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Drop impact experiments are performed with very viscous fluids to propose a description
of the drop deformation at low Reynolds number. We focus on a specific case where
dimensionless parameters other than the Reynolds number play no role, which means that
only kinetic energy and viscous dissipation determine the final deformation. The same
situation in the case of a Reynolds number larger than ten has been clarified years ago.
The maximum diameter of the spread drop is well described by a 1/5 power law of the
Reynolds number only. Here the deformation of the drop, defined as the contact diameter
rescaled by the drop size, is also a power law of the Reynolds number. From experimental
data and scaling arguments, the exponent of the power law is shown to be 1/3.

DOI: 10.1103/PhysRevFluids.9.083601

I. INTRODUCTION

Drop impact has been a very popular research field for decades and is still very active. This is
mainly due to the ubiquity of natural and industrial phenomena involving drop impact, and also to
the fascinating diversity of parameters and outcomes in an apparently very simple system. Without
trying an extensive review of the field (see the reviews by Yarin [1], Josserand and Thoroddsen [2]
or Wang et al. [3]), we can mention works focusing on the drop fluid properties, like surface tension
[4–6] or rheology [7–10]; on the impact cinematics, like velocity [11,12] or drop size [13]; on the
impacted surface properties, like hydrophobicity [14,15] or texture [16,17]; and even ambient air
pressure [18,19] or surface temperature [20,21]. Outcomes include spreading, splashing, receding,
or bouncing [1,22], each of those cases being divided in several varieties. Experiments are supported
by numerous models and simulations at different scales. Yet there remains some situations that have
not been described, despite being common in real life, like small deformation after impact.

The present article thus focuses on drops of very viscous Newtonian liquids, where spreading
is driven by kinetic energy only, which is fully dissipated by viscous shear. The parameters are
the impact velocity V , the fluid density ρ, viscosity η, and surface tension σ , and the diameter
of the drop D0. Many experimental and theoretical works have studied the maximum spreading
state after impact in the framework of purely viscous dissipation [23–27]. Different models have
been proposed to describe either the maximum diameter or the minimal thickness as a function
of dimensional numbers such as the Reynolds number Re = ρV D0/η and the Weber number
We = ρV 2D0/σ . A few studies also include the dynamic contact angle of the liquid on the solid
substrate as a parameter. The different models account for more or less detailed phenomena, but
they are not easy to discriminate because the parameters range accessible experimentally is limited.
However, when surface tension and wetting can be neglegted and in the simplest approximation that
fits experimental data, the maximum spreading factor βmax = Dmax/D0 [see Figs. 1(a) and 1(b) for
notations] is well described by the relation βmax ∝ Re1/5.
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FIG. 1. (a) Drop before impact. (b) Drop in its maximum spreading state with Re � 1. (c) Drop in its
maximum spreading state with Re � 1.

The relation, even in such a simple version, is very robust in common experimental conditions,
but it is worth noticing that all available data restrict to Reynolds numbers above ten, corresponding
to a pancake-shape final state.

In the literature, the deformation of impacting drops at lower Reynolds numbers is not described,
except in rare studies where several dimensionless numbers play a role simultaneously [15]. This
regime can yet be encountered, for example, in concentrated suspension drops [28] or extremely
viscous liquid “drops” like molten glass, lava, tar, or pitch.

The present article shows new drop impact experiments where the Reynolds number is varied
down to Re = 0.04, and proposes a scaling law to describe the inertial spreading of very viscous
drops.

II. EXPERIMENTAL METHODS

The viscous liquids are chosen considering that they must be Newtonian, i.e., purely viscous even
at the timescale of impact (a few milliseconds), and viscous enough to reach the lowest possible
Reynolds number. We use UCON 75-H-90000, a polyalkyleneglycol-based synthetic lubricant pro-
duced by Dow for industrial purposes and poly(ethylene-glycol-ran-propylene-glycol)monobutyl
ether (denoted PEG for simplicity) from Sigma-Aldrich. They are fully miscible with water, giving
access to fluids of various viscosities. Being polymers, they cannot be strictly Newtonian: they are
expected to exhibit some viscoelastic features, but it was checked that in our experimental conditions
viscoelasticity does not play any role. Details about the rheology measurements supporting that
statement can be found in the Appendix. Table I summarizes the main physical properties of the
fluids used. Liquid density and surface tension change slightly from one liquid to another, but in
the following, for simplicity, each liquid is referred to by its viscosity only. Of course, all values of
Table I are taken into account in data analysis.

The drops are produced by forming pendent drops at the tip of a syringe needle, and waiting for
spontaneous necking and detachment. Still in the aim of reaching the smallest possible Reynolds
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TABLE I. Physical properties of the liquids used. The percentages indicate the mass fraction of UCON or
PEG in the mix with water.

Viscosity Density Surface tension
(Pa s) (kg/m3) (mN/m)

Liquid ±5 % ±5 kg/m3 ±0.5 mN/m

UCON (pure) 45 1087 40
UCON 80% 17.3 1089 41
UCON 50% 1.13 1070 45

PEG (pure) 2.4 1056 36
PEG 75% 1.02 1068 36.5
PEG 60% 0.37 1064 37
PEG 50% 0.155 1056 38
PEG 45% 0.100 1050 38.5
PEG 35% 0.047 1043 40.5

number, the smallest drops are the most desirable, but using very narrow needles and very viscous
liquids requires a large pressure. Bevelled tip needles turn out to be useful in that case because
the drop slowly creeps to the bevel tip where it can form a very narrow neck whatever its volume
and the internal diameter of the needle. The drop diameter ranges from 1.7 mm to 4.6 mm. Impact
velocity is obtained varying the fall height from 0.5 cm to 80 cm, and ranges from 0.09 m s−1 to
4.0 m s−1. The target surface is a plain glass slide. The impact zone is illuminated with an intense
LED backlight panel and images are recorded from the side with a fast imaging camera Photron
Fastcam equipped with a Sigma macro objective. The room temperature is regulated at 20 ◦C and
the drop free fall zone is protected from air motion with cardboard screens.

Several hundreds of drop impacts were performed, changing the liquid, the needle, or the fall
height. Each drop impact was analyzed separately: V and D0 were measured on the recorded
images using the software ImageJ. Figure 2 shows different typical examples of drop defor-
mation, at different Reynolds numbers. Corresponding movies can be seen in the Supplemental
Material [29].

The first level of analysis consists in checking the conditions required to restrict the study to
purely inertioviscous impacts, as defined in the introduction. Therefore, several criteria based on
dimensionless numbers are used to select data for further analysis.

The first criterium constrains the minimum impact velocity, linked to the size of the drop. The
kinetic energy indeed has to dominate the weight potential energy at contact, to avoid multiple
spreading causes at the same time. This corresponds to imposing a lower bound to the Froude
number Fr = V/

√
gD0 > 5, or equivalently, a fall height of at least 12.5D0.

The second constraint limits the capillary number Ca = ηV/σ to values much greater than one,
ensuring no effect of wetting at the impact timescale τi ≈ D0/V . According to a work by Eddi et al.
[30], where they study the effect of viscosity on the initial spreading dynamics of drops (without ini-
tial velocity), the characteristic time of capillary spreading in that case is τc = 2πηD0/γ = 2πCaτi.
In other words, the spreading due to the impact energy is much faster than the expected wetting
velocity if Ca � 1. In practice, data where Ca < 10 was discarded. The recordings indeed evidence
a first inertial deformation stage over a few milliseconds at most, and then a much slower stage, over
a timescale of 100 ms or more, corresponding to gravity- and wetting-driven spreading. Therefore,
in the inertial stage, wetting is completely screened, then the surface’s nature and roughness do not
play any role. Moreover, the capillary number is exactly the ratio of the Weber number and the
Reynolds number, then the high values also ensure that viscous dissipation dominates over increase
of surface energy.

A qualitative observation of the images raises the question of defining the spreading fac-
tor thoroughly to describe the deformation. What is meant by deformation in this work is a
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t0 − 1ms t0 tmax

Re = 390

V = 4.0m s−1

η = 47mPa s

D0 = 4.5mm

Re = 10

V = 3.1m s−1

η = 1.13 Pa s

D0 = 3.5mm

Re = 0.60

V = 0.31 m s−1

η = 1.13 Pa s

D0 = 1.95 mm

Re = 0.043

V = 0.96 m s−1

η = 45Pa s

D0 = 1.74 mm

FIG. 2. Typical deformation upon impact of drops with Re = 390, 10, 0.60, and 0.043, respectively. The
vertical bars represent 1 mm. The left column is 1 ms before contact, the second one is contact (t0), and the
third one is the maximum spreading, with the corresponding time tmax. For each example, the full movie can
be seen in the Supplemental Material [29].

descriptor of a change of the drop’s shape between the contact time (t0 in Fig. 2) and the time of
full dissipation of initial kinetic energy (tmax in Fig. 2). Usually, the spreading factor is defined
as βmax = Dmax/D0. Strictly, the correct definition is βmax = (Dmax/D0) − 1 because the initial
diameter is substracted from the maximum equator diameter, and then βmax does vanish in the
limit of no deformation. Still, the −1 is generally neglected because the deformation is large,
i.e., βmax � 1. In our case of low deformation, "forgetting" the −1 is not possible. Moreover the
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FIG. 3. Typical evolution of the contact diameter, denoted dc, versus time, for a drop of UCON 50% of
initial diameter 2.77 mm impacting at 2.9 m/s. The capillary number is Ca = 73. The blue horizontal line is a
guide for the eyes. The red dot represents Dc, the contact diameter at the maximum inertial spreading state of
the drop. Inset: same curve in semilogarithmic scale to focus on the short timescale.

image resolution is not good enough to actually detect a difference between D0 and Dmax. Therefore,
we made a different choice to quantify the deformation. Instead of the maximum equator diameter
Dmax, we measure the maximum contact diameter Dc [see Figs. 1(c) and 3] and define a different
spreading factor βmax = Dc/D0. As Dc ranges from 0 to ≈D0 at low deformation, the relative
error due to image resolution is reduced. This definition also provides a continuous description of
both low deformation and high deformation, because in the pancake shape Dmax and Dc are nearly
identical.

Figure 3 shows a typical example of the contact diameter evolution in time, and illustrates
the definition of Dc. The neat separation between timescales, visible on the recordings, is also
confirmed.

Another detail can be seen on the images. A large proportion of the drops do not have a spherical
shape before impact, due to the time needed to relax after detachment. They rather have an elongated
pear shape with a more or less pronounced tail (see the last line of Fig. 2). The shape relaxation time
is approximately τsh ≈ ηd/γ with d the typical width of the tail. In comparison, the drop falling time
is τ f ≈ V/g (g is the acceleration of gravity). The two times are often comparable, and for the most
viscous fluids and the smallest velocities, the falling time is shorter than the relaxation time of the
tail. As this happened for the drops with the lowest Reynolds numbers, it was necessary to make
sure that the shape of the initial drop does not change the results, and if so, to take the difference into
account. A recent work on viscoplastic drop impacts [31] underlines the strong effect of the drop
aspect ratio on the final deformation, but the effect seems to correspond to the increase of the drop’s
mass and then of its kinetic energy. Therefore, we also compute the actual volume V of each drop
from their outline. The Reynolds number used in the plot of Fig. 4 is then not exactly as defined in
the introduction, but multiplied by the ratio of the actual volume and the volume of a spherical drop
of diameter D0: Re = ρV D0/η × V/(πD3

0/6). The validity of this choice also appears in Sec. III.
For quantitative analysis, Dc and V were also measured on the recorded images, to be able to

compute βmax and the correction for Re. To check consistence with other data from the literature,
values at higher Reynolds number from Lagubeau et al. [26] are adapted as follows: the minimum
spread drop thickness hc (normalized by the initial diameter) shown in their paper is transformed
into the maximum diameter Dmax ≈ Dc (also normalized), assuming that the spread drop is a flat
cylinder of height hc and diameter Dmax. Figure 4 shows βmax versus Re. The 1/5 power law is
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FIG. 4. Deformation βmax = Dc/D0 as a function of the Reynolds number (blue circles). Data at higher
Reynolds number adapted from Lagubeau et al. [26] are also represented (black crosses). The green dashed
line is a 1/5 power law and the red dashed line is a 1/3 power law.

also represented and fits well all the data above Re ≈ 10. For lower values of Re < 1, the data still
collapse on a master curve, but deviate from the 1/5 power law. In the following we will show that
those data follow a 1/3 power law.

III. DIMENSIONAL ANALYSIS

In this section we propose a scaling to describe the deformation of the drop, defined as βmax =
Dc/D0, as a function of the Reynolds number, for Re < 1. The key idea is an energy balance, all the
kinetic energy being dissipated by the viscous shear of a part of the drop only.

The estimation of the extend of the most sheared zone is largely based on the works of Philippi
et al. [32] and Gordillo et al. [33]. During impact of the most viscous drops, deformation is only
visible at the bottom of the drop and the top is not affected (see, for example, the two last lines of
Fig. 2). This is reminiscent of the early deformation of an inviscid drop, that would keep the shape of
a truncated sphere, yielding a contact radius growing as rc(t ) ∼ √

V t/D0 [34]. The vertical extend
of the sheared zone is supposed to be the thickness of the time-expanding viscous layer introduced
as a correction to the autosimilar pressure and velocity fields computed for inviscid drops [23,32,33].
The viscous layer thickness also grows as a square root of time lv ∼ √

ηt/ρ. Therefore the volume of
the sheared zone grows like D3

c at all times. Since both physical ingredients (kinematic deformation
and viscous layer) were first developped considering characteristic dimensions much smaller than
the drop diameter, the scaling we propose will only apply to deformations βmax smaller than one.

Dimensionally, the shear rate is the velocity gradient γ̇ ∼ V/Dc (we recall that the thickness
of the viscous boundary layer evolves like Dc) and the shear is the deformation γ ∼ Dc/D0. The
viscous dissipated energy then scales as

Eη ∼ η × Dc

D0
× V

Dc
× D3

c .

The kinetic energy scales as

Ek ∼ ρV 2D3
0.
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Finally,
(

Dc

D0

)3

∼ ρV D0

η
≡ Re.

Based on that estimation, for Re < 1, the deformation of the drop is described by

βmax ∝ Re1/3. (1)

This power law perfectly fits the data below Re ≈ 1 (Fig. 4). Note that only the dependence in
Re is predicted by 1, then an adjustable prefactor is used to plot the 1/3 power law in Fig. 4.

The kinetic energy is written considering an initially spherical drop of diameter D0, which is
not the case for the most viscous drops, as explained before. However, the kinetic energy could as
well be expressed Ek ∼ ρV 2V , yielding the same relation (1), with the Reynolds number defined in
Sec. II. On the other hand, the argument used to evaluate the energy dissipation is that a small part
of the drop only, in the neighborhood of the contact with the substrate, is sheared. Then, as long
as the bottom part of the drop is quasispherical with a curvature radius of D0/2, the deformation
βmax = Dc/D0 is not affected by the shape of the drop’s upper half.

IV. CONCLUSIONS

The present work introduces a scaling to describe the deformation of viscous drops upon impact
as a function of the drop’s Reynolds number Re, when the latter is smaller than one. A similar law
already existed for Re � 1, where the whole drop is sheared and flattened onto the substrate, but
the case of Re � 1 had never been described.

To establish the scaling law, we performed drop impact experiments, varying the liquid viscosity,
the impact velocity, and the drop diameter. Possible influence of parameters other than the drop’s
inertia and the viscosity of the fluid has been carefully avoided. The experimental data was properly
described by a 1/3 power law obtained through scaling arguments. The key idea to understand the
origin of that scaling law is that viscous shear in a reduced fluid volume around the contact zone is
enough to dissipate all the kinetic energy.

This result is relevant for a number of situations, especially in earth sciences or industry (granular
suspensions, melt glass or rocks, viscous polymer melts, tar). Interestingly, the model does not
depend on the shape of the full drop, but only of its bottom part, which undergoes the deformation.
The prediction of the contact surface size of such drops can help modelizing more complex
situations where the flux of some quantity (like heat) is only significant through the liquid-solid
interface.

Future developments of this work could benefit from numerical simulations of the flow field
close to the contact line, for example [32], allowing for better estimations of the dissipated energy.
The knowledge of the shear distribution would bring crucial information to describe the effects of
complex rheology, in particular.
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APPENDIX: NEWTONIAN APPROXIMATION

To assess the potential influence of viscoelasticity on the experiments, the storage and loss
moduli of both fluids were measured by small oscillatory shear with a rheometer (DHR3 from
TA Instruments) at the temperature of experiments (20 ◦C). Standard stress-controlled rheometers
generally do not give reliable measurements at higher frequencies, typically above 20 Hz, especially
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for low torque signal, because of the internal inertia of the rheometer and geometry. To overcome
this issue, the range of frequencies was extended using time-temperature equivalence, and the
data were fitted by a simple Maxwell model. This procedure yielded approximative viscoelastic
relaxation times of τv ≈ 200 µs for pure UCON and τv ≈ 5 µs for pure PEG. Even if those values
are only estimations, they remain much smaller than the typical impact time for all our data.

The resulting maximal Weissenberg number is Wi = γ̇ τv ≈ 0.2, justifying to ignore any vis-
coelastic effect in the experiments.
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