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Abstract

A common subject: Evolution through a computational lens.
Two different communities: on the one hand, artificial life re-
searchers use computational systems to understand emergent
evolutionary processes and patterns such as complexity, ro-
bustness, evolvability and open-endedness; on the other hand,
evolutionary bioinformatics researchers decipher patterns and
processes in diverse domains of life on Earth using computa-
tional methods based on biological data. Both communities
use simulations of living organisms but with different aims,
objects, and methods, resulting in disjoint research corpuses.
We propose Aevol 4b, an artificial life evolution simulator,
and show that the data it produces can be successfully and
interestingly processed using bioinformatics methods. This
bridges the gap between the two fields and paves the way for
fruitful exchanges between artificial life models and bioinfor-
matic analysis methods.

Introduction
Over the last 50 years, computer science has progressively
become a natural companion for life sciences. However,
the interactions between life sciences and computer science
take various forms. On the one hand, Bioinformatics fo-
cuses on “Research, development, or application of compu-
tational tools and approaches for expanding the use of bi-
ological, medical, behavioral or health data” (Huerta et al.,
2000). On the other hand, Artificial Life stresses the use of
modeling and simulation in order to study “life as it could
be” (Langton, 1988). Clearly, both approaches focus on the
same objects (living beings). However, they hardly inter-
act, each having its own conferences and journals and cross-
fertilization being the exception rather than the norm. This
is all the more surprising given that bioinformatics, like ar-
tificial life, often uses similar modeling and simulation ap-
proaches as tools for knowledge production, whether to for-
malize knowledge or to produce test sets for sequence anal-
ysis or phylogeny algorithms (Trost et al., 2024). This lack
of communication can be exemplified by looking at two ar-
ticles published in 2012 in the prestigious Nature Reviews
journal series. (Hoban et al., 2012) was published in Nature
Reviews Genetics and presents simulation as a tool for pop-
ulation and evolutionary genetics. It is grounded in bioin-

formatics. (Hindré et al., 2012) was published in Nature Re-
views Microbiology and presents in silico experimental evo-
lution. It is grounded in experimental evolution and artifi-
cial life. The former article has 101 references and the later,
158 references. Although both focus on simulation in evo-
lution, not a single one of these 259 references is common
to both articles. In other words, there are two independent
research corpuses, both pursuing similar objectives (under-
standing life and evolution), using the same methods and
tools, but almost completely ignoring one another.

Our goal in this article is to at least partially bridge the
gap between artificial life and bioinformatics by developing
simulations grounded in artificial life but able to produce
data that can be analyzed by (and be used as benchmarks
for) off-the-shelf bioinformatic tools.

We will first try to understand the reasons of the schism
that separates bioinformatics from artificial life. This will
lead us to propose a new simulator, Aevol 4b, based on
the Aevol platform (Knibbe et al., 2007; Liard et al., 2020;
Banse et al., 2023) but with the major difference that
Aevol 4b genetic sequences comply with not only the struc-
ture (as in Aevol) but also the information encoding of
real biological genomes, making them fit for analysis by
generic bioinformatic tools without adapting these tools to
the specifics of the simulator. We will then use Aevol 4b to
simulate evolution along a large species tree and show how
it is possible to recover the original tree using only the infor-
mation provided by the final sequences. Finally, we’ll look
at the prospects opened up by this unprecedented combina-
tion of artificial life and bioinformatics.

Simulators vs. Simulators
The Genetic Simulation Resources website1 (GSR) refer-
ences over 220 software dedicated to the simulation of
genomes and genome evolution (Peng et al., 2013). Al-
though some well known simulation platforms are not listed
in the GSR (e.g. Evolver (Edgar et al., 2009)), it is quite
representative of the models used in bioinformatics and con-

1https://surveillance.cancer.gov/
genetic-simulation-resources/
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tains some of the “best-sellers” in the domain (e.g. Alf
(Dalquen et al., 2012), SLiM (Haller and Messer, 2019) or
SimPhy (Mallo et al., 2016)). The artificial life counterpart
of the GSR, though at a smaller scale, lives on the Alife web-
site 2, where nine simulation platforms for artificial life are
listed, including Avida (Adami, 2006), the most famous plat-
form in artificial life. Surprisingly, however, none of these
platforms are mentioned in the GSR. This clearly shows that
the two types of simulators are rooted in different communi-
ties and are likely to be based on different design principles.

We would like to propose that one explanation (possibly
among others) of the difference between simulators based
on bioinformatics and those based on artificial life is that
bioinformatic simulators aim primarily at reproducing the
patterns observed on real genomes, whereas artificial life
simulators aim primarily at simulating the processes that are
at the heart of the evolutionary phenomenon. Doing so,
they allow for studying the different patterns that emerge
from the combined action of these processes (even though
these patterns could be different from what is observed on
real genomes). This means that instead of tuning models to
resemble empirical genomic data, artificial life simulators
mechanistically simulate the processes that produce these
empirical data. One might object that some bioinformatic
simulators – typically forward-in-time population genetics
simulators such as SLiM (Haller and Messer, 2019) – in-
clude the two main evolutionary processes: variation and
population-based selection. However, these two processes
are not sufficient to account for evolution. Indeed, all liv-
ing being also embody a third process, the genotype-to-
phenotype mapping. This mapping is classically included
in artificial life simulators in order to compute a fitness for
the organisms. Bioinformatic simulators however, don’t in-
clude this mapping and directly assign a selection coefficient
s to the mutations, s being drawn from a predefined distri-
bution provided as a model parameter (s > 0 corresponding
to favorable, s = 0 to neutral and s < 0 to deleterious mu-
tations).

Although the specifics of the way a genotype is mapped to
a phenotype may appear to be a simple modeling choice, it
actually has a crucial impact on the evolutionary dynamics.
Indeed, the genotype-to-phenotype map indirectly controls
the shape of the fitness landscape by determining directly
or indirectly the effects of mutations. Roughly, one could
distinguish three levels of increasing complexity:

Direct Fitness Effect Mutations are directly assigned a fit-
ness effect drawn from a Distribution of Fitness Effect
(DFE). In that case, the fitness landscape metaphor is no
longer valid on a global scale since a constant DFE im-
plies a constant local fitness landscape. In particular, there
are no fitness peaks or valleys.

2https://alife.org/encyclopedia/category/
software-platforms

Mathematical Mapping The genotype-to-phenotype map
is indirectly implemented by a mathematical function
defining the fitness effect of the mutations (e.g. Fisher’s
Geometric Model (Fisher, 1930) or NK-Fitness Land-
scape (Kauffman and Levin, 1987)). In that case the shape
of the fitness landscape varies locally (including peaks,
valleys and possibly local optima). However, the size and
ruggedness of the fitness landscape are constant.

Algorithmic Mapping The genotype-to-phenotype map is
implemented by an algorithm interpreting the genomic in-
formation (e.g. Avida (Adami, 2006) or Aevol (Knibbe
et al., 2007)). In that case the fitness landscape has a
complex structure with peaks and valleys and a rugged-
ness that may also vary across macroscopic regions. In
some models, the size of the fitness landscape can also
vary during evolution (Liard et al., 2020).

From the point of view of artificial life, it could be
tempting to criticize bioinformatic simulators for neglecting
something as important as the genotype-to-phenotype map.
Indeed, bioinformatic approaches, because they use a pre-
defined DFE, can hardly address questions such as the evo-
lution of robustness or evolvability, whereas these questions
are typically addressed by artificial life (Wilke et al., 2001;
Crombach and Hogeweg, 2008; Liard et al., 2020). How-
ever, it’s important to keep in mind that simulating genotype-
to-phenotype mapping has a significant cost, which is by it-
self sufficient to justify the approach taken by bioinformatic
simulators. First of all, the mapping complexifies the mod-
els, making it more difficult to analyze the results. Second,
having to compute the phenotypes of all the individuals in
a population obviously has a computational cost that limits
the complexity of the individuals and the size of the popula-
tion that can be simulated. On top of that, at least to date and
probably for a long time to come, nobody knows how to de-
code a realistic genotype into a realistic phenotype. In other
words, by incorporating a genotype-to-phenotype mapping,
artificial life platforms necessarily distance themselves from
real genomes, let alone real phenotypes!

There lies the gap: bioinformatic simulators aim at study-
ing the evolution of genomic patterns but, to do so, they are
obliged to dispense with genotype-to-phenotype mapping.
Artificial life simulators include a genotype-to-phenotype
decoding process by essence, but, in turn, they cannot simu-
late reasonably realistic genomic sequences and patterns!

Having a convincing hypothesis for the origin of the gap,
we can devise a strategy for bridging it. In order to build a
simulator that both includes a genotype-to-phenotype map-
ping and generates realistic genomic patterns, we need a
genotype-to-phenotype mapping that takes as input a real-
istic genomic sequence. This way, mutations would be per-
formed on realistic sequences (as in bioinformatic simula-
tors) but their effect on fitness would be indirect, depending
on their phenotypic effect (as in artificial life simulators).
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The phenotype however, is not required to be realistic. In
the next part of this article, we will start from Aevol, an ar-
tificial life simulator designed to model the structure of the
genotype-to-phenotype map, and extend it in order to evolve
biologically realistic sequences. We will then show how the
genomic patterns that evolved in this new model can be an-
alyzed by off-the-shelf bioinformatic software.

The Aevol Platform
Aevol is an in silico experimental evolution platform specif-
ically designed to study the evolution of genomic structures
(Knibbe et al., 2007; Liard et al., 2020; Banse et al., 2023). It
is an individual-based model built upon the core idea that the
organisation of the genotype-to-phenotype map determines
the structure of information coding on the chromosome and
hence the way it can be modified by mutational operators.
In Aevol, a population of individuals, each owning a double-
stranded binary genome, evolves thanks to three processes:

A genome decoding process. The decoding process allows
to compute a phenotype and a fitness from the individ-
ual’s genome. This genotype-to-phenotype map follows
the main steps of information decoding in real organisms.
Although Aevol uses a binary genome, this makes this
platform a perfect starting point to design a model able
to evolve realistic sequences. Since the genome decoding
process is at the heart of the transformation of Aevol into
Aevol 4b, it is described in further details in Figure 1.

A replication process. At each generation, all the individ-
uals compete in order to populate the next generation.
The replication scheme is a Wright-Fisher generational
scheme and the competition is based on the fitness value
calculated from the individual’s genome.

A mutational process. At each replication, individuals
may undergo mutations. Aevol implements a large set of
mutational operators including point mutations, small in-
sertions and deletions and large chromosomal rearrange-
ments (segmental duplications and deletions, inversions,
translocations). These operators allow the genome to
evolve in sequence but also in size and structure (Banse
et al., 2023). This property allows studying how genome
length and structure evolve depending on the properties
of the population, of the replication and of the mutational
processes – typically population size and mutation rates
and biases (Rutten et al., 2019; Luiselli et al., 2024).

In Aevol these three processes interact and globally shape
the fitness landscape that the population explores during its
evolution. Due to the interactions between the mutational
process and the genome decoding process, individuals can
evolve very different genetic structures from simplistic ones
to very complex ones (Liard et al., 2020). Moreover, the fit-
ness landscape is highly irregular, including smooth regions

(typically for simple organisms) and rugged ones. Hence,
the model can help understand how evolution balances di-
rect selection (i.e. selection for fitness) and indirect selec-
tion (i.e. selection for robustness and evolvability) in vari-
ous conditions (Knibbe et al., 2007; Banse et al., 2023). Be-
cause they are binary, genomes evolved with Aevol cannot
be directly compared to those of real organisms. As a conse-
quence, apart from specific situations where the binary na-
ture of the sequences was not an issue (Parsons et al., 2011;
Biller et al., 2016), Aevol has remained disconnected from
classical bioinformatics and comparative genomics tools, as
all other artificial life platforms.

From Aevol to Aevol 4b
The original version of Aevol benefited from the binarity of
the genetic sequence as it enabled to keep the genotype-to-
phenotype simple and elegant. As shown by Figure 1, three
base long codons allow for six amino-acids (AA) to be en-
coded in addition to the START and STOP codons. These
in turn correspond exactly to 3 × 2 subsequences, hence to
three binary codes, themselves corresponding to the three
parameters of the triangle-proteins. However, ever since the
first versions of the Aevol model over 15 years ago (Knibbe,
2006), the Aevol development team has obviously had in
mind the idea of moving to a more realistic 4-bases DNA
sequence and several prototypes have been designed over
the years (Liard et al., 2017). But none has proved usable,
mainly because switching from six AA to twenty AA repre-
sents a sharp increase in complexity. Indeed, using a similar
decoding process with 20 in place of 6 AA would mean rep-
resenting the proteins by complex mathematical functions
with 20

2 = 10 parameters. All our attempts to encode phe-
notypes by a linear combination of such complex functions
have proven impossible to manage in practice.

Until recently, the situation thus appeared to be dead-
locked, and Aevol seemed destined to retain a binary
genome. However, a solution emerged that allows increas-
ing the complexity of the model in the sequence realm with-
out increasing the complexity of the functional levels. All
that’s needed is for the folding algorithm (see Figure 1) to be
based on numbering systems using numbering bases greater
than two. Indeed, if the encoding of m, w and h are respec-
tively using numbering bases Bm, Bw and Bh, then, a total
of Bm +Bw +Bh amino-acids could be used. Hence, pro-
viding Bm + Bw + Bh = 20, a four bases DNA sequence
decoded with the standard genetic code (Figure 2) could be
used with only marginal changes of the initial model.

Leveraging this astonishingly simple modification of the
model, we choose to encode m in base Bm = 7 (AA M0
to M6), w in base Bw = 6 (AA W0 to W5) and h in base
Bh = 7 (AA H0 to H6). These 7+6+7 = 20 Amino-Acids
were randomly put in correspondence with the 20 biological
Amino-Acids (Figure 2, outer-ring) such that the standard
genetic code could be used in the translation process (Fig-
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Figure 1: Genome decoding process in Aevol. In Aevol the genome is a binary double-stranded sequence on which genes
are encoded on both strands (top left). In the model each gene is decoded into a mathematical triangular function (bottom left)
through a multistep decoding process including transcription, translation and protein folding. A full description of the model
is available at http://www.aevol.fr. The central part of the figure displays the decoding of a specific gene through the
three following steps:
Transcription: The transcription process searches for promoter sequences on both genome strands. Promoter sequences are 22
base-pair consensus sequences in which up to 4 mismatches are allowed, the number of mismatches determining the expression
level e (the more mismatches, the lower the expression level). Once a promoter is found on the sequence, the downstream
sequence is transcribed into an mRNA until a terminator is found. Terminators are sequences able to form a hairpin loop akin
to ρ-independent prokaryotic terminators (i.e. sequences of the form abcd ∗ ∗ ∗ dcba, where ∗ represents any base and x and x
are complementary base-pairs).
Translation: Aevol searches for genes on each mRNA. A gene is a subsequence starting with a Shine-Dalgarno consensus
motif (011011) followed, four bases downstream by a START codon (000). The sequence is then read three bases at a time until
a STOP codon (001) is found on the same reading frame. The sequence lying between the START and the STOP is a gene. It
is translated into a sequence of Amino-Acids (AA) through an arbitrary genetic code (top right). Since codons are three-bases
long, there exist 8 codons among which two are reserved for the START and the STOP. The six remaining codons correspond
to six AA named M0, M1, W0, W1, H0 and H1. The output of the translation process is the primary sequence of the protein.
It is an ordered list of AA corresponding to the ordered sequence of codons in the gene. Here the displayed gene sequence
is 000.101.110.011.100.111. Hence, it encodes a protein whose primary sequence is M1-H0-W1-M0-H1 (redundant START
codons being ignored).
Protein folding: In Aevol, the protein folding process marks the transition between the sequence realm (DNA, mRNA, protein
primary sequences) and the mathematical realm in which the function of the proteins, the phenotypes and the phenotypic
target are defined. The folding process first extracts three subsequences from the protein primary sequence: the M, W, and
H subsequences, composed respectively of AA M0/M1, W0/W1 and H0/H1. These three subsequences are then transformed
into three binary sequences, which are in turn transformed into integers and normalized depending on their lengths with m
normalized between 0 and 1, h normalized between -1 and 1 (negative values corresponding to function inhibition) and w
normalized between 0 and wmax (wmax being a parameter setting the maximal pleiotropy level in the model). The folding
process outputs three real values in these ranges, that are used as parameters for the triangle-protein function (m corresponding
to the mean value, w the the half-width and h to the height of the triangle – notice that h can be negative and that the height of
the triangle is weighted by e the expression level of the mRNA on which the gene is located).
Phenotype and fitness computation: Once all the triangle-protein functions (corresponding to all the genes found on all the
mRNAs of a given genome) have been computed, they are summed to compute the phenotype (top left). The phenotype is then
compared to a reference function called the phenotypic target to compute the individual’s fitness (the closer the phenotype to
the reference function, the higher the fitness).
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Figure 2: The genetic code and its correspondence with M ,
W and H digits in Aevol 4b. Notice the three STOP codons
(TGA, TAG and TAA). As in most biological organisms, the
START codon (ATG) corresponds to the Amino-Acid Me-
thionine (Met). Colors correspond to the amino-acids con-
tributing to a same parameter (m, w or h).

ure 2, inner-rings); Aevol 4b was born!
Although the main structure of the Aevol model is con-

served in Aevol 4b, the switch to a 4-bases DNA sequence
and the use of the canonical genetic code gives Aevol 4b
new properties that allow for direct usage of comparative
genomics tools on the simulated sequences. In particular,
as shown by Figure 2, the genetic code used in the model
is degenerated, the third position of the codon being often
redundant. This enables leveraging classical bioinformatic
measures such as the dN/dS ratio, hence allowing to es-
timate parameters such as the intensity of selection or the
effective population size directly from Aevol 4b sequences
comparison, exactly like bioinformaticians do when analyz-
ing real genomes.

Experimental design
To test Aevol 4b, we simulated a species tree with 99 species
diverging from a common ancestor. The 99 final sequences
were then provided to bioinformatics researchers who used
them to reconstruct the phylogenetic tree using off-the-
shelf tools. This “double-blind” test, in which ALife re-
searchers simulate evolution along a tree and bioinformat-
ics researchers analyze the final sequences to reconstruct the
tree before comparing the outcome to the simulated ground
truth, offers an invaluable way to cross-validate the simula-
tor and the phylogenetic tree inference methods.

Starting from an ancestral population that pre-evolved in
Aevol 4b for 2.5 million generations, we generated a ran-
dom branching tree using the Gillespie SSA Algorithm with

a first branching at generation 2,500,000 and a subsequent
constant probability of branching of 0.0035 per thousand
generations for each branch. The total length of the tree
was set to 1 million generations, resulting in a total of 98
branching events and 99 final species. Figure 3 shows the
simulated species tree labelled by branching order.

At each branching event, we cloned the whole population
and simulated independent evolutions along the resulting
two branches but without changing the evolutionary param-
eters (mutation rates, population size, phenotypic target...)
so that they are constant throughout the tree. Finally, we
extracted the best individual from each final population and
provided the corresponding 99 sequences to the bioinformat-
ics team for independent blind analysis. These sequences are
about 30 kbp long and contain an average of 175 genes each,
with an average gene length of around 85 bp.

We tested several phylogenomic inference pipelines
on this dataset. Two will be presented here:
the progressiveMauve/IQ-TREE and the
kmer-db/BioNJ pipelines. To compare the inferred
and original trees, we used two metrics: the Robinson-
Foulds (RF) metric (Robinson and Foulds, 1981), which
compares tree topologies, and the Kuhner-Felsenstein (KF)
distance (Kuhner and Felsenstein, 1994), which compares
both topologies and branch lengths. For both metrics, lower
values indicate better accuracy of the inferred tree. Finally,
since inference methods return branch lengths scaled in
expected numbers of substitutions per site, we rescaled the
tree to match the Aevol branch-length unit (thousands of
generations).

Results
ProgressiveMauve/IQ-TREE pipeline: This infer-
ence pipeline uses a Multiple Sequence Alignment (MSA)
tool, progressiveMauve (Darling et al., 2009), fol-
lowed by IQ-TREE2, a phylogenomic software that uses
the MSA to infer the phylogenetic tree (Minh et al., 2020).

Overall, the more recent clades and closely related species
are well inferred (Figure 4). Ancient branches, being
more difficult to retrieve, are less accurately inferred. Fig-
ure 6 shows that the correctly inferred internal branches and
leaves have a length distribution that matches the true one
rather well. There are however some exceptions, among
which two outliers (indistinguishable on the figure) around
(250, 1750) correspond to the two long branches of the in-
ferred tree (Figure 4). Due to the greater heterogeneity of
the inferred tree in terms of branch lengths, and because the
tree was rescaled to match the true lengths, the numerous
smaller branches appear below the x = y axis while the
longest branches absorb much of the usable length and ap-
pear far above that axis.

The KF distance between this inferred tree and the true
one is 23, 564, which is 42.8% of the worst possible value
(equal to twice the sum of the original tree branch lengths).
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Figure 3: The 99 species tree generated with Aevol 4b

This distance is partly driven by three branches whose
lengths are poorly estimated (the two outliers mentioned
above and the very short branch 7). The trees have 71 com-
mon bipartitions and 25 different ones, resulting in an RF
score of 2× 25 = 50 (26% of the worst possible score).

kmer-db/BIONJ pipeline: The second inference
pipeline is somewhat less sophisticated than the first one.
It first uses kmer-db (Deorowicz et al., 2019), which
calculates a pair-wise distance matrix between all pairs
of sequences based on the number of k-mers they share
(k-mers being substrings of length k extracted from the
DNA sequences). We used the default presets, which sets
k = 18. We then used BIONJ (Gascuel, 1997) for the
tree reconstruction, which is an improved version of the
neighbor-joining algorithm (Saitou and Nei, 1987).

This pipeline turned out to be very accurate, with an RF
error rate of only 8% (i.e. 16 wrong branches out of 192 total
internal branches when both trees are considered) and a KF
error rate of 38% (Figure 5). The lengths of the correctly
inferred internal branches and leaves rather match the true
lengths, although the internal branches tend to be shorter
and the leaves longer than the true values, as shown in Fig-
ure 7 and also empirically visible in Figure 5. Moreover, it
is worth noting that all wrongly inferred branches are very
short branches (in red in Figure 5).

Conclusion and Perspectives
We proposed Aevol 4b, an artificial-life grounded simula-
tor capable of evolving realistic genomic sequences. Using
this model, we generated a large species tree and showed
that the tree can be recovered, at least partly, by two differ-
ent bioinformatic pipelines without modifying them in any
way. To the best of our knowledge, this is the first success-
ful coupling of artificial life simulations with bioinformatic
analysis, and we believe this result opens up significant op-
portunities for future exchanges between these two fields.

Our results show that the simulated tree can be retrieved
from the final sequences, although with varying accuracy for
the two tested pipelines. Surprisingly, the simpler pipeline
provided the best results, while the classical MSA-based
pipeline struggled to infer old branches. This is surprising as
the results obtained with the distance-based pipeline indicate
that the information is indeed available in the sequences. We
are now trying to unravel the origin of this discrepancy.

Before turning to the perspectives opened up by our work,
there are two important points that we have deliberately left
out throughout the paper, and which need to be discussed.

First, throughout this article, we have used the term
“realistic” to describe the genetic sequences generated by
Aevol 4b. However, realistic is an intrinsically subjective
qualifier that can encompass very different properties de-
pending on the viewpoint. For instance, Yelmen et al. (2021)
describe a generative neural network able to produce “high
quality realistic genomes” that have little in common with
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Figure 4: Inferred tree using the progressiveMauve/IQ-TREE pipeline. The wrongly inferred branches are colored in
red. Although the shape of the tree may look rather different from the original tree (Figure 3), we can see that almost all recent
branches are correctly inferred, resulting in scores of RF = 50 (26.0%) and KF = 23,564 (42.8%)

.

Figure 5: Inferred tree using the kmer-db/BIONJ pipeline. The wrongly inferred branches are colored in red. RF = 16
(8.3%); KF = 21,229 (38.6%)
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Figure 6: Branch length differences between the cor-
rectly inferred branches and the true ones, for the
progressiveMauve/IQ-TREE pipeline.

Figure 7: Branch length difference between the cor-
rectly inferred branches and the true ones, for the
kmer-db/BIONJ pipeline.

the genomes produced by Aevol 4b. Indeed, our genomes
are only a few tens of kb long and the genes they contain
are much shorter than real genes. Here, “realistic” is to
be understood relatively to the evolutionary process, mean-
ing that these sequences are the product of evolution and
that they encompass enough information for the evolution-
ary process to be retrieved a posteriori – at least by the
kmer-db/BIONJ pipeline.

Secondly, one might ask why we care about bridging the
gap between bioinformatics and artificial life. We strongly
believe that both areas could benefit from such bridges. On
the bioinformatics side, artificial life could produce inde-
pendent datasets that would serve as benchmarks to test in-
ference algorithms and to reveal possible caveats. On the
artificial life side, bridging the gap allows for analyzing

the evolutionary dynamics at work in the simulations using
the same measures evolutionary biologists employ when ob-
serving evolution. This will enable simulated and real data
to be compared quantitatively, whereas to date, artificial life
has primarily relied on qualitative comparisons.

Both directions are obvious perspectives of our work. In
particular, an immediate perspective would be to generate
more complex benchmarks, with irregular trees (e.g. includ-
ing extinction events). We also envision generating species
trees in which life traits would change at branching events or
along branches. Aevol 4b indeed includes the possibility to
modify the mutation rates, population size or environmental
conditions. This would allow for testing phylogenetic in-
ference methods on more complex datasets and to evaluate
their ability to identify events such as population bottlenecks
or environmental drift. Also, while we have tested phyloge-
netic inference here, other bioinformatic tools and methods
could easily be tested, such as the detection of open reading
frames, estimation of the nature and intensity of selection,
or estimation of the effective population size.

Finally, although we consider Aevol 4b as a decisive step
in bridging ALife and bioinformatics, it must be regarded
as merely a first step, and the model could be improved in
many ways. In particular, Aevol 4b does not include Hor-
izontal Gene Transfer (HGT). Including HGT would allow
for simulating much more complex phylogenies in which
different parts of the same genome have different evolution-
ary histories. A similar idea would be to incorporate substi-
tution models such as the General Time Reversible (GTR)
model (Tavaré, 1986). At another level, neither Aevol nor
Aevol 4b include a speciation model. Adding an ecological
level would allow the simulator to generate its own species
tree rather than following one provided as an input. Lastly,
many AI tools have been recently developed that can pre-
dict protein structure accurately (Jumper et al., 2021). We
envision leveraging such tools in the genome decoding pro-
cess. This would allow for evolving more realistic gene se-
quences, bringing the model even closer to real-life biology.
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Tavaré, S. (1986). Some probabilistic and statistical problems on
the analysis of dna sequence. Lecture of Mathematics for Life
Science, 17:57.
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