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Abstract

Since about three decades, there is an increasing interest in study of multifractional

processes/fields. The paradigmatic example of them is Multifractional Brownian Field

(MBF) over RN , which is a Gaussian generalization with varying Hurst parameter (the

Hurst function) of the well-known Fractional Brownian Motion (FBM). Harmonizable

Multifractional Stable Field (HMSF) is a very natural (and maybe the most natural)

extension of MBF to the framework of heavy-tailed Symmetric α-Stable (SαS) distribu-

tions. Many methods related with Gaussian fields fail to work in such a non-Gaussian

framework, this is what makes study of HMSF to be difficult. In our article we construct

wavelet type random series representations for the SαS stochastic field generating HMSF

and for related fields. Then, under weakened versions of the usual Hölder condition on

the Hurst function, we obtain sharp results on sample path behavior of HMSF: optimal

global and pointwise moduli of continuity, quasi-optimal pointwise modulus of continuity

on a universal event of probability 1 not depending on the location, and an estimate of

the behavior at infinity which is optimal when the Hurst function has a limit at infinity

to which it converges at a logarithmic rate.

Key Words: Heavy-tailed stable distributions, varying Hurst parameter, wavelet random series,

moduli of continuity, sample path roughness.
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1 Introduction and background

All the random variables considered in this paper are defined on a same probability space Ω

which is assumed to be complete. Multifractional stochastic processes/fields (see e.g. [21, 7,

17, 23, 24, 25, 15, 8, 9, 10, 3, 18, 1, 19]) are extensions of the well-known Fractional Brownian

Motion (FBM) (see e.g. the two books [14, 22]) whose local sample paths roughness are

allowed to change form point to point. More precisely, in contrast with FBM, the pointwise

Hölder exponent of multifractional process/field can take different values at different points.

Recall that, for a generic real-valued stochastic field Y = {Y (t), t ∈ RN} with continuous

and nowhere differentiable sample paths on RN (N ∈ N being arbitrary), their roughness in

a neighborhood of any arbitrary fixed point τ ∈ RN is usually measured through ρY (τ), the

pointwise Hölder exponent of Y at τ defined as

ρY (τ) := sup

{
a ∈ [0, 1] : lim sup

t→τ

|Y (t)− Y (τ)|
|t− τ |a

< +∞
}

; (1.1)

for any given ω ∈ Ω, the closer to zero is ρY (τ, ω), the rougher is the sample path t 7→ Y (t, ω)

in the vicinity of τ .

In the present article we focus on the real-valued Harmonizable Multifractional Stable

Field (HMSF) Z = {Z(t), t ∈ RN} whose finite-dimensional distributions are Symmetric

α-Stable (SαS), for any arbitrary and fixed α ∈ (0, 2). Apart of the constant deterministic

stability parameter α, the field Z depends on a deterministic functional parameter denoted

by H(·) and called the Hurst function, since it basically plays a similar role to that of the

constant Hurst parameter of FBM; throughout the article (except in Corollary 2.18), the

function H(·) is assumed to be continuous on RN and with real values in an arbitrary fixed

compact interval [H,H ] ⊂ (0, 1). The field Z is defined as

Z(t) := Re
(∫

RN

eit·ξ − 1

|ξ|H(t)+N
α

2

dM̃α(ξ)
)
, for all t ∈ RN , (1.2)

where t · ξ is the usual inner product of t and ξ, |ξ|2 is the Euclidean norm of ξ, and M̃α

is a complex-valued rotationally invariant α-stable random measure with control measure

the Lebesgue measure λN on RN . A detailed presentation of such a random measure and

the corresponding stable stochastic integral and related topics can for instance be found

in Chapter 6 of the book [22]. The following remark, which provides two very important

properties of this stochastic integral, will play a fundamental role in our article.

Remark 1.1 (i) The stable stochastic integral
∫
RN
(
·
)
dM̃α is a linear map on the Lebesgue

space Lα(RN ) such that, for any deterministic function g ∈ Lα(RN ), the real part
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Re
( ∫

RN g(ξ) dM̃α(ξ)
)

is a real-valued Symmetric α-Stable (SαS) random variable with

a scale parameter satisfying

σ
(
Re
(∫

RN
g(ξ) dM̃α(ξ)

))α
=

∫
RN

∣∣g(ξ)
∣∣α dξ. (1.3)

We recall in passing that an arbitrary real-valued random variable Y is said to be SαS

with scale parameter σ(Y ) ≥ 0, when the value of its characteristic function, at any

y ∈ R, is equal to exp
(
−σ(Y )α|y|α

)
; except in the very special case σ(Y ) = 0 in which

Y vanishes almost surely, in the generic case σ(Y ) > 0 the characteristic function of

Y is Lebesgue integrable on R, which implies that Y has a bounded probability density

function. Even if the absolute moment of order γ of Y is infinite when γ ≥ α, the scale

parameter plays a role which is basically similar to that of a standard deviation.

Thus, the equality (1.3) is reminiscent of the classical isometry property of stochastic

Wiener integrals; it implies, among many other things, that Re
( ∫

RN gn(ξ) dM̃α(ξ)
)

converges to

Re
( ∫

RN g(ξ) dM̃α(ξ)
)

in probability, when a sequence (gn)n converges to g in Lα(R).

(ii) Let m ∈ N be arbitrary and let f1, . . . , fm be arbitrary functions of Lα(RN ) whose

supports are disjoint up to Lebesgue negligible sets, then the real-valued SαS random

variables

Re
( ∫

RN f1(ξ) dM̃α(ξ)
)
, . . . ,Re

( ∫
RN fm(ξ) dM̃α(ξ)

)
are independent.

In the very particular Gaussian case α = 2, the HMSF in (1.2) reduces to the Multifrac-

tional Brownian Field (MBF), that we denote by Z2 = {Z2(t), t ∈ RN}, which was initially

introduced in [7] and which is the paradigmatic example of a multifractional field. Thus, the

HMSF is a very natural (and maybe the most natural) extension of the MBF to the frame-

work of heavy-tailed SαS distributions. When H(·) is a smooth enough Hölder function, an

important result of [7] is that, for all τ ∈ RN , the pointwise Hölder exponent of the MBF Z2

equals H(τ), on an event of probability 1 which a priori depends on τ , in other words one

has

∀ τ ∈ RN , P
(
ρZ2(τ) = H(τ)

)
= 1. (1.4)

Later, under a similar smoothness condition on H(·), the article [4] was able to obtain a

significantly stronger result: the equality between ρZ2(τ) and H(τ) holds on a universal

event of probability 1 which does not depend on τ , that is

P
(
∀ τ ∈ RN , ρZ2(τ) = H(τ)

)
= 1. (1.5)
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As far as we know, in the non-Gaussian framework α ∈ (0, 2), the HMSF Z in (1.2), or

slightly different variants of it, has already been considered in two articles in the literature:

the paper [13] which restricts its study to the case N = 1 and α ∈ (1, 2), and the paper [11]

which introduces a large class of harmonizable multi-operator scaling stable random fields

including the HMSF Z. Theorem 4.6 in [11], which was obtained by using LePage random

series expansion for such a random field, and Corollary 4.8 in [11] imply, when H(·) is a locally

Lipschitz function, that, on any non-empty compact box T :=
∏N
l=1[µl, νl] of RN , sample

paths of Z are almost surely Hölder continuous functions of any order γ < mint∈T H(t).

In the case N = 1 and α ∈ (1, 2), Theorem 2.5 in [13], which was also obtained thanks

to LePage random series and by assuming that H(·) is a Hölder continuous function on

T of order strictly larger than maxt∈T H(t), provides a more precise uniform modulus of

continuity for Z which shows that, on any non-empty compact interval T := [µ1, ν1] of R,

sample paths of Z are, almost surely, Hölder continuous functions of order mint∈T H(t), up to

a logarithmic factor raised to the power 1/α+1/2+η, where η > 0 is arbitrarily small. Also, we

mention that Corollary 4.10 in [11], which provides results on pointwise Hölder exponents and

directional pointwise Hölder exponents of harmonizable multi-operator scaling stable random

fields, implies that (1.4) keeps valid when the MBF Z2 is replaced by an HMSF Z with an

arbitrary stability parameter α ∈ (0, 2) and a locally Lipschitz Hurst function parameter

H(·). Yet, the question to know whether or not the significantly stronger result (1.5) keeps

valid in the same situation has remained open. One of the motivation for our article is to give

a positive answer to this question under a pointwise Hölder regularity assumption on H(·).
Another motivation for it is to obtain optimal uniform and pointwise moduli of continuity

for Z, under weaker assumptions on H(·) than those in [11, 13]; the power of the logarithmic

factor in these moduli of continuity is 1/α+ η, which is better than the power 1/α+ 1/2 + η

earlier obtained in [13]. A third motivation for our article is to derive an almost sure estimate

for the asymptotic behavior of Z at infinity, and to show that this estimate is optimal when

the function H(·) has a limit at infinity to which it converges at a logarithmic rate; there is

no need that the rate of convergence be faster than the very slow logarithmic rate.

Our study of the HMSF Z = {Z(t), t ∈ RN}, defined in (1.2), makes an extensive use

of wavelet methods, and relies on a useful classical point of view on multifractional pro-

cesses/fields, which consists in expressing them in terms of more general stochastic fields

indexed by the couple (u, v) ∈ RN × (0, 1), the two variables u (which corresponds to t) and

v (which somehow corresponds to H(t)) being a priori not related. Thus, we express the

HMSF Z = {Z(t), t ∈ RN} as

Z(t) = X(t,H(t)), for all t ∈ RN , (1.6)

4



where the SαS stochastic field X =
{
X(u, v), (u, v) ∈ RN × (0, 1)

}
, which is called the field

generating HMSF, is defined as

X(u, v) := Re
(∫

RN
Fα(u, v, ξ) dM̃α(ξ)

)
, for all (u, v) ∈ RN × (0, 1). (1.7)

The kernel function Fα is given by Fα(u, v, 0) := 0 for all (u, v) ∈ RN × (0, 1), and, more

importantly, by

Fα(u, v, ξ) :=
eiu·ξ − 1

|ξ|v+N
α

2

, for all (u, v) ∈ RN × (0, 1) and ξ ∈ RN \ {0}. (1.8)

Let us emphasize that many properties of the HMSF Z are strongly influenced by those of

the field X which is very closely related to Z through the equality (1.6).

The remaining of our article is organized as follows. In Section 2, we introduce wavelet

type random series representations for the field X and related fields, which mainly allow us to

show that sample paths of X are continuous on RN × (0, 1) and infinitely differentiable with

respect to the variable v, and that sample paths of ∂mv X share the same continuity property,

for any given m ∈ Z+ (notice that ∂0
vX = X). In Section 3, mainly, we obtain, for all m ∈ Z,

a global modulus of continuity for the field ∂mv X on any arbitrary non-empty compact box

of RN × (0, 1), as well as an estimate of the asymptotic behavior at infinity of ∂mv X with

respect to the variable u, and uniformly in the variable v restricted to any compact interval

of (0, 1); also, under some conditions on H(·), we obtain the counterparts for the HMSF Z of

these two results, as well as a pointwise modulus of continuity for Z. Section 4 is devoted to

study of optimality of results of the previous section. Among other things, under the same

global Hölder condition on H(·) as in the previous section and a weak additional condition,

it shows that the global modulus of continuity for Z is optimal, and that this is also the case

for the estimate of the asymptotic behavior of Z at infinity, provided that its Hurst function

has a limit at infinity to which it converges at a logarithmic rate. In addition, under the same

pointwise Hölder condition on H(·), at an arbitrary given point τ ∈ RN , as in the previous

section, Section 4 shows that the pointwise modulus of continuity for Z at τ ∈ RN is optimal

on an event of probability 1 which depends on τ , and also that it is quasi-optimal (optimal

up to a logarithmic factor) on a universal event of probability 1 not depending on τ , provided

that H(·) satisfies a bit stronger pointwise Hölder condition at τ . A consequence of the latter

result is that (1.5) keeps valid when the MBF Z2 is replaced by an HMSF Z with an arbitrary

stability parameter α ∈ (0, 2) and an arbitrary continuous Hurst function parameter H(·)
satisfying the latter pointwise Hölder condition at any τ ∈ RN . Section 5 is the Appendix

which is devoted to the long proof of a crucial lemma which plays a fundamental role in our

article.

5



2 Wavelet type random series representations for the field X

and related fields

In this section we show that, for any fixed (u, v) ∈ RN × (0, 1), the kernel function ξ 7→
Fα(u, v, ξ) defined in (1.8) can be expanded, with convergence in Lα(RN ), on a sequence of

functions issued from Meyer wavelets. Then, thanks to the ”isometry property” of stable

stochastic integral (see Part (i) of Remark 1.1), we obtain wavelet type random series repre-

sentations for the field X and related fields. Moreover, we show that these series are almost

surely absolutely convergent, and even better: they are almost surely normally convergent in

(u, v) with respect to the uniform semi-norm on any non-empty compact box of RN × (0, 1).

One of the consequences of the latter result and of (1.6) is that the HMSF Z has, almost

surely continuous sample paths on RN as soon as the Hurst function H(·) is continuous on

RN .

First, we introduce the main ingredients which allow to construct the wavelet type random

series representations for the field X and related fields.

Let Υ∗ := {1, . . . , 2N − 1}, the sequence of functions
(
ψδ,j,k

)
(δ,j,k)∈Υ∗×Z×ZN , belonging

to the Schwartz space S(RN ), denotes an orthonormal Meyer wavelet basis of the Hilbert

space L2(RN ); one mentions in passing that two well-known references on wavelet bases and

wavelet theory are the two books [20, 12]. Recall that, each real-valued wavelet function

ψδ,j,k is a dilated and translated version of the mother wavelet ψδ, that is,

ψδ,j,k(x) := 2j
N
2 ψδ(2

jx− k), for all x ∈ RN ; (2.1)

its Fourier transform ψ̂δ,j,k, defined as

ψ̂δ,j,k(ξ) := (2π)−
N
2

∫
RN

e−iξ·xψδ,j,k(x) dx, for every ξ ∈ RN ,

belongs to S(RN ), similarly to ψδ,j,k itself, and, in view of (2.1), it is given by

ψ̂δ,j,k(ξ) = 2−j
N
2 e−i(2−jk)·ξ ψ̂δ

(
2−jξ

)
, for all ξ ∈ RN . (2.2)

Also, recall that, for all (δ, j, k) ∈ Υ∗×Z×ZN , the C∞ function ψ̂δ,j,k is compactly supported

such that

supp(ψ̂δ,j,k) ⊆ Kj , (2.3)

where Kj is the compact subset of RN defined as

Kj :=
[
− 2j+3π

3
,
2j+3π

3

]N
\
(
− 2j+1π

3
,
2j+1π

3

)N
. (2.4)
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In particular, one has, for all δ ∈ Υ∗,

supp(ψ̂δ) ⊆ K0 :=
[
− 8π

3
,
8π

3

]N
\
(
− 2π

3
,
2π

3

)N
. (2.5)

Our next goal is to show that, for any fixed (u, v) ∈ RN × (0, 1), the kernel function

Fα(u, v, ·) can be expanded, with convergence in Lα(RN ), on the sequence of functions(
ψ̂δ,j,k

)
(δ,j,k)∈Υ∗×Z×ZN . One mentions that the value of anyone of the functions ψ̂δ,j,k, at

any ξ ∈ RN , is ψ̂δ,j,k(ξ) = ψ̂δ,j,k(−ξ), the conjugate of the complex number ψ̂δ,j,k(ξ). Also,

one mentions that, for each α ∈ (0, 2], the space Lα(RN ) is equipped with the usual metric

∆α for which it is a complete metric space; setting β(α) := min{1, α} this metric ∆α can

then be defined in the following concise way:

∆α(g1; g2) =
(∫

RN

∣∣g1(ξ)− g2(ξ)
∣∣α dξ)β(α)α

, for all g1, g2 ∈ Lα(RN ). (2.6)

Proposition 2.1 Let (Dn)n∈N be an arbitrary ascending sequence (that is Dn ⊂ Dn+1, for

every n ∈ N) of non-empty finite subsets of Z× ZN whose union is Z× ZN (i.e. Z× ZN =⋃
n∈NDn). For all (u, v, ξ) ∈ RN × (0, 1)× RN , one sets

S(α)
n (u, v, ξ) :=

∑
δ∈Υ∗

∑
(j,k)∈Dn

〈
Fα(u, v, ·), ψ̂δ,j,k

〉
ψ̂δ,j,k(ξ), (2.7)

where〈
Fα(u, v, ·), ψ̂δ,j,k

〉
:=

∫
RN

Fα(u, v, ξ)ψ̂δ,j,k(ξ) dξ = 2−j
N
2

∫
RN

eiu·ξ − 1

|ξ|v+N
α

2

e−ik·(2−jξ)ψ̂δ
(
2−jξ

)
dξ;

(2.8)

we note in passing that the last equality in (2.8) follows from (1.8) and (2.2). Then, for any

arbitrary and fixed (u, v) ∈ RN × (0, 1), one has

S(α)
n (u, v, ·) Lα(RN )−−−−−→

n→+∞
Fα(u, v, ·). (2.9)

For proving Proposition 2.1 and for later purposes, we need to express S
(α)
n in a convenient

way. To this end, we have to introduce some new functions.

Definition 2.2 For each δ ∈ Υ∗, one denotes by Ψ
(α)
δ the real-valued function on RN × R

defined as

Ψ
(α)
δ (x, v) :=

∫
RN

eix·η

|η|v+N
α

2

ψ̂δ(η) dη, for all (x, v) ∈ RN × R; (2.10)
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notice that Ψ
(α)
δ is well-defined thanks to (2.5) and to the fact that ψ̂δ ∈ S(RN ). For every

(δ, j, k) ∈ Υ∗ × Z× ZN , one denotes by ψ
(α)
δ,j,k the real-valued function on RN defined as

ψ
(α)
δ,j,k(x) = 2jN

(
1− 1

α

)
ψδ
(
2jx− k

)
, for all x ∈ RN . (2.11)

Observe that the Fourier transform of ψ
(α)
δ,j,k is given by

ψ̂
(α)
δ,j,k(ξ) = 2−j

N
α e−i(2−jk)·ξ ψ̂δ

(
2−jξ

)
, for all ξ ∈ RN . (2.12)

Remark 2.3 In view of (2.10), setting in (2.8) η = 2−jξ, we obtain, for all (δ, j, k) ∈
Υ∗ × Z× ZN and (u, v) ∈ RN × R, that〈

Fα(u, v, ·), ψ̂δ,j,k
〉

= 2j(
N
2
−N
α
−v)

[
Ψ

(α)
δ

(
2ju− k, v

)
−Ψ

(α)
δ (−k, v)

]
. (2.13)

Then, combining (2.2) and (2.12) with (2.13), we get, for all ξ ∈ RN , that〈
Fα(u, v, ·), ψ̂δ,j,k

〉
ψ̂δ,j,k(ξ) = 2−jv

[
Ψ

(α)
δ

(
2ju− k, v

)
−Ψ

(α)
δ (−k, v)

]
ψ̂

(α)
δ,j,k(ξ). (2.14)

The equality (2.14) allows to express S
(α)
n , defined in (2.7), in terms of the functions Ψ

(α)
δ and

ψ̂
(α)
δ,j,k. We point out that these functions have nice properties: the integral

∫
RN

∣∣ψ̂(α)
δ,j,k(ξ)

∣∣αdξ
does not depend on (j, k), since (2.12) clearly entails that∫

RN

∣∣ψ̂(α)
δ,j,k(ξ)

∣∣αdξ =

∫
RN

∣∣ψ̂δ(ξ)∣∣αdξ, for all (δ, j, k) ∈ Υ∗ × Z× ZN . (2.15)

Moreover, one knows from Propositions 5.10 and 5.11 in the book [1] that:

Lemma 2.4 ([1]) For every δ ∈ Υ∗, the function Ψ
(α)
δ , defined in (2.10), is infinitely dif-

ferentiable on RN ×R and, for all γ := (γ1, · · · , γN ) ∈ ZN+ and m ∈ Z+, its partial derivative

∂γx∂mv Ψ
(α)
δ :=

∂γ1+...+γN+m Ψ
(α)
δ

(∂x1)γ1 ···(∂xN )γN (∂v)m , x1, . . . , xN being the coordinates of the variable x, is given

by

(∂γx∂
m
v Ψ

(α)
δ )(x, v) =

∫
RN

eix·η(iη)γ
(− log |η|2)m

|η|v+N
α

2

ψ̂δ(η) dη, for all (x, v) ∈ RN × R, (2.16)

with the convention that (iη)γ :=
∏N
r=1(iηr)

γr , for each η = (η1, · · · , ηN ) ∈ RN . Moreover,

the function ∂γx∂mv Ψ
(α)
δ is well-localized in the variable x ∈ RN , uniformly in the variable

v restricted to any arbitrary non-empty compact interval of R; namely, for every fixed real

numbers L ≥ 0, M > 0 and T ≥ 0, one has

sup

{
N∏
r=1

(
1 + T + |xr|

)L∣∣(∂γx∂mv Ψ
(α)
δ )(x, v)

∣∣, (u, v) ∈ RN × [−M,M ]

}
< +∞. (2.17)
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Before proving Proposition 2.1, let us emphasize that a straightforward consequence of it,

of the equality (2.14) and of the ”isometry property” of stable stochastic integral (see Part

(i) of Remark 1.1) is the following important result, which provides a wavelet type random

series representation for the field X.

Theorem 2.5 We use the same notations as in Definition 2.2. Let (ε
(α)
δ,j,k)(δ,j,k)∈Υ∗×Z×ZN be

the sequence of the SαS random variables defined as

ε
(α)
δ,j,k := Re

(∫
RN

ψ̂
(α)
δ,j,k(ξ)dM̃α(ξ)

)
, for all (δ, j, k) ∈ Υ∗ × Z× ZN . (2.18)

Then, the SαS stochastic field X, which was introduced in (1.7), can be expressed, for all

fixed (u, v) ∈ RN × (0, 1), as

X(u, v) =
∑

(δ,j,k)∈Υ∗×Z×ZN
2−jv

[
Ψ

(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

]
ε

(α)
δ,j,k, (2.19)

where the random series is convergent in probability, for any choice of the sequence of its

partial sums. More precisely, for any arbitrary ascending sequence (Dn)n∈N of non-empty

finite subsets of Z× ZN whose union is Z× ZN , the random variable

Xn(u, v) :=
∑
δ∈Υ∗

∑
(j,k)∈Dn

2−jv
[
Ψ

(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

]
ε

(α)
δ,j,k (2.20)

converges in probability to X(u, v).

Let us now prove Proposition 2.1.

Proof of Proposition 2.1 Throughout the proof (u, v) ∈ RN × (0, 1) is arbitrary and fixed.

First step: We show that the sequence (Sαn (u, v, ·))n∈N, defined in (2.7) (see also (2.14)),

converges in the complete metric space Lα(RN ), equipped with the metric ∆α (see (2.6)), to

some function denoted by F̃α(u, v, ·). To this end, it is enough to show that (Sαn (u, v, ·))n∈N
is a Cauchy sequence in this complete metric space. The latter result can be obtained by

proving that∑
δ∈Υ∗

∑
(j,k)∈Z×ZN

∆α

(
2−jv

[
Ψ

(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

]
ψ̂

(α)
δ,j,k(·); 0

)
< +∞. (2.21)

Indeed, for all (n, p) ∈ N2, (2.7), (2.14), (2.6), the inclusion Dn ⊂ Dn+p and the triangle

inequality imply that

∆α

(
Sαn+p(u, v, ·);Sαn (u, v, ·)

)
(2.22)

≤
∑
δ∈Υ∗

∑
(j,k)∈(Z×ZN )\Dn

∆α

(
2−jv

[
Ψ

(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

]
ψ̂

(α)
δ,j,k(·); 0

)
.
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Moreover, (2.21) and the fact that the ascending sequence (Dn)n∈N satisfies
⋃
n∈NDn =

Z × ZN , entail that the sum in the right-hand side of (2.22) converges to 0 when n goes

to +∞. Let us now prove that (2.21) holds. It follows from (2.6) and (2.15) that, for all

(δ, j, k) ∈ Υ∗ × ZN × Z, one has

∆α

(
2−jv

[
Ψ

(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

]
ψ̂

(α)
δ,j,k(·); 0

)
= 2−jvβ(α)

∣∣Ψ(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

∣∣β(α)
∆α

(
ψ̂δ; 0

)
.

(2.23)

Let us provide an appropriate upper bound for
∣∣Ψ(α)

δ (2ju − k, v) − Ψ
(α)
δ (−k, v)

∣∣β(α)
. We set

|u|∞ := max1≤r≤N |ur|. When j < 0, using the mean value theorem, the triangle inequality

and (2.17) with M = 1 and T = |u|∞, and denoting by ∂xr the partial derivative operator of

order 1 with respect to the rth coordinate of the variable x of the function Ψ
(α)
δ (see (2.10)),

we obtain that∣∣Ψ(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

∣∣β(α)

≤ 2jβ(α)|u|β(α)
∞

N∑
r=1

max
s∈[−|u|∞,|u|∞]N

∣∣(∂xrΨ(α)
δ )(2js− k, v)

∣∣β(α)

≤ c12jβ(α) max
s∈[−|u|∞,|u|∞]N

N∏
r=1

(1 + |u|∞ + |2jsr − kr|)−Lβ(α) (2.24)

≤ c12jβ(α) max
s∈[−|u|∞,|u|∞]N

N∏
r=1

(1 + |u|∞ − |2−jsr|+ |kr|)−Lβ(α) ≤ c12jβ(α)
N∏
r=1

(1 + |kr|)−Lβ(α),

where the finite constant c1 does not depend on (δ, j, k). When, j ≥ 0, using the triangle

inequality and (2.17) with M = 1 and T = 0, we get that∣∣Ψ(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

∣∣β(α) ≤
∣∣Ψ(α)

δ (2ju− k, v)
∣∣β(α)

+
∣∣Ψ(α)

δ (−k, v)
∣∣β(α)

≤ c2

( N∏
r=1

(1 + |2jur − kr|)−Lβ(α) +

N∏
r=1

(1 + |kr|)−Lβ(α)
)
, (2.25)

where the finite constant c2 does not depend on (δ, j, k). Next, notice that since the non-

negative fixed real number L is arbitrary, one can assume that it is large enough so that

Lβ(α) > 1, which implies that

c3 := sup
x∈RN

{ ∑
k∈ZN

N∏
r=1

(1 + |xr − kr|)−Lβ(α)
}
< +∞. (2.26)

Finally, putting together (2.23), (2.24), (2.25) and (2.26), it follows that (2.21) holds.
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Second step: We show that F̃α(u, v, ξ) = Fα(u, v, ξ), for Lebesgue almost all ξ ∈ RN . For

all m ∈ Z+, let Am be the closed subset of RN defined as

Am = RN \
(−2−m+1π

3
,
2−m+1π

3

)N
. (2.27)

Using (1.8), (2.27) and the inequality 2
(
v +N/α

)
> N , one has∫

RN
|Fα(u, v, ξ)|2 1Am(ξ)dξ ≤ 4

∫
Am
|ξ|−2(v+N

α )
2 dξ < +∞,

which shows that Fα(u, v, ·)1Am(·) ∈ L2(RN ). Thus, using the fact that
(
ψ̂δ,j,k

)
(δ,j,k)

is an

orthonormal basis of L2(RN ), one gets, for all fixed m ∈ Z+, that∑
δ∈Υ∗

∑
(δ,j,k)∈Dn

(∫
Am∩Kj

Fα(u, v, ξ)ψ̂δ,j,k(ξ)dξ
)
ψ̂δ,j,k(·)

L2(RN )−−−−−→
n→+∞

Fα(u, v, ·)1Am(·), (2.28)

where Kj is as in (2.4). Next, for each m ∈ Z+, let K̃m be the compact subset of RN defined

as

K̃m =
[
− 2m+3π

3
,
2m+3π

3

]N
\
(
− 2−m+3π

3
,
2−m+3π

3

)N
. (2.29)

Observe that, for all (δ, j, k) ∈ Υ∗ × Z× ZN , m ∈ Z+ and ξ ∈ RN , one has(∫
Am∩Kj

Fα(u, v, ξ)ψ̂δ,j,k(ξ)dξ
)
ψ̂δ,j,k(ξ)1K̃m(ξ) =

(∫
RN

Fα(u, v, ξ)ψ̂δ,j,k(ξ)dξ
)
ψ̂δ,j,k(ξ)1K̃m(ξ).

(2.30)

Indeed, when K̃m ∩ Kj = ∅ the equality (2.30) is satisfied, since its left and right hand

sides vanish due to (2.3); the equality (2.30) also holds when K̃m ∩ Kj 6= ∅, since one then

necessarily has that −m ≤ j ≤ m+ 2 which implies that Am ∩Kj = Kj and thus, one knows

from (2.3), that the integrals at both sides of (2.30) are the same.

Putting together (2.7), (2.8), (2.28), the inclusion K̃m ⊂ Am and (2.30), one obtain, for

all fixed m ∈ Z+, that

S(α)
n (u, v, ·)1K̃m(·) L2(RN )−−−−−→

n→+∞
Fα(u, v, ·)1K̃m(·). (2.31)

Moreover, since α ∈ (0, 2) and K̃m is a compact subset of RN , using Hölder inequality, one

can derive from (2.31) that, for all fixed m ∈ Z+,

S(α)
n (u, v, ·)1K̃m(·) Lα(RN )−−−−−→

n→+∞
Fα(u, v, ·)1K̃m(·). (2.32)

On another hand, one knows from the result obtained in the first step that

S(α)
n (u, v, ·) Lα(RN )−−−−−→

n→+∞
F̃α(u, v, ·),
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and consequently that, for all fixed m ∈ Z+,

S(α)
n (u, v, ·)1K̃m(·) Lα(RN )−−−−−→

n→+∞
F̃α(u, v, ·)1K̃m(·). (2.33)

Finally, combining (2.32) and (2.33), it follows that, for all m ∈ Z+ and for Lebesgue al-

most all ξ ∈ RN , one has F̃α(u, v, ξ)1K̃m(ξ) = Fα(u, v, ξ)1K̃m(ξ). Then, using the fact

that
⋃
m∈Z+

K̃m = RN \ {0}, one gets, for Lebesgue almost all ξ ∈ RN , that F̃α(u, v, ξ) =

Fα(u, v, ξ). �

Now, we are going to show that the random series in (2.19) is convergent in a much

stronger way than the one described in Theorem 2.5, to this end we will need the following

very crucial lemma, whose long proof is postponed to Section 5 (the Appendix).

Lemma 2.6 For each α ∈ (0, 2), there is a universal event Ω∗α of probability 1 for which

one has what follows. For all η > 0, there exists a positive finite random variable C, only

depending on α and η, such that for all (δ, j, k) ∈ Υ∗ × Z × ZN , the following inequality, in

which bαc denotes the integer part of α, holds on Ω∗α:∣∣ε(α)
δ,j,k

∣∣ ≤ C(1 + |j|)
1
α

+η log
bαc
2 (3 + |j|+ |k|1), (2.34)

where |k|1 :=
∑N

r=1 |kr|. Notice that, when α ∈ (0, 1) is arbitrary, the logarithmic factor in

the right-hand side of (2.34) disappears since bαc = 0. On another hand, when α ∈ [1, 2)

is arbitrary, ϑ > 0 is an arbitrary finite fixed constant and one restricts to arbitrary j ∈ Z+

and k ∈ ZN such that

|k|∞ := sup
{
|k1|, . . . , |kN |

}
≤ ϑ 2j , (2.35)

then, for some positive finite random variable C ′ not depending (δ, j, k), the following signif-

icantly improved version of the inequality (2.34) holds on Ω∗α:∣∣ε(α)
δ,j,k

∣∣ ≤ C ′(1 + j
) 1
α

+η
. (2.36)

We mention in passing that the inequality (2.34) is reminiscent of the two inequalities (2.35)

and (2.36) in [2]. Also, we mention that the inequality (2.36) is a generalization to k ∈ ZN

of the inequality (1.11) in [6] for which k ∈ Z.

The following proposition, whose proof relies on Lemma 2.6, shows that the random series

in (2.19) is convergent in a much stronger way than the one described in Theorem 2.5.

Proposition 2.7 For all (u, v, ω) ∈ RN × (0, 1)× Ω∗α, the series of real numbers∑
(δ,j,k)∈Υ∗×Z×ZN

2−jv
[
Ψ

(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

]
ε

(α)
δ,j,k(ω) (2.37)

is absolutely convergent.
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Before proving Proposition 2.7, we mention that we will need in its proof, as well as in many

other places in the remaining of our article, the inequality√
log(3 + |x|+ |y|) ≤

√
log(3 + |x|)

√
log(3 + |y|), for all (x, y) ∈ R2. (2.38)

Proof of Proposition 2.7 Let (u, v, ω) ∈ RN × (0, 1)×Ω∗α be arbitrary and fixed, one sets

Y (u, v, ω) :=
∑

(δ,j,k)∈Υ∗×Z×ZN

∣∣∣2−jv[Ψ(α)
δ (2ju− k, v)−Ψ

(α)
δ (−k, v)

]∣∣∣∣∣ε(α)
δ,j,k(ω)

∣∣
= Y −(u, v, ω) + Y +(u, v, ω), (2.39)

where

Y −(u, v, ω) :=
∑
δ∈Υ∗

∑
(j,k)∈N×ZN

2jv
∣∣Ψ(α)

δ (2−ju− k, v)−Ψ
(α)
δ (−k, v)

∣∣∣∣ε(α)
δ,−j,k(ω)

∣∣ (2.40)

and

Y +(u, v, ω) :=
∑
δ∈Υ∗

∑
(j,k)∈Z+×ZN

2−jv
∣∣Ψ(α)

δ (2ju− k, v)−Ψ
(α)
δ (−k, v)

∣∣∣∣ε(α)
δ,j,k(ω)

∣∣. (2.41)

First, one focuses on Y −(u, v, ω). One can derive from (2.24) with L > 1, (2.34) and (2.38)

that, for some positive finite random variable C1, one has

Y −(u, v, ω) ≤ C1(ω)
(+∞∑
j=1

2j(v−1)(1+j)
1
α

+η log
1
2 (3+j)

)(∑
k∈Z

log
1
2 (3 + |k|)

(1 + |k|)L

)N
< +∞. (2.42)

Let us now focus on Y +(u, v, ω). One can derive from the triangle inequality that

Y +(u, v, ω) ≤ A(u, v, ω) +A(0, v, ω), (2.43)

where, for all (y, v, ω) ∈ RN × (0, 1)× Ω∗α,

A(y, v, ω) :=
∑
δ∈Υ∗

∑
j∈Z+

2−jv
∑
k∈ZN

∣∣Ψ(α)
δ

(
2jy − k, v)

∣∣∣∣ε(α)
δ,j,k(ω)

∣∣. (2.44)

Moreover, (2.17), (2.34) and (2.38) imply, for all (δ, j) ∈ Υ∗×Z+ and (y, v, ω) ∈ RN ×(0, 1)×
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Ω∗α, that∑
k∈ZN

∣∣Ψ(α)
δ

(
2jy − k, v)

∣∣∣∣ε(α)
δ,j,k(ω)

∣∣
≤ C2(ω)

∑
k∈ZN

( N∏
r=1

(
2 + |2jyr − kr|

)−L)
(1 + j)

1
α

+η log
1
2

(
3 + j +

N∑
r=1

|kr|
)

= C2(ω)
∑
k∈ZN

( N∏
r=1

(
2 +

∣∣2jyr − b2jyrc − kr∣∣)−L)(1 + j)
1
α

+η log
1
2

(
3 + j +

N∑
r=1

∣∣b2jyrc+ kr
∣∣)

≤ C2(ω)(1 + j)
1
α

+η
∑
k∈ZN

( N∏
r=1

(
1 + |kr|

)−L)
log

1
2

(
3 + j +N +

N∑
r=1

(
|2jyr|+ |kr|

))

≤ C2(ω)(1 + j)
1
α

+η log
1
2
(
N + 3 + j + 2j |y|1

) ∑
k∈ZN

N∏
r=1

(
1 + |kr|

)−L
log

1
2
(
3 + |kr|

)
= C3(ω)(1 + j)

1
α

+η log
1
2
(
N + 3 + j + 2j |y|1

)
, (2.45)

where L > 1 is fixed, and the positive finite random variables C2 and C3 do not depend on

j, y and v. Combining (2.44) and (2.45), one obtains, for all (y, v, ω) ∈ RN × (0, 1) × Ω∗α,

that A(y, v, ω) < +∞. Then, (2.43) entails that Y +(u, v, ω) < +∞. Finally, combining the

latter result with (2.42) and (2.39), one gets that Y (u, v, ω) < +∞, which shows that the

proposition is satisfied. �

Remark 2.8 It results from Theorem 2.5 and Proposition 2.7 that the almost surely abso-

lutely convergent random series in (2.37) provides a modification of the field

X =
{
X(u, v), (u, v) ∈ RN × (0, 1)

}
to which it will be systematically identified from now

on. Thus, X can be expressed, for all (u, v, ω) ∈ RN × (0, 1) × Ω∗α, through the absolutely

convergent series

X(u, v, ω) =
+∞∑
j=−∞

Xj(u, v, ω), (2.46)

where the SαS stochastic fields Xj =
{
Xj(u, v), (u, v) ∈ RN × (0, 1)

}
, j ∈ Z, are defined, for

every (u, v, ω) ∈ RN × (0, 1)× Ω∗α, through the absolutely convergent series

Xj(u, v, ω) :=
∑

(δ,k)∈Υ∗×ZN
2−jv

[
Ψ

(α)
δ

(
2ju− k, v

)
−Ψ

(α)
δ (−k, v)

]
ε

(α)
δ,j,k(ω). (2.47)

Also, X can be expressed, for all (u, v, ω) ∈ RN × (0, 1)× Ω∗α, as

X(u, v, ω) = X−(u, v, ω) +X+(u, v, ω). (2.48)
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The two SαS stochastic fields X− =
{
X−(u, v), (u, v) ∈ RN × (0, 1)

}
and

X+ =
{
X+(u, v), (u, v) ∈ RN × (0, 1)

}
are respectively called the low frequency part and the

high frequency part of X. They are defined, for every (u, v, ω) ∈ RN × (0, 1) × Ω∗α, through

the absolutely convergent series

X−(u, v, ω) :=
−1∑

j=−∞
Xj(u, v, ω) (2.49)

and

X+(u, v, ω) :=

+∞∑
j=0

Xj(u, v, ω). (2.50)

Notice that, later we will show that the series in (2.46), (2.47), (2.49) and (2.50) are also

normally convergent in (u, v) with respect to the uniform semi-norm on any compact box of

RN × (0, 1).

We are now going to derive some results on sample paths regularity of the SαS stochastic

fields introduced in Remark 2.8. To this end, we need the following definition.

Definition 2.9 For any fixed real numbers % > 0 and 0 < a < b < 1, we denote by Q%,a,b the

compact box of RN × (0, 1) defined as

Q%,a,b := [−%, %]N × [a, b]. (2.51)

Moreover, for any real-valued function g defined on RN × (0, 1), we denote by ‖g‖%,a,b =

‖g(•, ·)‖%,a,b the non-negative quantity (which may be infinite) defined as

‖g‖%,a,b = ‖g(•, ·)‖%,a,b := sup
(x,v)∈Q%,a,b

|g(x, v)|. (2.52)

Also, we need the following lemma.

Lemma 2.10 Let % > 0 and 0 < a < b < 1 be arbitrary and fixed. For all j ∈ Z, m ∈ Z+,

γ ∈ ZN+ and ω ∈ Ω∗α one has∑
(δ,k)∈Υ∗×ZN

∥∥(∂γx∂
m
v Ψ

(α)
δ )(• − k, ·)

∥∥
%,a,b

∣∣ε(α)
δ,j,k(ω)

∣∣ < +∞. (2.53)

Therefore, the SαS stochastic fields Bj =
{
Bj(x, v), (x, v) ∈ RN × (0, 1)

}
, j ∈ Z, defined, for

every (x, v, ω) ∈ RN × (0, 1)× Ω∗α, as

Bj(x, v, ω) :=
∑

(δ,k)∈Υ∗×ZN
Ψ

(α)
δ (x− k, v)ε

(α)
δ,j,k(ω), (2.54)
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have C∞ sample paths on RN × (0, 1), which satisfy, for all j ∈ Z, m ∈ Z+, γ ∈ ZN+ and

(x, v, ω) ∈ RN × (0, 1)× Ω∗α,

(∂γx∂
m
v Bj)(x, v, ω) =

∑
(δ,k)∈Υ∗×ZN

(∂γx∂
m
v Ψ

(α)
δ )(x− k, v)ε

(α)
δ,j,k(ω), (2.55)

where the series is normally convergent in (x, v) with respect to the uniform semi-norm on

each compact box RN × (0, 1). Moreover, for any fixed η > 0, there is a positive finite random

variable C, which does not depend on j, such that, for every (j, ω) ∈ Z× Ω∗α, one has∥∥(∂γx∂
m
v Bj)(•, ·, ω)

∥∥
2j%,a,b

≤ C(ω)(1 + |j|)
1
α

+η. (2.56)

Proof The inequality (2.53) easily follows from (2.52), (2.17) with L > 1, M = 1 and

T = %, (2.34) and (2.38). Observe that, since % > 0, 0 < a < b < 1, γ ∈ ZN+ and m ∈ Z+ are

arbitrary, (2.53) implies that the series in (2.54) and all its term by term partial derivatives

of any order are uniformly convergent in (x, v) with respect to the uniform semi-norm on

any compact box of RN × (0, 1). A consequence of the latter fact is that, for each j ∈ Z and

ω ∈ Ω∗α, Bj(•, ·, ω) is a C∞ function on RN × (0, 1) satisfying (2.55).

Let us now show that (2.56) holds. First, we assume that j < 0. Using (2.55), (2.17)

with L > 1, M = 1 and T = %, (2.34) with η replaced by η/2, and (2.38), it follows, for all

(u, v) ∈ Q%,a,b and ω ∈ Ω∗α, that∣∣(∂γx∂mv Bj)(2
ju, v, ω)

∣∣
≤ C1(ω)(1 + |j|)

1
α

+ η
2

∑
k∈ZN

( N∏
r=1

(
1 + %+ |2jur − kr|

)−L)
log

1
2

(
3 + |j|+

N∑
r=1

|kr|
)

≤ C1(ω)(1 + |j|)
1
α

+ η
2 log

1
2
(
3 + |j|

) ∑
k∈ZN

( N∏
r=1

(
1 + %+ |kr| − 2j |ur|

)−L
log

1
2
(
3 + |kr|

))

≤ C2(ω)(1 + |j|)
1
α

+η
∑
k∈ZN

( N∏
r=1

(
1 + |kr|

)−L
log

1
2
(
3 + |kr|

))
= C3(ω)(1 + |j|)

1
α

+η, (2.57)

where C1, C2 and C3 are positive finite random variables not depending on j and (u, v). From

now on, we assume that j ≥ 0. Let K(%)
j and K(%)

j be the two disjoint sets defined as

K(%)
j :=

{
k ∈ ZN , |k|∞ ≤ 2j+1%

}
and K(%)

j :=
{
k ∈ ZN , |k|∞ > 2j+1%

}
. (2.58)
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Then, one can derive from (2.55), the equality ZN = K(%)
j ∪ K

(%)
j and the triangle inequality

that, for all j ≥ 0, (u, v) ∈ Q%,a,b and ω ∈ Ω∗α,∣∣(∂γx∂mv Bj)(2
ju, v, ω)

∣∣ ≤ ∑
(δ,k)∈Υ∗×K(%)

j

∣∣(∂γx∂mv Ψ
(α)
δ )(2ju− k, v)

∣∣∣∣ε(α)
δ,j,k(ω)

∣∣ (2.59)

+
∑

(δ,k)∈Υ∗×K
(%)
j

∣∣(∂γx∂mv Ψ
(α)
δ )(2ju− k, v)

∣∣∣∣ε(α)
δ,j,k(ω)

∣∣.
Let us conveniently bound each one of the two sums in the right-hand side of (2.59). Observe

that the inequality (2.36) is valid when k ∈ K(%)
j , since the condition (2.35) holds with ϑ = 2ρ.

Thus, using (2.36), (2.17) with L > 1, M = 1 and T = 0 and (2.26) with Lβ(α) replaced by

L > 1, one obtains that∑
(δ,k)∈Υ∗×K(%)

j

∣∣(∂γx∂mv Ψ
(α)
δ )(2ju− k, v)

∣∣∣∣ε(α)
δ,j,k(ω)

∣∣ (2.60)

≤ C4(ω)(1 + j)
1
α

+η
∑

k∈K(%)
j

( N∏
r=1

(
1 + |2jur − kr|

)−L) ≤ C5(ω)(1 + j)
1
α

+η,

where C4 and C5 are two positive finite random variables not depending on j and (u, v). On

another hand, using (2.34), (2.17) with L > 4, M = 1 and T = 0, and (2.38), one gets that∑
(δ,k)∈Υ∗×K

(%)
j

∣∣(∂γx∂mv Ψ
(α)
δ )(2ju− k, v)

∣∣∣∣ε(α)
δ,j,k(ω)

∣∣
≤ C6(ω)(1 + j)

1
α

+η log
1
2
(
3 + j

) ∑
k∈K(%)

j

( N∏
r=1

(
1 + |2jur − kr|

)−L
log

1
2
(
3 + |kr|

))

≤ C7(ω)(1 + j)
1
α

+2η
N∑
n=1

∑
k∈K(%)

j,n

( N∏
r=1

(
1 + |2jur − kr|

)−L
log

1
2
(
3 + |kr|

))
, (2.61)

where C6 and C7 are two positive finite random variables not depending on j and (u, v), and

K(%)
j,n :=

{
k = (k1, . . . , kN ) ∈ ZN , |kn| > 2j+1%

}
. (2.62)

Moreover, using arguments rather similar to those which have allowed to derive (2.45), the fact

that sup1≤r≤N |ur| ≤ %, the inequality L > 4 and (2.62), one has, for every n ∈ {1, . . . , N},
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that

∑
k∈K(%)

j,n

( N∏
r=1

(
1 + |2jur − kr|

)−L
log

1
2
(
3 + |kr|

))
≤ c8 log

N−1
2
(
4 + 2j%)

∑
|kn|>2j+1%

(
1 + |2jun − kn|

)−L
log

1
2
(
3 + |kn|

)
≤ 2Lc8 log

N−1
2
(
4 + 2j%)

∑
|kn|>2j+1%

(
1 + |kn|

)−L
log

1
2
(
3 + |kn|

)
≤ c9 log

N−1
2
(
4 + 2j%)

∑
kn>2j+1%

(
1 + kn

)−L+1

≤ c9 log
N−1

2
(
4 + 2j%)

∫ +∞

2j+1%
y−L+1 dy ≤ c10(1 + j)

N−1
2 2−j(L−2) ≤ c112−2j , (2.63)

where c8, . . . , c11 are finite deterministic constants not depending on j and (u, v). Next,

putting together (2.59) to (2.63), it follows that one has, for all j ≥ 0, (u, v) ∈ Q%,a,b and

ω ∈ Ω∗α, ∣∣(∂γx∂mv Bj)(2
ju, v, ω)

∣∣ ≤ C12(ω)(1 + j)
1
α

+η, (2.64)

where C12 is a positive finite random variable not depending on j and (u, v). Finally, (2.57)

and (2.64) show that (2.56) holds. �

Lemma 2.11 In view of (2.54), the stochastic fields Xj, j ∈ Z, introduced in (2.47), can be

expressed, for all j ∈ Z and (u, v, ω) ∈ RN × (0, 1)× Ω∗α, as

Xj(u, v, ω) = 2−jv
(
Bj(2

ju, v, ω)−Bj(0, v, ω)
)
. (2.65)

Their, sample paths are C∞ functions on RN × (0, 1) satisfying, for all j ∈ Z, (u, v, ω) ∈
RN × (0, 1)× Ω∗α and m ∈ Z+,

(∂mv Xj)(u, v, ω) =
m∑
p=0

(
m

p

)(
− j log(2)

)m−p
2−jv

(
(∂pvBj)(2

ju, v)− (∂pvBj)(0, v)
)

(2.66)

and, for every γ = (γ1, . . . , γN ) ∈ ZN+ \ {0},

(∂γu∂
m
v Xj)(u, v, ω) =

m∑
p=0

(
m

p

)(
− j log(2)

)m−p
2j(γ1+...+γN−v)(∂γx∂

p
vBj)(2

ju, v), (2.67)

with the convention that 00 = 1.
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Proof The equality (2.65) is a straightforward consequence of (2.54) and (2.47). The

fact that, for each j ∈ Z, sample paths of the field Xj are C∞ functions on RN × (0, 1)

satisfying (2.66) and (2.67) easily results from (2.65), Lemma 2.10 and the general Leibniz

rule for calculating the derivative of any order m of the product of two m-times differentiable

functions. �

Remark 2.12 Let % > 0, 0 < a < b < 1, p ∈ Z+ and ω ∈ Ω∗α be arbitrary and fixed. One

can derive from the mean value theorem that, for all j ∈ Z, (u(1), u(2)) ∈ [−%, %]N × [−%, %]N

and v ∈ [a, b],∣∣(∂pvBj)(2
ju(1), v, ω)− (∂pvBj)(2

ju(2), v, ω)
∣∣ (2.68)

≤ 2j
∣∣u(1) − u(2)

∣∣
1

sup
1≤n≤N

∥∥(∂xn∂
p
vBj)(•, ·, ω)

∥∥
2j%,a,b

,

where, for any n ∈ {1, . . . , N}, ∂xn is the partial derivative operator of order 1 with respect

to the nth coordinate of the variable x ∈ RN . Then (2.68) and (2.56) imply that, for any

fixed η > 0,∣∣(∂pvBj)(2
ju(1), v, ω)− (∂pvBj)(2

ju(2), v, ω)
∣∣ ≤ C(ω) 2j(1 + |j|)

1
α

+η
∣∣u(1) − u(2)

∣∣
1
, (2.69)

where the positive finite random variable C does not depend on j and (u(1), u(2)). Moreover,

setting u(2) = 0 and C ′(ω) := N%C, it results from (2.69) that∥∥(∂pvBj)(•, ·, ω)− (∂pvBj)(0, ·, ω)
∥∥

2j%,a,b
≤ C ′(ω) 2j(1 + |j|)

1
α

+η. (2.70)

Proposition 2.13 For all m ∈ Z+, γ ∈ ZN+ , % > 0, 0 < a < b < 1, and ω ∈ Ω∗α, one has

−1∑
j=−∞

∥∥(∂γu∂
m
v Xj)(•, ·, ω)

∥∥
%,a,b

< +∞. (2.71)

Therefore the SαS stochastic field X−, called the low frequency part of the field X and defined

through (2.49), has C∞ sample paths on RN × (0, 1), which satisfy, for all γ ∈ ZN+ , m ∈ Z+

and (u, v, ω) ∈ RN × (0, 1)× Ω∗α,

(∂γu∂
m
v X

−)(u, v, ω) =

−1∑
j=−∞

(∂γu∂
m
v Xj)(u, v, ω), (2.72)

where the series is normally convergent in (u, v) with respect to the uniform semi-norm on

each compact box of RN × (0, 1).
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Proof The inequality (2.71) easily results from (2.52), (2.66), (2.67), (2.70) and (2.56).

It clearly follows from (2.71) that, for all γ ∈ ZN+ and m ∈ Z+, the series in the right-hand

side of (2.72) is normally convergent in (u, v) with respect to the uniform semi-norm on

each compact box of RN × (0, 1). Then, one can derive from (2.49) that, for every ω ∈ Ω∗α,

X−(•, ·, ω) is a C∞ function on RN × (0, 1) whose partial derivatives of any order are given

by (2.72). �

Proposition 2.14 For all m ∈ Z+, % > 0, 0 < a < b < 1, and ω ∈ Ω∗α, one has

+∞∑
j=0

∥∥(∂mv Xj)(•, ·, ω)
∥∥
%,a,b

< +∞. (2.73)

Therefore the SαS stochastic field X+, called the high frequency part of the field X and defined

through (2.50), has continuous sample paths on RN × (0, 1) which also are, for every fixed

u ∈ RN , infinitely differentiable in the variable v ∈ (0, 1). Moreover, for each m ∈ Z+

and ω ∈ Ω∗α, the function (∂mv X
+)(•, ·, ω) is continuous on RN × (0, 1) and satisfies, for all

(u, v) ∈ RN × (0, 1),

(∂mv X
+)(u, v, ω) =

+∞∑
j=0

(∂mv Xj)(u, v, ω), (2.74)

where the series is normally convergent in (u, v) with respect to the uniform semi-norm on

each compact box of RN × (0, 1).

Proof The inequality (2.73) easily results from (2.52), (2.66), the triangle inequality and

(2.56). It clearly follows from (2.73) that, for all m ∈ Z+, the series in the right-hand side

of (2.74) is normally convergent in (u, v) with respect to the uniform semi-norm on each

compact box of RN × (0, 1). Then, one can derive from (2.50) that, for every ω ∈ Ω∗α,

(u, v) 7→ X+(u, v, ω) is a continuous function on RN × (0, 1), which is also, for each fixed

u ∈ RN , infinitely differentiable in the variable v ∈ (0, 1), and that, for every m ∈ Z+,

(u, v) 7→ (∂mv X
+)(u, v, ω) is a continuous function on RN × (0, 1) satisfying (2.74). �

Remark 2.15 A straightforward consequence of Proposition 2.14 and the mean value theo-

rem is that, for any fixed m ∈ Z+, % > 0, 0 < a < b < 1 and ω ∈ Ω∗α, one has

sup
u∈[−%,%]N

∣∣(∂mv X+)(u, v1, ω)− (∂mv X
+)(u, v2, ω)

∣∣ ≤ C(ω)|v1 − v2|, for all (v1, v2) ∈ [a, b]2,

(2.75)

where C is a positive finite random variable only depending on m, %, a and b.
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The following theorem is a straightforward consequence of Remark 2.8 and Propositions

2.13 and 2.14.

Theorem 2.16 The SαS stochastic field X, called the field generating HMSF and defined

through (2.46) or through (1.7) (recall that the two modifications of X provided by (2.46) and

(1.7) are always identified), has continuous sample paths on RN × (0, 1) which also are, for

every fixed u ∈ RN , infinitely differentiable in the variable v ∈ (0, 1). Moreover, for each

m ∈ Z+ and ω ∈ Ω∗α, the function (∂mv X)(•, ·, ω) is continuous on RN × (0, 1) and satisfies,

for all (u, v) ∈ RN × (0, 1),

(∂mv X)(u, v, ω) =

+∞∑
j=−∞

(∂mv Xj)(u, v, ω) = (∂mv X
−)(u, v, ω) + (∂mv X

+)(u, v, ω), (2.76)

where the series is normally convergent in (u, v) with respect to the uniform semi-norm on

each compact box of RN × (0, 1).

Remark 2.17 A straightforward consequence of Theorem 2.16 and the mean value theorem

is that, for any fixed m ∈ Z+, % > 0, 0 < a < b < 1 and ω ∈ Ω∗α, one has

sup
u∈[−%,%]N

∣∣(∂mv X)(u, v1, ω)− (∂mv X)(u, v2, ω)
∣∣ ≤ C(ω)|v1 − v2|, for all (v1, v2) ∈ [a, b]2,

(2.77)

where C is a positive finite random variable only depending on m, %, a and b.

Corollary 2.18 A sufficient condition for the HMSF Z = {Z(t), t ∈ RN}, defined through

(1.6), to have almost surely continuous sample paths on RN is that the Hurst function H(·)
be continuous on RN . Moreover, when H(·) is discontinuous at some point τ ∈ RN \ {0},
then, with probability 1, sample paths of Z are discontinuous functions at τ .

Proof In view of (1.6) and Theorem 2.16, it is clear that the continuity of H(·) on RN is

a sufficient condition for having, almost surely, the continuity of sample paths of Z on RN .

On another hand, when H(·) is discontinuous at some point τ ∈ RN \ {0}, there necessarily

exist two sequences (t′n)n∈N and (t′′n)n∈N in RN such that

lim
n→+∞

t′n = lim
n→+∞

t′′n = τ and H ′ := lim
n→+∞

H(t′n) 6= H ′′ := lim
n→+∞

H(t′′n), (2.78)

where H ′ and H ′′ are in the compact interval [H,H ] ⊂ (0, 1) to which all the values of the

function H(·) belong. Then, one can derive from (1.6), Theorem 2.16 and (2.78) that one

has, almost surely,

lim
n→+∞

Z(t′n) = X(τ,H ′) and lim
n→+∞

Z(t′′n) = X(τ,H ′′). (2.79)
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Moreover, since τ 6= 0 and H ′ 6= H ′′, using (1.7), (1.8) and (1.3), it can be shown that the

SαS random variable X(τ,H ′)−X(τ,H ′′) has a non-vanishing scale parameter, which implies

that X(τ,H ′) 6= X(τ,H ′′) almost surely. Combining the latter fact with (2.78) and (2.79), it

follows that sample paths of Z are with probability 1 discontinuous functions τ . �

3 Results on path behavior

First, we state the main results of the section and then we give their proofs. In their state-

ments we use the conventions that 0× (±∞) = 0 and 0/0 is some bounded quantity which in

fact does not need to be specified any more. All of them are stated in terms of the `1 norm

|y|1 :=
∑N

r=1 |yr| on RN and remain valid for any other norm on RN . All of them hold on

the event Ω∗α of probability 1 which was introduced in Lemma 2.6.

Theorem 3.1 (Global modulus of continuity for the field ∂mv X)

Let m ∈ Z+, % > 0 and 0 < a < b < 1 be arbitrary and fixed, and let Q%,a,b be as in (2.51).

Then, one has on the event Ω∗α of probability 1, for all η > 0,

sup
(u(1),v1),(u(2),v2)∈Q%,a,b

∣∣(∂mv X)(u(1), v1)− (∂mv X)(u(2), v2)
∣∣∣∣u(1) − u(2)

∣∣v1∨v2
1

log
1
α

+η+m
(
1 +

∣∣u(1) − u(2)
∣∣−1

1

)
+ |v1 − v2|

< +∞,

(3.1)

where v1 ∨ v2 := sup{v1, v2}.

Corollary 3.2 (Global modulus of continuity for the HMSF Z)

Let I be an arbitrary non-empty fixed compact box of RN , and let

H(I) := min
t∈I

H(t). (3.2)

Assume that the continuous Hurst function H(·) satisfies, for some finite constant c,∣∣H(t(1))−H(t(2))
∣∣ ≤ c∣∣t(1)− t(2)

∣∣H(I)

1
log

1
α
(
1 + |t(1)− t(2)|−1

1

)
, for all (t(1), t(2)) ∈ I2. (3.3)

Then, on the event Ω∗α of probability 1, one has, for all η > 0,

sup
(t(1),t(2))∈I2

∣∣Z(t(1))− Z(t(2))
∣∣∣∣t(1) − t(2)

∣∣H(I)

1
log

1
α

+η
(
1 + |t(1) − t(2)|−1

1

) < +∞. (3.4)

Corollary 3.3 (Pointwise modulus of continuity for the HFSM Z)

Let τ ∈ RN be an arbitrary fixed point. Assume that the continuous Hurst function H(·)
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satisfies, for some finite constant c (which may depend on τ) and for all point t of RN in a

neighborhood of τ (or equivalently for all t ∈ RN ),∣∣H(t)−H(τ)
∣∣ ≤ c∣∣t− τ ∣∣H(τ)

1
log

1
α
(
1 + |t− τ |−1

1

)
. (3.5)

Then, on the event Ω∗α of probability 1, one has, for all % > 0 and η > 0,

sup
|t−τ |1≤%

∣∣Z(t)− Z(τ)
∣∣

|t− τ |H(τ)
1 log

1
α

+η
(
1 + |t− τ |−1

1

) < +∞. (3.6)

Theorem 3.4 (Estimate of the asymptotic behavior at infinity of the field ∂mv X)

Let m ∈ Z+, % > 0 and 0 < a < b < 1 be arbitrary and fixed, and let C% := {x ∈ RN , |x|1 ≥ %}.
Then, on the event Ω∗α of probability 1, one has, for all η > 0,

sup
(u,v)∈C%×[a,b]

∣∣(∂mv X)(u, v)
∣∣

|u|v1 log
1
α

+η+m(1 + |u|1)
< +∞. (3.7)

Corollary 3.5 (Estimate of the asymptotic behavior at infinity of the HMSF Z)

For any fixed % > 0, let C% be as in Theorem 3.4. Then on the event Ω∗α of probability

1, one has, for all η > 0,

sup
t∈C%

∣∣Z(t)
∣∣

|t|H(t)
1 log

1
α

+η(1 + |t|1)
< +∞. (3.8)

Moreover, when the Hurst function H(·) has a (finite) limit at infinity to which it converges

at a logarithmic rate, that is there are two finite constants H∞ ∈ [H,H] ⊂ (0, 1) and c > 0

such that ∣∣H(t)−H∞
∣∣ ≤ c( log

(
3 + |t|1

))−1
, for all t ∈ RN . (3.9)

Then, (3.8) can equivalently be reformulated as: on the event Ω∗α of probability 1, one has,

for all η > 0,

sup
t∈C%

∣∣Z(t)
∣∣

|t|H∞1 log
1
α

+η(1 + |t|1)
< +∞. (3.10)

Proof of Theorem 3.1 Let m ∈ Z+ be arbitrary and fixed. Recall that, one knows

from Proposition 2.13 that, on the event Ω∗α, the random function (∂mv X
−)(•, ·) : (u, v) 7→

(∂mv X
−)(u, v) is C∞ on RN × (0, 1), which clearly implies that (3.1) holds when ∂mv X in it is

replaced by ∂mv X
−. Thus, in view of (2.48), it is enough to show that (3.1) holds when ∂mv X

in it is replaced by ∂mv X
+.
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Let
(
u(1), v1

)
,
(
u(2), v2

)
∈ Q%,a,b be arbitrary, there is no restriction to assume that 0 <

|u(1) − u(2)
∣∣ ≤ 1 and v1 ∨ v2 = v1. Using the triangle inequality and (2.75) one gets, on the

event Ω∗α, that∣∣(∂mv X+)
(
u(1), v1

)
− (∂mv X

+)
(
u(2), v2

)∣∣
≤
∣∣(∂mv X+)

(
u(1), v1

)
− (∂mv X

+)
(
u(2), v1

)∣∣+
∣∣(∂mv X+)

(
u(2), v1

)
− (∂mv X

+)
(
u(2), v2

)∣∣
≤
∣∣(∂mv X+)

(
u(1), v1

)
− (∂mv X

+)
(
u(2), v1

)∣∣+ C1|v1 − v2|, (3.11)

where C1 is a positive finite random variable not depending on
(
u(1), v1

)
and

(
u(2), v2

)
. In

view of (3.11) and of the fact that v1 ∨ v2 = v1, it turns out that for proving that (3.1) holds

when ∂mv X in it is replaced by ∂mv X
+, it is enough to show that, for some positive finite

random variable C2, not depending on
(
u(1), v1

)
and

(
u(2), v2

)
, one has on Ω∗α,∣∣(∂mv X+)

(
u(1), v1

)
− (∂mv X

+)
(
u(2), v1

)∣∣ ≤ C2

∣∣u(1) − u(2)
∣∣v1 log

1
α

+η+m
(
1 +

∣∣u(1) − u(2)
∣∣−1

1

)
.

(3.12)

Since 0 < |u(1) − u(2)
∣∣ ≤ 1 there is a unique j0 ∈ Z+ satisfying

2−(j0+1) <
∣∣u(1) − u(2)

∣∣
1
≤ 2−j0 . (3.13)

In other words, j0 is the unique non-negative integer such that

j0 ≤
log
(∣∣u(1) − u(2)

∣∣−1

1

)
log(2)

< j0 + 1. (3.14)

Next, notice that, using (2.74) and the triangle inequality one has that∣∣(∂mv X+)
(
u(1), v1

)
− (∂mv X

+)
(
u(2), v1

)∣∣ ≤ Rj0(u(1), u(2), v1

)
+ Sj0

(
u(1), u(2), v1

)
, (3.15)

where

Rj0
(
u(1), u(2), v1

)
:=

j0∑
j=0

∣∣(∂mv Xj)
(
u(1), v1

)
− (∂mv Xj)

(
u(2), v1

)∣∣ (3.16)

and

Sj0
(
u(1), u(2), v1

)
:=

+∞∑
j=j0+1

∣∣(∂mv Xj)
(
u(1), v1

)
− (∂mv Xj)

(
u(2), v1

)∣∣. (3.17)

One can derive from (3.16), (2.66), the triangle inequality, (2.69), the inequalities v ≤ b < 1,

(3.13) and (3.14) that

Rj0
(
u(1), u(2), v1

)
≤ C3

∣∣u(1) − u(2)
∣∣
1

j0∑
j=0

2j(1−v)(1 + j)m+ 1
α

+η

≤
(
21−b − 1)−1C3

∣∣u(1) − u(2)
∣∣
1
2(j0+1)(1−v)(1 + j0)m+ 1

α
+η

≤ C4

∣∣u(1) − u(2)
∣∣v1 log

1
α

+η+m
(
1 +

∣∣u(1) − u(2)
∣∣−1

1

)
, (3.18)
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where the positive finite random variables C3 and C4 do not depend on
(
u(1), v1

)
,
(
u(2), v2

)
and j0. Moreover, it follows from (3.17), (2.66), the triangle inequality, (2.56), the inequalities

1 < a ≤ v, (3.13) and (3.14) that

Sj0
(
u(1), u(2), v1

)
≤ C5

+∞∑
j=j0+1

2−jv(1 + j)m+ 1
α

+η

≤ C52−(j0+1)v(1 + j0)m+ 1
α

+η
+∞∑
p=0

2−pa
(

1 +
1 + p

1 + j0

)m+ 1
α

+η

≤ C6

∣∣u(1) − u(2)
∣∣v1 log

1
α

+η+m
(
1 +

∣∣u(1) − u(2)
∣∣−1

1

)
, (3.19)

where the positive finite random variables C3 and C4 do not depend on
(
u(1), v1

)
,
(
u(2), v2

)
and j0. Finally, combining (3.18) and (3.19) with (3.15), one obtains (3.12). �

Proof of Corollary 3.2 Using (1.6) and Theorem 3.1 with m = 0, a = H, b = H, a fixed

% ≥ 1 such that I ⊂ [−%, %]N , and any fixed η > 0, it follows that, for some positive finite

random variable C1 one has, on the event Ω∗α, for all
(
t(1), t(2)

)
∈ I2,∣∣Z((t(1))− Z(t(2))

∣∣ (3.20)

≤ C1

(∣∣t(1) − t(2)
∣∣H(t(1))∨H(t(2))

1
log

1
α

+η
(
1 + |t(1) − t(2)|−1

1

)
+
∣∣H(t(1)

)
−H

(
t(2)
)∣∣).

Moreover, since (2N%)−1
∣∣t(1) − t(2)

∣∣
1
≤ 1, one can derive from (3.2) that

∣∣t(1) − t(2)
∣∣H(t(1))∨H(t(2))

1
= (2N%)H(t(1))∨H(t(2))

(
(2N%)−1

∣∣t(1) − t(2)
∣∣
1

)H(t(1))∨H(t(2))

≤ (2N%)H−H
∣∣t(1) − t(2)

∣∣H(I)
. (3.21)

Finally combining (3.20) and (3.21) with (3.3), one obtains (3.4). �

Proof of Corollary 3.3 The proof can be done similarly to that of Corollary 3.2. �

Our next goal is to show that Theorem 3.4 holds. In fact this theorem is a straightforward

consequence of the following more technical proposition.

Proposition 3.6 Let Ψ
(α)
δ , δ ∈ Υ∗, be the same functions as in Definition 2.2. For each

(m, q) ∈ Z2
+, j ∈ Z, η > 0 and (u, v) ∈ RN × (0, 1), one sets

A
m,q
η,j (u, v) := 2−jv(1 + |j|)m+ 1

α
+η (3.22)

×
∑

(δ,k)∈Υ∗×ZN

∣∣(∂qvΨ(α)
δ )(2ju− k, v)− (∂qvΨ

(α)
δ )(−k, v)

∣∣ log
1
2
(
3 + |k|1

)
,
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Am,q
η (u, v) :=

∑
j∈Z

A
m,q
η,j (u, v) (3.23)

and

Am
η (u, v) :=

m∑
q=0

Am,q
η (u, v). (3.24)

Then, for each m ∈ Z+ and η > 0, there is a positive finite random variable C, such that, on

the event Ω∗α of probability 1, one has∣∣(∂mv X)(u, v)
∣∣ ≤ CAm

η (u, v), for all (u, v) ∈ RN × (0, 1). (3.25)

Moreover, for all m ∈ Z+, η > 0, % > 0 and 0 < a < b < 1, the following inequality holds:

sup
(u,v)∈C%×[a,b]

Am
η (u, v)

|u|v1 log
1
α

+η+m(1 + |u|1)
< +∞. (3.26)

In order to show that Proposition 3.6 is satisfied, we need the following lemma.

Lemma 3.7 For each (m, q) ∈ Z2
+, there is a finite constant c such that, for all η > 0,

(u, v) ∈ RN × (0, 1) and j ∈ Z, one has

A
m,q
η,j (u, v) ≤ c 2j(1−v)(1 + |j|)m+ 1

α
+η |u|1, when 2j |u|1 ≤ 1, (3.27)

and

A
m,q
η,j (u, v) ≤ c 2−jv(1 + |j|)m+ 1

α
+η log

1
2
(
3 + 2j |u|1

)
, when 2j |u|1 > 1. (3.28)

Proof Throughout the proof, q ∈ Z+ and (u, v) ∈ RN × (0, 1) are arbitrary and fixed. First

we show that (3.27) is satisfied. So, let j ∈ Z be arbitrary and such that

2j |u|1 ≤ 1. (3.29)

Using the mean value theorem, one has, for all δ ∈ Υ∗, k ∈ ZN and q ∈ Z+, and for some

θ ∈ (0, 1),∣∣(∂qvΨ(α)
δ )(2ju− k, v)− (∂qvΨ

(α)
δ )(−k, v)

∣∣ ≤ 2j |u|1 sup
1≤n≤N

∣∣(∂xn∂qvΨ(α)
δ )(2jθu− k, v)

∣∣. (3.30)

Then, one can derive from (2.17) with L = 2, M = 1 and T = 1, and from (3.29) and (3.30)

that ∣∣(∂qvΨ(α)
δ )(2ju− k, v)− (∂qvΨ

(α)
δ )(−k, v)

∣∣ ≤ c12j |u|1
N∏
r=1

(
1 + |kr|

)−2
, (3.31)

26



where the finite constant c1 does not depend on δ, j, k and (u, v). Then, it follows from

(3.22) and (3.31) that (3.27) holds.

Let us now show that (3.28) is satisfied. Similarly to (2.45), it can be shown that∑
(δ,k)∈Υ∗×ZN

∣∣(∂qvΨ(α)
δ )(2ju− k, v)

∣∣ log
1
2
(
3 + |k|1

)
≤ c2 log

1
2
(
N + 3 + 2j |u|1

)
, (3.32)

where the finite constant c2 does not depend on δ, j and (u, v). Then, it results from (3.22),

the triangle inequality and (3.32) (which clearly remains valid when u = 0) that (3.28) holds.

�

Proof of Proposition 3.6 There is no serious difficulty in the proof of the inequality (3.25).

It can be obtained through standard calculations using the first equality in (2.76), (2.66),

(2.55), the triangle inequality, (2.34) with η replaced by η/2, (2.38), (3.22), (3.23) and (3.24).

From now on, one focuses on the proof of (3.26). Let (u, v) ∈ C% × [a, b] be arbitrary and

fixed, there is no restriction to assume that |u|1 ≥ 3. Thus, there exists a unique positive

integer j1 such that

2j1 < |u|1 ≤ 2j1+1, (3.33)

in other words, −j1 − 1 is the largest integer j such that 2j |u|1 ≤ 1. Thus, one can derive

from (3.27) and (3.33) that

−j1−1∑
j=−∞

m∑
q=0

A
m,q
η,j (u, v) ≤ c1|u|1

−j1−1∑
j=−∞

2j(1−v)(1 + |j|)m+ 1
α

+η

= c1|u|1
+∞∑

j=j1+1

2−j(1−v)(1 + j)m+ 1
α

+η

≤ c1|u|12−(j1+1)(1−v)(1 + j1)m+ 1
α

+η
+∞∑
p=0

2−p(1−b)
(

1 +
1 + p

1 + j1

)m+ 1
α

+η

≤ c2|u|12−(j1+1)(1−v)(1 + j1)m+ 1
α

+η ≤ c3|u|v1 log
1
α

+η+m(1 + |u|1), (3.34)

where the finite constants c1, . . . , c3 do not depend on (u, v) and j1. On another hand, it
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results from (3.28) and (3.33) that

−1∑
j=−j1

m∑
q=0

A
m,q
η,j (u, v) ≤ c4

−1∑
j=−j1

2−jv(1 + |j|)m+ 1
α

+η log
1
2
(
3 + 2j |u|1

)
= c4

j1∑
j=1

2jv(1 + j)m+ 1
α

+η log
1
2
(
3 + 2−j |u|1

)
≤ 2bc4|u|v

j1∑
j=1

2−(j1+1−j)v(1 + j)m+ 1
α

+η log
1
2
(
3 + 2j1+1−j)

= 2bc4|u|v
j1∑
j=1

2−jv(2 + j1 − j)m+ 1
α

+η log
1
2
(
3 + 2j

)
≤ 2bc4|u|v(1 + j1)m+ 1

α
+η

+∞∑
j=1

2−ja log
1
2
(
3 + 2j

)
≤ c5|u|v1 log

1
α

+η+m(1 + |u|1), (3.35)

where the finite constants c4 and c5 do not depend on (u, v) and j1. Also, it follows from

(3.28), (3.33) and the inequality log
1
2

(
3 + 2j |u|1

)
≤ log

1
2

(
3 + 2j

)
+ log

1
2

(
3 + |u|1

)
, that

+∞∑
j=0

m∑
q=0

A
m,q
η,j (u, v) ≤ c6

+∞∑
j=0

2−ja(1 + j)m+ 1
α

+η log
1
2
(
3 + 2j |u|1

)
≤ c7 log

1
2
(
3 + |u|1

)
, (3.36)

where the finite constants c6 and c7 do not depend on (u, v) and j1. Finally, putting together

(3.24), (3.23), (3.34), (3.35) and (3.36), one obtains (3.26). �

Proof of Corollary 3.5 The inequality (3.8) is a straightforward consequence of (1.6) and

of Theorem 3.4 with m = 0, a = H and b = H. Let us show that the two inequalities

(3.8) and (3.10) are equivalent when the condition (3.9) holds. There is no restriction to

assume that % ≥ 1. Then, for any t ∈ C%, using the inequalities |t|1 ≥ % ≥ 1 and the equality

|t|H(t)
1 = |t|(H(t)−H∞)+H∞

1 , one obtains that(
|t|−|H(t)−H∞|

1 )|t|H∞1 ≤ |t|H(t)
1 ≤

(
|t||H(t)−H∞|

1 )|t|H∞1 . (3.37)

Moreover, one can derive from the condition (3.9) and the inequality log(|t|1) ≥ 0, that

|t|−|H(t)−H∞|
1 := exp

(
− log(|t|1)|H(t)−H∞|

)
≥ exp

(
− c1

log(|t|1)

log(3 + |t|1)

)
≥ c2 > 0 (3.38)

and

|t||H(t)−H∞|
1 := exp

(
log(|t|1)|H(t)−H∞|

)
≤ exp

(
c1

log(|t|1)

log(3 + |t|1)

)
≤ c3 < +∞, (3.39)
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where the positive finite constant c1 denotes the constant c in (3.9), and the two positive

finite constants c2 and c3 do not depend on t. Combining (3.37) with (3.38) and (3.39), it

follows that, for any fixed η > 0, and for all t ∈ C%,

c2|t|H∞1 log
1
α

+η(1 + |t|1) ≤ |t|H(t)
1 log

1
α

+η(1 + |t|1) ≤ c3|t|H∞1 log
1
α

+η(1 + |t|1),

which shows that the two inequalities (3.8) and (3.10) are equivalent when the condition (3.9)

holds. �

4 Study of optimality of results on path behavior

It seems natural to wonder whether the results on sample path behavior of the HMSF Z,

provided by Corollaries 3.2, 3.3 and 3.5 of the previous section, are optimal. Studying this

issue is the main goal of the present section. First we state the main results of the section,

and then we give their proofs. All of them are stated in terms of the `1 norm |y|1 :=
∑N

r=1 |yr|
on RN and remain valid for any other norm on RN .

Theorem 4.1 For any fixed (ũ, ṽ ) ∈ RN × (0, 1), there exists an event Ω̃α,ũ ⊂ Ω∗α of proba-

bility 1, which depends on α and ũ but not on ṽ, such that, on Ω̃α,ũ, one has

lim sup
u→ũ

∣∣X(u, ṽ )−X(ũ, ṽ )
∣∣

|u− ũ |ṽ1 log
1
α

(
1 + |u− ũ |−1

1

) = +∞. (4.1)

Recall that, for any arbitrary real-valued function f defined on RN \ {ũ },

lim sup
u→ũ

f(u) := lim
%→0+

(
sup

{
f(u), u ∈ RN \ {ũ } and |ũ− u|1 ≤ %

})
. (4.2)

The following corollary shows that the pointwise modulus of continuity for HMSF at an

arbitrary point τ ∈ RN satisfying the condition (3.5), provided by Corollary 3.3, is optimal

on an event of probability 1 depending on τ .

Corollary 4.2 For any fixed τ ∈ RN satisfying the condition (3.5), there exists an event

Ω̃α,τ ⊂ Ω∗α of probability 1, which depends on α and τ such that, on Ω̃α,τ , one has

lim sup
t→τ

∣∣Z(t)− Z(τ)
∣∣

|t− τ |H(τ)
1 log

1
α

(
1 + |t− τ |−1

1

) = +∞. (4.3)

The following corollary shows, under the additional weak condition (4.4), that the global

modulus of continuity for HMSF on an arbitrary compact box of RN , provided by Corollary

3.2, is optimal.
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Corollary 4.3 Let I be an arbitrary non-empty compact box of RN , and let H(I) be as in

(3.2). The topological interior of I is denoted by I̊, and one assumes that there exists some

point τ (0) ∈ I̊ such that

H(τ (0)) = H(I) := min
t∈I

H(t). (4.4)

Also, one assumes that the condition (3.3) holds. Then, one has almost surely,

sup
(t(1),t(2))∈I2

∣∣Z(t(1))− Z(t(2))
∣∣∣∣t(1) − t(2)

∣∣H(I)

1
log

1
α

(
1 + |t(1) − t(2)|−1

1

) = +∞. (4.5)

Theorem 4.4 There exists a universal event Ω̌α ⊂ Ω∗α of probability 1, which does not depend

on ṽ, such that, on Ω̌α, one has, for all ṽ ∈ (0, 1),

lim sup
|u|1→+∞

∣∣X(u, ṽ )
∣∣

|u|ṽ1 log
1
α (1 + |u|1)

= +∞. (4.6)

Recall that, for any arbitrary real-valued function f defined on RN \ {0},

lim sup
|u|1→+∞

f(u) := lim
%→+∞

(
sup

{
f(u), u ∈ RN and |u|1 ≥ %

})
. (4.7)

The following corollary shows that the bound for the behavior at infinity of HMSF,

provided by (3.10) in Corollary 3.5, is optimal when the Hurst function H(·) satisfies a bit

stronger condition than the one in (3.9).

Corollary 4.5 Assume that there are three finite constants H∞ ∈ [H,H], η∞ > 0 and c > 0

such that ∣∣H(t)−H∞
∣∣ ≤ c( log

(
3 + |t|1

))−1−η∞
, for all t ∈ RN . (4.8)

Then, on the event Ω̌α of probability 1, introduced in Theorem 4.4, one has

lim sup
|t|1→+∞

|Z(t)|
|t|H∞1 log

1
α (1 + |t|1)

= +∞. (4.9)

Remark 4.6 Assume that the condition (3.5) is satisfied for all τ ∈ RN , which is, for

instance, clearly the case when H(·) is a locally Lipschitz function on RN . Then, in view

of (1.1), Corollaries 3.3 and 4.2 imply that (1.4) remains valid when the MBF Z2 in it is

replaced by an HMSF Z with an arbitrary parameter α ∈ (0, 2). Notice that Corollary 3.3

further implies that P
(
∀ τ ∈ RN , ρZ(τ) ≥ H(τ)

)
= 1, since the event Ω∗α of probability 1, on

which (3.6) is valid, does not depend on τ . Thus, for proving that (1.5) keeps valid when Z2

in it is replaced by Z, which is one of the main motivations of our article, it remains to show

that

P
(
∀ τ ∈ RN , ρZ(τ) ≤ H(τ)

)
= 1. (4.10)

The latter equality will be a consequence of the corollary of the following theorem.
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Theorem 4.7 There exists a universal event Ω̂α ⊂ Ω∗α of probability 1, which does not depend

on (ũ, ṽ ), such that, on Ω̂α, one has, for all (ũ, ṽ ) ∈ RN × (0, 1),

lim sup
u→ũ

∣∣X(u, ṽ )−X(ũ, ṽ )
∣∣

|u− ũ |ṽ1
≥ ĉ (ṽ ) > 0, (4.11)

where ĉ (ṽ ) is a positive finite deterministic constant which depends on ṽ but not on ũ.

The following corollary shows that the pointwise modulus of continuity for HMSF at an

arbitrary point τ ∈ RN satisfying a bit stronger condition than (3.5), provided by Corollary

3.3, is quasi-optimal (that is optimal up to a logarithmic factor) on the universal event Ω̂α

of probability 1 which does not depend on τ .

Corollary 4.8 Let Ω̂α be the same universal event of probability 1 as in Theorem 4.7. Then,

for all point τ ∈ RN satisfying the condition

lim
t→τ

∣∣H(t)−H(τ)
∣∣

|t− τ |H(τ)
1

= 0, (4.12)

which is a bit stronger than the condition (3.5), one has on Ω̂α,

lim
t→τ

∣∣Z(t)− Z(τ)
∣∣

|t− τ |H(τ)
1

≥ ĉ (H(τ)) > 0, (4.13)

where ĉ (H(τ)) is the positive finite deterministic constant ĉ (ṽ ), introduced in Theorem 4.7,

with ṽ = H(τ).

Remark 4.9 Notice that Corollary 4.8 is a strictly stronger result than the one mentioned

in (4.10), under the assumption that the Hurst function H(·) is a locally Lipschitz function

on RN . Indeed, under the latter assumption, or more generally when H(·) is a locally Hölder

function on RN of any arbitrary order γ ∈ (H, 1], recall that H := supt∈RN H(t) < 1, then

the condition (4.12) is satisfied by all point τ ∈ RN , thus (4.10) results from Corollary 4.8

and (1.1).

From now on, our goal is to prove the main results of the section that we have stated.

To this end, we need to introduce the functions Ψ̃
(α)
δ , δ ∈ Υ∗, and to derive some lemmas

related to them.

Definition 4.10 Let Ψ
(α)
δ , δ ∈ Υ∗, be the functions which were introduced in Definition 2.2.

The real-valued C∞ functions Ψ̃
(α)
δ , δ ∈ Υ∗, on RN × R are defined, for all (x, v) ∈ RN × R,

as

Ψ̃
(α)
δ (x, v) := (2π)−NΨ

(α)
δ (x,−v − 2N/α) = (2π)−N

∫
RN

eix·η|η|v+N
α

2 ψ̂δ(η) dη. (4.14)
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Remark 4.11 One knows from (2.17) that there is a finite constant c such that

∣∣Ψ̃(α)
δ (x, v)

∣∣ ≤ c N∏
r=1

(
1 + |xr|

)−4
, for all (δ, x, v) ∈ Υ∗ × RN × [0, 1]. (4.15)

Also, one knows from (4.14), (2.5) and a basic property of Fourier transform and inverse

Fourier transform on the Schwartz space S(RN ), that

∫
RN

e−iξ·x Ψ̃
(α)
δ (x, v) dx = |ξ|v+N

α
2 ψ̂δ(ξ),

for all ξ ∈ RN and v ∈ R, and consequently that∫
RN

Ψ̃
(α)
δ (x, v) dx = 0, for all v ∈ R. (4.16)

Moreover, similarly to Part (i) of Proposition 5.13 [1], using (2.10), (4.14), Plancherel

Theorem and the fact that the Meyer wavelets ψδ,j,k, (δ, j, k) ∈ Υ∗ × Z × ZN , defined in

(2.1), are orthonormal, it can be shown that, for all v ∈ R, (δ, j, k) ∈ Υ∗ × Z × ZN and

(δ′, j′, k′) ∈ Υ∗ × Z× ZN ,

2jN
∫
RN

Ψ̃
(α)
δ (2ju− k, v)Ψ

(α)
δ′ (2j

′
u− k′, v) du =

{
1, if (δ, j, k) = (δ′, j′, k′),

0, else.
(4.17)

The following proposition provides a nice Lebesgue integral expression for the SαS random

variables ε
(α)
δ,j,k, (δ, j, k) ∈ Υ∗ × Z× ZN , introduced in (2.18).

Proposition 4.12 On the event Ω∗α of probability 1, one has, for all (δ, j, k) ∈ Υ∗ ×Z×ZN

and v ∈ (0, 1),

ε
(α)
δ,j,k = 2j(N+v)

∫
RN

Ψ̃
(α)
δ (2ju− k, v)X(u, v) du. (4.18)

Proof Let (δ, j, k) ∈ Υ∗ × Z× ZN , v ∈ (0, 1) and ω ∈ Ω∗α be arbitrary and fixed. Observe

that, in view of (4.15), the continuity on RN of the function u 7→ Ψ̃
(α)
δ (2ju− k, v)X(u, v, ω)

and Theorem 3.4, the Lebesgue integral in (4.18) is well-defined and finite. Next, for each

u ∈ RN and n ∈ N, let Xn(u, v) be the same random variable as in (2.20). Observe that, in

view of (4.17) and (4.16), for proving the lemma it is enough to show that∫
RN

Ψ̃
(α)
δ (2ju− k, v)X(u, v, ω) du = lim

n→+∞

∫
RN

Ψ̃
(α)
δ (2ju− k, v)Xn(u, v, ω) du. (4.19)

The equality (4.19) can be obtained by using the Lebesgue dominated convergence Theorem,

since one knows from Proposition 2.7 that

X(u, v, ω) = lim
n→+∞

Xn(u, v, ω),

32



and one knows from (4.15) and Proposition 3.6 with m = 0, that the function u 7→
∣∣Ψ̃(α)

δ (2ju−
k, v)Xn(u, v, ω)

∣∣ can be bounded from above, uniformly in n ∈ N, by a positive function not

depending on n, which is Lebesgue integrable over RN in the variable u. �

The following proposition, which will be one of the two main ingredients of the proof of

Theorem 4.1, provides a lower bound for the lim sup in (4.1) in terms of some of the random

variables ε
(α)
δ,j,k.

Proposition 4.13 For any fixed (ũ, ṽ ) ∈ RN × (0, 1), there is a positive finite deterministic

constant c(ṽ ), only depending on ṽ, such that on the event Ω∗α of probability 1, one has, for

all δ ∈ Υ∗,

lim sup
j→+∞

|ε(α)

δ,j,b2j ũc|

(1 + j)
1
α

≤ c(ṽ ) lim sup
u→ũ

∣∣X(u, ṽ )−X(ũ, ṽ )
∣∣

|u− ũ |ṽ1 log
1
α

(
1 + |u− ũ |−1

1

) , (4.20)

where

b2j ũc :=
(
b2j ũ1c, · · · , b2j ũNc

)
, (4.21)

Recall that b·c is the integer part function and that, for any sequence (wj)j∈Z+ of real numbers,

lim sup
j→+∞

wj := lim
J→+∞

(
sup
j≥J

wj
)
. (4.22)

For proving Proposition 4.13, we need the following lemma.

Lemma 4.14 The real numbers 0 < a < b < 1 and the non-empty compact I ′ ⊂ RN are

arbitrary and fixed. For all ω ∈ Ω∗α and δ ∈ Υ∗, one has

sup

{
θ2

∫
{|y|1>θ}

∣∣X(u+ θ−2y, v, ω)
∣∣∣∣Ψ̃(α)

δ (y, v)
∣∣dy, (θ, u, v) ∈ [1,+∞)× I ′ × [a, b]

}
< +∞.

(4.23)

Proof Let ω ∈ Ω∗α, δ ∈ Υ∗, a non-empty compact I ′ ⊂ RN and two real numbers 0 < a <

b < 1 be arbitrary and fixed. Observe that, one knows from the continuity on RN × [a, b]

of the function X(•, ·, ω), Theorem 3.4 with m = 0, and (2.38), that there exists a positive

finite random variable C1, such that, for all (z, v) ∈ RN × [a, b],

∣∣X(z, v, ω)
∣∣ ≤ C1(ω)

N∏
r=1

(1 + |zr|).
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Thus, setting C2(ω) := C1(ω)
(
1 + supu∈I′ |u|∞

)N
< +∞, one obtains that

∣∣X(u+ θ−2y, v, ω)
∣∣ ≤ C2(ω)

N∏
r=1

(1 + |yr|), for all (y, θ, u, v) ∈ RN × [1,+∞)× I ′ × [a, b].

Then, it results from (4.15) and the inequality N |y|∞ ≥ |y|1 that∫
{|y|1>θ}

∣∣X(u+ θ−2y, v, ω)
∣∣∣∣Ψ̃(α)

δ (y, v)
∣∣ dy ≤ C3(ω)

∫
{N |y|∞>θ}

N∏
r=1

(1 + |yr|)−3 dy

≤ 2NC3(ω)
(∫

R
(1 + |r|)−3 dr

)N−1
∫ +∞

θ/N
(1 + s)−3 ds ≤ C4(ω) θ−2, (4.24)

where C3 and C4 are two positive finite random variables not depending on (θ, u, v). It clearly

follows from (4.24) that (4.23) holds. �

Proof of Proposition 4.13 First observe that, using (4.18), the change of y = 2ju−b2j ũc
and (4.16), one has on the event Ω∗α, for all j ∈ Z+,

ε
(α)

δ,j,b2j ũc = 2jṽ
∫
RN

Ψ̃
(α)
δ (y, ṽ )

(
X
(
2−jb2j ũc+ 2−jy, ṽ

)
−X

(
2−jb2j ũc, ṽ

))
dy. (4.25)

Also observe that, one can easily derives from (4.21) that∣∣2−jb2j ũc − ũ∣∣
1
≤ N2−j , for all j ∈ Z+, (4.26)

which implies, for all j ∈ Z+, that 2−jb2j ũc ∈ I ′ :=
{
z ∈ RN , |z − ũ|1 ≤ N

}
. Since I ′ is a

non-empty compact subset of RN not depending on j, using the triangle inequality, Lemma

4.14, the fact that supz∈I′ |X(z, ṽ )| < +∞ (which results from the continuity property of the

field X) and (4.15), one gets on Ω∗α, for some positive finite random variable C1 and for every

j ∈ Z+, that∫
{|y|1>2j/2}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣∣∣∣X(2−jb2j ũc+ 2−jy, ṽ
)
−X

(
2−jb2j ũc, ṽ

)∣∣∣ dy ≤ C12−j .

Then, it results from (4.25) that on Ω∗α, one has, for all j ∈ Z+,

|ε(α)

δ,j,b2j ũc| ≤ 2jṽ
∫
{|y|1≤2j/2}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣∣∣∣X(2−jb2j ũc+ 2−jy, ṽ
)
−X

(
2−jb2j ũc, ṽ

)∣∣∣ dy
+ C12−j(1−ṽ). (4.27)

In order to conveniently bound the integral in the right-hand side of (4.27), one introduces,

on Ω∗α, the positive non-decreasing random function M
(X)
ũ,ṽ , defined for each % ∈ (0,+∞), as

M
(X)
ũ,ṽ (%) := sup

{ ∣∣X(z, ṽ)−X(ũ, ṽ)
∣∣

|z − ũ |ṽ1 log
1
α

(
1 + |z − ũ |−1

1

) , 0 < |z − ũ |1 ≤ %

}
. (4.28)
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Then, setting c2 := N + 1, one can derive from the triangle inequality, (4.28) and (4.26), that

on Ω∗α, one has, for all j ∈ Z+ and y ∈ RN satisfying |y|1 ≤ 2j/2,

2jṽ
∣∣∣X(2−jb2j ũc+ 2−jy, ṽ

)
−X

(
2−jb2j ũc, ṽ

)∣∣∣
≤ 2jṽ

(∣∣∣X(2−jb2j ũc+ 2−jy, ṽ
)
−X(ũ, ṽ )

∣∣∣+
∣∣∣X(2−jb2j ũc, ṽ)−X(ũ, ṽ )

∣∣∣)
≤ 2jṽM

(X)
ũ,ṽ (c22−j/2)

(∣∣2−jy + 2−jb2j ũc − ũ
∣∣ṽ
1

log
1
α

(
1 +

∣∣2−jy + 2−jb2j ũc − ũ
∣∣−1

1

)
+
∣∣2−jb2j ũc − ũ∣∣ṽ

1
log

1
α

(
1 +

∣∣2−jb2j ũc − ũ∣∣−1

1

))
(4.29)

≤ (1 + j)
1
α M

(X)
ũ,ṽ (c22−j/2)

(∣∣y + b2j ũc − 2j ũ
∣∣ṽ
1

log
1
α

(
3 +

∣∣y + b2j ũc − 2j ũ
∣∣−1

1

)
+ c3

)
,

where the positive finite constant c3 := sup
|w|1≤3N

|w|ṽ1 log
1
α
(
3 + |w|−1

1

)
. Moreover, setting

c4 := c3

∫
RN

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣ dy < +∞, (4.30)

and using (4.26), one has, for every j ∈ Z+, that∫
{|y|1≤2j/2}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣∣∣y + b2j ũc − 2j ũ
∣∣ṽ
1

log
1
α

(
3 +

∣∣y + b2j ũc − 2j ũ
∣∣−1

1

)
dy

≤
∫
{|y|1≤2N}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣∣∣y + b2j ũc − 2j ũ
∣∣ṽ
1

log
1
α

(
3 +

∣∣y + b2j ũc − 2j ũ
∣∣−1

1

)
dy

+

∫
{2N<|y|1≤2j/2}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣∣∣y + b2j ũc − 2j ũ
∣∣ṽ
1

log
1
α

(
3 +

∣∣y + b2j ũc − 2j ũ
∣∣−1

1

)
dy

≤ c4 +

∫
{2N<|y|1≤2j/2}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣(|y|1 +N)ṽ log
1
α

(
3 +

(
|y|1 −

∣∣b2j ũc − 2j ũ
∣∣
1

)−1
)
dy

≤ c5 := c4 +

∫
{2N<|y|1}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣(|y|1 +N)ṽ log
1
α
(
3 + 2|y|−1

1

)
dy < +∞. (4.31)

Next, let c6 be the positive finite constant, not depending on j, defined as c6 := c5 + c4.

Then, it follows from (4.27), (4.29), (4.30) and (4.31), that, on Ω∗α, one has, for all j ∈ Z+,

|ε(α)

δ,j,b2j ũc|

(1 + j)
1
α

≤ c6 M
(X)
ũ,ṽ (c22−j/2) + C12−j(1−ṽ)(1 + j)−

1
α ,

which implies that

lim sup
j→+∞

|ε(α)

δ,j,b2j ũc|

(1 + j)
1
α

≤ c6 lim
j→+∞

M
(X)
ũ,ṽ (c22−j/2). (4.32)
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Finally, in view of (4.2) and (4.28), one clearly has that

lim
j→+∞

M
(X)
ũ,ṽ (c22−j/2) = lim sup

u→ũ

∣∣X(u, ṽ )−X(ũ, ṽ )
∣∣

|u− ũ |ṽ1 log
1
α

(
1 + |u− ũ |−1

1

) .
Thus, (4.32) shows that (4.20) holds on Ω∗α. �

The second main ingredient of the proof of Theorem 4.1 is the following proposition. On

other hand, this proposition is also a major ingredient of the proof of Theorem 4.4.

Proposition 4.15 Let (kj)j∈N be an arbitrary sequence of elements of ZN . One has almost

surely, for all δ ∈ Υ∗,

lim sup
j→+∞

|ε(α)
δ,j,kj
|

(1 + j)
1
α

= +∞ and lim sup
j→+∞

|ε(α)
δ,−j,kj |

(1 + j)
1
α

= +∞. (4.33)

For proving this proposition, we need the following remark.

Remark 4.16 Let δ ∈ Υ∗ be arbitrary and fixed. One knows from Part (i) of Remark

1.1 and (2.12) that the SαS real-valued random variables ε
(α)
δ,j,k, (j, k) ∈ Z × ZN , defined

in (2.18), are identically distributed and that the common value of their scale parameter is

‖ψ̂δ‖α :=
( ∫

RN |ψ̂δ(η)|α dη
)1/α

> 0. Thus, one can derive from (1.2.10) on page 17 in [22],

that there are two universal constants 0 < c′α < c′′α < +∞, only depending on α, such that,

for every (δ, j, k) ∈ Υ∗ × Z× ZN , one has

c′α ‖ψ̂δ‖αα x−α ≤ P
(
|ε(α)
δ,j,k| ≥ x

)
≤ c′′α ‖ψ̂δ‖αα x−α, for all x ∈ [1,+∞). (4.34)

On another hand, denoting by Ze (resp. Zo) the set of the even (resp. odd) integers, one

knows from Part (ii) of Remark 1.1, (2.12), (2.4) and (2.3), that for any given integer m ≥ 2,

and any distinct integers j1, j2, . . . , jm belonging to Ze (resp. Zo), the m sequences of random

variables {εδ,j1,k}(δ,k)∈Υ∗×ZN , {εδ,j2,k}(δ,k)∈Υ∗×ZN , . . . , {εδ,jm,k}(δ,k)∈Υ∗×ZN are independent.

Proof of Proposition 4.15 We only show that the first equality in (4.33) holds, the

second equality in it can be obtained in the same way. Let Ne be the set of the positive even

integers. One knows from Remark 4.16, that for any given δ ∈ Υ∗, {εδ,j,kj}j∈Ne is a sequence

of independent and identically distributed real-valued SαS random variables. Thus, using the

second part of the Borel-Cantelli Lemma, it is turns out that for proving the first equality in

(4.33), it is enough to show that∑
j∈Ne

P
(
|ε(α)
δ,j,kj
| ≥ (1 + j)

1
α log

1
α (1 + j)

)
= +∞. (4.35)

The equality (4.35) easily follows from the first inequality in (4.34). �
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We are now in position to prove Theorem 4.1 and its two corollaries.

Proof of Theorem 4.1 Using (4.20) and the first equality in (4.33) with kj = b2j ũc, for

all j ∈ N, one obtains (4.1). �

Proof of Corollary 4.2 It follows from (1.6) and the triangle inequality that, on the event

Ω∗α of probability 1,

lim sup
t→τ

∣∣Z(t)− Z(τ)
∣∣

|t− τ |H(τ)
1 log

1
α

(
1 + |t− τ |−1

1

) (4.36)

≥ lim sup
t→τ

∣∣X(t,H(τ))−X(τ,H(τ))
∣∣

|t− τ |H(τ)
1 log

1
α

(
1 + |t− τ |−1

1

) − lim sup
t→τ

∣∣X(t,H(t))−X(t,H(τ))
∣∣

|t− τ |H(τ)
1 log

1
α

(
1 + |t− τ |−1

1

) .
Moreover, one can derive from (3.5) and Remark 2.77 with m = 0, % = |τ |∞ + 1, a = H and

b = H that, on Ω∗α,

lim sup
t→τ

∣∣X(t,H(t))−X(t,H(τ))
∣∣

|t− τ |H(τ)
1 log

1
α

(
1 + |t− τ |−1

1

) < +∞. (4.37)

Finally, putting together (4.36), (4.1) with ũ = τ and ṽ = H(τ), and (4.37), one obtains the

corollary. �

Proof of Corollary 4.3 Using (4.4) and the fact that τ (0) belongs to the topological interior

of the box I, one gets that

sup
(t(1),t(2))∈I2

∣∣Z(t(1))− Z(t(2))
∣∣∣∣t(1) − t(2)

∣∣H(I)

1
log

1
α

(
1 + |t(1) − t(2)|−1

1

) ≥ lim sup
t→τ (0)

∣∣Z(t)− Z(τ (0))
∣∣

|t− τ (0)|H(τ)
1 log

1
α

(
1 + |t− τ (0)|−1

1

) .
Thus, Corollary 4.3 results from Corollary 4.2. �

Our next goal is to show that Theorem 4.4 and its corollary hold. We already mentioned

that Proposition 4.15 is a major ingredient of the proof of Theorem 4.4. The other major

ingredient of it is the following result.

Proposition 4.17 One denotes by 〈0〉 the vector of ZN whose coordinates are all equal to

0, that is 〈0〉 := (0, 0, . . . , 0) ∈ ZN . For any fixed ṽ ∈ (0, 1), there exists a positive finite

deterministic constant c′(ṽ ), only depending on ṽ, such that on the event Ω∗α of probability

1, one has, for all δ ∈ Υ∗,

lim sup
j→+∞

|ε(α)
δ,−j,〈0〉|

(1 + j)
1
α

≤ c′(ṽ ) lim sup
|u|1→+∞

∣∣X(u, ṽ )
∣∣

|u|ṽ1 log
1
α (1 + |u|1)

. (4.38)
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Proof First observe that, it easily follows from (4.18) that one has on the event Ω∗α, for all

j ∈ N,

|ε(α)
δ,−j,〈0〉| ≤Wδ,j(ṽ ) + W̃δ,j(ṽ ), (4.39)

where

Wδ,j(ṽ ) := 2−jṽ
∫
{|y|1<2−j/2}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣∣∣X(2jy, ṽ)∣∣ dy (4.40)

and

W̃δ,j(ṽ ) := 2−jṽ
∫
{|y|1≥2−j/2}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣∣∣X(2jy, ṽ)∣∣ dy. (4.41)

Let us now show that, for any fixed η > 0, there is a positive finite random variable C1, such

that on Ω∗α, the following inequality holds:

Wδ,j(ṽ ) ≤ C12−jṽ/2 j
1
α

+η, for all j ∈ N. (4.42)

Observe that, one knows from the continuity on RN of the function X(•, ṽ, ω) (where ω ∈ Ω∗α

is arbitrary and fixed), and Theorem 3.4 with m = 0, that, for some positive finite random

variable C2, one has on Ω∗α,∣∣X(u, ṽ)∣∣ ≤ C2

(
1 + |u|ṽ1

)
log

1
α

+η(3 + |u|1), for all u ∈ RN .

Thus, for all j ∈ N and y ∈ RN satisfying |y|1 < 2−j/2, one gets that∣∣X(2jy, ṽ)∣∣ ≤ 2C2 2jṽ/2 log
1
α

+η(3 + 2j/2).

Then, (4.40) implies, for all j ∈ N, that

Wδ,j(ṽ ) ≤
(

2C2

∫
RN

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣ dy)2−jṽ/2 log
1
α

+η(3 + 2j/2). (4.43)

Observe that, one knows from (4.15) that the integral in the right-hand side of the inequality

(4.43) is finite. Therefore, it results from the latter inequality that (4.42) is satisfied.

In order to conveniently bound W̃δ,j(ṽ ), one introduces, on Ω∗α, the positive non-increasing

random function M̃
(X)
ṽ , defined for each % ∈ (0,+∞), as

M̃
(X)
ṽ (%) := sup

{ ∣∣X(z, ṽ )
∣∣

|z|ṽ1 log
1
α

(
1 + |z|1

) , |z|1 ≥ %} . (4.44)

Then, it results from (4.41) and (4.44) that, on Ω∗α, one has, for all j ∈ N,

W̃δ,j(ṽ ) ≤ M̃
(X)
ṽ (2j/2)2−jṽ

∫
{|y|1≥2−j/2}

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣∣∣2jy∣∣ṽ
1

log
1
α

(
1 +

∣∣2jy∣∣
1

)
dy

≤ c′(ṽ )M̃
(X)
ṽ (2j/2)(1 + j)

1
α , (4.45)

where the deterministic finite constant c′(ṽ ) :=

∫
R

∣∣Ψ̃(α)
δ (y, ṽ )

∣∣|y|ṽ1 log
1
α
(
3 + |y|1

)
dy.

Finally, in view of (4.7), putting together (4.39), (4.42) and (4.45), one obtains (4.38). �
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We are now ready to prove Theorem 4.4 and its corollary.

Proof of Theorem 4.4 Using (4.38) and the second equality in (4.33) with kj = 〈0〉, for

all j ∈ N, one obtains (4.6). �

Proof of Corollary 4.5 It follows from (1.6) and the triangle inequality that, on the event

Ω∗α of probability 1,

lim sup
|t|1→+∞

|Z(t)|
|t|H∞1 log

1
α (1 + |t|1)

≥ lim sup
|t|1→+∞

|X(t,H∞)|
|t|H∞1 log

1
α (1 + |t|1)

− lim sup
|t|1→+∞

∣∣X(t,H(t))−X(t,H∞)
∣∣

|t|H∞1 log
1
α (1 + |t|1)

.

Moreover, one knows from Theorem 4.4, that on the event Ω̌α ⊂ Ω∗α of probability 1, one has

lim sup
|t|1→+∞

|X(t,H∞)|
|t|H∞1 log

1
α (1 + |t|1)

= +∞.

Thus, it turns out that, for proving (4.9), it is enough to show that the following equality

holds on the event Ω∗α of probability 1:

lim sup
|t|1→+∞

∣∣X(t,H(t))−X(t,H∞)
∣∣

|t|H∞1 log
1
α (1 + |t|1)

= 0. (4.46)

Let us fix an arbitrary t ∈ RN such that |t|1 ≥ 1. Since the random function v 7→ X(t, v) is

C∞ on the interval (0, 1) (see Theorem 2.16), one can use the mean value theorem to get that

X(t,H(t))−X(t,H∞) = (∂vX)(t, ν)
(
H(t)−H∞

)
, (4.47)

where ν is such that 0 < H ≤ min{H(t), H∞} ≤ ν ≤ max{H(t), H∞} ≤ H < 1, which entails

that ∣∣ν −H∞∣∣ ≤ ∣∣H(t)−H∞
∣∣ ≤ c1

(
log
(
3 + |t|1

))−1−η∞
, (4.48)

where the last inequality follows from (4.8); notice that the finite constant c1 does not depend

on t. Next one recalls that, one knows from Theorem 3.4 with m = 1, η = η∞/2, % = 1,

a = H and b = H, that, there is a positive finite random variable C2 such that, on Ω∗α one

has ∣∣(∂vX)(u, v)
∣∣ ≤ C2|u|v1 log

1
α

+ η∞
2

+1(1 + |u|1), for all (u, v) ∈ C1 × [H,H],

which, in particular, implies that∣∣(∂vX)(t, ν)
∣∣ ≤ C2|t|ν1 log

1
α

+ η∞
2

+1(1 + |t|1). (4.49)
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Observe that, using the inequalities |t|1 ≥ 1 and (4.48), one gets that

|t|ν1 = |t|H∞−H∞+ν
1 ≤ |t|H∞+|ν−H∞|

1 = |t|H∞1 exp
(
|ν −H∞| log(|t|1)

)
≤ |t|H∞1 exp

(
c1 log−η∞(3 + |t|1)

)
≤ exp(c1)|t|H∞1 . (4.50)

Thus, setting C3 := C2 exp(c1), one can derive from (4.49) and (4.50) that∣∣(∂vX)(t, ν)
∣∣ ≤ C3|t|H∞1 log

1
α

+ η∞
2

+1(1 + |t|1).

Then (4.47) and the second inequality in (4.48) imply that, on Ω∗α, for all t ∈ RN with

|t|1 ≥ 1. ∣∣X(t,H(t))−X(t,H∞)
∣∣ ≤ c1C2|t|H∞1 log

1
α
− η∞

2 (1 + |t|1). (4.51)

One can derive from (4.51), that for every real number % ≥ 1,

sup

{∣∣X(t,H(t))−X(t,H∞)
∣∣

|t|H∞1 log
1
α (1 + |t|1)

, t ∈ RN and |t|1 ≥ %

}
≤ c1C2 log−

η∞
2 (1 + %). (4.52)

Thus, in view of (4.7), letting % in (4.52) go to +∞, one obtains (4.46). �

Our next and final goal is to show that Theorem 4.7 and its corollary hold. The following

two propositions are the two main ingredients of the proof of Theorem 4.7. We skip the proof

of the first one of them since it is very similar to that of Proposition 4.13.

Proposition 4.18 For any fixed (ũ, ṽ ) ∈ RN × (0, 1), there is a positive finite deterministic

constant c′′(ṽ ), only depending on ṽ, such that on the event Ω∗α of probability 1, one has, for

all δ ∈ Υ∗,

lim sup
j→+∞

|ε(α)

δ,j,b2j ũc| ≤ c
′′(ṽ ) lim sup

u→ũ

∣∣X(u, ṽ )−X(ũ, ṽ )
∣∣

|u− ũ |ṽ1
. (4.53)

Proposition 4.19 There exist a universal event Ω̂α ⊂ Ω∗α of probability 1 (not depending

on ũ) and a universal deterministic strictly positive finite constant ĉ0 (not depending on ũ),

such that on Ω̂α, one has, for all δ ∈ Υ∗ and ũ ∈ RN ,

lim sup
j→+∞

∣∣ε(α)

δ,j,b2j ũc
∣∣ ≥ ĉ0 > 0. (4.54)
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Proof First, recall that one knows from Remark 4.16 that the real-valued SαS random

variables ‖ψ̂δ‖−1
α ε

(α)
δ,j,k, (δ, j, k) ∈ Υ∗×Z×ZN , are identically distributed and that the common

value of their scale parameter is equal to 1. Thus, since minδ∈Υ∗ ‖ψ̂δ‖α > 0 and the common

probability distribution of these random variables is absolutely continuous with respect to

the Lebesgue measure on R, for any given arbitrarily small real number θ ∈ (0, 1), there

exists a finite constant ĉ0(θ) > 0 such that

P
(
|ε(α)
δ,j,k| < ĉ0(θ)

)
≤ θ, for all (δ, j, k) ∈ Υ∗ × Z× ZN . (4.55)

Having made this first remark, in the sequel, for any integer m ∈ Z, one denotes by 〈m〉
the vector of ZN whose coordinates are all equal to m. Observe the collection of the cubes

[`, `+ 〈1〉) :=
∏N
r=1[`r, `r + 1), ` ∈ ZN , forms a partition of RN . Since this collection of cubes

is countable, it is enough to show that the proposition holds for all ũ ∈ [`, ` + 〈1〉), where

` ∈ ZN is arbitrary and fixed. In the sequel, for avoiding heavy notations, one assumes that

this fixed ` is equal to 〈0〉; the proof can be done in the same way for any other fixed `. For

all level j ∈ Z+, and k ∈ Kj := {0, · · · , 2j − 1}N , one denotes by Ij,k the dyadic cube of level

j defined as Ij,k :=
[
2−jk, 2−j(k+ 〈1〉)

)
:=
∏N
r=1

[
2−jkr, 2

−j(kr+1)
)
. Observe that, for every

j ∈ Z+, one has Ij,k′ ∩ Ij,k′′ = ∅ when k′ 6= k′′, and that

[〈0〉, 〈1〉) =
⋃
k∈Kj

Ij,k.

Also observe that being given such a cube Ij,k, for all level j′ ∈ {0, . . . , j}, there exists a unique

k′ = k′(j, k, j′) ∈ Kj′ , which depends on j, k and j′, such that Ij,k ⊆ Ij′,k′ ; moreover when

k = b2j ũc, for any fixed ũ ∈ [〈0〉, 〈1〉), then k′ = b2j′ ũc. Having made these observations, let

us denote by Z+,e the set of the non-negative even integers and, for any given j ∈ Z+,e and

k ∈ K3j , let us denote by Λ3j,k the finite set of cardinality j + 1 defined as

Λ3j,k :=
{

(j′, k′) ∈ Z+,e × ZN , j ≤ j′ ≤ 3j, k′ ∈ Kj′ and I3j,k ⊆ Ij′,k′
}

; (4.56)

notice that, thanks to our previous observations, it results from (4.56) that, for every j ∈ Z+,e

and ũ ∈ [〈0〉, 〈1〉), the set Λ3j,b23j ũc can be expressed as

Λ3j,b23j ũc =
{

(j′, b2j′ ũc) , j′ ∈ Z+,e and j ≤ j′ ≤ 3j
}
. (4.57)

For each δ ∈ Υ∗, j ∈ Z+,e and k ∈ K3j , one defines the event Θδ
3j,k as

Θδ
3j,k :=

⋂
(j′,k′)∈Λ3j,k

{
|ε(α)
δ,j′,k′ | < ĉ0(θ)

}
, (4.58)
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where ĉ0(θ) > 0 is the same constant as in (4.55). Notice that, in view of (4.56) and our

previous observations, there are no two distinct elements (j′1, k
′
1) and (j′2, k

′
2) of Λ3j,k which

are such that j′1 = j′2 and k′1 6= k′2. Thus, one knows from Remark 4.16 that the random

variables ε
(α)
δ,j′,k′ , (j′, k′) ∈ Λ3j,k, are independent. Then one derive from (4.58), (4.55) and

the fact that j + 1 is the cardinality of Λ3j,k, that, for all δ ∈ Υ∗, j ∈ Z+,e and k ∈ K3j ,

P(Θδ
3j,k) ≤ θj+1. (4.59)

Next, for every j ∈ Z+,e, let Θ3j be the event defined as

Θ3j :=
⋃
δ∈Υ∗

⋃
k∈K3j

Θδ
3j,k. (4.60)

Since Υ∗ = {1, . . . , 2N − 1} and K3j = {0, . . . 8j − 1}N , it results from (4.60) and (4.59) that,

for all j ∈ Z+,e,

P(Θ3j) ≤
∑
δ∈Υ∗

∑
k∈K3j

P(Θδ
3j,k) ≤ θ(2N − 1)(8Nθ)j . (4.61)

Since, θ ∈ (0, 1) can be arbitrarily small, one can assume that it is chosen so that 8Nθ < 1.

Then, it results from (4.61) that ∑
j∈Z+,e

P(Θ3j) < +∞.

Therefore, Borel-Cantelli Lemma entails that the probability of the event

Θ :=
⋂

J∈Z+,e

⋃
j∈Z+,e, j≥J

Θ3j

is equal to 0, and consequently that the probability of the opposite event

Θ :=
⋃

J∈Z+,e

⋂
j∈Z+,e, j≥J

Θ3j (4.62)

is equal to 1. Notice that Θ3j is the opposite event to Θ3j . Thus, using (4.60) and (4.58),

one gets that

Θ3j =
{

inf
(δ,k)∈Υ∗×K3j

sup
(j′,k′)∈Λ3j,k

|ε(α)
δ,j′,k′ | ≥ ĉ0(θ)

}
. (4.63)

Moreover, it follows from (4.57) that, for all j ∈ Z+,e and ũ ∈ [〈0〉, 〈1〉),

sup
(j′,k′)∈Λ

3j,b23j ũc

|ε(α)
δ,j′,k′ | = sup

{
|ε(α)

δ,j′,b2j′ ũc| , j
′ ∈ Z+,e and j ≤ j′ ≤ 3j

}
. (4.64)
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Then, using the fact that b23j ũc ∈ K3j , for all j ∈ Z+,e and ũ ∈ [〈0〉, 〈1〉), one can derive

from (4.62), (4.63) and (4.64), that on the event Θ of probability 1 (which does not depend

on δ and ũ), (4.54) holds, for every δ ∈ Υ∗ and ũ ∈ [〈0〉, 〈1〉).
As we already mentioned, at the beginning of the proof, similarly to what we have done in

the case where ` = 〈0〉, in the general case where ` ∈ ZN is arbitrary and fixed, by replacing

set Kj by the set 2j` + Kj := {2j` + k, k ∈ Kj}, it can be shown that there exists an event

Θ
(`)

of probability 1 (which does not depend on δ and ũ), such that (4.54) holds on Θ
(`)

, for

every δ ∈ Υ∗ and ũ ∈ [`, `+ 〈1〉), and with the same strictly positive deterministic constant

ĉ0 as in the case ` = 〈0〉.
Finally, letting Ω̂α be the event of probability 1 defined as

Ω̂α := Ω∗α ∩
( ⋂
`∈ZN

Θ
(`)
)
,

with Θ
(0)

= Θ, one obtains the proposition. �

We are now in position to prove Theorem 4.7 and its corollary.

Proof of Theorem 4.7 This theorem is a straightforward consequence of Propositions 4.18

and 4.19 �

Proof of Corollary 4.8 It follows from (1.6) and the triangle inequality that, on the event

Ω∗α of probability 1,

lim sup
t→τ

∣∣Z(t)− Z(τ)
∣∣

|t− τ |H(τ)
1

(4.65)

≥ lim sup
t→τ

∣∣X(t,H(τ))−X(τ,H(τ))
∣∣

|t− τ |H(τ)
1

− lim sup
t→τ

∣∣X(t,H(t))−X(t,H(τ))
∣∣

|t− τ |H(τ)
1

.

Moreover, one can derive from (4.12) and Remark 2.77 with m = 0, % = |τ |∞+ 1, a = H and

b = H that, on Ω∗α,

lim sup
t→τ

∣∣X(t,H(t))−X(t,H(τ))
∣∣

|t− τ |H(τ)
1

= 0. (4.66)

Finally, putting together (4.65), (4.11) with ũ = τ and ṽ = H(τ), and (4.66), one obtains the

corollary. �
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5 Appendix

This section is devoted to the proof of Lemma 2.6. To this end, we need some preliminary

results. Let us point out that throughout the section the fixed real numbers α ∈ (0, 2) and

η > 0 are the same as in the statement of Lemma 2.6.

The following lemma can be obtained by using hyperspherical coordinates on RN and

classical calculations without serious difficulties, this is why we skip its proof.

Lemma 5.1 For each arbitrary and fixed integer N ≥ 1 and real number η > 0, one sets

bN,η :=


αη

4
, if N = 1,

α η

4π

(
N−2∏
k=1

∫ π

0
sink θdθ

)−1

, if N ≥ 2,
(5.1)

with the convention that a product over the empty set is equal to 1. Let φη be the non-negative

function on RN defined as φη(0) := 0 and, more importantly, as

φη(ξ) := bN,η|ξ|−N2

(
1 +

∣∣ log |ξ|2
∣∣)−1−αη

, for all ξ ∈ RN \ {0}, (5.2)

Then, one has that
∫
RN φη(ξ) dξ = 1, which means that φη is a probability density function

on RN .

The following lemma provides a random LePage series representation for the complex-valued

α-stable stochastic process{
ε̃

(α)
δ,j,k

}
(δ,j,k)∈Υ∗×Z×ZN

:=

{∫
RN

ψ̂
(α)
δ,j,k(ξ)dM̃α(ξ)

}
(δ,j,k)∈Υ∗×Z×ZN

, (5.3)

which is very closely related to the real-valued SαS stochastic process
{
ε

(α)
δ,j,k

}
(δ,j,k)∈Υ∗×Z×ZN

defined through (2.18). The proof of the lemma has been omitted since it is rather similar to

that of Theorem 4.2 in [16].

Lemma 5.2 Let (κ(m))m∈N, (Γm)m∈N and (gm)m∈N be three mutually independent sequences

of random variables, defined on the same probability space, and satisfying the following three

properties.

1. The κ(m)’s, m ∈ N, are RN -valued, independent and identically distributed with the

probability density function φη defined in (5.2).
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2. The Γm’s, m ∈ N, are Poisson arrival times with unit rate; in other words there is a se-

quence (En)n∈N of independent and identically distributed exponential random variables

with parameter equals to 1 such that, for all m ∈ N,

Γm =

m∑
n=1

En. (5.4)

3. The gm’s, m ∈ N, are complex-valued, independent and identically distributed with a

centered and rotationally invariant Gaussian distribution satisfying E
(
|Re(g1)|α

)
= 1.

Let the positive finite constant aα :=
( ∫ +∞

0 x−α sinx dx
)− 1

α
. Then, one has that

{
ε̃

(α)
δ,j,k

}
(δ,j,k)∈Υ∗×Z×ZN

(d)
=

{
aα

+∞∑
m=1

Γ
− 1
α

m × gm
[
φη(κ

(m))
]− 1

α
ψ̂

(α)
δ,j,k(κ

(m))

}
(δ,j,k)∈Υ∗×Z×ZN

,

(5.5)

where ”
(d)
=” means equality of all finite-dimensional distributions. Also, notice that the random

series in the right-hand side of (5.5) are almost surely convergent.

Remark 5.3 From now on, the stochastic process
{
ε̃

(α)
δ,j,k

}
(δ,j,k)∈Υ∗×Z×ZN , defined in (5.3),

will completely be identified to the one in the right-hand side of the equality in distribution

(5.5).

Remark 5.4 There exist four strictly positive and finite random variables C1, . . . , C4 such

that one has almost surely

|gm| ≤ C1 log
1
2 (3 +m), for all m ∈ N, (5.6)

En ≤ C2 log(2 + n), for all n ∈ N, (5.7)

and

C3m ≤ Γm ≤ C4m, for all m ∈ N. (5.8)

Notice that the inequality (5.6) follows from e.g. Lemma 1 in [5], the inequality (5.7) is

borrowed from Remark 2.10 in [6], and the inequality (5.7) can easily be derived from (5.4)

and the strong law of large numbers.

Lemma 5.5 Let K0 be the same compact subset of RN as in (2.5) and, for every j ∈ Z,

let (β
(j)
n )n∈N be the sequence of the independent and identically distributed Bernoulli random

variables defined, for all n ∈ N, as

β(j)
n := 1K0

(
2−jκ(n)

)
. (5.9)
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Then, one has, for every (n, δ, j, k) ∈ N×Υ∗ × Z× ZN ,∣∣∣[φη(κ(n))
]− 1

α ψ̂
(α)
δ,j,k(κ

(n))
∣∣∣ ≤ µα,η(1 + |j|

) 1
α

+η
β(j)
n , (5.10)

where the deterministic positive finite constant µα,η is defined as

µα,η := max
δ∈Υ∗

sup
ξ∈K0

[φη(ξ)]
− 1
α

∣∣ψ̂δ(ξ)∣∣. (5.11)

Proof one can derive from (5.2), (2.12), the inclusion in (2.5), (5.9), the triangle inequality

and (5.11), that, for every (n, δ, j, k) ∈ N×Υ∗ × Z× ZN ,∣∣∣[φη(κ(n))
]− 1

α ψ̂
(α)
δ,j,k(κ

(n))
∣∣∣ ≤ b− 1

α
N,η |2

−jκ(n)|
N
α
2

(
1 + |j|+

∣∣ log |2−jκ(n)|2
∣∣) 1

α
+η∣∣∣ψ̂δ(2−jκ(n)

)∣∣∣β(j)
n

≤
(
1 + |j|

) 1
α

+η
[
φη
(
2−jκ(n)

)]− 1
α
∣∣∣ψ̂δ(2−jκ(n)

)∣∣∣β(j)
n ≤ µα,η

(
1 + |j|

) 1
α

+η
β(j)
n ,

which shows that (5.10) is satisfied. �

We are now in position to prove Lemma 2.6 when α ∈ (0, 1).

Proof of Lemma 2.6 when α ∈ (0, 1) In view of (2.18), (5.3) and Remark 5.3, one has,

almost surely for all (δ, j, k) ∈ Υ∗ × Z× ZN ,

∣∣ε(α)
δ,j,k

∣∣ ≤ ∣∣ε̃(α)
δ,j,k

∣∣ ≤ aα +∞∑
m=1

Γ
− 1
α

m × |gm|
∣∣∣[φη(κ(m))

]− 1
α ψ̂

(α)
δ,j,k(κ

(m))
∣∣∣. (5.12)

Then, one can derive from (5.12), (5.6), the first inequality in (5.8) and (5.10), that, for some

positive finite random variable C1 not depending on (δ, j, k), almost surely,

∣∣ε(α)
δ,j,k

∣∣ ≤ C1

(
1 + |j|

) 1
α

+η
+∞∑
m=1

m−
1
α log

1
2 (3 +m). (5.13)

Then, noticing that

+∞∑
m=1

m−
1
α log

1
2 (3 +m) < +∞, when α ∈ (0, 1), (5.14)

it results from (5.13) that the inequality (2.34) holds when α ∈ (0, 1), since one then has

bαc = 0. �
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Having proved Lemma 2.6 when α ∈ (0, 1), from now on, we focus on its proof in the case

where α ∈ [1, 2), we mention in passing that a major difficulty in the latter case is that the

series in (5.14) fails to be convergent.

First, we need to introduce some additional notations. For all m ∈ N, the real-valued,

centered and identically distributed Gaussian random variables g0,m and g1,m, m ∈ N, are

defined as

g0,m = Re(gm), g1,m = Im(gm). (5.15)

Moreover, for every (δ, j, k,m) ∈ Υ∗ × Z× ZN × N, the real-valued random variables λ
(δ,j,k)
0,m

and λ
(δ,j,k)
1,m are defined as

λ
(δ,j,k)
0,m := Re

{[
φη(κ

(m))
]− 1

α ψ̂
(α)
δ,j,k(κ

(m))
}
, λ

(δ,j,k)
1,m := Im

{[
φη(κ

(m))
]− 1

α ψ̂
(α)
δ,j,k(κ

(m))
}
.

(5.16)

Then, one clearly has that

Re
{
gm

[
φη(κ

(m))
]− 1

α
ψ̂

(α)
δ,j,k(κ

(m))
}

= λ
(δ,j,k)
0,m g0,m − λ(δ,j,k)

1,m g1,m, (5.17)

and one can derive from (2.18), (5.3) and Remark 5.3, that, for every (δ, j, k) ∈ Υ∗×Z×ZN ,

ε
(α)
δ,j,k = Re

(
ε̃

(α)
δ,j,k

)
= aα

+∞∑
m=1

Γ
− 1
α

m

(
λ

(δ,j,k)
0,m g0,m − λ(δ,j,k)

1,m g1,m

)
, (5.18)

where the random series is almost surely convergent, since the random series in the right-

hand side of (5.5) have this convergence property. Next, for all (m, l) ∈ N × {0, 1} and

(δ, j, k) ∈ Υ∗ × Z× ZN , one sets

S
(δ,j,k)
l,m :=

m∑
n=1

λ
(δ,j,k)
l,n gl,n. (5.19)

The following lemma, which provides the first upper bound for S
(δ,j,k)
l,m , is a straightforward

consequence of (5.16), Lemma 5.5, (5.19), (5.6) and (5.15).

Lemma 5.6 Using the same notations as in (5.16), Lemma 5.5 and (5.19), one has,

for all (n, l, δ, j, k) ∈ N× {0, 1} ×Υ∗ × Z× ZN ,∣∣λ(δ,j,k)
l,n

∣∣ ≤ µα,η(1 + |j|)
1
α

+ηβ(j)
n . (5.20)

Moreover, there exists a positive finite random variable C ′, such that, one has almost surely,

for every (m, l, δ, j, k) ∈ N× {0, 1} ×Υ∗ × Z× ZN ,∣∣S(δ,j,k)
l,m

∣∣ ≤ C ′(1 + |j|)
1
α

+ηB(j)
m log

1
2 (3 +m), (5.21)
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where, for each (j,m) ∈ Z× N, the binomial random variable B
(j)
m is defined as

B(j)
m :=

m∑
n=1

β(j)
n . (5.22)

The following lemma, which provides the second upper bound for S
(δ,j,k)
l,m , can be proved

by following the main lines of the proof of Lemma 2.8 in [6]; we skip its proof.

Lemma 5.7 There exists a positive finite random variable C ′′ such that, one has almost

surely, for all (m, l, δ, j, k) ∈ N× {0, 1} ×Υ∗ × Z× ZN ,

∣∣S(δ,j,k)
l,m

∣∣ ≤ C ′′(1 + |j|
) 1
α

+η
√
B

(j)
m log

(
3 + |j|+ |k|1 +m

)
. (5.23)

Also, we skip the proofs of the two following lemmas since they can be done in almost

the same ways as those of Lemmas 2.11 and 2.12 in [6].

Lemma 5.8 For all (l, δ, j, k) ∈ {0, 1} ×Υ∗ × Z× ZN , the random series

χ
(δ,j,k)
l :=

+∞∑
m=1

(
Γ
− 1
α

m − Γ
− 1
α

m+1

)
S

(δ,j,k)
l,m (5.24)

is almost surely absolutely convergent. Moreover, letting aα be the same deterministic finite

constant as in Lemma 5.2, one has almost surely, for every (δ, j, k) ∈ Υ∗ × Z× ZN ,

ε
(α)
δ,j,k = aα

(
χ

(δ,j,k)
0 − χ(δ,j,k)

1

)
. (5.25)

Lemma 5.9 For each j ∈ Z, the probability pj ∈ (0, 1), which in fact corresponds to the

value of the parameter of the Bernoulli random variable in (5.9), is given by

pj := P
(

2−jκ(1) ∈ K0

)
. (5.26)

Since
∑

j∈Z pj < +∞, the binomial random variables B
(j)
m , (j,m) ∈ Z×N, defined in (5.22),

satisfy the following property: for any fixed real number θ ∈ (1/2, 1), there is a positive finite

random variable Cθ such that one has, almost surely,

B(j)
m ≤ Cθ

(
pjm+mθ

)
, for all (j,m) ∈ Z× N. (5.27)

We are now in position to prove Lemma 2.6 when α ∈ [1, 2).
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Proof of Lemma 2.6 when α ∈ [1, 2) First one shows that the inequality (2.34) is satisfied.

One knows from (5.4) and the inequality (2.25) in [6] (whose proof relies on (5.4), (5.7)

and (5.8)) that there is a positive finite random variable C1, such that, one has almost surely,

for all m ∈ N,

0 < Γ
− 1
α

m − Γ
− 1
α

m+1 ≤ C1m
−( 1

α
+1) log(3 +m). (5.28)

Since 1 ≥ 1/α > 1/2, one can choose θ0 such that

θ0 ∈ (1/2, 1) and 1/α+ 1− θ0 > 1. (5.29)

For each j ∈ Z, let Mj and Mj be the two non-empty disjoint sets which form a partition

of N, and which are defined as

Mj =
{
m ∈ N, pjm ≥ mθ0

}
and Mj =

{
m ∈ N, pjm < mθ0

}
(5.30)

Observe that {
m ∈Mj =⇒ pjm+mθ0 ≤ 2pjm

m ∈Mj =⇒ pjm+mθ0 < 2mθ0
. (5.31)

Since N = Mj ∪Mj , one knows from Lemma 5.8 and the triangle inequality that almost

surely, for all (δ, j, k) ∈ {0, 1} ×Υ∗ × Z× ZN ,

∣∣ε(α)
δ,j,k

∣∣ ≤ aα

1∑
l=0

( ∑
m∈Mj

(
Γ
− 1
α

m − Γ
− 1
α

m+1

)∣∣S(δ,j,k)
l,m

∣∣+
∑

m∈Mj

(
Γ
− 1
α

m − Γ
− 1
α

m+1

)∣∣S(δ,j,k)
l,m

∣∣). (5.32)

Observe that, (5.28), (5.23), (2.38), (5.27) with θ = θ0, and the first inequality in (5.31)

imply almost surely, for all (l, δ, j, k) ∈ {0, 1} ×Υ∗ × Z× ZN , that∑
m∈Mj

(
Γ
− 1
α

m − Γ
− 1
α

m+1

)∣∣S(δ,j,k)
l,m

∣∣
≤ C2

(
1 + |j|

) 1
α

+η
√

log
(
3 + |j|+ |k|1

) ∑
m∈Mj

m−( 1
α

+1) log
3
2 (3 +m)

√
B

(j)
m

≤ C3

(
1 + |j|

) 1
α

+η
√
pj log

(
3 + |j|+ |k|1

) ∑
m∈Mj

m−( 1
α

+ 1
2) log

3
2 (3 +m)

≤ C4

(
1 + |j|

) 1
α

+η
√
pj log

(
3 + |j|+ |k|1

)
, (5.33)

where C2 and C3 are two positive finite random variables not depending on (l, δ, j, k), and

C4 := C3

+∞∑
m=1

m−( 1
α

+ 1
2) log

3
2 (3 +m) < +∞.
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Also observe that, one can derive from (5.28), (5.21), (5.27) with θ = θ0, the second inequality

in (5.31), (5.29) and the fact that

+∞∑
m=1

m−1− 1
α

+θ0 log
3
2 (3 +m) < +∞,

that one has almost surely, for all (l, δ, j, k) ∈ {0, 1} ×Υ∗ × Z× ZN ,∑
m∈Mj

(
Γ
− 1
α

m − Γ
− 1
α

m+1

)∣∣S(δ,j,k)
l,m

∣∣ ≤ C5(1 + |j|)
1
α

+η, (5.34)

where the positive finite random variable C5 does not depend on (l, δ, j, k). Next, combining

(5.33) and (5.34) with (5.32), one obtains, almost surely, for all (δ, j, k) ∈ Υ∗ ×Z×ZN , that∣∣ε(α)
δ,j,k

∣∣ ≤ C6

(
1 + |j|

) 1
α

+η
(

1 +
√
pj log

(
3 + |j|+ |k|1

))
, (5.35)

where the positive finite random variable C6 does not depend on (δ, j, k). Moreover, one

knows from (5.26) that pj ∈ (0, 1), for every j ∈ Z. Thus, (5.35) shows that the inequality

(2.34) holds when α ∈ [1, 2) i.e. when bαc = 1.

Let us now prove that, under the condition (2.35), the inequality (2.36) is satisfied. So,

from now on, one restricts to arbitrary j ∈ Z+ and k ∈ ZN satisfying this condition, which

entails that

log
(
3 + j + |k|1

)
≤ log

(
(4 +Nϑ)2j

)
≤ (j + 1) log(4 +Nϑ). (5.36)

Moreover, using (5.26), the equality in (2.5) and the fact that the probability density function

of the random variable κ(1) is the function φη defined in (5.2), one get that

pj = bN,η

∫
2jK0

|ξ|−N2

(
1 +

∣∣ log |ξ|2
∣∣)−1−αη

dξ

≤ bN,η
(

2j+1π

3

)−N (
1 + log

(
2j+1π

3

))−1−αη
λN
(
2jK0

)
≤ bN,η λN (K0)

(
log(2)

)−1−αη(
2 + j

)−1−αη
, (5.37)

where 2jK0 is the compact subset of RN such that 2jK0 :=
{

2jz, z ∈ K0

}
, and λN denotes

the Lebesgue measure on RN . Next, let the positive finite deterministic constant

c7 := bN,η λN (K0)
(

log(2)
)−1−αη

log(4 +Nϑ).

Then, it clearly follows from (5.36) and (5.37) that, for all j ∈ Z+ and k ∈ ZN satisfying the

condition (2.35), one has

pj log
(
3 + j + |k|1

)
≤ c7.

Therefore, one can derive from (5.35) that the inequality (2.36) holds, for all δ ∈ Υ∗ and for

any such j and k. �

50



Acknowledgements

This work has been partially supported by the Labex CEMPI (ANR-11-LABX-0007-01)

and the Australian Research Council’s Discovery Projects funding scheme (project number

DP220101680).

References

[1] A. Ayache. Multifractional stochastic fields: wavelet strategies in multifractional frame-

works. World Scientific, 2019.

[2] A. Ayache and G. Boutard. Stationary increment harmonizable stable fields: upper

estimates on path behavior. Journal of Theoretical Probability, 30:1369–1423, 2017.

[3] A. Ayache and J. Hamonier. Linear multifractional stable motion: fine path properties.
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[17] C. Lacaux. Real harmonizable multifractional Lévy motions. Annales de l’Institut Henri
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