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Abstract

Since about three decades, there is an increasing interest in study of multifractional
processes/fields. The paradigmatic example of them is Multifractional Brownian Field
(MBF) over RV which is a Gaussian generalization with varying Hurst parameter (the
Hurst function) of the well-known Fractional Brownian Motion (FBM). Harmonizable
Multifractional Stable Field (HMSF) is a very natural (and maybe the most natural)
extension of MBF to the framework of heavy-tailed Symmetric a-Stable (SaS) distribu-
tions. Many methods related with Gaussian fields fail to work in such a non-Gaussian
framework, this is what makes study of HMSF to be difficult. In our article we construct
wavelet type random series representations for the SaS stochastic field generating HMSF
and for related fields. Then, under weakened versions of the usual Holder condition on
the Hurst function, we obtain sharp results on sample path behavior of HMSF: optimal
global and pointwise moduli of continuity, quasi-optimal pointwise modulus of continuity
on a universal event of probability 1 not depending on the location, and an estimate of
the behavior at infinity which is optimal when the Hurst function has a limit at infinity

to which it converges at a logarithmic rate.

Key Words: Heavy-tailed stable distributions, varying Hurst parameter, wavelet random series,
moduli of continuity, sample path roughness.
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1 Introduction and background

All the random variables considered in this paper are defined on a same probability space €2
which is assumed to be complete. Multifractional stochastic processes/fields (see e.g. [21, 7,
17,23, 24, 25, 15, 8,9, 10, 3, 18, 1, 19]) are extensions of the well-known Fractional Brownian
Motion (FBM) (see e.g. the two books [14, 22]) whose local sample paths roughness are
allowed to change form point to point. More precisely, in contrast with FBM, the pointwise
Holder exponent of multifractional process/field can take different values at different points.
Recall that, for a generic real-valued stochastic field Y = {Y(t),t € RV} with continuous
and nowhere differentiable sample paths on RV (N € N being arbitrary), their roughness in
a neighborhood of any arbitrary fixed point 7 € R is usually measured through py (7), the

pointwise Holder exponent of Y at 7 defined as

py (T) := sup {a € [0,1] : limsup Y®) - Y()|

t—1 ‘t - T’a

< +oo}; (11)

for any given w € 2, the closer to zero is py (7,w), the rougher is the sample path ¢ — Y (¢,w)
in the vicinity of 7.

In the present article we focus on the real-valued Harmonizable Multifractional Stable
Field (HMSF) Z = {Z(t),t € R"} whose finite-dimensional distributions are Symmetric
a-Stable (SaS), for any arbitrary and fixed a € (0,2). Apart of the constant deterministic
stability parameter «, the field Z depends on a deterministic functional parameter denoted
by H(-) and called the Hurst function, since it basically plays a similar role to that of the
constant Hurst parameter of FBM; throughout the article (except in Corollary 2.18), the
function H(-) is assumed to be continuous on R and with real values in an arbitrary fixed
compact interval [H, H] C (0,1). The field Z is defined as

et -1 ~ N
Z(t) = %(/RN T dMa(g)), for all ¢ € RV, (1.2)
2

where t - £ is the usual inner product of ¢ and &, |£]2 is the Euclidean norm of &, and Ma
is a complex-valued rotationally invariant a-stable random measure with control measure
the Lebesgue measure Ay on RY. A detailed presentation of such a random measure and
the corresponding stable stochastic integral and related topics can for instance be found
in Chapter 6 of the book [22]. The following remark, which provides two very important

properties of this stochastic integral, will play a fundamental role in our article.

Remark 1.1  (:2) The stable stochastic integral fRN () dMa 1$ a linear map on the Lebesgue
space L*(R™N) such that, for any deterministic function g € L*(RY), the real part

2



Re( fan 9(8) d]\?a(f)) is a real-valued Symmetric a-Stable (SaS) random variable with

a scale parameter satisfying

o(we( [ o€ ditu©)))" = [ late)" as (13)

We recall in passing that an arbitrary real-valued random variable Y is said to be SaS
with scale parameter o(Y) > 0, when the value of its characteristic function, at any
y € R, is equal to exp ( - J(Y)O‘|y\°‘); except in the very special case o(Y) = 0 in which
Y wanishes almost surely, in the generic case o(Y) > 0 the characteristic function of
Y s Lebesgue integrable on R, which implies that Y has a bounded probability density
function. Even if the absolute moment of order v of Y is infinite when v > «, the scale

parameter plays a role which is basically similar to that of a standard deviation.

Thus, the equality (1.3) is reminiscent of the classical isometry property of stochastic
Wiener integrals; it implies, among many other things, that %e(fRN gn(§) dﬂa(g))
converges to

i)%e(fRN 9(&) d]\?a(g)) in probability, when a sequence (gn)n converges to g in L*(R).

(ii) Let m € N be arbitrary and let fi,..., fm be arbitrary functions of L*(RY™) whose
supports are disjoint up to Lebesgue negligible sets, then the real-valued SaS random

variables

Re( fpn f1(£) d]\fza(f)), o Re( gy Sm() dMa(g)) are independent.

In the very particular Gaussian case o = 2, the HMSF in (1.2) reduces to the Multifrac-
tional Brownian Field (MBF), that we denote by Zy = {Z5(t),t € RV}, which was initially
introduced in [7] and which is the paradigmatic example of a multifractional field. Thus, the
HMSF is a very natural (and maybe the most natural) extension of the MBF to the frame-
work of heavy-tailed SaS distributions. When H(-) is a smooth enough Hélder function, an
important result of [7] is that, for all 7 € RY, the pointwise Holder exponent of the MBF Z,
equals H(7), on an event of probability 1 which a priori depends on 7, in other words one
has

V7 eRY, Ppg,(r) = H(r)) = 1. (1.4)

Later, under a similar smoothness condition on H(-), the article [4] was able to obtain a
significantly stronger result: the equality between pz,(7) and H(7) holds on a universal

event of probability 1 which does not depend on 7, that is

P(V7r eRN, pg(r)=H(r)) = 1. (1.5)



As far as we know, in the non-Gaussian framework a € (0,2), the HMSF Z in (1.2), or
slightly different variants of it, has already been considered in two articles in the literature:
the paper [13] which restricts its study to the case N =1 and « € (1,2), and the paper [11]
which introduces a large class of harmonizable multi-operator scaling stable random fields
including the HMSF Z. Theorem 4.6 in [11], which was obtained by using LePage random
series expansion for such a random field, and Corollary 4.8 in [11] imply, when H(-) is a locally
Lipschitz function, that, on any non-empty compact box T := Hf\il[ﬂz,l/z] of RV, sample
paths of Z are almost surely Holder continuous functions of any order v < minger H(t).
In the case N = 1 and a € (1,2), Theorem 2.5 in [13], which was also obtained thanks
to LePage random series and by assuming that H(-) is a Holder continuous function on
T of order strictly larger than max;cr H(t), provides a more precise uniform modulus of
continuity for Z which shows that, on any non-empty compact interval T' := [u1,11] of R,
sample paths of Z are, almost surely, Holder continuous functions of order minycp H (t), up to
a logarithmic factor raised to the power 1/a+1/2+n, where > 0 is arbitrarily small. Also, we
mention that Corollary 4.10 in [11], which provides results on pointwise Holder exponents and
directional pointwise Holder exponents of harmonizable multi-operator scaling stable random
fields, implies that (1.4) keeps valid when the MBF Zj is replaced by an HMSF Z with an
arbitrary stability parameter a € (0,2) and a locally Lipschitz Hurst function parameter
H(-). Yet, the question to know whether or not the significantly stronger result (1.5) keeps
valid in the same situation has remained open. One of the motivation for our article is to give
a positive answer to this question under a pointwise Holder regularity assumption on H(-).
Another motivation for it is to obtain optimal uniform and pointwise moduli of continuity
for Z, under weaker assumptions on H(-) than those in [11, 13]; the power of the logarithmic
factor in these moduli of continuity is 1/« + 7, which is better than the power 1/a+1/2+n
earlier obtained in [13]. A third motivation for our article is to derive an almost sure estimate
for the asymptotic behavior of Z at infinity, and to show that this estimate is optimal when
the function H(-) has a limit at infinity to which it converges at a logarithmic rate; there is
no need that the rate of convergence be faster than the very slow logarithmic rate.

Our study of the HMSF Z = {Z(t),t € RV}, defined in (1.2), makes an extensive use
of wavelet methods, and relies on a useful classical point of view on multifractional pro-
cesses/fields, which consists in expressing them in terms of more general stochastic fields
indexed by the couple (u,v) € RY x (0,1), the two variables u (which corresponds to t) and
v (which somehow corresponds to H(t)) being a priori not related. Thus, we express the
HMSF Z = {Z(t),t € RV} as

Z(t) = X(t,H(t)), foralltec RN, (1.6)



where the SaS stochastic field X = {X(u,v), (u,v) € RN x (0, 1)}, which is called the field
generating HMSF, is defined as

X(u,v) := ERe( Fy(u,v,§) dﬂa(g)), for all (u,v) € RY x (0,1). (1.7)

RN
The kernel function Fy, is given by Fy(u,v,0) := 0 for all (u,v) € RV x (0,1), and, more
importantly, by

eZU/'&- —

Fo(u,0,6) = S =1 forall (o) € RY x (0,1) and € e RN\ {0}.  (1.8)
el
Let us emphasize that many properties of the HMSF Z are strongly influenced by those of
the field X which is very closely related to Z through the equality (1.6).

The remaining of our article is organized as follows. In Section 2, we introduce wavelet
type random series representations for the field X and related fields, which mainly allow us to
show that sample paths of X are continuous on R" x (0,1) and infinitely differentiable with
respect to the variable v, and that sample paths of 9;'X share the same continuity property,
for any given m € Z, (notice that 99X = X). In Section 3, mainly, we obtain, for all m € Z,
a global modulus of continuity for the field 9;"X on any arbitrary non-empty compact box
of RN x (0,1), as well as an estimate of the asymptotic behavior at infinity of 97X with
respect to the variable u, and uniformly in the variable v restricted to any compact interval
of (0,1); also, under some conditions on H(-), we obtain the counterparts for the HMSF Z of
these two results, as well as a pointwise modulus of continuity for Z. Section 4 is devoted to
study of optimality of results of the previous section. Among other things, under the same
global Holder condition on H(-) as in the previous section and a weak additional condition,
it shows that the global modulus of continuity for Z is optimal, and that this is also the case
for the estimate of the asymptotic behavior of Z at infinity, provided that its Hurst function
has a limit at infinity to which it converges at a logarithmic rate. In addition, under the same
pointwise Hélder condition on H(-), at an arbitrary given point 7 € RV, as in the previous
section, Section 4 shows that the pointwise modulus of continuity for Z at 7 € RY is optimal
on an event of probability 1 which depends on 7, and also that it is quasi-optimal (optimal
up to a logarithmic factor) on a universal event of probability 1 not depending on 7, provided
that H(-) satisfies a bit stronger pointwise Holder condition at 7. A consequence of the latter
result is that (1.5) keeps valid when the MBF Zj is replaced by an HMSF Z with an arbitrary
stability parameter o € (0,2) and an arbitrary continuous Hurst function parameter H(-)
satisfying the latter pointwise Holder condition at any 7 € RY. Section 5 is the Appendix
which is devoted to the long proof of a crucial lemma which plays a fundamental role in our

article.



2 Wavelet type random series representations for the field X
and related fields

In this section we show that, for any fixed (u,v) € RY x (0,1), the kernel function &
Fo(u,v,€) defined in (1.8) can be expanded, with convergence in L*(R™), on a sequence of
functions issued from Meyer wavelets. Then, thanks to the ”isometry property” of stable
stochastic integral (see Part (i) of Remark 1.1), we obtain wavelet type random series repre-
sentations for the field X and related fields. Moreover, we show that these series are almost
surely absolutely convergent, and even better: they are almost surely normally convergent in
(u,v) with respect to the uniform semi-norm on any non-empty compact box of RY x (0, 1).
One of the consequences of the latter result and of (1.6) is that the HMSF Z has, almost
surely continuous sample paths on RY as soon as the Hurst function H(-) is continuous on
RV,

First, we introduce the main ingredients which allow to construct the wavelet type random
series representations for the field X and related fields.

Let Y, := {1,...,2"Y — 1}, the sequence of functions (Q’Z)(S’j’k)((;,j,k)ET*XZXZN’
to the Schwartz space S(RY), denotes an orthonormal Meyer wavelet basis of the Hilbert

belonging

space LQ(RN ); one mentions in passing that two well-known references on wavelet bases and
wavelet theory are the two books [20, 12]. Recall that, each real-valued wavelet function

5.5k 1s a dilated and translated version of the mother wavelet 1s, that is,
.k is a dilated and lated i f th h 1 hat i
o in(r) = 22 ps(2Px — k), for all z € RV, (2.1)

its Fourier transform s ; x, defined as

Ds.j k(€)= (2m) "> /RN e s i k(x) dw, for every £ € RV,

belongs to S(RY), similarly to 5 itself, and, in view of (2.1), it is given by
Bagu(€) = 27757 @R (277¢), forall € € RY. (22)

Also, recall that, for all (8,7, k) € T, xZ x Z", the C* function QZ(;JJC is compactly supported
such that

SUPP(J&,j,k) C Kj, (2.3)

where K; is the compact subset of RY defined as

[ 2]'+37r 2j+37T]N ( 2j'+17r 2j+17T>N

2.4
3 7 3 3 7 3 (24)



In particular, one has, for all § € T,

8m 8m N 2m 2m\N
SUPPW ) € Ko = {— 30 ?] \ (_ 3 g) : (2.5)
Our next goal is to show that, for any fixed (u,v) € RY x (0,1), the kernel function

Fy(u,v,-) can be expanded, with convergence in L®(RY), on the sequence of functions

(125’]',]@)( 5. k)L XTXIN " One mentions that the value of anyone of the functions ’l/b\g’j’k, at

any ¢ € RV is 1//;5,]',14(5) = lgé,j,k(—f), the conjugate of the complex number 1//1\5,j,k(§). Also,
one mentions that, for each a € (0, 2], the space LQ(RN ) is equipped with the usual metric
A, for which it is a complete metric space; setting 5(«) := min{1, a} this metric A, can

then be defined in the following concise way:

B(a)
Balgrion) = ([ | = (@] ) * . foral gy € IRV, (20

Proposition 2.1 Let (D,,)nen be an arbitrary ascending sequence (that is D,, C Dpy1, for
every n € N) of non-empty finite subsets of 7 x ZN whose union is Z x Z (i.e. 7 x ZVN =
Unen Dn). For all (u,v,€) € RN x (0,1) x RN, one sets

S (0,8 = > > < ¢5],>$6,j,k(§)a (2.7)

0€Y« (4,k)EDn

where

1u§_1

(Patuo. ) Bog) o= [ Falwv,Bnsn()ds =27% | e TG (277¢) de;

R gute
(2.8)

we note in passing that the last equality in (2.8) follows from (1.8) and (2.2). Then, for any
arbitrary and fived (u,v) € RY x (0,1), one has

(@) L (RY)

(@)

For proving Proposition 2.1 and for later purposes, we need to express Sy, in a convenient

way. To this end, we have to introduce some new functions.

Definition 2.2 For each § € T, one denotes by \I'((;a) the real-valued function on RN x R
defined as

iz
\Ilga)(:v,v) = /]RN ’ eerN Ys(n)dn,  for all (z,v) € RN x R; (2.10)
M2



notice that \I/((;a) is well-defined thanks to (2.5) and to the fact that ¥s € S(RYN). For every
(8,7,k) € Ty x Z x ZN, one denotes by w((;a])k the real-valued function on RN defined as

zb&f;?k(x) = 2J'N(1*é)¢5 (272 — k), forallz € RN, (2.11)
Observe that the Fourier transform of wgo;)k is given by
DL0(€) = 2799 eI CTRE g (279€),  for all € € RV, (2.12)

Remark 2.3 In view of (2.10), setting in (2.8) n = 279¢, we obtain, for all (5,5, k) €
Y. x Z x ZN and (u,v) € RN x R, that

<F (u,0,-), ¢57Jk> —2i(5-%-) [xy(“) (2u — k,v) — \Ifff‘)(—k,v)} . (2.13)

Then, combining (2.2) and (2.12) with (2.13), we get, for all ¢ € RN, that

<Fa<u7 v, ')7 {p\ﬁ,j,k> iﬁ,j,k(f) = 2_jv |:‘I/(($a) (2ju - kv ’U) - \Ijga)(_ka ’U):| {/)\gj?k(g) (214)

The equality (2.14) allows to express Sr(la), defined in (2.7), in terms of the functions \Il(a) and

ﬁgaj)k We point out that these functions have nice properties: the integral / W 57, (& ‘ d¢
does not depend on (j, k), since (2.12) clearly entails that

/ ywém )|“de = /RN y%(g)]o‘dg, for all (d,7,k) € Yo x Z x Z. (2.15)

Moreover, one knows from Propositions 5.10 and 5.11 in the book [1] that:

Lemma 2.4 ([1]) For every § € Y., the function \If((sa), defined in (2.10), is infinitely dif-

ferentiable on RN x R and, for all v := (y1,--- ,yN) € Zf and m € Z, its partial derivative
rgmple) . ot o) : . : o
020" W = Ba - (azN)WN(av)m’ x1,...,TN being the coordinates of the variable z, is given

by

@ o) = [ iy B, por ait (20) € RN xR, (236)
RN |77’2 -

with the convention that (in)" := Hi\le(inr)%, for each n = (m,--- ,nn) € RN, Moreover,
the function 8}8{)”\11((;1) is well-localized in the variable x € RN, uniformly in the variable
v restricted to any arbitrary non-empty compact interval of R; namely, for every fixed real
numbers L > 0, M >0 and T > 0, one has

N
sup {H(1 + T+ |z,|) (0000 (@, 0)|, (u,0) € RN x [-M, M]} <40 (2.17)
r=1



Before proving Proposition 2.1, let us emphasize that a straightforward consequence of it,
of the equality (2.14) and of the ”isometry property” of stable stochastic integral (see Part
(7) of Remark 1.1) is the following important result, which provides a wavelet type random

series representation for the field X.

Theorem 2.5 We use the same notations as in Definition 2.2. Let (Sgcé)k)(&j’k)e’r*xzsz be

the sequence of the SaS random variables defined as
£ sne(/ e (g)dﬁ(g)) for all (6,4,k) € Ty x Z x ZV (2.18)
8,5k RN 6,3,k & ’ »J> * . .

Then, the SaS stochastic field X, which was introduced in (1.7), can be expressed, for all
fized (u,v) € RN x (0,1), as
X (u,v) = ST 2 [ @ k) — O (k)] (2.19)
(6,5,k)EY« XZXZN
where the random series is convergent in probability, for any choice of the sequence of its

partial sums. More precisely, for any arbitrary ascending sequence (Dy)nen of non-empty

finite subsets of Z. x ZN whose union is 7 x Z» , the random variable
X (u,v) = Z Z 27 [\I/ga)(qu —k,v) — \I/ga)(—k,v)]sg’o;?k (2.20)
0€Y« (4,k)EDn
converges in probability to X (u,v).

Let us now prove Proposition 2.1.

Proof of Proposition 2.1 Throughout the proof (u,v) € RY x (0,1) is arbitrary and fixed.
First step: We show that the sequence (S%(u,v,-))nen, defined in (2.7) (see also (2.14)),
converges in the complete metric space L*(RYN), equipped with the metric A, (see (2.6)), to
some function denoted by ﬁa(u,v, -). To this end, it is enough to show that (S5 (u,v,"))nen
is a Cauchy sequence in this complete metric space. The latter result can be obtained by
proving that
S Y A (2*3'” [0 (2 — k,v) — 5 (—k, )] 650, () 0) <too.  (2.21)
0€Y (5,k)eZXZN
Indeed, for all (n,p) € N2, (2.7), (2.14), (2.6), the inclusion D,, C Dy, and the triangle
inequality imply that

Aa (sg+p(u, v,-); 8% (u, v, .)) (2.22)

<y 3 Ag (zfﬂ‘“ [0 (@0 — k,v) — U (&, 0)] D8, () o).

SET 4 (j,k)E(ZXZN)\ Dy,



Moreover, (2.21) and the fact that the ascending sequence (Dy)nen satisfies |J,cyDPn =
7 x ZN | entail that the sum in the right-hand side of (2.22) converges to 0 when n goes
to +00. Let us now prove that (2.21) holds. It follows from (2.6) and (2.15) that, for all
(6,5, k) € Ty x ZN x 7Z, one has

v P (@) i (o) RONEY
Aa<2][@5 @%w—hv)—ﬁk (—hvﬂ%m¢0%0> ) (2.23)
— 27| W 2y — ko) =T (<&, 0)| 7Y AL (85;0).

Let us provide an appropriate upper bound for ‘\I/((;a)(qu —k,v) — \I/((;a)(—k, v)|5(a). We set
|tt|oo := maxj<,<n |ur|. When j < 0, using the mean value theorem, the triangle inequality
and (2.17) with M =1 and T = |u|~, and denoting by 0,, the partial derivative operator of
order 1 with respect to the rth coordinate of the variable x of the function \Pga) (see (2.10)),

we obtain that

B 2 ko) — B (ko)
N
< 2j@(a)|u‘gc(>a)z max }(axr‘lj((ga))@js —k, v)‘ﬁ(a)

s€[—[uloo,|uloo]

r=1
< ¢ 298 _mex ]NH(1 F (Ul + 295, — kp|) LA (2.24)
SE|—|U|co,|U|co r—=1
< ¢, 298(@) max H(l + uloo — 1277 50| + [kyp|)THA@) < 01235(0‘)1_[(1 + |k |) @),

56[_|u|007|u‘00]N7.:1 r=1

where the finite constant ¢; does not depend on (9,7, k). When, j > 0, using the triangle
inequality and (2.17) with M =1 and T' = 0, we get that
W5 (2w — &y 0) — B (<, 0) [P < |0 (20— ke, 0) [T |0 (k) |
N ' N
< a(TT( + 20y = k)5 - TT (1 + )22, (2.25)
r=1 r=1

where the finite constant ca does not depend on (9,7, k). Next, notice that since the non-
negative fixed real number L is arbitrary, one can assume that it is large enough so that
LB(a) > 1, which implies that

N
= 1+ |2y — k) 2P < oo 2.26
= sup {kGZZNEl( 2 = kel) T} < oo (2:26)

Finally, putting together (2.23), (2.24), (2.25) and (2.26), it follows that (2.21) holds.

10



Second step: We show that Fa(u,v &) = Fu(u,v,€), for Lebesque almost all € € RY. For
all m € Z, let A, be the closed subset of RY defined as

_27m+17r 27m+17r N
_ PN
Am= R \( T ) (2.27)
Using (1.8), (2.27) and the inequality 2(v + N/a) > N, one has
—2(v+ ¥
[P0 0P 1a, € <4 [ 1" Hag < 4o
RN Am
which shows that F,(u,v,-)14,, () € L>(RY). Thus, using the fact that (lz;&jak)(ajk) is an
orthonormal basis of L?(R™), one gets, for all fixed m € Z,, that
= LP®Y)
> > | (1,0, )5, ) U3, () ~——> Fal(u,v,)La, (), (2.28)

5ET. (8,4, k)eD, U AmNK;

where KC; is as in (2.4). Next, for each m € Z, let K, be the compact subset of RN defined

as

. om+3. om+3.. N 9—m+3 ., 9—m+3 N
|: _ ™ ﬂ'} ( _ s 71') (229)

Co -
" 3 7 3 3 3
Observe that, for all (8,7,k) € Ty x Z x ZN, m € Z, and € € R, one has

([ Pl s s ©E) a6, (€ = ([ Futo €0 0E) aiulE i, €)
(2.30)
Indeed, when Ko N K; = 0 the equality (2.30) is satisfied, since its left and right hand
sides vanish due to (2.3); the equality (2.30) also holds when K,, N K; # 0, since one then
necessarily has that —m < j < m + 2 which implies that A,, N K; = K; and thus, one knows
from (2.3), that the integrals at both sides of (2.30) are the same.
Putting together (2.7), (2.8), (2.28), the inclusion K,, C A, and (2.30), one obtain, for
all fixed m € Z, that

2 N
ZE, Faluy v, )1 (). (2.31)

n—-+00

Sr(za) (u7 v, )]lf{m()

Moreover, since a € (0,2) and IEm is a compact subset of RV, using Holder inequality, one

can derive from (2.31) that, for all fixed m € Z,

8@ (w0, () 25, By, )16 (9. (2.32)

n——+0o0o
On another hand, one knows from the result obtained in the first step that

«@ N —~
S’T(LO‘) (u,v,-) ﬂ)ﬁ Fy(u,v,-),
n—4o0o
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and consequently that, for all fixed m € Z.,

LYRN)  ~

S (u,v, ) g () Folu,v, )1 (-). (2.33)

Finally, combining (2.32) and (2.33), it follows that, for all m € Z, and for Lebesgue al-
most all ¢ € RY, one has ﬁa(u,v,g)]lﬁm(f) = Fa(u,v,g)]lﬁm(ﬁ). Then, using the fact
that Um€Z+ Km = RN \ {0}, one gets, for Lebesgue almost all ¢ € RV, that ﬁa(u,v,f) =
Fo(u,v,8). [ ]

n—-+o00

Now, we are going to show that the random series in (2.19) is convergent in a much
stronger way than the one described in Theorem 2.5, to this end we will need the following

very crucial lemma, whose long proof is postponed to Section 5 (the Appendix).

Lemma 2.6 For each a € (0,2), there is a universal event 2, of probability 1 for which
one has what follows. For all n > 0, there exists a positive finite random variable C, only
depending on o and n, such that for all (8,7,k) € Yy x Z x ZN, the following inequality, in
which |« denotes the integer part of o, holds on §7,:

o L La .
€] < CL+ 131083 (34 [j] + [kI), (2.34)

where k|, = 27{\[:1 |kr|. Notice that, when o € (0,1) is arbitrary, the logarithmic factor in
the right-hand side of (2.34) disappears since |a] = 0. On another hand, when o € [1,2)
is arbitrary, ¥ > 0 is an arbitrary finite fized constant and one restricts to arbitrary j € Z
and k € ZV such that

k| :=sup { ki, ..., |kn|} <92, (2.35)

then, for some positive finite random variable C' not depending (9, j, k), the following signif-
icantly improved version of the inequality (2.34) holds on QF,:

<C'(1+4j)=t, (2.36)

‘5((505)1@

We mention in passing that the inequality (2.34) is reminiscent of the two inequalities (2.35)
and (2.36) in [2]. Also, we mention that the inequality (2.36) is a generalization to k € Z
of the inequality (1.11) in [6] for which k € Z.

The following proposition, whose proof relies on Lemma 2.6, shows that the random series

in (2.19) is convergent in a much stronger way than the one described in Theorem 2.5.
Proposition 2.7 For all (u,v,w) € RN x (0,1) x QF, the series of real numbers

Z 9—jv [\I/((;a) (2ju —k, ’U) B \I/ga)(—k‘, U)]Eg;;‘?k(w) (237)
(6,5,k)EY« XZXZN

1s absolutely convergent.
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Before proving Proposition 2.7, we mention that we will need in its proof, as well as in many

other places in the remaining of our article, the inequality

Vieg(3 + |z + [y]) < V1og(3 + |z|)\/log(3 + |y]), for all (z,y) € R (2.38)

Proof of Proposition 2.7 Let (u,v,w) € RY x (0,1) x Q¥ be arbitrary and fixed, one sets

Y(wow) = 3 [ @u— ko) - 0 (k)] [ @)
(6,5,k)EY« XZXZN
= Y (u,v,w)+ YT (u,v,w), (2.39)

where

(wov,w) = > > 2w @ - kv) - U (k)| W) (2.40)
S€Tu (j,k)ENXZN

and

(u,v,w) = Z Z 2*j”‘\11ga)(2ju —k,v) — \I!ga)(—k,v)“sgz?k(w)‘. (2.41)
0eT (J, k‘)EZ+><ZN

First, one focuses on Y~ (u,v,w). One can derive from (2.24) with L > 1, (2.34) and (2.38)

that, for some positive finite random variable Cy, one has

% N
Y~ (u,0,0) < C1(w (Z 93 (v=1)(1 4 j)&+" 1og%(3+j)) <Z W) < too. (2.42)
k€EZ

Let us now focus on Y+ (u,v,w). One can derive from the triangle inequality that
Y (u,v,w) < A(u,v,w) + A0, v,w), (2.43)
where, for all (y,v,w) € RN x (0,1) x QF,

Aly,v,w) = > 3270 N |0l 27y — k)| ()] (2.44)

6€Y . JEZ kezN

Moreover, (2.17), (2.34) and (2.38) imply, for all (6, j) € Y. x Z, and (y,v,w) € RV x (0,1) x

13



Q*, that

3B 2y — k)|l ()]

kezZN
N ' . ) . N
<) 3 (TT@+ 27y — ko) 5 )1+ )5 log7 (345 + 3 Il
kezZN r=1 r=1
N . . L 1 1 N .
= Cofw) > (TT@+ 127w — 1275 ) = ko) 75) (1 + )7+ 10g (34 + 3 [1270] + K]
kezN r=1 r=1
1 N L 1 N .
< Co@)(1+ )7 30 (TT(+1kel) ") 0g® (345 + N + 3 (1270 + k)
kezN r=1 r=1
1 1 . N 1
< Co(w)(1+ j)alog2 (N +3+4j+2/|y|) Z H(1 + ykTy)*L log? (3 + |kr|)
kezZN r=1
— Cy(w)(1+ )= log? (N +3+j +27|y|1), (2.45)

where L > 1 is fixed, and the positive finite random variables Cy and C3 do not depend on
j, y and v. Combining (2.44) and (2.45), one obtains, for all (y,v,w) € RY x (0,1) x QF,
that A(y,v,w) < +oo. Then, (2.43) entails that Y ¥ (u,v,w) < +00. Finally, combining the
latter result with (2.42) and (2.39), one gets that Y (u,v,w) < 400, which shows that the
proposition is satisfied. u

Remark 2.8 It results from Theorem 2.5 and Proposition 2.7 that the almost surely abso-
lutely convergent random series in (2.37) provides a modification of the field

X = {X(u,v),(u,v) € RN x (0,1)} to which it will be systematically identified from now
on. Thus, X can be expressed, for all (u,v,w) € RN x (0,1) x QF, through the absolutely

convergent series
—+00

X(u,v,w) = Z Xj(u,v,w), (2.46)

j=—o00

where the SaS stochastic fields X; = {Xj(u,v), (u,v) € RN x (0, 1)}, j € Z, are defined, for
every (u,v,w) € RN x (0,1) x QF, through the absolutely convergent series

Xj(u,v,w) = Z 27 [\I’ga) (2ju —k,v) — ‘llga)(—k:, v)]egl),k(w) (2.47)
(6,k)ET . xZN

Also, X can be expressed, for all (u,v,w) € RY x (0,1) x Q¥, as
X(u,v,w) = X (u,v,w) + X1 (u,v,w). (2.48)

14



The two Sa.S stochastic fields X~ = { X~ (u,v), (u,v) € RN x (0,1)} and
Xt = {X+(u,v), (u,v) € RN x (0, 1)} are respectively called the low frequency part and the
high frequency part of X. They are defined, for every (u,v,w) € RN x (0,1) x QF, through

the absolutely convergent series

X (u,v,w) ZXuvw) (2.49)
j=—00
and
(u,v,w) ZX U, v, W) (2.50)

Notice that, later we will show that the series in (2.46), (2.47), (2.49) and (2.50) are also
normally convergent in (u,v) with respect to the uniform semi-norm on any compact box of
RN x (0,1).

We are now going to derive some results on sample paths regularity of the SaS stochastic

fields introduced in Remark 2.8. To this end, we need the following definition.

Definition 2.9 For any fized real numbers o > 0 and 0 < a < b < 1, we denote by Qyqp the
compact boxr of RN x (0,1) defined as

Qoap = [—0, 0" x [a,0]. (2.51)

Moreover, for any real-valued function g defined on RN x (0,1), we denote by ||glpap =
llg(e,)|loap the non-negative quantity (which may be infinite) defined as

9lloat = llg(®: Mloap:= sup |g(z,v)]. (2.52)

(mav)EQg,a,b

Also, we need the following lemma.

Lemma 2.10 Let 9 > 0 and 0 < a < b < 1 be arbitrary and fixed. For all j € Z, m € Z,
v € ZY and w € O, one has

S @areye — k)|

(6,k)EY . xZN

panlebr(@)] < +oo. (2.53)
Therefore, the SaS stochastic fields B; = {fBj(J;’ V), (z,v) € RN x (0, 1)}’ i€ 7. defined, for
cvery (5,0,0) € RY x 0,1) x 93, as

Bi(z,v,w) = Z \I/((;a) (x —k, v)aé?}?k(w), (2.54)
(6,k)ET L xZN
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have C*® sample paths on RN x (0,1), which satisfy, for all j € Z, m € 7y, v € Zf and
(z,v,w) € RN x (0,1) x QF,

(OB (@ v,w) = > (@O0 (@ — kv)eyT(w), (2.55)
(6,k)EY xZN

where the series is normally convergent in (x,v) with respect to the uniform semi-norm on
each compact box RN x (0,1). Moreover, for any fized n > 0, there is a positive finite random

variable C, which does not depend on j, such that, for every (j,w) € Z x Y, one has

1020B,) (0, )11 0y < Cl)(1+ |3, (2.56)

Proof The inequality (2.53) easily follows from (2.52), (2.17) with L > 1, M = 1 and
T = o, (2.34) and (2.38). Observe that, since p >0, 0<a<b<1,v€ Zf and m € Z, are
arbitrary, (2.53) implies that the series in (2.54) and all its term by term partial derivatives
of any order are uniformly convergent in (z,v) with respect to the uniform semi-norm on
any compact box of RY x (0,1). A consequence of the latter fact is that, for each j € Z and
w € QF, Bj(e,,w) is a C* function on RY x (0,1) satisfying (2.55).

Let us now show that (2.56) holds. First, we assume that j < 0. Using (2.55), (2.17)
with L > 1, M =1 and T = g, (2.34) with 7 replaced by 1/2, and (2.38), it follows, for all
(u,v) € Qpap and w € F, that

(870, B;) (2w, v, w))|

N N
<@+ 3 (T + o+ [27u — kl) ™) tog? (3 1]+ 3 kel

keZN r=1 r=1
1, ﬂ 1 . al i —L 1
< Ci@) 1+ i) 10gt (34 151) 3o (TT(1+ o+ kel = 27funl) “10g? (34 Ikr]))
kezZN r=1
N 1

< Co(w)(1+ i) Z (T + Ikrl) " tog? (3+ k1) )

ezZN r=1
= Cy(w)(1+ )=+, (2.57)

where C1, Cy and Cj3 are positive finite random variables not depending on j and (u,v). From

now on, we assume that j > 0. Let IC](-Q) and K;g) be the two disjoint sets defined as

/cj.g) = {keZV, |klw <27} and Eg.@) = {keZV, |kl > 270} (2.58)
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Then, one can derive from (2.55), the equality N = ICJ(.Q) U Egg) and the triangle inequality
that, for all j > 0, (u,v) € Qpqp and w € QF,

(@200 B) @ uv,w)| < Y (@07 0) (20— k)| |5 ()] (2.59)
(6.K)ET. x K
> @) (20— k)| |5 (w)].
(,k)T. xK

Let us conveniently bound each one of the two sums in the right-hand side of (2.59). Observe
that the inequality (2.36) is valid when k € IC](-Q), since the condition (2.35) holds with ¥ = 2p.
Thus, using (2.36), (2.17) with L > 1, M =1 and 7' = 0 and (2.26) with LS(«) replaced by
L > 1, one obtains that

ST @) (@ — kv)|[ef) )] (2.60)
(8.k)ET L x K
N
< Ci@) 1+ 75 3 (TIO+ 2wy — k) ") < Ca(@) 1+ )57,
kek® =1

where Cy and Cjy are two positive finite random variables not depending on j and (u,v). On
another hand, using (2.34), (2.17) with L >4, M =1 and T' = 0, and (2.38), one gets that

> @)@ — ko))

(8,k)ET . xK Y
1 1 N - 1
< Colw)(L +5)a"log? (3+5) Y (H(1+|2jur—kr|)_Llog§ (3+|k:r|))
kek® =1
J
Lo N N ; —L 1
< Crlw)(1+ )73 3 (TT(+ 127w = kel) ™ log? (3+ Iky)). (2.61)

n=1 kef@) r=1
J,n
where Cg and C7 are two positive finite random variables not depending on j and (u,v), and
K = (k= (k,....kn) € ZV, [ka| > 27+ 0}, (2.62)

Moreover, using arguments rather similar to those which have allowed to derive (2.45), the fact

that sup;<,<y [ur| < o, the inequality L > 4 and (2.62), one has, for every n € {1,..., N},
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that

N

Z (H(l + 27w, — l{:r|)7L log

k:ef;i)l r=1

§08log¥ (4+270) Z (1+|2jun*kn|)_Llog% (3 + [knl)

|kn|>2011p

<oleglogs (4+20) Y (14 [kal) log? (3+ [kal)

|kn|>27t10

§0910g¥(4+2jg) Z (1+kn)
kn>2711p

NI

(3+Ikrl))

—L+1

N—1 . +0o0 i NNl (L-2) —2j
< cglog 2 (4 + 279p) Yy dy <cipo(l+j) 2z 27/ <1279, (2.63)
2i+1,

where cg,...,c11 are finite deterministic constants not depending on j and (u,v). Next,
putting together (2.59) to (2.63), it follows that one has, for all j > 0, (u,v) € Qpqp and
w e,

(0207 B,) (2w, v,w)| < Cha(w)(1 + j)a 7, (2.64)

where C9 is a positive finite random variable not depending on j and (u,v). Finally, (2.57)
and (2.64) show that (2.56) holds. [ ]

Lemma 2.11 In view of (2.54), the stochastic fields X;, j € Z, introduced in (2.47), can be
expressed, for all j € 7 and (u,v,w) € RN x (0,1) x QF, as

X;(u,v,w) =279° (Bj(Zju,vjw) - B;(0,v,w)). (2.65)

Their, sample paths are C® functions on RN x (0,1) satisfying, for all j € Z, (u,v,w) €
RN x (0,1) x Q% and m € Z.,

(00 X ) (u,v,w) = Z (Z) (—jlog(2))™ 279 ((02B;)(27u,v) — (38B;)(0,v))  (2.66)
p=0
and, for every v = (y1,...,YN) € Zﬂ\_f \ {0},
(0707 X)) (u,v,w) = Z (Z’;) (—jlog(2))"" 9J (Y1 +-. AN —v) (010PB;) (2w, v),  (2.67)

p=0

with the convention that 09 = 1.
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Proof The equality (2.65) is a straightforward consequence of (2.54) and (2.47). The
fact that, for each j € Z, sample paths of the field X; are C* functions on RY x (0,1)
satisfying (2.66) and (2.67) easily results from (2.65), Lemma 2.10 and the general Leibniz
rule for calculating the derivative of any order m of the product of two m-times differentiable

functions. [ |

Remark 2.12 Let o >0, 0<a<b< 1, p€Z; and w € Q, be arbitrary and fized. One

can derive from the mean value theorem that, for all j € Z, (uM,u®)) € [—p, o]V x [~0, oY

and v € [a,b],
|(@28;)(2 0, 0,w) — (35B;)(Zu? v, w)| (2.68)
71D — 4, (2) DR .
<2 ’U u ‘1 1§S1111£)N H(axnaUBJ)(.’ ’W)H2j,g,a,b’
where, for any n € {1,..., N}, O, is the partial derivative operator of order 1 with respect

to the nth coordinate of the variable v € RY. Then (2.68) and (2.56) imply that, for any
fized n > 0,

(©2B;) (2, v,0) — (92B,) (20, v,w)| < Cw) P (1L + JNF [ul) =], (2.60)

where the positive finite random variable C does not depend on j and (u(l),u(z)). Moreover,
setting u®) =0 and C'(w) := NoC, it results from (2.69) that

1(82B;) (e, -, w) — (82B,)(0, -,w < C'(w) 2 (L4 i), (2.70)

) HZj 0,a,b

Proposition 2.13 For allm e Zy, v € Zﬂy, 0>0,0<a<b< 1, andw € QF, one has

[e%4

-1
> @07 X5) (e, w)| 0 < +00- (2.71)
j=—00
Therefore the SaS stochastic field X, called the low frequency part of the field X and defined
through (2.49), has C* sample paths on RN x (0,1), which satisfy, for all v € Z&, m € Z,
and (u,v,w) € RN x (0,1) x Q,
-1

@10 X ) (w,v,w) = Y (9307 X;) (u, v, w), (2.72)

j=—00

where the series is normally convergent in (u,v) with respect to the uniform semi-norm on
each compact box of RN x (0,1).
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Proof The inequality (2.71) easily results from (2.52), (2.66), (2.67), (2.70) and (2.56).
It clearly follows from (2.71) that, for all v € Zf and m € Z,, the series in the right-hand
side of (2.72) is normally convergent in (u,v) with respect to the uniform semi-norm on
each compact box of RY x (0,1). Then, one can derive from (2.49) that, for every w € Q,

X~ (e,-,w) is a C* function on RY x (0,1) whose partial derivatives of any order are given
by (2.72). m

Proposition 2.14 ForallmeZy, 0>0,0<a<b< 1, andw €}, one has

o’

+o0
@ X5 (0, w)| 0 < +00- (2.73)
7=0

Therefore the SaS stochastic field X, called the high frequency part of the field X and defined
through (2.50), has continuous sample paths on RN x (0,1) which also are, for every fized
u € RY, infinitely differentiable in the variable v € (0,1). Moreover, for each m € Z,
and w € QF, the function (0T X)(e,-,w) is continuous on RY x (0,1) and satisfies, for all
(u,v) € RNV x (0,1),

+oo

@7 X ) (u,v,0) = (O X;) (1, v,w), (2.74)

§=0
where the series is normally convergent in (u,v) with respect to the uniform semi-norm on
each compact box of RN x (0,1).

Proof The inequality (2.73) easily results from (2.52), (2.66), the triangle inequality and
(2.56). It clearly follows from (2.73) that, for all m € Z,, the series in the right-hand side
of (2.74) is normally convergent in (u,v) with respect to the uniform semi-norm on each
compact box of RY x (0,1). Then, one can derive from (2.50) that, for every w € Q,
(u,v) — Xt (u,v,w) is a continuous function on RN x (0,1), which is also, for each fixed
u € RV, infinitely differentiable in the variable v € (0,1), and that, for every m € Z,,
(u,v) = (07X ) (u,v,w) is a continuous function on R x (0, 1) satisfying (2.74). [

Remark 2.15 A straightforward consequence of Proposition 2.1} and the mean value theo-
rem s that, for any fited m € Zy, 0 >0,0<a<b<1 andw €, one has

(a2

sup ’(8;”X+)(u, v, W) — (8?X+)(u,vg,w)| < O(w)|vy —va|, for all (v1,v2) € [a, b)?,
u€[—o,0N

(2.75)

where C' is a positive finite random variable only depending on m, o, a and b.
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The following theorem is a straightforward consequence of Remark 2.8 and Propositions
2.13 and 2.14.

Theorem 2.16 The Sa.S stochastic field X, called the field generating HMSF and defined

through (2.46) or through (1.7) (recall that the two modifications of X provided by (2.46) and

(1.7) are always identified), has continuous sample paths on RY x (0,1) which also are, for

every fized u € RY, infinitely differentiable in the variable v € (0,1). Moreover, for each

m € Zy and w € U, the function (97X )(e,-,w) is continuous on RN x (0,1) and satisfies,
for all (u,v) € RN x (0,1),
+00

(0" X)(u,v,w) = Z (00X ;) (u,v,w) = (05 X ) (u,v,w) + (O X ) (u,v,w), (2.76)
j=—o0

where the series is normally convergent in (u,v) with respect to the uniform semi-norm on

each compact box of RN x (0,1).

Remark 2.17 A straightforward consequence of Theorem 2.16 and the mean value theorem

is that, for any fited m € Z4+, 0>0,0<a <b< 1 and w € QF, one has

o’

sup (07" X) (u, v1,w) — (9" X) (u, vz, w)| < C(w)|vy — o, for all (vy,v2) € [a,b]?,
u€l—o,0V

(2.77)

where C' is a positive finite random variable only depending on m, o, a and b.

Corollary 2.18 A sufficient condition for the HMSF Z = {Z(t),t € RN}, defined through
(1.6), to have almost surely continuous sample paths on R is that the Hurst function H(-)
be continuous on RN. Moreover, when H(-) is discontinuous at some point 7 € RN \ {0},

then, with probability 1, sample paths of Z are discontinuous functions at 7.

Proof In view of (1.6) and Theorem 2.16, it is clear that the continuity of H(-) on RY is
a sufficient condition for having, almost surely, the continuity of sample paths of Z on R¥.
On another hand, when H(-) is discontinuous at some point 7 € R \ {0}, there necessarily
exist two sequences (t/)nen and (t),en in RY such that

lim ¢, = lim ¢/ =7 and H':= lim H(t)) # H":= lim H(t)), (2.78)

n—-+o0o n—-+o0o n—-+o0o n—-+o0o

where H' and H” are in the compact interval [H, H] C (0,1) to which all the values of the
function H(-) belong. Then, one can derive from (1.6), Theorem 2.16 and (2.78) that one

has, almost surely,

lim Z(t,)=X(r,H') and lim Z(t!)= X(r,H"). (2.79)

n—-+o0o n—+o0o
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Moreover, since 7 # 0 and H' # H”, using (1.7), (1.8) and (1.3), it can be shown that the
SaS random variable X (7, H') — X (7, H") has a non-vanishing scale parameter, which implies
that X (7, H') # X (7, H") almost surely. Combining the latter fact with (2.78) and (2.79), it

follows that sample paths of Z are with probability 1 discontinuous functions 7. |

3 Results on path behavior

First, we state the main results of the section and then we give their proofs. In their state-
ments we use the conventions that 0 x (00) = 0 and 0/0 is some bounded quantity which in
fact does not need to be specified any more. All of them are stated in terms of the ¢! norm
lyli == N |y,| on RY and remain valid for any other norm on RY. All of them hold on

the event 27, of probability 1 which was introduced in Lemma 2.6.

Theorem 3.1 (Global modulus of continuity for the field 9;"X)
LetmeZy, 0>0and 0 <a <b<1 bearbitrary and fized, and let Q,qp be as in (2.51).
Then, one has on the event QY of probability 1, for all n > 0,

|05 X) (ut), v1) — (9 X) (ul?), va)]

o (1) _ @)1V gt +rtm O _ @] <o
(W 01),(® 02)€Qp a0 [uD) — u@|] " loga (14 [u® = u®[7) + o1 — e
(3.1)
where v1 V vy := sup{vy, va}.
Corollary 3.2 (Global modulus of continuity for the HMSF 7)
Let I be an arbitrary non-empty fized compact box of RY, and let
H(I) := min H(t). (3.2)

tel
Assume that the continuous Hurst function H(-) satisfies, for some finite constant c,

H(I)

‘H(t(l)) —H(t(Z))‘ < C‘t(l) —t(2)‘1

loga (1+[tW =t 7Y, for all 11, t?) € 12, (3.3)

Then, on the event X}, of probability 1, one has, for all n > 0,

|Z(tW) — Z ()|

H(), 1 —
?( )loga+77 (1 + [t — ¢2)|] 1)

up 3.4
(¢ t@)erz [t — )| (34)

Corollary 3.3 (Pointwise modulus of continuity for the HFSM 7)
Let 7 € RN be an arbitrary fized point. Assume that the continuous Hurst function H(-)
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satisfies, for some finite constant ¢ (which may depend on ) and for all point t of RN in a

neighborhood of T (or equivalently for all t € RY ),
. . H(r) 1 -1
|H(t) — H(r)| < c|t — 7| loga (1+ |t —7[71). (3.5)
Then, on the event 2 of probability 1, one has, for all o >0 and n > 0,

1Z(t) — Z(7)|
sup TTC P o < oo (3.6)
t—rh<e [t — 7|7 loga ™ (1+ [t —7]7")

Theorem 3.4 (Estimate of the asymptotic behavior at infinity of the field 9" X)

Letm € Zy, 0> 0 and0 < a < b < 1 be arbitrary and fized, and let C, := {z € RN |z, > o}.
Then, on the event Q0 of probability 1, one has, for all n > 0,
(07" X) (u, )|

sup ; < +oo. (3.7)
(u,0)€Cox[ab] |ul? loga T (1 + |uly)

Corollary 3.5 (Estimate of the asymptotic behavior at infinity of the HMSF 7)

For any fixed ¢ > 0, let C, be as in Theorem 3.4. Then on the event (X, of probability
1, one has, for alln > 0,
2(1)]

sup < +o0. (3.8)
1€, [t]1 loga (1 + [t1)

Moreover, when the Hurst function H(-) has a (finite) limit at infinity to which it converges

at a logarithmic rate, that is there are two finite constants Ho, € [H, H] C (0,1) and ¢ > 0
such that

|H(t) — Hoo| < c(log (3+ |t|1)>71, for all t € RN, (3.9)

Then, (3.8) can equivalently be reformulated as: on the event QU of probability 1, one has,

for alln >0,
Z(t
sup — ‘ 1( )‘ < +o0. (3.10)
teC, |ty loga (1 + [t]y)

Proof of Theorem 3.1 Let m € Z, be arbitrary and fixed. Recall that, one knows
from Proposition 2.13 that, on the event 2, the random function (9)'X7)(e,) : (u,v)
(0m X ) (u,v) is C* on RY x (0, 1), which clearly implies that (3.1) holds when 0/ X in it is
replaced by 0;" X ~. Thus, in view of (2.48), it is enough to show that (3.1) holds when 9] X
in it is replaced by 9" X .
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Let (u(l), Ul), (u(Q), UQ) € Qya,p be arbitrary, there is no restriction to assume that 0 <
lu(D) — u(2)| < 1 and v; V vy = v1. Using the triangle inequality and (2.75) one gets, on the
event 27, that

\<8mx+>( 0.00) - X))
< @ x) (@, or) = (07X (u®, 01) [ + (07 X7) (), 01) = (07X (u?), )|
| ( @ Ul) ((‘%nX—i_)(u(Q),’Ul)‘ + 01”01 — 'UQ‘, (3.11)
where C is a positive finite random variable not depending on (u(l),vl) and (u(Q),vg). In
view of (3.11) and of the fact that v; V vy = vy, it turns out that for proving that (3.1) holds

when 97X in it is replaced by 97X ™, it is enough to show that, for some positive finite

random variable C5, not depending on (u(l),vl) and (u(Q), Ug), one has on €2},

|(8;”X+)(u(1),vl) _ (8{,”X+)(u(2),v1)] < 02’u(1) _ U(Q)‘Ul 10g§+n+m (1 + ]u(l) _ u(2)’1—1).

(3.12)
Since 0 < |u(!) — u(z)‘ < 1 there is a unique jg € Z, satisfying
9—(o+1) |u(1) _ u(2)|1 < 9o, (3.13)
In other words, jo is the unique non-negative integer such that
log (|u® — w@|7!
jo < 28l ) e (3.14)

log(2)
Next, notice that, using (2.74) and the triangle inequality one has that

(O X ) (uD,vr) = (X T) (u®,01) ] < Rjy (uV,u®v1) + S (ul?,u® 0y),  (3.15)

where .
Jo
Rj, (u(l),u@), v1) = Z ‘(8;”Xj)(u(l), v1) — (831Xj)(u(2),v1)‘ (3.16)
j=0
and N
Sio (u(l),u@),vl) = Z ’(8{,”Xj)(u(1),vl) - (8{,”Xj)(u(2),v1)}. (3.17)
Jj=jo+1

One can derive from (3.16), (2.66), the triangle inequality, (2.69), the inequalities v < b < 1,
(3.13) and (3.14) that

Jo
Rj, (“(1), u(2),v1) < Cg’u(l) - u(z)]1 Z 20=v)(1 4 j)m+é+n

7=0
S (21—b _ 1)_103},“(1) _ u(2)|12(j0+1)(1—v)(1 —|-j0)m+§+77
< Calu® —u®|" loga 1 (14 [ulh —u®| ), (3.18)
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where the positive finite random variables C's and C4 do not depend on (u(l),vl), (u(2), UQ)
and jo. Moreover, it follows from (3.17), (2.66), the triangle inequality, (2.56), the inequalities
1<a<w,(3.13) and (3.14) that

+o0o
o (u® u® vy) <G5 N 2714 jymrat
Jj=jo+1

(o+1) LR Lfp\"tat
< C=2~Vothv 4 m+=+n 9—pa <1 + d )
=05 ( jo) pz:;) 1+ jo

< CG‘U(I) — u(2)‘vl 10g%+77+m (1+ ’u(l) - u(2)’1_1), (3.19)

where the positive finite random variables C3 and Cy do not depend on (u(l),vl), (u(Q), UQ)
and jo. Finally, combining (3.18) and (3.19) with (3.15), one obtains (3.12). [

Proof of Corollary 3.2 Using (1.6) and Theorem 3.1 with m =0, a = H, b = H, a fixed
0 > 1 such that I C [—p, Q]N , and any fixed n > 0, it follows that, for some positive finite

random variable C one has, on the event (27, for all (t(l), t(z)) € I?

|Z((t"V) - Z(t®)) (3.20)
S(h(hu)_t@”fauan@m)k%§+n(1+¢ﬂn__ﬂmH4)+’H(gn)_}{@@U{>

Moreover, since (2Ng)*1|t(1) — t(2)}1 < 1, one can derive from (3.2) that

(1) (2)
‘t(l) e ‘llq(t(l))\/H(t@)) _ (2NQ)H(t(1))\/H(t<2>) ((QNQ)fllt(l) B t(z)‘l)H(t DYV H (t(2))

< (2N)FH (1) @) D), (3.21)
Finally combining (3.20) and (3.21) with (3.3), one obtains (3.4). [ |
Proof of Corollary 3.3 The proof can be done similarly to that of Corollary 3.2. |

Our next goal is to show that Theorem 3.4 holds. In fact this theorem is a straightforward

consequence of the following more technical proposition.

Proposition 3.6 Let \I/ga), 0 € Ty, be the same functions as in Definition 2.2. For each
(m,q) €Z2, j €Z, n>0 and (u,v) € RN x (0,1), one sets

m, . 9—jv S ymA=+
AT (u, v) = 2790 (1 4 [j])mrat (3.22)
x 3@ (20w — kv) — (9905 (<k, )| log? (3 + |K]1).
(6,k)EY . xZN
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A (u,v) Zﬂm’q (3.23)
JEZL

and

v) = ZAZW(u,U). (3.24)
q=0

Then, for each m € Z4 and n > 0, there is a positive finite random variable C', such that, on

the event C17, of probability 1, one has
|0 X)) (u,v)| < CAY (u,v),  for all (u,v) € RN x (0,1). (3.25)

Moreover, for allm € Zy, n >0, 0 >0 and 0 < a < b < 1, the following inequality holds:

At (u,v)
sup < +o0. (3.26)
(u0)ECox[ab] |uly loga+"+m(1 + |ul1)

In order to show that Proposition 3.6 is satisfied, we need the following lemma.

Lemma 3.7 For each (m,q) € Z%_, there is a finite constant ¢ such that, for all n > 0,
(u,v) € RN x (0,1) and j € Z, one has

AT, ) < e P01 4 |G fuly,  when 2July < 1, (3.27)
and
Ay (u,v) < 279 (1 + ]j])m‘*'%r” log% (3+27|ul1), when 2|ul; > 1. (3.28)

Proof Throughout the proof, ¢ € Z, and (u,v) € RY x (0,1) are arbitrary and fixed. First
we show that (3.27) is satisfied. So, let j € Z be arbitrary and such that

2ul; < 1. (3.29)

Using the mean value theorem, one has, for all § € T,, k € Z" and ¢ € Z,, and for some
0 € (0,1),

(0095 (270 — k,v) — (990 (~k, )| < 2uly sup [(9a, OIWEY)(270u — k,v)|. (3.30)

1<n<N

Then, one can derive from (2.17) with L =2, M =1 and T' = 1, and from (3.29) and (3.30)
that
. . N
|(0205) (2w — k,v) — (O35 (—k,v)| < ex2fuly [T (1 + [k]) 2, (3.31)

r=1
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where the finite constant ¢; does not depend on 4, j, k and (u,v). Then, it follows from
(3.22) and (3.31) that (3.27) holds.
Let us now show that (3.28) is satisfied. Similarly to (2.45), it can be shown that

Z ‘(83\I/§a))(2ju — k,v)| log% (3+1kh) < e log% (N +3+2uly), (3.32)
(8,k)EY  xZN

where the finite constant ¢y does not depend on 4, j and (u,v). Then, it results from (3.22),
the triangle inequality and (3.32) (which clearly remains valid when u = 0) that (3.28) holds.
|

Proof of Proposition 3.6 There is no serious difficulty in the proof of the inequality (3.25).
It can be obtained through standard calculations using the first equality in (2.76), (2.66),
(2.55), the triangle inequality, (2.34) with n replaced by 7/2, (2.38), (3.22), (3.23) and (3.24).
From now on, one focuses on the proof of (3.26). Let (u,v) € C, x [a, b] be arbitrary and
fixed, there is no restriction to assume that |u|; > 3. Thus, there exists a unique positive

integer j; such that
21 < July < 2L (3.33)

in other words, —j; — 1 is the largest integer j such that 2/|ul; < 1. Thus, one can derive
from (3.27) and (3.33) that

-5n1—1 m —j1—1 ' )
D0 DAy S elul Yo 20T (14 et
j=—00 q=0 j=—00

+oo ' L
=alul Y 2701y

Jj=Jj1+1

(1+D)(1-0) NSy (§y LEp )T
< epfuf 27 DU 4 gymEatny ComPUE0) (] 4 ,
< eiful (L)Y o

p=0
< coluy 27D (1 4 )mEa T < cglul? loga TTTT(L + [uly), (3.34)
where the finite constants c¢i,...,c3 do not depend on (u,v) and j;. On another hand, it
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results from (3.28) and (3.33) that

Z Zﬂm’q (u,v) < ¢4 Z 2770 (1 + |])™ a7 log2 (3 + 27|ul,)
J==j19=0 J==n
J1 ) )
= Z2j“(1 + )" at log? (34277 |uly)
j=1
J1
2Pcqul’ Z 9~ t1=d)v(q 4 j>m+§+n log% (3 4 271+1)
j=1
J1 ) )
_ 2bC4‘u|U 22—jv(2 + 1 — §)" At logs (3 + 2j)
j=1

“+oo
2cylul®(1 + jl)m+é+n Z g—Ja log% (3+27)
j=1
< cslul? loga ™™ (1 + |uly), (3.35)

where the finite constants ¢4 and ¢5 do not depend on (u,v) and j;. Also, it follows from
(3.28), (3.33) and the inequality log? (3+27ufy) < log? (3+27) + log? (3 + [ul1), that

+oo m +oo ' L L ' L

SN AT u,v) < ey 2771+ 5)" et logz (3+ 2Jult) < erlogz (3+ ul), (3.36)
J=0¢=0 3=0

where the finite constants c¢g and ¢7 do not depend on (u,v) and j;. Finally, putting together
(3.24), (3.23), (3.34), (3.35) and (3.36), one obtains (3.26). [ |

Proof of Corollary 3.5 The inequality (3.8) is a straightforward consequence of (1.6) and
of Theorem 3.4 with m = 0, a = H and b = H. Let us show that the two inequalities
(3.8) and (3.10) are equivalent when the condition (3.9) holds. There is no restriction to
assume that 0 > 1. Then, for any t € C,, using the inequalities [t|; > o0 > 1 and the equality

\t\ = |t|; (H(=Hoo)tHoo " 16 obtains that

—|H(t)—Hoo|\ [, Hoo H(t H(t)—Hoo -
(It O =Dl < e < (O Dol (3:37)
Moreover, one can derive from the condition (3.9) and the inequality log(|t|1) > 0, that

log([¢}h) )) > >0 (3.38)

)~Hool . <_ - ) (‘ log(3 + [t]1)
; log([t|1)|H (t) — Hoo|) >
| |1 exp 0g(| |1)| () ’ = Xp cllog(?) |t|1

and

|H(t)—Hoo| log([t]1)
t = 1 t|)|H(t) — Heol | < — = ) < 400, .
[t]} exp( og(|t])|H (t) |) < exp (Cllog(?) |t|1)) <c3 < (3.39)
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where the positive finite constant ¢; denotes the constant ¢ in (3.9), and the two positive
finite constants co and c3 do not depend on ¢t. Combining (3.37) with (3.38) and (3.39), it
follows that, for any fixed n > 0, and for all ¢ € C,,

1 H 1 1
calt 1= loga (1 + |t]1) < [ti D loga (1 + [t)1) < ealt| = loga+(1 + [¢]1),

which shows that the two inequalities (3.8) and (3.10) are equivalent when the condition (3.9)
holds. |

4 Study of optimality of results on path behavior

It seems natural to wonder whether the results on sample path behavior of the HMSF Z,
provided by Corollaries 3.2, 3.3 and 3.5 of the previous section, are optimal. Studying this
issue is the main goal of the present section. First we state the main results of the section,
and then we give their proofs. All of them are stated in terms of the ¢! norm |y|; := SN |y,

on RY and remain valid for any other norm on RY.

Theorem 4.1 For any fized (i,7) € RN x (0,1), there exists an event Qa’a C ¥, of proba-
bility 1, which depends on o and u but not on v, such that, on ﬁa,ﬂ; one has

lim sup — = +00. (4.1)
wsi |u— 1§ loge (1+ u—aly")

Recall that, for any arbitrary real-valued function f defined on RN\ {u},

limsup f(u) := gl—i>r(r)l+ (sup{f(u), we RN\ {u} and | —ul, < Q}) (4.2)

U—U

The following corollary shows that the pointwise modulus of continuity for HMSF at an
arbitrary point 7 € R satisfying the condition (3.5), provided by Corollary 3.3, is optimal

on an event of probability 1 depending on 7.

Corollary 4.2 For any fived 7 € RN satisfying the condition (3.5), there exists an event
ﬁa,T C ¥, of probability 1, which depends on o and T such that, on QCM, one has
1Z(t) - Z(7)]

lim sup = +o0. (4.3)
= [t — 7 loga (14 [t — 771

The following corollary shows, under the additional weak condition (4.4), that the global
modulus of continuity for HMSF on an arbitrary compact box of RY, provided by Corollary
3.2, is optimal.
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Corollary 4.3 Let I be an arbitrary non-empty compact box of RY, and let H(I) be as in
(3.2). The topological interior of I is denoted by IO, and one assumes that there exists some
point 70 ¢ I such that

H(rOY = H(I) := min H (t). (4.4)

Also, one assumes that the condition (3.3) holds. Then, one has almost surely,
|Z(t(1)) _ Z(t(2))‘

sup = +o00. (4.5)
(i @)erz |t — 1@ [H D 1oga (14 1t — 1))

Theorem 4.4 There exists a universal event Qq C QF of probability 1, which does not depend

on U, such that, on Qu, one has, for all 7 € (0,1),

X(u,v
lim sup —— | Eu U)‘ = +00. (4.6)
oo [uff log (1 + [uly)

Recall that, for any arbitrary real-valued function f defined on RN \ {0},

limsup f(u) := glim (sup{f(u), u e RY and |u|y > Q}) (4.7)

|ul1—+o00 —+oo

The following corollary shows that the bound for the behavior at infinity of HMSF,
provided by (3.10) in Corollary 3.5, is optimal when the Hurst function H(-) satisfies a bit

stronger condition than the one in (3.9).

Corollary 4.5 Assume that there are three finite constants Hy, € [H, H], 0o > 0 and ¢ > 0
such that

17
|H(t) — Hoo| gc(log (3+|t\1)) ! , forallt € RN, (4.8)
Then, on the event Qo of probability 1, introduced in Theorem 4.4, one has
Z(t
lim sup 1Z(2)] = +o0. (4.9)

o0 [t log (14 [t]1)
Remark 4.6 Assume that the condition (3.5) is satisfied for all T € RN, which is, for
instance, clearly the case when H(-) is a locally Lipschitz function on RN. Then, in view
of (1.1), Corollaries 3.3 and 4.2 imply that (1.4) remains valid when the MBF Zy in it is
replaced by an HMSF Z with an arbitrary parameter o € (0,2). Notice that Corollary 3.3
further implies that P(VT eRYN, py(r) > H(T)) =1, since the event S0}, of probability 1, on
which (3.6) is valid, does not depend on 7. Thus, for proving that (1.5) keeps valid when Zs
i it is replaced by Z, which is one of the main motivations of our article, it remains to show
that

P(Vr e RN, pz(1) < H(1)) = 1. (4.10)

The latter equality will be a consequence of the corollary of the following theorem.
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Theorem 4.7 There exists a universal event ﬁa C ¥, of probability 1, which does not depend
on (w,v), such that, on ﬁa, one has, for all (w,v) € RN x (0,1),

lim sup | X (u,0) — X(@,0)]

u— lu — ﬁ!?

>c(w) >0, (4.11)
where ¢ (V) is a positive finite deterministic constant which depends on v but not on u.

The following corollary shows that the pointwise modulus of continuity for HMSF at an
arbitrary point 7 € RY satisfying a bit stronger condition than (3.5), provided by Corollary
3.3, is quasi-optimal (that is optimal up to a logarithmic factor) on the universal event (AZQ

of probability 1 which does not depend on 7.

Corollary 4.8 Let ﬁa be the same universal event of probability 1 as in Theorem 4.7. Then,
for all point T € RN satisfying the condition

o [HO = H()

—0, (4.12)
t—T ‘t _ T|{I(T)

which is a bit stronger than the condition (3.5), one has on Qo

Z(t) — Z(7)]
lim ‘— >¢(H(T)) >0, (4.13)
ST | — T‘{J(T)
where ¢ (H(T)) is the positive finite deterministic constant ¢ (v ), introduced in Theorem 4.7,

with ¥ = H(7).

Remark 4.9 Notice that Corollary 4.8 is a strictly stronger result than the one mentioned
in (4.10), under the assumption that the Hurst function H(-) is a locally Lipschitz function
on RN Indeed, under the latter assumption, or more generally when H(-) is a locally Hélder
function on RN of any arbitrary order v € (H, 1], recall that H := sup,cgn H(t) < 1, then
the condition (4.12) is satisfied by all point T € RN thus (4.10) results from Corollary 4.8
and (1.1).

From now on, our goal is to prove the main results of the section that we have stated.

To this end, we need to introduce the functions \TJ((;&), 6 € Ty, and to derive some lemmas

related to them.

Definition 4.10 Let ‘liga), 0 € Ty, be the functions which were introduced in Definition 2.2.
The real-valued C*° functions \IJ((S&), €Y, on RN xR are defined, for all (x,v) € RN x R,

as

~ A ot N~
B e, 0) 1= 2m) MU om0~ 2V/0) = ) [T Gy, (414)
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Remark 4.11 One knows from (2.17) that there is a finite constant ¢ such that
N N
!qlga)(x H (1+|z)"", forall (5,z,v) € T x RN x [0,1]. (4.15)

Also, one knows from (4.14), (2.5) and a basic property of Fourier transform and inverse
o~ N o
Fourier transform on the Schwartz space S(RY), that / e % \I/fsa) (x,v)dx = \{];Jr > 1hs(8),
RN
for all ¢ € RN and v € R, and consequently that

/ \I/((;a) (x,v)dx =0, forallveR. (4.16)
RN

Moreover, similarly to Part (i) of Proposition 5.13 [1], using (2.10), (4.14), Plancherel
Theorem and the fact that the Meyer wavelets 5k, (0,7,k) € Yy X Z x ZN | defined in
(2.1), are orthonormal, it can be shown that, for all v € R, (6,5,k) € Yu x Z x ZN and
(0,5 k) € Yo x Z x ZN,

17 Zf (57j7 k) = (5/7‘7/? k/))

4.17
0, else. ( )

2J'N/ T 2y — ke, 0) U (27w — K 0) du = {
]RN

The following proposition provides a nice Lebesgue integral expression for the SaS random
variables agcz.)k, (6,7,k) € Yo x Z x ZV, introduced in (2.18).

Proposition 4.12 On the event Q, of probability 1, one has, for all (3,7,k) € Yy x Z x ZN
and v € (0,1),
55;0;)k — 9/(N+v) / \T/((;O‘)(qu — k,v) X (u,v) du. (4.18)
1J RN
Proof Let (6,7,k) € T x Z x ZN, v € (0,1) and w € Q, be arbitrary and fixed. Observe
that, in view of (4.15), the continuity on RY of the function u \nga)@ju — k,0) X (u,v,w)
and Theorem 3.4, the Lebesgue integral in (4.18) is well-defined and finite. Next, for each
u € RN and n € N, let X,,(u,v) be the same random variable as in (2.20). Observe that, in
view of (4.17) and (4.16), for proving the lemma it is enough to show that
/]RN (Iv/((sa)(qu —k,v)X(u,v,w)du = lim \Ilga)(?u —k,v) X (u,v,w) du. (4.19)

n——+oo RN

The equality (4.19) can be obtained by using the Lebesgue dominated convergence Theorem,

since one knows from Proposition 2.7 that

X(u,v,w) = lim X,(u,v,w),

n—-4o0o
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and one knows from (4.15) and Proposition 3.6 with m = 0, that the function u ‘\T/ga) (27u—
kyv) X (u, v,w)‘ can be bounded from above, uniformly in n € N, by a positive function not

depending on n, which is Lebesgue integrable over RY in the variable . |

The following proposition, which will be one of the two main ingredients of the proof of
Theorem 4.1, provides a lower bound for the limsup in (4.1) in terms of some of the random
: (o)
variables € Sk
Proposition 4.13 For any fized (u,v) € RN x (0,1), there is a positive finite deterministic
constant c(v), only depending on v, such that on the event QU of probability 1, one has, for
all § € T,

(a) ,~| ~ o~

lim sup M < ¢(v) limsup — , (4.20)
jotoo (14 j)a usi |u— [} loga (1+ |u—al;t)
where
L2]ﬂJ = (L2jﬁlJ7 T szaNJ)a (421)

Recall that | -| is the integer part function and that, for any sequence (wj)jez, of real numbers,

limsupw,; := lim (supw 4.22
s J_>+OO(]>J i) (4.22)

For proving Proposition 4.13, we need the following lemma.

Lemma 4.14 The real numbers 0 < a < b < 1 and the non-empty compact I' C RN are
arbitrary and fized. For all w € Q) and § € Y., one has

sup {92/ ’X(u+ 9_2y,v,w)"\ff§a)(y,v)’dy, (0,u,v) € [1,+00) x I x [a, b]} < 400.
{lyl1>6}
(4.23)

Proof Letw € QF, d € Y., a non-empty compact I’ C RY and two real numbers 0 < a <
b < 1 be arbitrary and fixed. Observe that, one knows from the continuity on RY x [a, b]
of the function X (e, ,w), Theorem 3.4 with m = 0, and (2.38), that there exists a positive
finite random variable Cy, such that, for all (z,v) € RN x [a, ],
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Thus, setting Ca(w) := C1(w) (1 + sup,cp |u\OO)N < 400, one obtains that

N
| X (u+07%y,v,w)| < Ca(w) H(l +ye]), for all (y,0,u,v) € RN x [1,400) x I' x [a, b].

r=1
Then, it results from (4.15) and the inequality N|y|- > |y|1 that
N

/ !X(Wr9_2y,v,w)!!‘f’§a)(yw)!dySCs(w)/ [T+ )2 dy
{lyl1 >0} {Nyloo>0} 7.1
N—1 [Tt
< 2N03(w)(/(1 + )3 dr) / (1+ )3 ds < Cu(w) 072, (4.24)
R 0/N

where C5 and Cy are two positive finite random variables not depending on (6, u,v). It clearly
follows from (4.24) that (4.23) holds. [

Proof of Proposition 4.13 First observe that, using (4.18), the change of y = 2/u — [ 271
and (4.16), one has on the event €2, for all j € Z,

oy =7 [ H ) (XCIE 28 - XD (49
Also observe that, one can easily derives from (4.21) that
279293 — |, < N279, forall j € Z4, (4.26)

which implies, for all j € Z,, that 277 |2/u] € I' := {z eERVN, |z —al; < N}. Since I’ is a
non-empty compact subset of RY not depending on j, using the triangle inequality, Lemma
4.14, the fact that sup,cp | X (2,7 )| < 400 (which results from the continuity property of the
field X') and (4.15), one gets on €27, for some positive finite random variable C and for every
Jj € Z4, that

/ | }E/g@(y,a)\‘x(zﬂpjm + 277y, 7) —X(Z*jp]’ﬂj,'ﬁ)’dyg(]ﬂ*j.
{lyl1>29/2}
Then, it results from (4.25) that on €}, one has, for all j € Z,

el <27 [ B DX 27 ) = X (12,5)|ay

Iyl <27/2}
+ 279079, (4.27)

In order to conveniently bound the integral in the right-hand side of (4.27), one introduces,

on (2}, the positive non-decreasing random function M%XE), defined for each ¢ € (0,400), as

X(z,v) — X(u,v
M({?(@) — Sup{ |~5(Z,vl) (u,v)}~ L 0<|z—] gg}, (4.28)
|z —ul{log= (1+|Z_U|1 )
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Then, setting co := N + 1, one can derive from the triangle inequality, (4.28) and (4.26), that
on QF, one has, for all j € Z; and y € RY satisfying |y|; < 2//2,

27V

X (27927 + 277y, 7) - X (277277, 3)|

< 21"”“(‘)((23' |27 + 277y, ) — X (,7)

+ ‘X(Tj 127%1),7) — X (@)

)

§2JUM1(~L7;5)(022 ]/2)<‘2 Ty +277(27u) — || log= (1+|2 Ty+277 |24 — 1l )
+ 277|274 — ul| log= (1+\2 T2u] —ul; )) (4.29)

< (14 5)a MYY (227972 <]y + 23] — 27| logw (3 + |y + [27a) — 2ja]1‘1) + cg),

where the positive finite constant ¢z := sup ]wﬁlogé (3+ |w]1_1). Moreover, setting
w1 <3N
cq = C3/ }\nga)(y,i)’ dy < 400, (4.30)
RN

and using (4.26), one has, for every j € Z,, that
/ )y + (27 - 27 ogw (34 |y + [27a) - 27, ) dy
{lyh<27/2}
~(a - . 1 1 . c =1
< / |\I/((s )(y,v)Hy+ |274] — 274 log= <3+ ly+ [27u] — 274, )dy
{lyli<2N}
- / )y + 127) - 270 0gw (3 + |y + [27) — 27, ) dy
{2N<|y1<29/2}
T (o ~ 1 1 . o —1
<o +/ ) (il + N 107 (3 (yh — |127) — 273,) ) dy
{2N<|y<29/2}
T (o ~ v 1 _
<ci= +/ ‘\I/g )(y,v)|(\y|1 + N)"loga (3 +2[yl;!) dy < +oc. (4.31)
{2N<[yl1}

Next, let cg be the positive finite constant, not depending on j, defined as cg := c5 + c4.
Then, it follows from (4.27), (4.29), (4.30) and (4.31), that, on £}, one has, for all j € Z,,

|E(0{) . | . . ~
m < cg Mq(jXE)(CQQﬂ/Z) + 01273(171])(1 +j)7é7
+j)e ’

which implies that
(@)
Ex?oimi] .
lim supM < ¢ lim M»(;%)(cﬂ_]m). (4.32)
j=too (14 j)a j—=too
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Finally, in view of (4.2) and (4.28), one clearly has that

. X 7”" _ X ~’~
T M) (e27972) = timsup — D) = X@T]
j—+oo ’ u—t  |u—ulyloge (1+ \“*ﬁlfl)

Thus, (4.32) shows that (4.20) holds on Q. [

The second main ingredient of the proof of Theorem 4.1 is the following proposition. On

other hand, this proposition is also a major ingredient of the proof of Theorem 4.4.

Proposition 4.15 Let (kj)jen be an arbitrary sequence of elements of ZN . One has almost
surely, for all § € T,
(o) | ’5(04) |
. ; . 5,—3k;
limsup ——+ =400 and limsup —— = +o0. (4.33)
' Jtee (14 4)F
For proving this proposition, we need the following remark.

Remark 4.16 Let 6 € Y, be arbitrary and fized. One knows from Part (i) of Remark
1.1 and (2.12) that the SaS real-valued random wvariables agi?k, (j,k) € Z x ZVN, defined
in (2.18), are identically distributed and that the common value of their scale parameter is
05 := (Jan s (n)|® dn)l/a > 0. Thus, one can derive from (1.2.10) on page 17 in [22],
that there are two universal constants 0 < ¢, < ¢l < 400, only depending on «, such that,

for every (8,7,k) € Ty x Z x ZN, one has
& dslaa™ <Pl > ) < i lldsllGa™, forallx € [1,+00).  (4.34)

On another hand, denoting by Z. (resp. Z,) the set of the even (resp. odd) integers, one
knows from Part (it) of Remark 1.1, (2.12), (2.4) and (2.3), that for any given integer m > 2,

and any distinct integers j1, jo, - - - , jm belonging to Z. (resp. Z,), the m sequences of random

variables {55,j17k}(5,k)€Y*><ZN7 {Eé,jz,k}(a,k)er*xzm REE {56,jm,k}(5,k)er*sz are independent.

Proof of Proposition 4.15 We only show that the first equality in (4.33) holds, the
second equality in it can be obtained in the same way. Let N, be the set of the positive even
integers. One knows from Remark 4.16, that for any given 6 € Y., {&s,,}jen, is a sequence
of independent and identically distributed real-valued SaS random variables. Thus, using the
second part of the Borel-Cantelli Lemma, it is turns out that for proving the first equality in
(4.33), it is enough to show that

p RER .
S Pl > (14 )7 loga (1 + 7)) = +oc. (4.35)
j€ENe
The equality (4.35) easily follows from the first inequality in (4.34). |
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We are now in position to prove Theorem 4.1 and its two corollaries.

Proof of Theorem 4.1 Using (4.20) and the first equality in (4.33) with k; = |27a], for
all 7 € N, one obtains (4.1). [

Proof of Corollary 4.2 It follows from (1.6) and the triangle inequality that, on the event
Q7 of probability 1,

. 1Z(t) = Z(7)]

lim su )
tosT P |t — |H(T logé (1 + |t — T|1_1) (4.36)

. Xt HE) - X HO)| Xt H( ) — X(t, H())|

< 1 sup 1m sup

e T T

loga (1+]t—7)7Y) o1 t—rFDloga (14|t —[7")
Moreover, one can derive from (3.5) and Remark 2.77 with m =0, 9 = |7|oc + 1, a = H and
b= H that, on Q,

s X H ) = X HE)
im sup

< +o0. (4.37)
t—T \t—7'|1 loga (1—Ht—7'|1 )

Finally, putting together (4.36), (4.1) with uw = 7 and v = H(7), and (4.37), one obtains the

corollary. [

Proof of Corollary 4.3 Using (4.4) and the fact that 7(9) belongs to the topological interior
of the box I, one gets that

\Z(t(l)) - Z(t@))‘ ‘Z Z(T(O))]
sup > lim sup

(@ erz [t1) — t(2)|1ﬂ(1) loge (1+ [tM) —t@[7Y) ~ mr@ [t — 7O Dloga (1+ |t —7O71)
Thus, Corollary 4.3 results from Corollary 4.2. |

Our next goal is to show that Theorem 4.4 and its corollary hold. We already mentioned
that Proposition 4.15 is a major ingredient of the proof of Theorem 4.4. The other major

ingredient of it is the following result.

Proposition 4.17 One denotes by (0) the vector of ZN whose coordinates are all equal to
0, that is (0) := (0,0,...,0) € ZN. For any fivzed v € (0,1), there exists a positive finite
deterministic constant ¢'(v), only depending on v, such that on the event XY of probability
1, one has, for all 6 € YT,

(@) ’ |

e
limsupM<c( ) limsu (1 )’
jotoo (14 j)a uli—+oo |ul? loga (1 + |uls )

(4.38)
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Proof First observe that, it easily follows from (4.18) that one has on the event 2, for all

JEN,
50y < Wi (B) + W (7). (4.39)
where
w&j(a);zg—jv/ U (g, ) || X (2, 7) | dy (4.40)
{lyl1<2-3/2}
and
Wy =2 [ R0 [X () dy (141
{lyli>2-9/2}

Let us now show that, for any fixed n > 0, there is a positive finite random variable C'1, such

that on 2}, the following inequality holds:
W (T) < C12799/2 jatn for all j € N. (4.42)
Observe that, one knows from the continuity on RY of the function X (e,7,w) (where w € Q,
is arbitrary and fixed), and Theorem 3.4 with m = 0, that, for some positive finite random
variable C, one has on (2},
| X (u,?)| < Co(1+ ]u\?) logé“’(S +|uly), for all u € RV,
Thus, for all j € N and y € RY satisfying |y|; < 279/2, one gets that
X (27y,7)| < 2 277/2 loga (3 + 27/%),
Then, (4.40) implies, for all j € N, that
Ws(@) < (2C2 /R (. 5)| dy )27 log et (3 4 27/2), (4.43)

Observe that, one knows from (4.15) that the integral in the right-hand side of the inequality
(4.43) is finite. Therefore, it results from the latter inequality that (4.42) is satisfied.

In order to conveniently bound \7\75’ (), one introduces, on 7, the positive non-increasing
random function JT/[%X), defined for each p € (0, +00), as

_ X (2.7
M§X><g>:=sup{ _[X(z0) ,|z|1z@}. (1.44)
|z} loga (1 + |z|1)

Then, it results from (4.41) and (4.44) that, on 2, one has, for all j € N,
~ - ~ . _iv ~(a - - 1 .
Wi () < MY (29/2)277 / 5y, 7)]|27y| Y tog (1+ \zﬂy\l) d
{lyl>277/2}
< @M (@7)(1+ j)w, (4.45)

where the deterministic finite constant ¢/(v) := / ‘\Il(a) (v, 0)|lyl} loga (3+1yh)d
R
Finally, in view of (4.7), putting together (4.39), (4.42) and (4.45), one obtains (4.38). W
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We are now ready to prove Theorem 4.4 and its corollary.

Proof of Theorem 4.4 Using (4.38) and the second equality in (4.33) with k; = (0), for
all j € N, one obtains (4.6). [ |

Proof of Corollary 4.5 It follows from (1.6) and the triangle inequality that, on the event
Q7 of probability 1,

Z(t X(t,H
msup —VZOL 5y X0 )
th=rtoo 117 log (14 [t1) ~ lth—rtoo 117 log (1 + [t)

— limsup 7 T .
[th—+oo  [t]7° loga (1 + |t]1)

Moreover, one knows from Theorem 4.4, that on the event €, C Q7 of probability 1, one has

[ X (%, Hoo)|

lim sup = +o00.
[tl—-+oo [£|T7> Toga (1 + [t]1)

Thus, it turns out that, for proving (4.9), it is enough to show that the following equality
holds on the event 27, of probability 1:

lim sup = 0. (4.46)
thstoo [t loga (1 4 [t]1)

Let us fix an arbitrary ¢+ € RY such that [¢t|; > 1. Since the random function v > X (t,v) is

C® on the interval (0, 1) (see Theorem 2.16), one can use the mean value theorem to get that
X (6, H(1) — X (1, Hoo) = (9uX) (0, ) (H (1) — Hoo), (4.47)

where v is such that 0 < H < min{H (t), Hy} < v < max{H(t), Hx} < H < 1, which entails
that )
e
v — Hao| < |H(t) — Ha| §01<10g (3+ml)) , (4.48)

where the last inequality follows from (4.8); notice that the finite constant ¢; does not depend
on t. Next one recalls that, one knows from Theorem 3.4 with m = 1, n = 17/2, 0 = 1,
a = H and b = H, that, there is a positive finite random variable Cy such that, on Q} one

has
1(0,X) (u,v)| < Colul{logat 511 + [ul1), for all (u,v) € C x [H, H],

which, in particular, implies that
{(&,X)(t, 1/)‘ < Cg|t|ll’logé+7%°“(1 + |th). (4.49)
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Observe that, using the inequalities [t|; > 1 and (4.48), one gets that

- Heot|v—Hyo -
[ty = [¢[Hoem Hootv < g oot ol — g e oxpy (|v — Hoo| log(Jt]1))
< [t exp (c1log 7™ (3 + [t]1)) < exp(er)|t] . (4.50)

Thus, setting C3 := Cy exp(c1), one can derive from (4.49) and (4.50) that
|(0:X) (¢, )] < Csltl™ loge " F+1(1 + [t).

Then (4.47) and the second inequality in (4.48) imply that, on QF, for all ¢ € RY with
[t > 1.

|X (L H (1) — X(t, Hoo)| < exColt|{ loga =5 (1 + Jt]y). (4.51)
One can derive from (4.51), that for every real number o > 1,

Noo

, teRYand |t]; > g} < c1Cylog™ 2 (1+ o). (4.52)

" { | X(t, H(t)) — X (t, Ho)|
[t]57 log® (1 + |th)

Thus, in view of (4.7), letting p in (4.52) go to +o00, one obtains (4.46). [

Our next and final goal is to show that Theorem 4.7 and its corollary hold. The following
two propositions are the two main ingredients of the proof of Theorem 4.7. We skip the proof

of the first one of them since it is very similar to that of Proposition 4.13.

Proposition 4.18 For any fized (u,v) € RN x (0,1), there is a positive finite deterministic
constant ¢'(v), only depending on v, such that on the event Y, of probability 1, one has, for
all § € Ty,

(@)

limsup ey .~ | < (V) limsup
Jj—+o0 851274 u—u lu —u |1

(4.53)

Proposition 4.19 There exist a universal event ﬁa C QF of probability 1 (not depending
on u) and a universal deterministic strictly positive finite constant ¢y (not depending on u),
such that on ﬁa, one has, for all 6 € Y, and u € RY,

lim sup ‘efﬁlyﬂ” >co > 0. (4.54)
J—+too
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Proof First, recall that one knows from Remark 4.16 that the real-valued SaS random
variables ||1Z(5 151 5((;0;) o (0,5, k) € Ty xZx ZN | are identically distributed and that the common
value of their scale parameter is equal to 1. Thus, since mingey, ||¢s5]la > 0 and the common
probability distribution of these random variables is absolutely continuous with respect to
the Lebesgue measure on R, for any given arbitrarily small real number 6 € (0,1), there

exists a finite constant ¢o(6) > 0 such that
P(lef),| <@(0)) <0, forall (6,j,k) € Y. x Z x ZV. (4.55)

Having made this first remark, in the sequel, for any integer m € Z, one denotes by (m)
the vector of Z"V whose coordinates are all equal to m. Observe the collection of the cubes
[0, 0+ (1)) := ny:l[ﬁr, 0. +1), £ € ZN, forms a partition of RY. Since this collection of cubes
is countable, it is enough to show that the proposition holds for all u € [¢,¢ 4 (1)), where
¢ € ZN is arbitrary and fixed. In the sequel, for avoiding heavy notations, one assumes that
this fixed ¢ is equal to (0); the proof can be done in the same way for any other fixed ¢. For
all level j € Z,, and k € K; :={0,--- ,29 — 1}, one denotes by I; ;. the dyadic cube of level
j defined as I, := [277k, 277 (k+(1))) == Hivzl [277ky,277 (k4 1)). Observe that, for every
J € Zy, one has Iy N 1 = ) when k' # k", and that

(0), ) = {J Lin-

kEKj

Also observe that being given such a cube I; 1, for all level j' € {0, ..., j}, there exists a unique
k' =k'(j,k,j') € Xj, which depends on j, k and j', such that I;; C I js; moreover when
k = |27%], for any fixed % € [(0), (1)), then &’ = |27'%]. Having made these observations, let
us denote by Z, . the set of the non-negative even integers and, for any given j € Z, . and
k € K3;, let us denote by As; ;. the finite set of cardinality j + 1 defined as

A3j,k = {(j/,k/) < Z—i—,e X ZN, j < j/ < 3j, k/ S g(:j/ andfgj,k C Ij’,k’}; (4.56)

notice that, thanks to our previous observations, it results from (4.56) that, for every j € Z,

and u € [(0), (1)), the set Ag; 93i5] can be expressed as
Agjomim = {7, [27T]), j' € Zye and j < j' < 35} (4.57)
For each 6 € Ty, j € Z4 . and k € K3;, one defines the event @gj’k as

= () {5 pl <O}, (4.58)
(37K )EA3 &
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where ¢p() > 0 is the same constant as in (4.55). Notice that, in view of (4.56) and our
previous observations, there are no two distinct elements (ji, k}) and (j3, k%) of As;x which
are such that ji = j5 and k] # k. Thus, one knows from Remark 4.16 that the random
variables 6((53-),7]6,, (4',K") € Aszjj, are independent. Then one derive from (4.58), (4.55) and
the fact that j + 1 is the cardinality of As;, that, for all 6 € Yy, j € Z4 . and k € K3;,

P(03;,) < 6711 (4.59)

Next, for every j € Z ., let ©3; be the event defined as

= U U 94 (4.60)

0€Y s keXs;

Since Y, = {1,...,2Y — 1} and K3; = {0,...8 — 1}V, it results from (4.60) and (4.59) that,
for all j € Z4 .,

P(O3) < > Y P(O%,) <02V —1)(8Vo). (4.61)
0€T k:Engj

Since, 6 € (0,1) can be arbitrarily small, one can assume that it is chosen so that 8V6 < 1.
Then, it results from (4.61) that

Z P(@gj) < Ho00.
JE€ZL4 e
Therefore, Borel-Cantelli Lemma entails that the probability of the event
N U ey
JEZ+,5 jEZJﬁe,jZJ
is equal to 0, and consequently that the probability of the opposite event

U (| ©s (4.62)

JE€lye jEL4 e, j>J

is equal to 1. Notice that ©3; is the opposite event to ©3;. Thus, using (4.60) and (4.58),
one gets that

05, = { inf sup E(fl.), > (0 } 163
J (0,k)ET .« xK3; (G k') EAs; x | 8,5k | ( ) ( )

Moreover, it follows from (4.57) that, for all j € Z4 . and @ € [(0), (1)),

sup ]5(”, wl = sup{]&t(S . L2]/~J‘ j' €Zi. and j < j <3j5}. (4.64)
(j':k/)€A3j,\_23juj

42



Then, using the fact that [2%%]| € K3, for all j € Z; . and u € [(0), (1)), one can derive
from (4.62), (4.63) and (4.64), that on the event © of probability 1 (which does not depend
on § and @), (4.54) holds, for every § € Y, and w € [(0), (1)).

As we already mentioned, at the beginning of the proof, similarly to what we have done in
the case where ¢ = (0), in the general case where ¢ € Z is arbitrary and fixed, by replacing
set K; by the set 274 + K; := {270 + k, k € K}, it can be shown that there exists an event
0 of probability 1 (which does not depend on § and u), such that (4.54) holds on @(Z), for
every € T, and u € [¢,¢ + (1)), and with the same strictly positive deterministic constant
¢p as in the case ¢ = (0).

Finally, letting Qa be the event of probability 1 defined as

Qo =00 ( N 8Y),

LezZN
with @(0) = O, one obtains the proposition. |
We are now in position to prove Theorem 4.7 and its corollary.

Proof of Theorem 4.7 This theorem is a straightforward consequence of Propositions 4.18
and 4.19 |

Proof of Corollary 4.8 It follows from (1.6) and the triangle inequality that, on the event
QF of probability 1,

hI;(lj;lp W (4.65)
1

. \X(tH(T)) X(r,H(r))| L | X(t, H(t)) — X(t, H(r))|

L e B

Moreover, one can derive from (4.12) and Remark 2.77 with m =0, o = |T|c + 1, a = H and

b= H that, on 0},
i \X(t, H(t)) — X(t, H(T))\
1m sup (o)

t=r It =7l

— 0. (4.66)

Finally, putting together (4.65), (4.11) with w = 7 and v = H(7), and (4.66), one obtains the

corollary. [
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5 Appendix

This section is devoted to the proof of Lemma 2.6. To this end, we need some preliminary
results. Let us point out that throughout the section the fixed real numbers o € (0,2) and
n > 0 are the same as in the statement of Lemma 2.6.

The following lemma can be obtained by using hyperspherical coordinates on RY and

classical calculations without serious difficulties, this is why we skip its proof.
Lemma 5.1 For each arbitrary and fixed integer N > 1 and real number n > 0, one sets

%;ZfN:L

by, = an (N=2 n -1 (5.1)
’ n / -k .
— || sin” 6.df L if N > 2,
Am <k:1 0 )

with the convention that a product over the empty set is equal to 1. Let ¢, be the non-negative

function on RN defined as ¢n(0) := 0 and, more importantly, as

0n(©) = b lels ™ (14 [loge|) . Jor all € € BN\ {0}, (5.2)

Then, one has that f]RN ¢n(§) d§ = 1, which means that ¢, is a probability density function
on RV,

The following lemma provides a random LePage series representation for the complex-valued

a-stable stochastic process

() _ / @) T }
=la — ‘ dM,, , 5.3
{ 5»Juk}(§,j,k)EY*XZ><ZN { RN w‘s’%k(é) (5) (8,7,k)ET s XZXZN ( )

which is very closely related to the real-valued SasS stochastic process {5 é?)k} (6,5,k) €T XZXIN
defined through (2.18). The proof of the lemma has been omitted since it is rather similar to

that of Theorem 4.2 in [16].

Lemma 5.2 Let (")) men, (Dm)men and (gm)men be three mutually independent sequences
of random wvariables, defined on the same probability space, and satisfying the following three

properties.

1. The k™) ’s, m € N, are RN -valued, independent and identically distributed with the
probability density function ¢, defined in (5.2).
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2. Thel,,’s, m € N, are Poisson arrival times with unit rate; in other words there is a se-
quence (En)nen of independent and identically distributed exponential random variables

with parameter equals to 1 such that, for all m € N,
m
Tm=Y_ &n. (5.4)
n=1

3. The gm’s, m € N, are complex-valued, independent and identically distributed with a

centered and rotationally invariant Gaussian distribution satisfying E( ]f)‘ie(gl)|a) =1

Q=

Let the positive finite constant aq 1= ( 0+°° T %sinx dx)i . Then, one has that

~(a)
5,5,k
IF ) (5,5,k)ETw X ZXTN

+oo T -
(d) -1 m Ta NMa m
2o 3 T wom [ ] I ,
m=1 (6,5,k)EY« XZxZN
(5.5)

where "=" means equality of all finite-dimensional distributions. Also, notice that the random

—
=

series in the right-hand side of (5.5) are almost surely convergent.

Remark 5.3 From now on, the stochastic process {gfi,cz‘),k}(é,j,k)eT*xeZN’ defined in (5.3),
will completely be identified to the one in the right-hand side of the equality in distribution

(5.5).

Remark 5.4 There exist four strictly positive and finite random variables C1,...,Cy such

that one has almost surely

lgm| < C4 log%(B +m), forallm €N, (5.6)
En < Cylog(2+4n), foralln eN, (5.7)

and
Csm <T,, <Cym, forallm e N. (5.8)

Notice that the inequality (5.6) follows from e.g. Lemma 1 in [5], the inequality (5.7) is
borrowed from Remark 2.10 in [6], and the inequality (5.7) can easily be derived from (5.4)

and the strong law of large numbers.

Lemma 5.5 Let Ko be the same compact subset of RN as in (2.5) and, for every j € 7Z,
let ( ﬁf))neN be the sequence of the independent and identically distributed Bernoulli random

variables defined, for alln € N, as
BY) = 1, (2—%(’”) . (5.9)

45



Then, one has, for every (n,8,7,k) € Nx YT, x Z x ZV,

{8 (5] ™% B ()| < (14 131) = 758, (5.10)

where the deterministic positive finite constant o, is defined as

Uy = max sup [¢n(€ wé 5.11
wn e 0eY £eko K ‘ ‘ ( )

Proof one can derive from (5.2), (2.12), the inclusion in (2.5), (5.9), the triangle inequality
and (5.11), that, for every (n,d,j,k) € N x T, x Z x ZV,

— & | Ligio .
“%(“(n))] % k( )‘ <bys |2 Iz (1 + |7l +‘10g|2_]’€(n)\2\) n‘%(?_jﬂ(”))’ﬁg)

< (14 ) [z 0K (32RO B < s 1+ 15175

which shows that (5.10) is satisfied. [

We are now in position to prove Lemma 2.6 when a € (0, 1).

Proof of Lemma 2.6 when «a € (0,1) In view of (2.18), (5.3) and Remark 5.3, one has,
almost surely for all (6,4, k) € Ty x Z x ZV,

‘%Jk} S ‘55,3 Kl < aa Z I1ma X gm\’ Gy (k™))"= w(j? (k(m))]. (5.12)

Then, one can derive from (5.12), (5.6), the first inequality in (5.8) and (5.10), that, for some

positive finite random variable C not depending on (d, 7, k), almost surely,

+oo
N 1.1
‘sgog)k} < Ci(1+|j])° nz m~a log2 (3 4+ m). (5.13)
m=1
Then, noticing that
= 1 1
Z m~ o log2(3+4+m) < +o0, when a € (0,1), (5.14)
m=1

it results from (5.13) that the inequality (2.34) holds when « € (0, 1), since one then has
la] =0. [ ]
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Having proved Lemma 2.6 when « € (0,1), from now on, we focus on its proof in the case
where a € [1,2), we mention in passing that a major difficulty in the latter case is that the
series in (5.14) fails to be convergent.

First, we need to introduce some additional notations. For all m € N, the real-valued,
centered and identically distributed Gaussian random variables go., and g1,,m, m € N, are
defined as

gom = Re(gm), g1,m = Tm(gm). (5.15)
(6 ,J k)

Moreover, for every (6, ,k,m) € Ty x Z x Z¥ x N, the real-valued random variables Ao,

and )\g%k) are defined as

8,5,k m ,Lﬁ 5.k - . *iﬁ
A = el [0y ()] 7= (ntm) L, AP = am [ (50)] 72 0, () |
(5.16)
Then, one clearly has that

—a @)
%e{ gm | dn(5)| DL 5) } = A g0, = A0 g1, (5.17)

and one can derive from (2.18), (5.3) and Remark 5.3, that, for every (8,7,k) € T, x Z x Z,

foo . .
5((502)k = mg(gﬁoj‘)k) = Qa Z L'm® (Aé(,;q’?]{k)go,m - qu}]{k)gl,m)’ (5.18)
m=1

where the random series is almost surely convergent, since the random series in the right-
hand side of (5.5) have this convergence property. Next, for all (m,l) € N x {0,1} and
(8,7,k) € Ty x Z x ZN, one sets

m

O30 Z b3k g (5.19)

(5% )

The following lemma, which provides the first upper bound for S , is a straightforward

consequence of (5.16), Lemma 5.5, (5.19), (5.6) and (5.15).

Lemma 5.6 Using the same notations as in (5.16), Lemma 5.5 and (5.19), one has,
for all (n,1,6,5,k) € N x {0,1} x Ty, x Z x ZV,

NS < prag (1 + 1) 189). (5.20)

Moreover, there exists a positive finite random variable C', such that, one has almost surely,
for every (m,1,6,5,k) € N x {0,1} x T, x Z x ZN,

5298 < C'(1+ |j))= "B log? (3 + m), (5.21)
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where, for each (j,m) € Z x N, the binomial random variable B%) is defined as

m

By =>" Y. (5.22)

n=1

S((S:j:k)

The following lemma, which provides the second upper bound for S}

, can be proved

by following the main lines of the proof of Lemma 2.8 in [6]; we skip its proof.

Lemma 5.7 There exists a positive finite random variable C" such that, one has almost
surely, for all (m,1,0,7,k) € Nx {0,1} x T, x Z x ZV,

[SI9] < (14 15) 5 B og (3.4 111+ [kl + m). (5.23)

Also, we skip the proofs of the two following lemmas since they can be done in almost

the same ways as those of Lemmas 2.11 and 2.12 in [6].
Lemma 5.8 For all (1,6,7,k) € {0,1} x T, x Z x ZVN, the random series

. B T | ;
D DN (s A R (524

m=1

1s almost surely absolutely convergent. Moreover, letting a., be the same deterministic finite

constant as in Lemma 5.2, one has almost surely, for every (6,j,k) € Ty x Z x ZN,

’,

a 5.k 5.,k
e = aa (X = x(). (5.25)

Lemma 5.9 For each j € Z, the probability p; € (0,1), which in fact corresponds to the

value of the parameter of the Bernoulli random variable in (5.9), is given by
pj =P (2*1,-;(1) c ICO) . (5.26)

Since ez pj < +00, the binomial random variables BY, (j,m) € Z x N, defined in (5.22),
satisfy the following property: for any fized real number 6 € (1/2,1), there is a positive finite

random variable Cy such that one has, almost surely,
BY < ¢y (pym + me), for all (j,m) € Z x N. (5.27)

We are now in position to prove Lemma 2.6 when « € [1,2).
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Proof of Lemma 2.6 when « € [1,2) First one shows that the inequality (2.34) is satisfied.

One knows from (5.4) and the inequality (2.25) in [6] (whose proof relies on (5.4), (5.7)
and (5.8)) that there is a positive finite random variable C, such that, one has almost surely,
for all m € N,

1

_1 _1
0<Tpe =T, < Cym~ (a7 log(3 4+ m). (5.28)

Since 1 > 1/a > 1/2, one can choose 6y such that
6o € (1/2,1) and 1/ac+1— 6y > 1. (5.29)

For each j € Z, let M, and M; be the two non-empty disjoint sets which form a partition
of N, and which are defined as

M;= {meN, pijmﬁo} and M;= {meN, pjm<m00} (5.30)

Observe that

me M; = p;m+m% < 2p;m
{ ’ ! T (5.31)

m Gﬂj — pjm—l—m9° < 2m%

Since N = M; U M, one knows from Lemma 5.8 and the triangle inequality that almost
surely, for all (6, 4,k) € {0,1} x Ty x Z x ZN,

1
SRS 31 (5 DI W B LA EE SNt k1l ) R CE )
=0 meM,; memj

Observe that, (5.28), (5.23), (2.38), (5.27) with 6 = 6y, and the first inequality in (5.31)
imply almost surely, for all (1,4, 4, k) € {0,1} x T, x Z x Z~, that

S (Tt =TS0

TTLEMj
<C’2(1+\]\ \/log (3+[4] + k) Z m~ (5T 1og3 (3 + m)\/ BY
mEMj
<03(1+\j\ \/pjlog (3+ 14|+ |kh) Z m~(&+2) 10 %(3+m)
mEM]‘
<Ci(1+7l)° \/pg log (3 + [4] + [k[1), (5.33)

where Cy and C5 are two positive finite random variables not depending on (I, 4, j, k), and

+1), 2
2

Cy —C’me at2) log2(3 4+ m) < +o0.
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Also observe that, one can derive from (5.28), (5.21), (5.27) with § = 6y, the second inequality
in (5.31), (5.29) and the fact that

= 1 3
Z m~1"a % 1og2 (3 4+ m) < +o0,
m=1

that one has almost surely, for all (1,4, 7, k) € {0,1} x T, x Z x ZN,
& 1w 8.5,k L
> (Tt ~Ts)lsi Pl < Cs(i+ iD=, (5.34)
meﬂj
where the positive finite random variable C5 does not depend on (I, 9, j, k). Next, combining
(5.33) and (5.34) with (5.32), one obtains, almost surely, for all (§,7,k) € YT, x Z x ZV | that

1
67l < Co(1+13)= ™" <1 + \/pj log (3 + |j] + Ikll)), (5.35)

where the positive finite random variable Cs does not depend on (4,7, k). Moreover, one
knows from (5.26) that p; € (0,1), for every j € Z. Thus, (5.35) shows that the inequality
(2.34) holds when « € [1,2) i.e. when |«o] = 1.

Let us now prove that, under the condition (2.35), the inequality (2.36) is satisfied. So,

from now on, one restricts to arbitrary j € Z, and k € Z" satisfying this condition, which
entails that
log (3 +j + |k|1) <log ((4+ N9)27) < (j + 1) log(4 + NV). (5.36)

Moreover, using (5.26), the equality in (2.5) and the fact that the probability density function
of the random variable £(1) is the function ¢, defined in (5.2), one get that

_ —1l—an
b=ty [ 16 (1 foglela]) e
21 Ko
2+l N 2+ \\ T .
ng,n< 3”) <1+10g< 3”)) An (20K0)

< by v (Ko) (log(2) " (2 +4) T, (5.37)

where 27K is the compact subset of RV such that 27K := {Qj z, z € ICO}, and Ay denotes

the Lebesgue measure on RYV. Next, let the positive finite deterministic constant

cr = by An(Ko) (10g(2)) " log(4 + N9).

Then, it clearly follows from (5.36) and (5.37) that, for all j € Z, and k € Z" satisfying the
condition (2.35), one has

pjlog (347 + k) < er.
Therefore, one can derive from (5.35) that the inequality (2.36) holds, for all § € T, and for
any such j and k. |
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