluid. The second problem is a coupling between two fluids, one of them being the primary domain. In addition to the definition of the basic matrices when using the modal method, the example shows clearly the close relation between geometrical and numerical transfers as the latter is total while the former is partial. Finally a fluid/structure/fluid coupling gives the series procedure in presence of the FEM and the BIM and o f  one direct and one partial transfer. As  previously, the reasons why each of  the problems proposed has been tackled will be briefly indicated, without developing the numerical results which have already been published. However, some of the numerical results will be mentioned here as illustrations. Indeed only the numerical processing itself constitutes the purpose of this article. 
3. 1 .  Problem of guided acoustic waves in a duct with yielding wallsIn order to discover whether the interaction between flexural and dilatational waves ina fluid-filled rectangular duct might be the reason why a dispersion in the speed of the plane wave inside the duct was observed experimentally, a calculation was carried out by the FEM both in the structure and in the fluid. The numerical results of the coupling problem agreed qualitatively with the phenomenon observed, and it appeared that the usual hypothesis of local reaction of the walls did not apply in all frequency ranges (Reference 1 0  and illustration at the end of this paragraph in Figure 8). The geometrical configuration (Figure 6) has two domains: 0 1 (fluid) and '12 (structure). Theboundary of 0 1 is formed partly by rigid walls and partly by flexible walls. In the latter part the inside of 02 is the boundary. The whole system has no outside load and the outside of 02 isentirely free (free surface condition, i.e. a ·  n = 0). '1 1 constitutes the primary domain and theboundary condition (BC) will be described numerically on the inside of '12 , interface between the two media. Due to the method used (FEM for both domains), the basic matrices are straightforward and we focus here on the definition and building of interfacing matrices. Originally, the excitation took place inside the cavity but here an excitation on the outer surface of the plate is also considered. 

3. 1 . J .  Equations of motion. (a) For the compressible gas inside the cavity, the unknownfunction is the acoustic pressure p 1 : (A + ki )P1 = f1 

n ,  date 

air 

Figure 6. Original problem and equivalent geometrical configuration 
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where u 1 is the normal displacement of �he fluid particles at the level of interface r with thestructure. The normal is directed outward '1 1 . (b) The structure is a thin plate whose unknown is the normal displacement w. The plate isclamped on its boundary or, the equation is written on r ( = '12 ) and we envisage a mechanicalsource f2 applied to the external face of r. 
(DAA - w2 pz )W = Pi - f2 in r, w = o� w = 0 on or

n' is the normal to or, not to be confused with n. (c) The coupling at the interface is written with
U 1  = w, 0 ' D  = P 1 D  on r 

3. 1 .2. Methods The fluid domain '1 1 and the structure r ( = '12 ) are described by the FEMand thus are written in the variational form with the help of the principle of virtual forces for the fluid and of the principle of virtual displacements for the structure, leading in the fluid to 
r ( - grad c5p1 ' grad P1 + k� c5pl ' P t ) d'1 1 + r c5p 1 OnPl dr = r c5p l ·f1 d'1 1 
Jo , Jr  Jo ,  

where the nodal approximation in '1 1 results in  the matricial form 
c5 { P1 i V [A 1 ] { P l i }  + P 1 W

2 t c5p 1 w dr = c5 {P 1 1 }T U11 }
and, in the structure to 

t c5 {e }T [D,J {e } dr - pzw2 fr c5w · w dr = t c5w · p 1 dr - fr c5w ·f2 dr 
where the nodal approximation gives the matricial form 

c5 {ai }T [A2 J {ad = t c5w · p 1 dr - c5 {a, }T U2d
3. 1 .3 .  Transfer of the structure to the .fluid and interfacing. As the primary domain is '1 1 , thestructure is transferred to the boundary o'11 = r. The structure is described as

c5 {ai }T [A 2 J {ad = c5 {ai }T [C 1 J {P1 1 } - c5 {ai }T { f2d
i.e.

{a, } = [A2r 1 ( [C 1 J { P 1 1 } - U2d ) 
and the matricial equation of the internal fluid loaded by the structure is 

[A 1 HP1d + P1W2 [C 1 JT [A 2 r 1 ( [C 1 J { P1 1 } - Uzi } ) =  {fl i }
or 

( [A 1 ]  + [SE 1 J ) { p1 1 } = U1d + {sfi } 
While the matrices [A 1 ] and [A 2] are well known, we need to emphasize the building of [C 1 ] . In the variational form of the fluid, the nodal approximation of the term fr 6p 1 • w dr gives

(c5p 1 1 )  t {N,1 } <N1. > dr {a1 } 
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and the integral provides the term c I ii of the matrix [C i ] . In the FEM, where the total integral isthe sum of elementary integrals, the form is 
L (bp l i )e r {Nif } e(Nj, )e dr {aj }e 
e Jr e 

3. 1 .4. Calculation procedures. The flow chart consists of the steps shown in Figure 7.We have here the simplest diagram in which the interfacing matrix has been obtained explicitly.However, the interface is not quite clear in this elementary example since r represents 02 as well as the inner surface of o02 • The ambiguity here comes from the formulation of the thin structure in which the integration along the thickness is calculated explicitly, inserted . in the bending coefficient, and thus disappears. 
3.2. Problem of multimode acoustic guided wave The propagation of a multimode wave was simulated in order to control sources which were to reproduce a given vibratory field in a guide. The Helmholtz equation described the harmonic field. Near the sources, the numerical solution was calculated by the FEM, as the expansion of the solution on the series of eigenfunctions of the duct was not adequate when the sources were of complicated geometry and vibratory shape. Beyond the vicinity of the sources, the wave was established on certain propagated modes. At the common boundary of the two domains, we connected the numerical solution and the truncated expansion of the series of propagated modes and, consequently, the conditions of reflection at the end of the duct were described in an integro-differential form on the fictitious boundary (Reference 9 and illustration at the end of this section in Figure 1 2). The present configuration has two volumes in a cavity, (Figure 9) each filled with the same fluid. The cavity is open on part of its contour and limited by rigid walls elsewhere. The compressible fluid in n,  is analysed by the FEM while the particular geometry of 02 enables us to use a modal series satisfying the BC on the rigid part of ofl2 • On its open part an impedance form is given which reveals the presence of the fluid outside the cavity. Actually the interface between 

resolution 

Figure 7. Flow chart corresponding to the equivalent geometrical configuration of Figure 6 
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: ! . ' f . 

Figure 8. Numerical graph of celerity versus frequency [ extracted from V. Martin, Comptes Rend us de I' Academic des 
Sciences, Paris, T 306, Serie II, 1988, p. 1-4] 

r 

r· 1 

r 

Q t  air n 2 air 

r1 
impedance 

relation 

Figure 9. Original problem and equivalent geometrical configuration 

01 and 02 constitutes only a part of 002 but, from a numerical point of view, we will show that it 
is possible to transfer 02 to the interface r without resorting to substructuration processing, i.e. as 
if 002 were identical to r.

The way by which 02 is transferred to r is straightforward and the interfacing matrices are now 
familiar. Conversely, the basic matrices can only be obtained by analogy with Section 2. 1 where 
02 was dealt with by the BIM. Once again for the sake of generality a source in 02 is added to 
that of the original problem which was on the boundary of 0 1 • 

3.2. 1. Equations of motion. Due to the radiation through r" the problem is not conservative 
and the equations are as follows. 
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(a) For the compressible gas inside the domain '1 1 , the unknown function is the acousticpressure p 1 : (.1 + k2 )P 1 = 0 in n1On P l = 0 on 0'11 \(r u r' u r.) On P l  = /1 on r.(b) For the compressible gas inside the domain '12, the unknown function is the acousticpressure p2 : in n2 On <7'12 \(r U f'' V f1 U r;)on r, and on r,(c) The coupling is written on the interfaces r and f" :continuity of the velocities, thus when the gas in 01 and 02 are the same: OnP i = OnPicontinuity of the normal stresses: P 1 = P2 

3.2.2. Methods. The domain 0 1 is processed using the FEM and thus the problem is written here in the variational form (weak formulation). 02 is dealt with by the modal series. In 0 1 we have j ( - grad <>P 1 • grad P 1 + k2 bp i • pi ) d.Q + f bpi ' On Pl dr = - f <>Pd1 dr
Jn, Jr Jr, where r represents itself and r'. A nodal approximation leads to 

<> { p 1 i }T [A 1 J { pl i }  + L <>pt OnPt  dr = <> { p l i }T {fl i }
I n  02 , we have (to the left of the abscissa of the source i n  02 ):

p"(x, S) = L (a,,e - lk.. x41>,,(S) + b,,e + ik•"'<l>a
(S) )

a = l A modal approximation occurs with a truncation of the series of modes, leading to pg (x, S ) = ( {a,, F [e - ik.x] + {b,, r [e+ ik.x] ) {4l>,, }where both matrices involved are diagonal and will be written [e- x] and [e + x], respectively. 
3.2.3. Transfer of the 'modar fluid to the 'numerical'fluid (Figure 10). On the right of the source, the pressure is written by Pd(x, S) = {c,, } T [e -i1:•"] {4l>,, } + {da }T [e + ik,x] {<l>,, }or 

p11(x, S) = {c,, } r [e -"J {<l>,, } + {d,, }T [e + x] {<l>,, }leading to the longitudinal derivative (ox) of the pressure:OxPd(x, S ) = {Cc, } T [ - ik"e - x] {<l>a } + { de, }T [ik,,e+ x] {<l>,, }
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r. f2 

Figure 10. Propagation of models in the duct 

Given the impedance relation on r 1 : 

DxPiX, S )  + ik/J(S )pix, S ) = 0, x = I
results in 

where 

... C 

d 

X 

/Jµa = /J,,µ = L /J(S )<t>,,'1>µ dS and A,, = L 4>; dS

Ij 

The matricial form [� ] {c } = [b] {d }, with the symmetrical matrices [�] and [b] may be diagonal in some particular cases. Those cases which also lead to the information sought are now described. At the abscissa x = f of the sourcef2 , the continuity of pressure p and jump of velocity axP mustbe verified. Thus, 

leads to 

with 
{f,, } = f { �:} f dS and [ e ± 1 ] = [ e -t ik.xf ]

Now the pressure is expressed with the amplitudes of modes {a } only: 
pg (X, s) = {4>,, V( [e - x] + [e + x] [br 1 [� J ) {a }  + {4>,,. r( [e + x] ( [e -f]

+ [Jr l [� ] [e + f] ) { - 2i�/a}
or 

and similarly, 
DxPg (X, S) = {4>,, }T ( [  - ik,,e - x] + [ik,,e + "] [<>r 1 [�] ) {a } - {4>., }T [ika e + "J {� }
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or Oxpg (x, S) = {<1> .. _ JT [.@ J  {a } + {<I>., V[oxe + "J {§ }With the amplitudes of modes of p9 in { &' } and those of iJ"p11 in {o9} we finally obtain theimpedance relation sought. Indeed 
resulting in {o&' } = [.@] [<1] 1 {&' } - ( [.@] [<1 ] l [e + x ] - [oxe + x ] ) {§ }The matrices [.@] and [<1 ] are diagonal and the matricial form obtained is that obtained by the integral representation. This allows us to define, by analogy, the basic matrices [.@ ]  and [<1 Jsatisfying [.@J {&' J = [;i J {a.01> }  - {§ } Now in the general case where [.@ ] and [<1] are nonsymmetrical, they produce the following steps. Let 

then 

[S 1 ] = [e + f ] [J ] - 1 [�]  + [e - 1] , [S2 ] = [e + 1] [Jr 1 [� ] - [e- 1 ]
[A ] = [e- 1 ] ( [S 1 J [S2 ] l - [ J ] ) - 1 ( [S 1 ] [S2 r 1 

+ [J ] ) [e -f ][§] = [e -1] ( [S 1 ] [S2 r 1 - [/] ) - 1 [S 1 US2 r 1 tk.,1A., t  <l>.,f2 ds }
and the basic matrices are 
The coupling between 0 1 and 02 occurs by matching the pressure and its normal derivative on the fictitious boundary r. The same occurs on the left of n 1 . The variational form in n 1 is thus 
that is 
or 

b { pu }T [A 1 H P 1 1 } + J { pu }T t {N; } (<I> ... ) ds {o9 }  = J { pu }T { fu }
[A 1 H Pu } + [C 1 JT [P.c][;ir 1 [Ar 1 [C i ] { pu } = U1d

+ [C 1 JT ( [.@] [;ir 1 [e+ "] - [iJxe+ "] ) {� }
( [A i ] + [SEi ] ) { pu } = { {Ju } +  {sfi } }

3.2.4. Calculation procedures. The main information added by this configuration is the definition of the basic matrices and, despite the fact that the interface is only a part of an2 , no substructuration processing is required here. Indeed the representation chosen in 02 satisfies all boundary conditions except on r. This remark leads to the differentiation between the geometrical and the numerical partitions of 002 • It is the latter, closely linked to the numerical representation, which determines whether processing is necessary at the first stage. The illustration is given in Figure 1 2. 
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19. A

resolution 

Figure 1 1 . Flow chart corresponding to the equivalent geometrical configuration of Figure 9 

mode 0 , 1  

moo, o.o moo, 0,2 

Figure 1 2. Combination of FEM and modal series in an acoustical guide (extracted from Reference 9). Infinite 3-D duct 
with a square source on the wall 

Relative value Relative value 
Mode (208 nodes) ( l ,22S nodes)

0, 0 . . . 1 · 14  + i 0·90 1 -06 + i 0-95
o. 1 .  . . 0-89 + (i I .) 0-95 + (i l .) 
0, 2 . . . 0-77 + (i I .) 0-77 + (i l .) 
2, 0 . . . 0-56 + (i 1 .) 1 · 12  + (i 1 .)

The relative value is the real part (resp. the imaginary part) of the result obtained from the FEM with 208 and 1 225 nodes, divided by the real (rep., the imaginary part) of the analytical solution. An exact numerical solution is then 1 + i. The imaginary part of modes 1 ,  2 and 3 is necessarily 1 ,  because there is no imaginary part either in the numerical solution nor in the analytical one. 
3.3. Problem of guided acoustic wave in a duct with yielding walls and external radiation Having obtained information about the speed against frequency for acoustic waves guided between flexural walls (cf. Section 3. 1), it was of interest to observe the influence of the external radiation of the walls. It appears that the external load inevitably modifies the acoustic pressure level but does not bring significant changes to the dispersion of the wave, at least for light external fluids (Reference 12 and illustration at the end of this paragraph in Figure 1 5). 
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n �  nlatc 

n, air 

Figure 1 3. Original problem and equivalent geometrical configuration The geometrical configuration (Figure 1 3) shows three domains: '2 1 (inner fluid), 02 (structure),03 (outer fluid load). The latter is fictitiously limited by a sphere of sufficiently large radius to write the local condition of outgoing waves along the normal to the boundary. The Green function satisfies the propagation in the outer fluid with this local condition. Now two interfaces exist: the interface between 03 and 02 is only a part of 003 as 03 loads the flexible structure as well as the rigid walls; the interface between '22 and 0 1 is identical to that in Section 3. 1 .  Both the compressible inner fluid '2 1 and the structure 02 are described by the FEM and 03 is given an integral representation. The interfacing matrices and the basic matrices are well known. The presence of a third medium adds steps to the flow chart obtained with the previous configurations. Each medium has its own source, for the sake of generality. 
3.3. J .  Equations of motion. Since the compressible fluid has, as a boundary condition, radiation at infinity, the global problem is not conservative and the total operator is complex. The equations of the problem are as follows: (a) For the compressible fluid (gas) contained inside the cavity the unknown function is theacoustic pressure p 1 such that (d + k� )P1 = f1 in '21 o,,p1 = 0 on 0'2 1 \r 1 (r 1 inner surface of 02 )a,,pl = Pi alu 1 on rt with u 1 normal displacement of the fluid particles on r 1 (b) The equat_ion of the thin elastic structure is 2-D, the normal displacement w is the unknownvariable. The excitation f2 is applied on the outer surface of 02 and the plates are clamped on their edges: Dddw - p2w2w = (p 1 - p3 )  - /2 in 02 (or on r, the middle-plane of the plates)

W = On •W = O  on ar(c) For the compressible fluid (gas) outside the cavity, the unknown function is the acousticpressure p3 such that: (d + k� )p3 = /3 in 03 on 803 \r 3 (r 3 external face of 02 )0nP3 = p3W2U 3 on r 3 Jim r (orp3 + ik3p3 ) = 0 at infinitywith u3 the normal displacement of the fluid particles on r 3 
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(d) The coupling of the media is written
U 1 = W on r 1 113 = W on r 3 

u · n  = p , n  on r i , u · n  = - p3n on r3 

3.3.2. Methods. Both the fluid domain '1 1 and the structure r ( = '12 ) are described by theFEM and thus require a variational form. The unbounded fluid domain '13 is processed by theBIM and needs an integral representation. For the fluid inside, the complementary virtual work principle leads to 
f ( - grad t5p1 • grad P 1 + kf "P i ·  P i ) dQ + f "P i On Pt dr = f "P i •f1 dQJn ,  J r  Jn. 

and the nodal approximation results in 
t5 { Pt 1 }T [A 1 ] { P 1 1 } + P1 W

2 r "P i W dr = t5 { pu }T U11 }J r ,  
The structure i s  analysed by  the principle of virtual work giving 

t t5 {e }T [Dp] {e } dr - P2Cli t t5w · w  dr = t bw(p1 - p3) dr + t bw ·f2 dr
and the nodal approximation allows the matricial form: 

b {a; }T [A2J {a; } = fr <5w(p 1 - p3 ) dr + t5 {ai }T U2. }
The outside unbounded fluid '13 has the integral representation:

-2
1 p3 (x ) + f p3onG dr = f GonP3 dr + f Gf3 dQJan, Jr, Jn, 

(n inwards directed normal) where x e o'13 and G is the Green function for the Helmholtzequation with Sommerfeld condition at infinity. Processing by collocation on each facet leads to 
[D3 J { P3c } = p3W2 [S3 ] (U3c } + { J3c } 

3.3.3. Transfer of the external fluid and of the structure to the inner fluid. '13 loads '12 , itselfloading '1 1 . The transfer of '13 to r 3 takes into account the fact that r 3 is a part of o'13 andprocessing is needed. From 
[DJ {{Pa } } = [SJ {onPr } + {Us} }{Pr }  { fr }  

where B = o'13 \r, i t  results in, exactly as in Section 2. 1 :  
{ Pr, } + [U] {onPrJ = [ TJ { fs }  + [RJ { fr } 

All matrices have the same form as in Section 2. 1 except for the change of sign in [U]  due to the inward normal. Bearing in mind from Section 3. 1 that 
t t5w P i = {t5a1 V [Cn ] { P1 i }
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we obtain 

( [Ai ]  - p3w2
[C2 ]

T [Q] [U ] [C2 ] ) {a; } = [C 1 ] { Pu }  - [C2 ]
T [Q] ( [T] { /B } 

+ [R ] Ur } ) + U2 ; }
or 

( [A2 ]  + [SE2] ) {a; } = [Cd { Pu }  + ( {s/2 } + U2; } )  

The transfer of the loaded structure to the inner fluid gives: 

[A 1 ] { P u }  + P1W
2 [C1 ]

T( [A2 ] + [SE2] ) - 1 ( [C 1 ] { Pu }  + {fz; } + {s/2 } )  = U1d

f3 

[Cl] 

X 

SE2 

A2 f l 

Ct] 

sf, 

A 1  f I 

resolutio ., 

P1 

Figure 14. Flow chart corresponding to the equivalent geometrical configuration of Figure 1 3  
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Figure 1 5. Numerical field of acoustic pressure inside a guide with and without external load (extracted from Reference 
1 2). Absolute value of the inside pressure against the distance from the source without (a) and with (b) external load for 

a frequency in the supersonic zone 
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or 

written 

( [A 1 ] + P 1W2 [C i ]T ( [A 2 ] + [SE2] )- 1 [C1 J {Pu}  = - P1W2 [C1 JT( [A2]

+ [SE2 ] )- 1 ( { /2;}  + {s/2 } ) + U1 i }

3.3.4. Calculation procedures. The number of steps reflects the three media and their loads in 
series. As r 3 is only a part of 003 ,  processing occurs at the first stage. Subsequently, this is no 
longer necessary due to the fact that all r 1 loads 0 1 • The interfacing matrices and the basic 
matrices are well known (Figure 14). The illustration is given in Figure 1 5. 

4. GENERALIZATION OF THE CALCULATION PROCESS

With the help of a fictitious industrial example, it is now shown how the elements extracted from 
the previous problems can be used to elaborate directly the calculation procedures in the case of 
an actual complex problem. The less common case of preponderant fluid is envisaged. 

The context is the vibro-acoustic modelling of an aircraft in order to study the acoustic field in 
the passengers' cabin. It is assumed that a preliminary study has led to the conclusion that it is 
possible to ignore the vibration of the wings, the floor, the cockpit and the rear of the plane. On 
the contrary, the external load, the fuselage and the rear bulkhead all have an important influence 
on the internal acoustic field. The static pressure in the cabin is almost the same as the 
atmospheric pressure, while it is weak in the hold and neglected behind the rear bulkhead (the 
problem, almost totally invented only for the sake offlow chart use, must certainly not be taken to 
describe a real aircraft). Finally, the object under study is as follows (see Figure 16). 

The only effort that has to be made is in the equivalent geometrical configuration to show how 
the various media are related. The external fluid loads both rigid and flexible structures. The rigid 

\ 
' ' .... 

04 wealc Po 

n, fuselage 

n, wealc Po 

- - - - - --
/ 

/ 
/ 

Figure 16. Original problem and equivalent geometrical configuration 
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floor, which separates the internal cavity of the passengers' cabin and that of the hold, is attached to the vibrating rear bulkhead and to the vibrating fuselage. The fuselage itself is linked to the rigid parts of the total structure. The equivalent geometrical configuration would thus be as in Figure 1 6. At this stage, it is observed that the primary domain n 1 is loaded by the structure !23 , whose vibratory behaviour is influenced by the hold and by the external fluid. It is clear that only a part of 004 loads Q3, that only a part of 002 loads 03 ,  that only a part of 003 loads 0 1 .  The flow chart can already be drawn. The mathematical representations of the media are as follows: FEM for the structure and for the passengers' cabin; BIM for the external fluid and the hold. The BIM and FEM will not modify the partial geometrical transfers and substructurations in the basic matrices are expected. The calculation procedure is as Figure 1 7. The excitation may be due to sources in 04 .  It is also possible to insert a natural excitation in terms of forces in a structure described in terms of displacements, and a natural excitation in terms of displacements in the cabin described in terms of pressure (force), eventually to add excitation in !22 • Every component of the diagram has been explicited here and it seems that no other element need be mentioned to reach our objective, i.e. to proceed directly from a complex problem of coupling to the appropriate flow chart. The example given will hopefully convince the reader of the veracity of this assertion. 

resolution 

Figure 17.  Flow chart correspnding to the equivalent geometrical configuration of Figure 16  
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5. CONCLUSION

The single procedure for calculations proposed here concerns linear coupling problems of media, 
fluid and structure in particular, with a privileged domain. 

The numerical studies are intended to describe acoustic or vibratory fields in the dynamic 
harmonic range and do not deal with eigenvalues and eigenvectors. Within this framework, 
calculation procedures and interface characteristics have been brought into evidence. The 
usefulness of the work presented lies in the direct definition of the complex calculation procedure 
simply from the equivalent geometrical configuration of the problem. The only effort to be made 
now is in the drawing of the equivalent geometry when media are intricately mixed as shown in 
the fictitious industrial example. Moreover, the close relationship between the geometrical 
configuration and mathematical representation chosen, regarding the definition of total or partial 
transfer of one medium, has been emphasized. 

Using the flow chart obtained and the current methods (FEM, BIM, Modal Series), we have 
worked on the case of essential excitations-here only the natural excitations were described-in 
a fluid/structure problem where the fluid is the medium of interest and where the structure is 
excited by a displacement. 1 4  The fact that here also the charts require no modifications, adds to
the general applicability of the procedure. 
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