
HAL Id: hal-04667156
https://hal.science/hal-04667156v1

Submitted on 2 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Architecture for Model-based and Intelligent
Automation in DevOps

Romina Eramo, Bilal Said, Marc Oriol, Hugo Bruneliere, Sergio Morales

To cite this version:
Romina Eramo, Bilal Said, Marc Oriol, Hugo Bruneliere, Sergio Morales. An Architecture for Model-
based and Intelligent Automation in DevOps. Journal of Systems and Software, 2024, 217, pp.112180.
�10.1016/j.jss.2024.112180�. �hal-04667156�

https://hal.science/hal-04667156v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Architecture for Model-based and Intelligent Automation in DevOps

Romina Eramo a, Bilal Said b, Marc Oriol c, Hugo Bruneliere d, Sergio Morales e

aDept. of Communication Science, University of Teramo, Teramo, Italy, reramo@unite.it
bSofteam Software BU, Docaposte, Nantes, France, bilal.said@docaposte.fr

cUniversitat Politècnica de Catalunya, Barcelona, Spain, marc.oriol@upc.edu
dIMT Atlantique, LS2N (UMR CNRS 6004), Nantes, France, hugo.bruneliere@imt-atlantique.fr

eUniversitat Oberta de Catalunya, Barcelona, Spain, smoralesg@uoc.edu

Abstract

The increasing complexity of modern systems poses numerous challenges at all stages of system develop-
ment and operation. Continuous software and system engineering processes, e.g., DevOps, are increasingly
adopted and spread across organizations. In parallel, many leading companies have begun to apply artificial
intelligence (AI) principles and techniques, including Machine Learning (ML), to improve their products.
However, there is no holistic approach that can support and enhance the growing challenges of DevOps. In
this paper, we propose a software architecture that provides the foundations of a model-based framework
for the development of AI-augmented solutions incorporating methods and tools for continuous software and
system engineering and validation. The key characteristic of the proposed architecture is that it allows lever-
aging the advantages of both AI/ML and Model Driven Engineering (MDE) approaches and techniques in a
DevOps context. This architecture has been designed, developed and applied in the context of the European
large collaborative project named AIDOaRt. In this paper, we also report on the practical evaluation of this
architecture. This evaluation is based on a significant set of technical solutions implemented and applied in
the context of different real industrial case studies coming from the AIDOaRt project. Moreover, we analyse
the collected results and discuss them according to both architectural and technical challenges we intend to
tackle with the proposed architecture.

1. Introduction

Modern systems in Industry 4.0, in domains such
as health care, autonomously driving cars, or smart
grids, are examples of highly communicating (em-
bedded) systems where software enables increasingly
advanced functionality. The growing complexity of
these systems poses several challenges throughout all
the system design, development, and analysis phases,
as well as during their deployment, actual usage, and
future maintenance [1, 2]. Continuous software engi-
neering [3] is a promising paradigm that interleaves
business strategy (i.e., requirement engineering) with
development and operations as a continuum. It aims
to produce better software with more successful im-

plementations while satisfying requirements and con-
straints.

Similarly, today’s emphasis on DevOps [4, 5] con-
firms the fact that the integration between software
development and its operational distribution needs
to be continuous. Indeed, DevOps improves end-
to-end collaboration between stakeholders, develop-
ment, and operations teams. It also promotes faster
iteration, shorter feedback loops, and increased au-
tomation for better-quality software delivery.

In parallel, many companies started to deploy Ar-
tificial Intelligence (AI) principles and techniques in
some specific parts of their businesses [6]. By inte-
grating AI into DevOps processes, organizations can

Preprint submitted to Journal of Systems and Software August 2, 2024

https://orcid.org/0000-0002-3572-5875
https://orcid.org/0000-0003-2259-6063
https://orcid.org/0000-0003-1928-7024
https://orcid.org/0000-0002-5987-2175
https://orcid.org/0000-0002-5921-9440

leverage predictive analytics, automation, and intel-
ligent decision-making to streamline workflows and
improve operational efficiency. For example, it has
been successfully used in disciplines such as secu-
rity and testing [7]. Nowadays, AI for IT operations
(AIOps) [8] guides and automates operational tasks
and may also ingest metrics and use inference models
to extract actionable insights from data. AIOps will
evolve in the coming years by increasingly supporting
the DevOps pipeline through continuous monitoring,
alerting, and remediation securely and reliably.
Although DevOps technology has seen significant

advancements in recent years, organizations often
have “local” implementations per team or develop-
ment phase, considering the DevOps pipeline sepa-
rately. Moreover, as DevOps and AI technologies ma-
ture and evolve, organizations must be ready to em-
brace these changes. Thus, organizations need to rely
on a holistic approach that can support and enhance
the DevOps process and the growing challenges of
continuously developing modern complex systems [7].
We argue that the continuous engineering of com-

plex systems, particularly in DevOps processes, re-
quires dedicated AI-augmented methods and tools to
extract knowledge from event streams (e.g., real-time
and historical data) and design information (e.g.,
different system models). The objective is to ex-
tract meaningful insights for system improvement,
drive faster deployments, and foster better collabo-
ration, and reduce downtime with proactive detec-
tion. In this context, Model Driven Engineering
(MDE) [9, 10] is a relevant Software Engineering
paradigm to raise the abstraction level and improve
the ability to handle complexity. The use of models
as first-class abstractions of systems and their envi-
ronments is a fundamental element for technologies in
current and future software/system engineering plat-
forms [1, 11]. Moreover, it is worth noting that there
is still a gap in the literature regarding contributions
that explicitly propose or handle the combination of
principles, practices, and tools related to MDE, De-
vOps, and AI. Indeed, when studying the state-of-
the-art [12], we observed that combinations of two of
these three areas are already relatively frequent (e.g.,
MDE and DevOps). However, few approaches actu-
ally intend to combine MDE, DevOps and AI alto-

gether in order to achieve common objectives. More-
over, when they do, they are not systematically fea-
tured with a dedicated tooling support.

In this paper, we introduce a software architecture
for a model-based framework incorporating methods
and tools for continuous software/system engineering
and validation, leveraging the advantages of AI tech-
niques including Machine Learning (ML). Notably,
the architecture target benefits significantly improved
productivity, quality, and predictability of large and
complex industrial systems.

This work is developed and demonstrated within
the European AIDOaRt project1 [13, 14]. The
project aims to support systems engineering and con-
tinuous delivery activities, namely requirements engi-
neering, modeling, coding, testing, deployment, and
monitoring, with AI-augmented, automated MDE
and development operations. The proposed archi-
tecture has been instantiated in practice, both by
the project’s academic and industrial partners im-
plementing specific capabilities. Furthermore, these
capabilities have been applied in 10 industrial case
studies while developing and validating the previ-
ously mentioned features. Thus, we report on the
effectiveness of the application and integration of the
AIDOaRt architecture and framework within the case
studies. We also discuss the main lessons we learned
and the insights we gained.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the underlying background of the
work. Section 3 illustrates the envisioned approach
needs to be introduced as 1) a solution to the pre-
viously identified challenges and 2) a possible imple-
mentation of the proposed research roadmap. Section
4 and 5 describe its integration strategy and its imple-
mentation, respectively. Section 6 evaluates the ar-
chitecture based on its implementation and applica-
tion in industrial case studies, Section 7 presents the
threats to validity. In contrast, Section 8 discusses
our main observations and lessons learned. Finally,
Section 9 and Section 10 present the related work and
conclusion, respectively.

1AIDOaRt ECSEL-JU project: https://www.aidoart.eu/

2

https://www.aidoart.eu/

2. Background

This section introduces our work’s underlying con-
cepts, challenges, and context.

2.1. Basic concepts

Model Driven Engineering (MDE). MDE allows
raising the level of abstraction and thus improv-
ing the ability to engineer and handle complex and
software-intensive systems [1]. The use of models
as purposeful abstractions of systems and environ-
ments is also increasing within the industry (e.g., dig-
ital twining [15]). While first-generation MDE tools
mainly focus on generating code from high-level mod-
els, they now also address model-based testing, ver-
ification, measurement, tool/language interoperabil-
ity, or software evolution, among many other soft-
ware engineering challenges. Major MDE benefits
include: - providing better abstraction principles and
techniques (e.g., for the handled data), - facilitating
the automation of engineering activities, and - sup-
porting technology integration among all the covered
design and development activities.
Artificial Intelligence and Machine Learning

(AI/ML). The dissemination of Artificial Intelligence
(AI), including Machine Learning (ML), principles
and techniques in a regulated industry enables sys-
tems to decide and act in a more and more auto-
mated manner: it is used by companies to exploit
the information they collect to improve the products
and/or services they offer [6]. Lately, AI/ML is also
impacting all aspects of the system and software de-
velopment lifecycle, from specification to design, test-
ing, deployment, and maintenance, with the main
goal of helping engineers produce systems and soft-
ware faster and with better quality while being able
to handle ever more complex systems and software
[16, 17, 18]. Numerous ML techniques have been ap-
plied within the AIDOaRt project, from supervised
and unsupervised learning ML algorithms to deep
learning techniques [19, 20, 21]. For example, Hetero-
geneous Graph Neural Networks (HGNNs) have been
applied for model inference purposes, Density-Based
Spatial Clustering of Application with Noise (DB-
SCAN) for detect failure logs, and automata learning
for testing (Learning-Based Testing - LBT). Further

example includes Generative AI for test scenario gen-
eration or Large Language Model (LLM) for formally
verify functional requirements [22, 23, 24]. Over-
all, the solution providers freely chose the AI/ML
techniques to adopt in their respective context. The
choice was notably based on the requirements coming
from the industrial case studies [25, 26].

DevOps and AIOps. DevOps is a software en-
gineering paradigm focused on software delivery by
enabling continuous feedback and quick response to
changes and using automated delivery pipelines re-
sulting in reduced cycle time. In particular, tools
and methods focus on administration and automa-
tion processes [7, 5, 11]. AIOps [27, 28] character-
ize solutions where DevOps challenges are addressed
with the help of AI/ML techniques. A fundamental
challenge notably resides in integrating AIOps [29] in
enhancing the DevOps pipeline, e.g., through contin-
uous alerts and insights from data used for continuous
deployment and operations management.

In this work, we propose a software architecture
for a model-based framework incorporating methods
and tools for continuous software/system engineer-
ing and validation (within DevOps), leveraging the
advantages of AI/ML and MDE principles and tech-
niques.

2.2. Challenges

As a result of our study of the state-of-the-art in
terms of combining MDE, DevOps and/or AI [12],
we identified a large variety of existing approaches.
These approaches are often quite generic concerning
the potential target domains. Moreover, they also
cover several major software engineering activities
(e.g., requirements, modeling, coding, testing, mon-
itoring). In this respect, these existing approaches
intend to address different main challenges, both ar-
chitectural and more technical ones.

In this paper, we want to highlight the importance
of supporting some of the most commonly encoun-
tered architectural challenges related to the continu-
ous development (i.e., DevOps) of large and complex
software-intensive systems (e.g., CPSs). Among the
architectural challenges frequently identified within
the literature in this context [30, 31, 32], we notably
consider the following:

3

A1. Heterogeneity. The continuous development
(i.e., DevOps) of the nowadays complex and het-
erogeneous systems (i.e., CPSs) require to be
supported at different levels of the architecture.
Having different domains and case study scenar-
ios of these complex systems implies having het-
erogeneous requirements, several functional ca-
pabilities, and different data models/formats.

A2. Flexibility. Considering the different require-
ments arising from the numerous CPS scenar-
ios and case study, it is necessary to provide,
through the architectural model, more than one
option for the same feature or provided function-
ality. The model must allow the options to be
chosen, considering the advantages and disad-
vantages of each one. Flexibility in architectural
instances is related to the different implementa-
tions of the components and interfaces.

A3. Integration. This challenge concerns integrating
multiple components to connect solutions, tools,
data, models, and services implemented within
the framework. It also enables the integration of
the different phases of DevOps as supported by
the architecture.

A4. Collaboration. Collaboration is a cornerstone of
DevOps. It involves development, operations,
and different stakeholders. Architecture plays a
fundamental role in supporting that collabora-
tion, enabling effective communication, continu-
ous feedback, and sharing knowledge and solu-
tions/tools.

In addition to these architectural challenges, we
also identified the following technical challenges as
particularly important (among others well-known in
the literature [33, 31, 34, 35]) for the continuous de-
velopment of such complex systems.

T1. Data management. With the increasing com-
plexity of systems, the amount of generated data
increases exponentially. This data must be prop-
erly managed, stored, and analyzed to extract
meaningful insights.

T2. Modelling support. This challenge is related to
using models as the primary artifact of the devel-
opment process, enabling stakeholders to com-
municate, analyze, and refine system require-
ments and design decisions.

T3. AI-powered DevOps. Integrating AI into the
development process brings many possibili-
ties, such as increased efficiency, improved
decision-making, and the ability to operate au-
tonomously. AI is expected to enable control,
monitoring, testing, management, optimization,
prediction, and automation.

Overall, both these architectural and technical
challenges are fundamental objectives we considered
we elaborating on the architecture we propose in this
paper (cf. Section 3). They have also been used as
main criteria for evaluating this architecture (cf. Sec-
tion 6), with the direct support from our industrial
partners in the AIDOaRt project.

2.3. The AIDOaRt project

The AIDOaRt project [13] aims at supporting
systems engineering and continuous delivery activ-
ities, namely requirements engineering, modeling,
coding, testing, deployment, and monitoring, with
AI-augmented, automated MDE and DevOps.

To achieve this goal, AIDOaRt proposes a model-
based architecture that specifies proper methods and
tools to enable design and run-time data collection,
ingestion, and analysis to provide tailored and effi-
cient AI/ML solutions. These solutions are then inte-
grated and evaluated on concrete industrial case stud-
ies involving various Cyber-Physical Systems (CPSs).

AIDOaRt is rich in the number of partners and
the variety of case study requirements and solutions
capabilities, demanding a real need for a common
architecture to enable collaboration between the var-
ious partners. Thus, it also requires adopting a rig-
orous and agile methodology to formally model and
define the architecture, incrementally collect, refine,
and clarify the requirements, and map them to the
candidate solutions.

To this end, we adopted a Model-based Require-
ments Engineering (MBRE) approach [36, 37] that

4

we applied in several incremental iterations [38]. The
adopted agile methodology was implemented using
the distributed model repository Modelio SaaS2 [39]
In practice, a global model was created and shared
with the consortium partners as a single source of
truth. As the work in the project progresses, discus-
sions and in-depth negotiations occur between case
study providers and solution providers. This leads to
precise and concrete case studies and data require-
ments, as well as to better choices and selections of
candidate solutions. To report on such refinements,
the core team defines sets of new micro-tasks (simi-
lar to sprints in agile processes), requesting the part-
ners to provide new model elements. This allowed for
the timely integration of frequent updates on require-
ments and solution descriptions from all the partners
in a flexible, collaborative, and traceable way.
This model-based and agile approach also allowed

us to gradually specify our AIDOaRt architecture by
refining it at each project milestone while keeping
the case study requirements and solution descriptions
aligned with this architecture specification. Thus,
the architecture provided a common ground for inte-
grating the AIDOaRt solutions into the case studies
and identifying potential collaborations between solu-
tion providers and case study providers. This notably
prevents each partner from having to systematically
check long lists of requirements and solutions.

3. Proposed Software Architecture

The AIDOaRt architecture is specified in terms
of engineering activities that combine principles and
practices from MDE and DevOps, augmented by Ar-
tificial Intelligence and Machine Learning (AI/ML)
optimizations and enhancements. The initial version
of the proposed architecture has been defined based
on our previous academic and industrial experience
in similar contexts. Notably, we started from our
previous work on providing a global architecture for
the continuous development and runtime validation

2More on Modelio SaaS on https://www.modeliosoft.com/

and Modelio community version on https://www.modelio.

org/

of complex systems in the context of the MegaM@Rt2
project [40]. However, while relying on MDE and
some DevOps practices, the architecture proposed in
MegaM@Rt2 was not natively integrating the use of
AI/ML as one of its core element. Thus, we capi-
talized on the MegaM@Rt2 results and on other ar-
chitectural experiences within various collaborative
projects [36, 37] in order to iterate several times on
the AIDOaRt architecture. The version presented in
what follows is the final result of the application of
such an iterative process.

Figure 1: Considered DevOps process

Contrary to MegaM@Rt2 whose scope was more
limited, AIDOaRt aims at supporting the major soft-
ware and systems engineering activities in a real De-
vOps setting. As shown in Figure 1, these activities
are requirements engineering, modeling, coding, test-
ing, operation, monitoring, and feedback.

We define the architecture as a hierarchy of UML
components and sub-components, organized in three
layers (cf. Figure 2), and offering/consuming services
and capabilities defined as functional interfaces. No-
tably, we identified components and interfaces related
to the AI-augmented capabilities for the various soft-
ware engineering (SE) activities or DevOps phases:
Requirements Engineering, Modeling, Coding, Test-
ing, and Monitoring [41, 42, 43, 44]. At this level, we
could trace a first integration link between the archi-
tecture and the partners’ case studies and solutions
capabilities through their relations to the common
generic requirements.

5

https://www.modeliosoft.com/
https://www.modelio.org/
https://www.modelio.org/

Figure 2: Overview of the AIDOaRt architecture

To enable the implementation and integration of
the above-mentioned AI-augmented SE and DevOps
capabilities, the architecture captures a set of com-
mon AIOps Engineering capabilities [28], such as In-
gestion, Data Handling, Engagement, Analysis, and
Automation. These AIOps Engineering capabilities
rely on a set of Core Engineering capabilities such as
Data, MDE, Storage, and Computation, as well as
Accountability and Explainability services [45, 46].
Finally, these AIOps and Core Engineering capabili-
ties rely on a set of data-centric capabilities, namely
Data Collection, Management, and Representation,
to provide the required data-driven AI services.

Figure 3 shows the mapping between the consid-
ered DevOps phases (in Fig. 1) and the AIDOaRt
architecture components.

In what follows, we dive deeper into the specifica-
tion of each component in each of the three layers
of the AIDOaRt architecture, namely the Data En-

gineering, Core, and AI-augmented toolsets.

3.1. Data Engineering Tool Set

This layer provides the required capabilities to sup-
port the collection, management, and representation
of data. Collected data conform to defined metamod-
els following MDE principles and are provided to the
AI-Augmented Tool Set through the Core Tool Set
capabilities.

The Data Collection sub-component intends to
support data collection processes from different data
sources at both run-time and design-time.

Data Management supports cleaning, analyzing,
and managing data coming from different sources.
It is designed to provide capabilities for (1) filter-
ing and harmonization of data collected from var-
ious design and run-time sources, (2) data transfor-
mation into unified internal representation as defined
by the Data Representation component, as well as

6

Figure 3: Mapping between the considered DevOps phases and
the AIDOaRt architecture components

(3) data aggregation capabilities to combine various
data sources into coherent processable data blocks
and streams.

The Data Representation component provides
a common, agreed-upon, global data representation
to serve as the foundation for MDE-based activities
throughout the AIDOaRt framework. To achieve
this, it leverages a mega-model that unifies the dif-
ferent case study data models by normalizing their
notation and linking those concepts that are (par-
tially) synonymous across the various concrete data
models. It yields generic representations for those el-
ements that are shared across the different specific
data models, thus providing an agnostic overview
of the most relevant data elements present in the
AIDOaRt framework and its development process.

Figure 4 illustrates the two-layer structure of the
mega-model: the “blue” layer depicts the different
case study data models, whereas the “orange” layer
portrays the abstract elements that generalize the
specific shared concepts and links them.

The generic “orange” layer of the mega-model is
divided into packages, each of them representing the
data related to a stage of the AIDOaRt process: Re-

Figure 4: A representation of the two layers of the AIDOaRt
mega-model.

quirements Engineering, Modeling, Coding, Testing,
and Monitoring (cf. Figure 5). The Requirements
Engineering data model contains generic elements to
represent the functional and non-functional require-
ments of a system, derived from an analysis of the
stakeholders and context needs. The Modeling data
model provides an abstract representation of a sys-
tem, an element of a system, or its behavior. The
Coding data model includes elements that abstract
the coding process and its main artifacts. The Test-
ing data model contains constructs for representing
the definition and automation of tests, and the adapt-
ing nature of the AI models (and other physical or
logical elements) being tested. Finally, the Monitor-
ing data model encompasses the data that is collected
from the sensors and the measurements performed
against a set of evaluation metrics to, whenever it is
possible, automatically assess if an anomaly or degra-
dation of the system has occurred. Those metrics are
set according to the defined target performance of
the system. It also provides elements to represent
logs collected throughout the system, throughout all
its development phases.

Artifacts from all packages could be intercon-
nected, as they are shared across different stages of
the development process. In its final implementation,
some Testing data model elements are linked to arti-
facts from the Requirements Engineering data model
and the Monitoring data model, hence its “use” rela-
tionships with both packages.

The goals of such a mega-model are many-fold.

7

First, by adopting a common language for all case
study data models, namely the UML notation, we ho-
mogenized how data and their structure are designed.
A standard notation enables a common understand-
ing of the concepts, and fosters communication and
collaboration between the users, thus facilitating bet-
ter knowledge sharing. We adopted UML for data
representation because of its ability to perform for-
mal verification of data models and the wide support
from solution providers.
Second, the mega-model can be used to unveil

synergies between case studies, thus identifying fur-
ther potential collaborations. Given a generic ele-
ment that abstracts two concrete concepts from dif-
ferent case study domains, stakeholders from one do-
main could establish a collaboration with stakehold-
ers from the other connected domain. In this part-
nership, they can share their expertise, enrich their
respective data models, and apply similar strate-
gies, tools, or techniques to common problems. Fur-
thermore, this approach could also allow solution
providers to better comprehend the transversal ap-
plication of their tools in different scenarios.
The generic layer of the mega-model provides users

with a bird’s eye view of the main concepts managed
across the AIDOaRt case studies. We expect it to fa-
cilitate the onboarding of new users of the framework,
who could easily grasp the generic concepts and their
relationships, and, if interested, dive deep into a spe-
cific domain using the links of the generic elements
to the concrete ones.

3.2. Core Tool Set

This layer provides generic capabilities that are in-
tended to be used by the other toolsets. It includes

Figure 5: The AIDOaRt mega-model packages.

the global infrastructure, shared data, and modeling
features, as well as common generic services, as de-
tailed in the sequel.

The Infrastructure components support basic in-
frastructure capabilities in terms of data and model
storage and related computations. This support
can be implemented by open technical platforms
(e.g., public repositories or computation grids) or
by companies’ infrastructures (e.g., in the context of
AIDOaRt case studies). On one hand, Storage Ca-
pabilities support the provisioning of physical and
logical resources. Solutions implementing these capa-
bilities are expected to efficiently store and retrieve
the possibly numerous and large software artifacts,
such as data and models, that are hosted on various
media sources, e.g., repositories, remote file systems,
and databases. On the other hand, the Computa-
tion Capabilities support the provisioning of physi-
cal and logical resources to process and analyze these
artifacts. Solutions implementing these capabilities
may consume such artifacts as inputs of computa-
tions or restitute back these computations results.

The Data and Modeling components support
general data and model handling capabilities, which
may be implemented by generic and/or open-source
solutions (e.g., Eclipse/EMF-based tools) or by the
company’s specific solutions (e.g., in the context of
AIDOaRt case studies).

More in detail, Data Handling Capabilities
support (1) loading different kinds of data in-memory
for further manipulation and/or treatment, using dif-
ferent formats of serialization or representation, (2)
navigating and browsing the data and its elements
once loaded, easily and efficiently, (3) querying the
data to obtain specific elements easily and efficiently,
and then (4) saving, in diverse serialization or repre-
sentation formats, data residing in memory to perma-
nent logical and physical storage locations and media.

Similarly, Model-Based Capabilities support
loading, navigation, querying, and saving of mod-
els and metamodels. In contrast, they also support
transformation of a loaded model into another model,
tracing/federation (e.g., via corresponding views) dif-
ferent models and their elements altogether, as well
as code generation to generate source code (or any
kind of structured text) from a model. In addition,

8

we recommend that solutions implementing this com-
ponent would also provide Modeling Process Tracing
capabilities, which intend to collect user interaction
during modeling activities. This allows for a variety
of AI/ML augmented modeling solutions to be devel-
oped by learning from expert modeling activities to
assist other modelers with relevant insights (see next
layer AI-Augmented Tool Set).

Finally, we specified a last core component called
Generic Services. It intends to support services
relevant in an AI/ML context, such as (but not lim-
ited to) the Accountability and Explainability,
which provide generic management of responsibil-
ity and understanding of the results obtained via
the used AI/ML techniques. Solutions implementing
these services are expected to analyze software arti-
facts and deliver the analysis results by relying on or
exploiting the approaches and techniques provided by
the AI-Augmented Tool Set that is presented next.

3.3. AI-Augmented Tool Set

This layer supports the development of the AI-
augmented toolchain that extends the Core Tool Set
components according to the needs of the various
AIDOaRt case study requirements. Its AIOps En-
gineering component offers capabilities related to
the AIOps methodology by supporting the ingestion
of data, events, and metrics from various sources, en-
gagement and analysis by employing AI techniques,
and the automation of operations belonging to the
development process. Whereas the AI DevOps En-
gineering component offers additional capabilities
related to the different system engineering and De-
vOps tasks. This includes the application of AI for
requirements engineering, modeling, coding, testing,
and monitoring, allowing a combination of AIOps and
DevOps in MDE settings.

Accordingly, Ingestion and Handling is de-
signed to support the continuous monitoring of
design/run-time data, such as historical and real-
time data acquisition and collection, as well as vi-
sualization and query capabilities, for instance us-
ing dashboards and API calls. It also supports ca-
pabilities to filter through massive, redundant, or
noisy amounts of data. In addition, it may provide

ML-based techniques for dataset balancing, e.g., over-
sampling, under-sampling, class weight, and decision
threshold. This component also provides pattern dis-
covery capabilities to correlate, contextualize, and
find relations between meaningful data elements to
group them for advanced analytics. Furthermore, it
provides Bug Pattern Discovery capabilities that use
AI/ML methods for automated learning of patterns
to detect (functional or performance) bugs in net-
works and embedded systems. Last but not least, it
supports API and Code Patterns Discovery capabil-
ities to capture strategies for pattern discovery, e.g.,
collaborative filtering for analyzing OSS projects or
capabilities to find relevant API code.

On the other hand, we group under the Engage-
ment and Analysis component the analysis ca-
pabilities (inference, prediction, deduction, etc.), as
well as their collaboration and integration. Insights
analysis capabilities intend to offer root cause anal-
ysis, inference, deduction, verification, consistency
checks, and design space exploration based on AI/ML
techniques. Whereas predictive analysis capabilities
regroup AI/ML-based prediction (e.g., of potential
undesired scenarios) using AI/ML techniques, algo-
rithms, and models trained and fed with different
sources of data (e.g., models). Collaboration services
denote capabilities allowing notification among com-
ponents and integration of services to ensure that any
incidents, dependencies, and changes made across the
environments are synced with the whole architecture
toolset.

In addition, we specify an extra subset of AI/ML-
based capabilities that are key in providing engage-
ment and analysis for AIOps Engineering. Namely,
we specify AI/ML for Anomaly Detection capabili-
ties to represent algorithms and approaches for the
detection of anomalies in time series monitoring data
to effect system changes. We also specify ML-based
Prediction for Human–Machine Interaction (HMI)
to capture ML-based analysis and prediction capa-
bilities for HMI in CPS (e.g., prediction of human
driver behavior in automotive systems). We also cap-
ture ML-based Object Detection capabilities that pro-
vide automated and intelligent analysis and object
detection in images and video streams (e.g., videos
captured by AI-augmented self-driving cars). With

9

AI for Equivalence Class Prediction, we capture AI
techniques for the prediction of equivalence classes
(EC) based on previously used ECs in the test model.
Moreover, we specify ML-based Prediction For Per-
formance and Resource Utilization to capture AI/ML
analysis and estimation for hardware and/or software
platforms timing performance (e.g., response time,
execution time, hardware latency) and platform re-
source utilization (e.g., FPGA area usage, memory
allocation, etc.).
Finally, the Automation component of AIOps

Engineering supports the codification of the obtained
insights into remediation and response automation.
Remediation capabilities are needed to leverage pre-
scriptive advice (e.g., pattern-based prediction) and
to take automated action (i.e., remediation, proactive
operation) to support system development. Response
automation represents automated mechanisms for ef-
ficient coding of human domain knowledge obtained
from remediation into response automation and or-
chestration (e.g., automate routine tasks, incident
handling, threat mitigation).
The second major component in the AI-Augmented

Tool Set layer is AI DevOps Engineering. This
component offers AI/ML augmented capabilities to
support the various phases of systems engineer-
ing and DevOps; namely, requirements engineering,
modeling, coding, testing, and monitoring.
The AI for Requirements Engineering sub-

component enables the integration of AI/ML tech-
niques to support the requirements engineering phase
of systems development. This includes NLP tech-
niques for textual requirements Ambiguity Check, Se-
mantic Similarity Check, Classification (i.e., cluster-
ing into categories, e.g., functional/non-functional,
usability, performance, security, etc.) and Allocation
(i.e., auto-assignment to departments, teams or in-
dividual engineers). These capabilities may consist
of ML models trained on labeled corpora from previ-
ous projects, or trained with zero-shot learning, few-
shots learning, or reinforcement learning from human
feedback (RLHF) with the help of expert require-
ment engineers. Furthermore, we propose to capture
AI/ML capabilities for Model Consistency Verifica-
tion, such as automated formal methods for consis-
tency verification of system design models, Specifi-

cations Consistency Verification, e.g., formal meth-
ods, automated reasoning, and NLP techniques for
the automated consistency verification of technical
specifications w.r.t. guidelines or project-specific cri-
teria, and Reuse Analysis and Recommendation, e.g.,
AI/ML and NLP techniques to identify similar assets
across previous projects and recommend their reuse
in new ones.

We designed the AI for Modeling sub-
component to support the modeling phase of the sys-
tem development with AI/ML techniques for vari-
ous modeling activities. For instance, we expect so-
lutions and tools implementing this component of
the architecture to leverage AI/ML techniques for
Modeling Assistance, e.g., to use Graph Neural Net-
works (GNN) to assist modelers with relevant in-
sights and recommendations, Design Space Explo-
ration, e.g., AI-driven optimization algorithms for
design space exploration, View-Model Synchroniza-
tion, e.g., GNN used to automate view-model syn-
chronization, Model Learning, e.g., methods for ex-
tracting models from existing systems or data, and
Instance Model Generation, e.g., AI/ML for generat-
ing instance models of a given DSL.

The AI for Code sub-component is intended to
enable the use of AI/ML techniques to support the
coding phase of the system development. For in-
stance, it provides capabilities for Recommending
Code Snippets, e.g., collaborative filtering techniques
used to recommend API calls automatically, Func-
tional Code Generation, e.g., for C/C++/SystemC
functional code generation starting from high-level
system specification, and Factory Methods and Mock-
ing, e.g., learning from user-written factory methods
to generate mocking code.

For the AI for Testing sub-component, we iden-
tified the need to capture AI/ML techniques for au-
tomatic test generation, such as AI for Test Suite
Generation and AI for Unit Test Generation, as well
as AI for Test Model Generation which denotes AI
techniques for the analysis and transformation of test
models. In addition, we also identified the need to
provide AI/ML capabilities for Learning Based Test-
ing, e.g., intelligent testing techniques based on mod-
els and requirements learning, and for Test Case Re-
duction, e.g., automated techniques for test case re-

10

duction of an equivalence set based test model.
Among the multitude of AI/ML capabilities

that we specify in our AI for Monitoring sub-
component to enhance and support systems moni-
toring at real-time and run-time, we identify AI for
Text Analytics, which targets the use of AI to ana-
lyze large volumes of semi-structured text (e.g., abun-
dantly generated system logs), AI/ML based Func-
tional/Performance Bug Detection, namely AI/ML
techniques for detecting out of the monitored data
(on virtual model) functional or performance bugs,
and AI/ML for Anomaly Detection, which groups
AI/ML algorithms for the detection of anomalies in
time series monitoring data (offline or online) related
to system/network’s bugs or malfunctions.

3.4. Cross-Layer Components Integration

Our architecture components do not live in isolated
silos. On the contrary, they are meant to be aggre-
gated and integrated through complex data and con-
trol flows to achieve more complex functional behav-
iors. Furthermore, component correlations provide
insights to case studies and solutions providers about
potential horizontal and vertical integration aspects
of their systems and tools. For example, as shown
with the “access” relations in Fig.2, the Data Man-
agement and Ingestion & Handling components
rely on the Data Handling Capabilities compo-
nent to load, discover (i.e., navigate, query, select, fil-
ter, aggregate) and persist data. This also applies to
solutions and tools implementing these components.
For instance, Fig.6 shows that partners UNIVAQ and
DT can potentially reuse in their respective tools
“Keptn” and “HEPSYCODE” some data handling
capabilities offered by the “DataAggregato” solution
proposed by partner ROTECH. This is an example of
a potential horizontal integration between solutions.
The same applies to horizontal integration between
two or more case study scenarios or systems. Sim-
ilarly, vertical integration might be established be-
tween case studies and solutions based on their rela-
tionship to the architecture components. In section 4,
we provide more details on these integration aspects.

Similarly, the Data Representation component
relies on Model-based Capabilities to define and

Figure 6: Horizontal integration between solutions based on
the integration of their respective architecture components.

manage data models and meta-models. Both Data
and Modeling components use Storage Capabil-
ities to efficiently store and retrieve potentially nu-
merous and large data and model artifacts. It is also
natural for any AI DevOps Engineering compo-
nent to access the Ingestion & Handling, Engage-
ment & Analysis, and Automation components
to continuously monitor data sources, analyze the
collected data, and transform the obtained analysis
insights into remediation and response automation,
respectively.

The following sections illustrate the integration
strategy of the presented architecture and how it has
been concretely implemented and evaluated in the
context of the AIDOaRt project.

4. Integration strategy

The main aim of the AIDOaRt architecture is to
provide a common ground for the integration of the
AIDOaRt solutions into case studies and the identi-
fication of potential collaborations between solution
and case study providers.

To perform these integration activities in an ef-
fective and systematic way, we designed a set of in-
tegration strategies that facilitates the discovery of

11

potential relationships between case study require-
ments and solutions’ capabilities. These integration
strategies have been formalized as integration medi-
ation patterns. They are generic patterns that relate
an aspect of a case study (e.g., case study scenario,
functional requirement, data requirement) with an
aspect of a solution (e.g., component, functional in-
terface) following a specific strategy. We defined four
different types of integration mediation patterns in
order to cover our needs in the project.

4.1. Generic Requirements mediation pattern

This mediation pattern deals with the integration
by generalizing case study requirements related to the
different AI-supported software development phases.
First, high-level generic requirements are elicited by
grouping and generalizing case study-specific require-
ments. For instance, multiple case studies may re-
quire the use of AI to streamline their system con-
figuration, each of them with their own particular
needs. All these case study requirements could be
generalized to a single generic requirement “use of AI-
based methods for easy configuration”. Iteratively,
new case study requirements can be added to ei-
ther (1) existing generalized requirements or (2) a
new high-level generic requirement if needed. These
generalized requirements are then categorized into
the AI-supported software development phase they
correspond to, i.e., requirements for AI for Require-
ments Engineering, requirements for AI for Modeling,
requirements for AI for Code, requirements for AI
for Testing, and requirements for AI for Monitoring.
From our previous example, it would be mapped to
AI for Modelling. Afterwards, solution providers ex-
plore these generic requirements for the AI-supported
software development phase(s) of their interest and
map their solutions to the generic requirements they
are able to solve. This way, they create indirect links
to specific case study requirements and discover po-
tential relationships with case studies. In our exam-
ple, if a solution provider possesses an AI tool for
configuration support, they can map their solution
to the generic requirement and examine the specific
requirements of individual case studies.

4.2. AIDOaRt components mediation pattern

This mediation pattern deals with the integration
through the components of the AIDOaRt architec-
ture. Case study providers map their specific require-
ments to the components of the AIDOaRt architec-
ture that are needed to implement and solve each re-
quirement. For instance, a case study provider may
require a Quality of Service (QoS) monitor to collect
data for continuous AI training. This requirement
can be mapped to the Data Collection component
within the AIDOaRt architecture. In parallel, solu-
tion providers map their solutions to the components
of the AIDOaRt architecture they provide an imple-
mentation for. For instance, a solution provider hav-
ing a QoS monitor, would map their solution to the
Data Collection component of the AIDOaRt archi-
tecture. Afterwards, both case study and solution
providers can refine their mappings to the particu-
lar interfaces of the AIDOaRt architecture’s compo-
nents. As a result, indirect links between case study
requirements and solutions are established.

4.3. Data Engineering mediation pattern

Data representation drives the concrete integration
of this pattern. Case study providers identify the
data representations related to their data require-
ments (i.e. their case study data models). These data
representations are grouped by the domain they ad-
dress, and generalized in a similar approach as in the
generalization of requirements and finally analyzed
to identify the potential synonyms or overlapping
concepts. The result is the AIDOaRt mega-model,
which unifies the different case study data models
by normalizing their notation and linking those con-
cepts that are (partially) synonymous across the var-
ious concrete data models. It yields generic repre-
sentations for those elements that are shared across
the specific data models, thus providing an agnostic
overview of the most relevant data elements. This
approach standardizes the terms across multiple do-
mains and creates indirect links from a data perspec-
tive that uncovers potential relationships driven by
data models. Further details and examples of how
the AIDOaRt mega-model is built are presented in
Section 5.2.

12

4.4. Case study’s environment extensions

While the other integration patterns focus on in-
tegration aspects from the case study providers to
the solution providers, this pattern follows a solution
provider-driven integration approach. To this end,
case study environments are presented as required
enhancements for a successful integration. Such an
integration is realized by coordinating possible syner-
gies and collaboration with solution providers experts
in the relevant area(s). For instance, in the context of
the AIDOaRt project, this can be achieved by means
of hackathons presenting challenges going beyond the
defined case study requirements.

Each interested partner can use the most conve-
nient pattern according to their integration needs.
For example, case study providers can use AIDOaRt
to discover in a systematic manner potential solu-
tions that might be able to satisfy their require-
ments. Solution providers can identify, through
AIDOaRt, potential case studies where they can de-
ploy their solutions. At the current stage of the
project [47], we already conducted the integration of
case study providers and solution providers following
the AIDOaRt components mediation pattern, and the
Generic Requirements mediation pattern.

For the AIDOaRt components mediation pattern,
we proceeded as follows: (1) solution providers con-
ducted a mapping of their solutions to the architec-
ture components’ capabilities and functional inter-
faces, and (2) case study providers conducted a map-
ping of the architecture components to their case
study requirements and data requirements. From
these two mappings, we automatically inferred the in-
direct links between the AIDOaRt solutions and the
case study requirements. For the Generic Require-
ments mediation pattern, we defined 5 working groups
(one per each AI-supported engineering phase). Each
group was responsible for eliciting generic require-
ments from the specific case study requirements, and
conducting the mapping as described before. Then,
solution providers mapped their solutions to these
generic requirements.

5. Implementation

The AIDOaRt architecture can be implemented
within a broad range of projects (i.e., can be realized
using different technologies, platforms, and frame-
works) related to the development of complex sys-
tems. In this section, we discuss how the AIDOaRt
components have been implemented in the context
of the AIDOaRt project, and present the AIDOaRt
mega-model as the main asset of the Data Engineer-
ing component.

5.1. AIDOaRt Components Implementation

The architecture presented above has been con-
cretely implemented in the context of the AIDOaRt
project. To this end, the features of each one of the
components from the three Tool Sets (described in
Section 3) are supported by individual technologi-
cal solutions developed by the solution providers of
the project (both academic and industrial partners).
Each developed solution implements one or more ar-
chitecture components from one or more of the three
Tool Sets. At the same time, each component of
the architecture can be implemented by one or more
tools.

Within the AIDOaRt project, the architecture has
been implemented by a large number of solutions
(overall 136), covering the various components and
capabilities as well as the generic requirements and
specific requirements from the case study providers.

For dissemination and usage purposes, each one
of the identified solutions has also been described in
various AIDOaRt project deliverables3 (cf. D2.1 [48],
D2.2 [49], D2.3 [50], D3.2 [51], D3.3 [52], D3.4 [53],
D4.1 [22], D4.2 [23], at the time of writing, and
D4.3 [24] to appear soon). Moreover, the case studies
have also been described in specific AIDOaRt deliv-
erables (cf. D5.5 [25] for an excerpt, since the more
detailed D1.1, D1.3, and D5.6 are confidential).

As a particular example, Figure 7 shows how the
Data Representation component from the AIDOaRt
Data Engineering Tool Set is currently underpinned.

3https://www.aidoart.eu/aidoart/results/

deliverables

13

https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables

For instance, EMF Views helps to integrate data from
diverse data sources using different data model views.
Another solution implementing this component is the
AsyncAPI toolkit, which embeds a metamodel to ef-
fectively model data for message-driven platforms.
Furthermore, Figure 7 shows the potential utility

of this component and its related solutions in ad-
dressing, at least to some extent, several case study
requirements regarding the need for data representa-
tion (cf. the satisfy links). Similarly, Figures 8, 9
and 10 depict the applicability of technical solutions
and the satisfied requirements for the Model-Based,
Engagement & Analysis and AI for Modeling capa-
bilities components, respectively.

Figure 7: Data Representation Capabilities component from
the Data Engineering Tool Set, corresponding solutions and
potential links with AIDOaRt case study scenarios.

The number of solutions implemented for each
component and some examples are described in Sec-
tion 6.

5.2. AIDOaRt Mega-Model

At the basis of data engineering, the Data Rep-
resentation component relies on the mega-model of
the AIDOaRt framework. It is the result of the
aggregation and abstraction of the particular case
study data representations, using a standard UML
notation. It has been built through collaboration

Figure 8: Model-Based Capabilities component from the Core
Tool Set, corresponding solutions and potential links with
AIDOaRt case study scenarios.

across case study partners and modeling experts.
Case study partners provided their corresponding
case study data models, whereas a modeling expert
executed the abstraction that resulted in the generic
layer of the mega-model, with the support of stake-
holders from all consortium members.

To illustrate the final mega-model artifact, Fig-
ure 11 shows an excerpt of the Testing data model
package. Abstract classes are the result of the
bottom-up generalization of concepts from the case
study data models (cf. Section 3.1); namely: Test-
Parameter, TestExecution, EvaluationCriteria, Eval-
uationMetric and TestResult. They have links with
the case study data entities they abstract, thus pro-
viding top-down and cross-domain traceabilities.

14

Figure 9: Engagement & Analysis Capabilities component
from the AI-Augmented Tool Set, corresponding solutions and
potential links with AIDOaRt case study scenarios.

Figure 10: AI for Modeling Capabilities component from the
AI-Augmented Tool Set, corresponding solutions and potential
links with AIDOaRt case study scenarios.

For instance, TestResult is the abstraction of
the concrete classes TestData, Report, Output and
TestOutcome, present in different case study do-
mains. It represents the generated testing output
data which would be used for further analysis. A
set of EvaluationMetrics is defined to aggregate and
measure the TestResults from a TestExecution. The
actual values of the metrics are put in contrast with
EvaluationCriteria to check if they conform to the
expectations of the test case and are aligned to the

business goals. In the scenario where a criterion is
not met, it would be necessary to apply changes to
the system or re-generate tests, to make sure that the
system performance is still aligned to business needs.

EvaluationMetrics are not only used in test en-
vironments, but also in production, to continuously
monitor the performance of the system, based on ac-
tual collected data. This is an example of relationship
between packages of the AIDOaRt mega-model: the
EvaluationMetric from the Monitoring data model is
associated to EvaluationCriteria and TestResult from
the Testing data model.

6. Evaluation

The objective of this section is to evaluate the
proposed architecture considering the challenges dis-
cussed in Section 2.2. To this end, we demonstrate
the application of the architecture in the context of
the AIDOaRt project, considering case study scenar-
ios and their development. In the rest of this section,
we introduce the context of the experiment, the con-
sidered case studies, and the evaluation results.

6.1. Context

The AIDOaRt project brings together a balanced
consortium of 32 European partners (7 large compa-
nies, 12 SMEs, and 13 academic and R&D organi-
zations). These partners are geographically covering
7 different European countries (Austria - AT, Czech
Republic - CZ, Finland - FI, France - FR, Italy -
IT, Spain - ES, and Sweden - SE). Among them,
10 industrial partners play the role of case study
providers and end-users (the considered case stud-
ies and their technological domains are summarized
in Table 1). Moreover, 9 industrial partners play
the role of technology and service providers, while
13 partners drive the research activities (among the
solution providers, three partners also played the role
of case study providers)4.

4Further details about the considered case studies and their
technological domains, as well as solution providers and their
contributions, have been published [13].

15

Figure 11: An excerpt of the Testing data model, its abstract elements, and the links to the case study related concrete elements.

Case study providers proposed to tackle several
case study scenarios related to cyber-physical systems
in different application domains (e.g., railways, auto-
motive, construction equipment, software, and com-
munication systems). To realize these scenarios, the
case study providers defined a quite varied and long
list of 128 functional and data requirements. The
requirements largely differed in terms of abstraction
level, broadness, and coverage. Thus, a significant
effort was needed to analyze and summarize these re-
quirements in dedicated work groups led by partner
experts in their respective MDE, AI/ML, and De-
vOps domains. As a result, we produced a short list
of 30 generic high-level requirements classified w.r.t.
the five key SE/DevOps activities we target: Require-
ments Engineering, Modeling, Coding, Testing, and
Monitoring.

Solution providers proposed more than 50 research
and commercial solutions as candidate tools, meth-
ods, and approaches to be part of the framework
of AIDOaRt and to address the case study require-

ments. These solutions also vary in the services they
offer (113), the consumed or produced input/output
data, and their technical constraints in terms of data
requirements, supported platforms, or deployment
procedures.

When working on the evaluation of our proposed
architecture, we decided to proceed in two comple-
mentary ways. Firstly, we worked on a qualitative
evaluation based on the practical application of our
architecture on several industrial case studies. This
intends to demonstrate the applicability of our archi-
tecture, and is presented in Section 6.2. Secondly, we
worked on a more quantitative evaluation based on
mapping links between case studies, our architecture,
and corresponding technical solutions. This intends
to show how we addressed the targeted challenges (cf.
Section 2.2), and is presented in Section 6.3.

6.2. Selected case studies

The case studies developed during the project (see
Table 1) are considered for the overall evaluation.

16

ID Domain Partner Co. Description

ABI Automotive Abinsula SRL IT
Safety-Critical Systems in the Automotive Domain
using Disruption Technology

AVL Automotive AVL List GmbH AT
AI-supported Digital Twin Synthesis Supporting
Secure Vehicle Development and Testing for Novel
Propulsion Systems

BT Railway Alstom Transport AB SE DevOps for Railway Propulsion System Design

CAM
Transport and
Smart Mobility

CAMEA spol. s.r.o. CZ AI for Traffic Monitoring Systems

CSY Railway CLEARSY SAS FR Machine learning in interactive proving

HIB Food services
HI Iberia Ingenieŕıa
y Proyectos S.L.

ES AI DevOps in the Restaurants Business

PRO Maritime Prodevelop SL ES Smart Port Platform Monitoring

TEK Electronic Tekne SRL IT
Agile process and Electric/Electronic Architecture
of a Vehicle for Professional Applications

VCE Automotive
Volvo Construction
Equipment AB

SE
Data Modeling to Support Product Development
Cost and Efficiency

WMO
Telecommu-
nication

Westermo Network
Technologies AB

SE
Automated Continuous Decision Making in
Testing of Robust and Industrial-grade Network
Equipment

Table 1: Case studies from AIDOaRt partners

Moreover, we selected 3 of them as representatives
to show specific details; for each of them, we ex-
tracted and reported part of the scenarios, and re-
quirements, and developed solutions The integration
of the AIDOaRt solutions to support the case stud-
ies, along with the exploration of potential collabo-
rations between case study and solution providers,
followed the Integration mediation patterns as de-
scribed in Section 4. In each case study, specific
requirements were abstracted using the Generic Re-
quirements Mediation Pattern to create higher-level
requirements independent of individual case studies.
The data representations required to support the case
study were also generalized and integrated into a
mega-model following the Data Engineering media-
tion pattern. Finally, the requirements and potential
solutions were mapped to the AIDOaRt components
by applying the AIDOaRt components mediation pat-
tern. 5.

5The interested reader can refer to the project pub-
lic deliverables https://www.aidoart.eu/aidoart/results/

deliverables

6.2.1. AVL (AVL)

AVL is a leading mobility technology company for
development, simulation, and testing in the automo-
tive industry, and in other sectors. The company
provides solutions for Real Driving Emissions (RDE).
The current worldwide regulation for car homologa-
tion requires strict limits for emissions, battery range,
and battery lifetime, prescribing tests with real driv-
ing conditions. To estimate the RDE of a vehicle
driving along an arbitrary route under realistic driv-
ing conditions, the driver model needs to reproduce
the human driver behavior as accurately as possible.
This accuracy is critical for getting comparable vehi-
cle behaviors either with a human or simulated driver.
The current model, used by the company, is a simple
rule-based parametric model, whose accuracy is not
fully sufficient and needs to be improved.

DevOps Challenge: The company aims to improve
the DevOps pipeline and extend the current test-
ing and verification capabilities by exploring data-
driven (AI-based) technologies, especially in the area
of hardware testing and its security as well as au-
tonomous driving technologies.

17

https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables

Scenario: Among the AVL scenarios addressed
in AIDOaRt, we refer to two of them, namely
“AVL RDE UCS1” and “AVL RDE UCS2” in
Figure 12. They concern the generation of a data-
driven model of the driver’s behavior based on envi-
ronmental events (i.e. traffic signs, traffic signaliza-
tion, traffic conditions, etc.) and applicable on any
arbitrary test route. The case includes the genera-
tion of a driver profile that isolates vehicle-specific
dynamics of the speed so that the driver behavior
model is independent of the vehicle.

Requirements: As shown in Figure 12, AVL formu-
lated several requirements for the RDE case. The
main requirements (identified as “AVL RDE R01”
and “AVL RDE R02”) concern, respectively, the
“development of an ML model that, based on real
driving recordings, is trained to simulate human-like
driving given a target route, vehicle, and traffic con-
ditions”, and the “development of an AI method
for providing better statistics of the environment
based on the statistics of the real driving record-
ing and data from digital map service”. They re-
late the generic requirement “GR Mod 4” for the
“use of semi-automatic model synthesis for design-
and run-time verification”. Moreover, the case re-
quires “automate multi-source data analysis of the
real driving test data such that the relevant fea-
tures of the driver behavior can be clustered (e.g.
highway driving, low-speed driving, cornering, brak-
ing, acceleration, ...)” (“AVL RDE R03”), that
relates the “GR Mon 5” for the “monitoring tool
using human-defined parameters”. Finally, the case
refers to the “AVL RDE R05” that requires the
analysis of basic driver attributes, including acceler-
ation/deceleration histogram, braking behavior, cor-
nering behavior, and max speed preference. This re-
lates the “GR Mod 06” for the “use of AI-based
methods for easy configuration”.

Development : Modelling the velocity profile of a hu-
man driver is not a trivial task. The very fact that the
task is not discriminative due to hidden variables (e.g.
traffic conditions, exact weather conditions, traffic
signalization, ...) makes this generative ML prob-
lem challenging. Figure 12 depicts an excerpt of the
Data Model, as an instance of the data mega-model

described in Section 5; it describes features and real-
world measurements involved in the case study and
the relationship between them.

Within the project, two different AI-augmented so-
lutions, and correspondent tools, were implemented
and applied to the case study, as follows

• TWIMO[22] provides a conceptual framework
to define domain-specific notations, used for the
definition of human driver behavior and ML-
based services. The tool provides also ML pre-
diction methods; a Random Forest classifier was
applied for the analysis and prediction of RDE
in virtual environments.

• AALpy[54] provides a library implementing dif-
ferent active automata learning algorithms that
support the learning of finite state models of
black-box systems. A passive automata learn-
ing technique was applied to the measurement
data collected from test drives by AVL to infer
models in the form of Markov Decision Processes
(MDPs).

The solutions developed for this scenario link sev-
eral Architecture Component (cf. Figure 13), e.g.,
Engagement & Analysis (data in the form of driving
cycles is analyzed and transformed into a predictive
behavioral model of human driving behavior), AI for
modeling (suitable abstraction of the recorded data
are defined, the method can be applied to other data
sets to create models of different driver styles, AI for
testing(AI-based solutions for Real Driving Emissions
testing are developed).

Solutions Integration and Obtained Results: The
tools described above, namely TWIMO and AALpy,
are complementary and have been applied in the con-
text of a demonstrator at AVL.

AALpy provided a prototype for learning prob-
abilistic behavioural models of human driver be-
haviour from a set of recorded driving cycles (i.e. test
drives) enriched by static environment data such as
the current speed limit and curvature. TWIMO pro-
vided a model-based framework for the specification
of human driver behaviour models and and ML-based
services.

18

Figure 12: An excerpt of the AVL RDE data model

Although the solutions have been evaluated by
considering only a limited dataset at this stage,
AVL experts have evaluated the results of the devel-
oped method, and this visual inspection has shown
the following: 1. The driving profile generated by
the proposed method significantly better models the
driver speed profile on the motorway compared to the
method currently in use in the company. 2. The gen-
eral driving trend generated by the proposed method
is hard to distinguish from the general driver trend
of human driving. 3. Due to the approach’s granu-
larity, the proposed method’s local speed profile does
not show the variations seen in the speed profile of a
human driver.

6.2.2. Alstom (BT)

Alstom (previously Bombardier Transportation,
abbreviated BT) is a leading company in green and
smart mobility worldwide, developing and market-
ing integrated systems that operate in rail transport

markets.

DevOps Challenge: The company aims to automate
data processing and transfer between different stages
of the development process, multi-physics modeling,
and test data correlation. The potential outcomes
of such an endeavor are an improved design and de-
velopment chain resulting in a more effective pro-
cess, optimized solution customization, simulation,
and test facilities, standards certification support,
and reduction of the overall costs, i.e., time to mar-
ket, maintenance, and life-cycle costs, monitored op-
erations, energy efficiency, etc.

By using ML, the company aims to automate and
improve its requirements engineering process using an
ML solution that would analyze requirements, add
adequate responses to each requirement, and auto-
mate the parametrization of specific models in the
propulsion control system that depend on the phys-
ical properties of the corresponding hardware com-

19

Figure 13: AVL RDE case study scenarios, derived require-
ments, providing solutions, and instantiated architecture com-
ponents.

ponents. Today, this is done by manually iterating
parameter settings against measured data during sys-
tems testing. While both case study scenarios have
been addressed in AIDOaRt, we only present here
the first case study scenario (labeled “BT UCS1”),
which tackles AI-augmented requirements engineer-
ing.

Scenario: Railway traction equipment consists of
complex hardware and software elements that, in
their aggregation, constitute complex cyber-physical
systems. The business is driven by a bidding pro-
cess, typically in the form of public procurement.
Customers, i.e., railway rolling stock owners and/or
operators, issue detailed specifications for the com-
plete trains, some of which directly affect traction
systems and others that can result in derived re-
quirements. Despite the diversity between customers,
most specifications address the same features and de-
sign aspects. However, there is a great diversity in
how the requirements are formulated. Today, as a
consequence, vast numbers of customer requirements

are manually analyzed, allocated, and further bro-
ken down. This usually requires highly experienced
bid and customer project engineers to be carried out
effectively. The goal is to provide appropriate rec-
ommendations to the bid and project engineers in
an automated manner based on datasets for actions
and responses taken from previous projects. This in-
cludes finding requirement defects (such as ambigu-
ities and vagueness), clustering or classifying the re-
quirements (e.g., to allocate them to different teams
or persons responsible), and responding to the re-
quirements (can we comply with them or not?).

Requirements: As shown in Figure 14, the main re-
quirement (identified as “BT R01”) is formulated
by Alstom as “providing NLP contextual analysis
of requirements and matching against a database of
responses/solutions” from previous projects. This
requirement refines two generic requirements (“GR
RE 01” and “GR RE 03”): the first aims to trans-
late requirements of Cyber-Physical Systems from
semi-structured language to formal language, while
the second aims to analyze the CPS requirements ex-
pressed in formal language and to produce sugges-
tions or prescriptions for the Requirements Engineer
and the System Engineer [35].

In terms of data requirements (identified as
“BT 01 DR01”), Alstom specified the need to
safely import, store, and process requirements that
are securely exported from tools used for require-
ments engineering (e.g., IBM Rational DOORS) as
tabular datasets (e.g., CSV or Excel files). Consist-
ing of design time static data, large datasets can be
processed by smaller batches, and there is no partic-
ular need to handle big or real-time data.

Development : As shown in Figure 14, Alstom’s
BT UCS1 relies on solutions implementing the “AI
for Requirements” component. These solutions are
expected to analyze requirements, evaluate them, and
recommend actions that are to be done by the re-
quirements engineer. The component should be in-
teroperable with third-party tools (e.g., IBM Ratio-
nal DOORS) and provide data exchange capabilities.
Alstom would use solutions implementing the “AI for
Requirements” component to enhance the capabili-
ties of requirements engineers and automate the re-

20

Figure 14: Alstom (BT) case study scenario, derived require-
ments, provided solutions, and instantiated architecture com-
ponents.

quirements engineering process (cf. D4.1 and D4.2).
Among the solutions implementing the “AI for

Requirements” component, Alstom has collaborated
with MDU, RISE, and SOFT to benefit from their
Requirements Ambiguity Checker (RAC), VARA,
and Modelio’s NLP4RE solutions (resp.):

• RAC [55] identifies ambiguous requirements
from textual documents using a set of ambiguous
keywords and patterns and a plethora of NLP
and AI/ML techniques.

• VARA [56] provides automated similarity anal-
ysis and feature reuse recommendations using
NLP. It allows engineers to perform an au-
tomatic analysis of textual requirements for a
new project and identify components and arti-
facts that can be reused from a previous project
for the implementation of the new requirements
based on similarity analysis.

• Modelio’s NLP4RE Module [57] allows for
automated requirements identification, extrac-
tion, and classification from textual documents

with NLP and AI/ML techniques.

The BT case study data model is illustrated in
Figure 15. It supports the processing of system re-
quirements written in natural language. Each sys-
tem requirement specifies the system component af-
fected, which customer requirement it addresses, and
the recommended team allocation. Requirements are
further elaborated with a requirement response.

Figure 15: Alstom (BT) case study data model.

This case study data model is mapped to the
AIDOaRt mega-model (cf. Section 5.2), particularly
to the Requirements Engineering package. Along
with other specific data models, it served to abstract
their common elements into generic ones as part of
the AIDOaRt Data Representation component. An
excerpt of the affected subset of elements of the mega-
model is included in Figure 16.

Solutions Integration and Obtained Results: These
three solutions are complementary and can be in-
tegrated into a complex and comprehensive require-
ments engineering workflow. Indeed, after the auto-
mated identification and extraction of requirements
from large textual documents, it is desirable to check
for their ambiguity and propose to the requirements
engineers ways of correcting, reviewing, or clarifying
requests to the customers. Once the requirements are
neatly clarified, automated similarity checks, classifi-

21

Figure 16: Mega-model excerpt for Requirements Engineering.

cation, and allocation come in handy to provide the
requirements engineers with valuable insights.

Currently, the RAC solution identifies ambigu-
ous requirements from textual documents using a
set of ambiguous keywords and patterns and vari-
ous NLP & AI/ML techniques with an accuracy of
80%. VARA enables automatic analysis of textual
requirements for a new project and identifies compo-
nents and artifacts that can be reused from a pre-
vious project to implement new requirements based
on similarity analysis with an accuracy of 71%. The
NLP4RE prototype identifies similar requirements
with an accuracy of 60%. These results were thor-
oughly documented in AIDOaRt’s deliverable D5.7
[26].

According to Alstom (BT), the requirement
BT R01 is fully covered by the proposed solutions.
The success rate of requirement analysis (i.e., identi-
fication and ambiguity checking) and matching (i.e.,
similarity checking) will be determined during the
validation of prototypes by the end of the AIDOaRt
project and reported in its final deliverables. The
solutions can be further extended beyond the cur-
rent case study environment in other areas of require-
ments engineering within Alstom (BT), e.g., for the
verification/validation phases, and in other domains
such as software development and off-cycle R&D pro-
grams.

6.2.3. Volvo Construction Equipment (VCE)

VCE is a global manufacturing company in the
construction machine industry. The company mainly
works in the context of Product Line Engineering
(PLE): much of the development effort regards man-
aging and configuring the product lines of different
machines for various missions and contexts. Indeed,
most construction machines contain a large set of cus-
tomizable or variable options in the system specifica-
tion and across different sub-systems. Traditionally,
managing the system architectures is primarily based
on informal artifacts and documents. Such a prac-
tice can be quite inefficient given the modern system
complexity. Thus, there is a need to enhance current
methods and engineering practices at VCE in order
to tackle the growth in system complexity.

DevOps Challenge: Model-based (System) Engineer-
ing or MBSE is a key paradigm to address this grow-
ing complexity while adding more advanced capabil-
ities to continuous engineering workflows. However,
previous experiences [58] have shown that adopting
MBSE and related processes is not straightforward in
an industrial context. For example, there is a need for
more maturity regarding the provided architectures,
corresponding tooling capabilities, related advanced
analysis capabilities, and activities focusing on con-
tinuous verification and validation (V&V). Still, the
integration of AI and DevOps techniques is believed
to further strengthen the use of models instead of
informal artifacts and documents. The main global
challenges are related to high-level analysis, modeling
patterns, automated continuous workflows, and early
validation processes.

Scenario: VCE is on a transformation journey focus-
ing on the electrification of their construction ma-
chines, including both battery-electric and fuel-cell
technologies. Maintaining quality is of utmost im-
portance even during the transition period with fast
prototyping and short lead times. This requires the
application of new technologies not only in the final
product but also during the design and development
phases. In the AIDOaRt project, VCE proposed a set
of case studies and challenges regarding the design
and development of its future construction machines.
The case studies notably include artifacts and related

22

workflows currently followed. The main objective is
to improve the current methods and practices via the
combination of model-based methods with AI (and
also DevOps in the next step).

More concretely, VCE provides a real case study
based on the different VCE product lines6 offering
many types of potential configuration variants to cus-
tomers. Currently, the AIDOaRt architecture has
been applied by targeting the early phases of the
system engineering life cycle at VCE. Indeed, there
is generally a lack of harmonization of artifacts at
this stage, and crucial information is often managed
via documents and other non-formal descriptive arti-
facts. Engineering activities, like requirements spec-
ification and system-level detailed design and imple-
mentation, need more cohesive linking among the
produced engineering artifacts. In this regard, there
is a need to adopt robust modeling techniques and
practices, i.e., opting for prescriptive rather than de-
scriptive approaches. In this way, it would be possible
to boost the automation of the engineering process by
connecting artifacts of different stages, to propagate
consistently and share engineering decisions across
machine-readable artifacts to enable a more scalable
and interoperable workflow.

Requirements: As shown in Figure 17, the main re-
quirement (identified as “VCE UCS 01”) for the
selected VCE scenario has been derived as two
sub-requirements (“VCE R05” and “VCE R07”).
These two derived requirements actually refine two
generic requirements related to Modeling capabilities
(respectively “GR Mod 09” and “GR Mod 07”).
In the first case, the goal from the VCE perspective
is to customize standards modeling languages (e.g.
SysML, AutomationML) in order to develop proper
VCE system, software, and data architecture models.
In the second case, the aim is to 1) provide AI-based
recommendation support to the VCE engineers in or-
der to help them improve their systems models, and
2) integrate this recommendation support for con-
tinuous model configuration and delivery to improve
variability management; In addition to what is shown

6https://www.volvoce.com/europe/en/products/

articulated-haulers/a60h/

in Figure 17, the selected VCE scenario also includes
the preservation of the requirements coming from the
VCE original artifacts and thus semi-automatically
extracted from them.
Development : As shown in Figure 17, the cur-
rently proposed solution integrates several model-
based tools from the AIDOaRt Data Engineering
Tool Set, AIDOaRt Core Tool Set and AIDOaRt AI-
Augmented Tool Set (some tools belonging to mul-
tiple tool sets due to their different capabilities).
Among them, we can notably mention:

• AutomationML Modelling [59] providing an
implementation of the AutomationML standard
modeling language via the CAEX workbench;

• Modeling Process Mining Tool / MER [60]
offering the support for capturing events in the
context of graphical model editing;

• EMF Views [61] allowing to federate the dif-
ferent involved models (SySML, AutomationML,
traceability) as model views;

• MORGAN [62] providing the needed recom-
mendation support over the models of interests
(cf. the previous item).

Moreover, whenever needed, the solution also inte-
grates the use of open-source tools, such as Papyrus
for design modeling, as well as a few components de-
veloped from scratch (e.g., specific model-to-model
transformations).

Figure 18 depicts a partial view of the VCE Data
Model that focuses on the model recommendation as-
pects, as directly directed to the presented scenario.
The complete VCE Data Model can be found from
a specific AIDOaRt deliverable [50]. It describes all
the features and real-world measurements involved in
the VCE case study in general, as well as the rela-
tionships between them.

As mentioned before, the proposed integrated so-
lution developed for this scenario heavily relies on
the Model-Based Capabilities offered by the Data
and Modeling component from the AIDOaRt Core
Tool Set. Moreover, this solution also directly links
to the several components from the Data Engineering
Tool Set and AI-Augmented Tool Set. Notably, AI

23

https://www.volvoce.com/europe/en/products/articulated-haulers/a60h/
https://www.volvoce.com/europe/en/products/articulated-haulers/a60h/

Figure 17: VCE case study scenario, derived requirements, provided solutions, and instantiated architecture components.

Figure 18: An excerpt of the VCE data model (with a focus
on the model recommendation aspects).

for Modeling, Engagement & Analysis, Inges-
tion & Handling relate to AI for assisting modeling
activities (cf. the used recommendation support), for

generating instance models from higher-level archi-
tectural ones, and for synchronizing different views
based on their contributing models.

Overall, at VCE, the development of this case
study is contributing to the automation of several
important modeling activities, an increase in the sys-
tem design and development velocity via the use of
such model-based techniques, and ultimately the fur-
ther re-use of the same architectural models in the
context of different projects.

Solutions Integration and Obtained Results: The
four tools mentioned before, namely AutomationML
Modelling, MER, EMF Views, and MORGAN, have
been chained together in practice and applied in the
context of a demonstrator at VCE. Concretely, it
allowed to rely on existing standard modelling lan-
guages (UML, SysML, AutomationML) while cus-
tomising the notations to enable VCE-specific con-
cepts (cf. “VCE R05”). Furthermore, it also fa-
cilitated the re-use of, and learning from, legacy
artefacts created by the VCE engineers within past

24

projects (cf. “VCE R07”).
The modelling recommendations provided by the

combination of MER and MORGAN have been eval-
uated by conducting an initial user study. In particu-
lar, we involved four different types of engineers from
VCE (Verification Engineer, Software Engineer, Sys-
tem Architect, and System Engineer). Each session
roughly took one and a half hour and we collected
their feedback in a structured questionnaire. Over-
all, the participants are satisfied with the examined
aspects. A deeper evaluation involving more partici-
pants is planned to be performed in the near future.
The continuous modelling support provided by

EMF Views has been evaluated by considering only
a limited set of models at this stage. In particular,
we have been able to experiment with the specifica-
tion and building of an initial “complete” view inter-
connecting SysML, AutomationML models (as design
models) and more recently a FMU model (as a run-
time model). This already showed promising results
in terms of model federation capabilities within the
VCE context.

6.3. Evaluation results

In this section, we evaluate the proposed AIDOaRt
architecture by considering the targeted challenges
(cf. Section 2.2). We notably look at how the in-
volved industrial case studies, and the research and
commercial solutions, are actually integrated within
the framework of the proposed architecture, accord-
ing to architectural and technical demands.

6.3.1. Architectural challenges

To evaluate the architectural challenges, we
demonstrate that the components and functionali-
ties of the proposed architecture are able to 1) cover
case study requirements, and 2) be implemented by
corresponding technological solutions providing the
needed capabilities.

A1. Heterogeneity. Figure 19 gives an overview of the
mapping from the case study requirements to the
AIDOaRt architecture’s components, and their
functionalities (as described in Section 3). The
provided chart shows, per case study provider,
the number of functional and data requirements

that can be possibly satisfied by each architec-
ture component, i.e., by one or more of its func-
tional interfaces. This mapping has been speci-
fied directly by the case study providers, based
on their deep knowledge and expertise in their
respective case studies.

Going into more detail, the case studies pre-
sented in Section 6.2 show how heterogeneous
requirements, in different domains and for differ-
ent goals, have been satisfied by the architecture.
For example, AVL and VCE have very different
requirements and require different functional ca-
pabilities: the first focuses on engineering a driv-
ing behavior modeling and prediction service,
and the other requires the use of model-driven
and data-driven methods in the company’s engi-
neering workflows in general.

The high connectivity of the architecture’s com-
ponents to both the case study requirements and
solutions shows the global alignment of the ar-
chitecture with the general scope and objectives
of the AIDOaRt project. Moreover, it also some-
how attests to the overall relevance of the cur-
rent architectural design and specification. A
large number of requirements and solutions, and
their wide spectrum of domains and topics, can
be fully covered with the relatively small num-
ber of generic architecture components and their
functional interfaces. Furthermore, we can as-
sess that the architecture could be reused and
extended in the context of other organizations
in various domains.

A2. Flexibility. Figure 20 gives an overview of the
mapping from the solutions to the AIDOaRt ar-
chitecture’s components, and their functionali-
ties (as described in Section 3). The provided
chart shows, per solution provider, the num-
ber of solutions that can possibly implement
each architecture component, i.e., one or more
of its functional interfaces. Within the AIDOaRt
project, we considered a total number of 54 tech-
nological solutions provided by 22 partners.

This mapping has been specified directly by the
solution providers, based on their knowledge of

25

Figure 19: Mapping of case study requirements to the archi-
tectural components

their respective solutions. For example, among
the selected case studies, the AVL scenario (Fig-
ure 13) has been supported by more than one
solution implementing the same capabilities. As
a result, we can see that the proposed architec-
ture is able to be realized via the different so-
lutions made available by the various AIDOaRt
project partners. This architecture can be de-
ployed in the context of AIDOaRt of course, but
also possibly in the context of other projects in
the future.

Figure 20: Mapping of solutions to the architectural compo-
nents

A3. Integration. Figure 21 summarizes the previ-

ous results and indicates both the number of so-
lutions implementing one or more of the func-
tional interfaces of the architecture components
and the number of case study’s functional and
data requirements that are possibly satisfied by
each architecture component. This shows how,
as a result of applying the AIDOAaRt com-
ponents mediation pattern, a large number of
requirements and solutions capabilities can be
organized together and abstracted by a rela-
tively small number of high-level components
and functional interfaces. Furthermore, the gen-
eralization of requirements and data represen-
tations, through the Generic Requirements Me-
diation Pattern and the Data Engineering me-
diation pattern respectively, further contributes
to the overall integration strategy. By employ-
ing the Generic Requirements Mediation Pat-
tern, 126 case study-specific requirements were
organized and mapped into 47 generic require-
ments. At the same time, the Data Engineering
Mediation Pattern facilitated a standardized ap-
proach for data representation, easing the inte-
gration of disparate data sources.

Figure 21: Summary of the solutions and requirements map-
pings to the AIDOaRt architecture components

A4. Collaboration. The goal of this other part of the
evaluation is to show in practice that the compo-
nents and functional interfaces of the proposed
architecture can cover potential industrial re-
quirements and solutions capabilities. Notably,

26

we want to show the high connectivity of the
AIDOaRt architecture by identifying potential
collaborations between case study providers and
solution providers.

The heat maps of Figure 22 display both
the current collaboration links between solution
providers and case study providers (left) and
their potential implicit/indirect links (right).
We identified these links by analyzing the map-
ping of the solutions and requirements to the ar-
chitecture components and interfaces. The num-
bers indicate the number of case study scenarios
being tackled by a given solution. The higher
the number, the darker the cell’s highlight color
(zeros are omitted for the sake of simplicity).

These heat maps show that 91% of the actual
collaborations were already identified by the in-
direct links as potential relations. However, the
opposite is not true. Indeed, AIDOaRt part-
ners are in the process of studying the list of
potential links to either confirm or refute them.
Confirmed links would lead to effective collab-
orations, whereas refuted links would be pro-
vided with a justification for not reaching com-
mon agreements. For instance, a potential col-
laboration may be discarded due to the diver-
gence between the solution and the requirements
on some technical constraints. This can also be
due to the limited resources of a solution or case
study provider.

A further analysis of these direct and indirect
links between solutions and case studies can be
made to provide some recommendations. For
example, we are currently exploiting these map-
pings to identify new potential collaborations for
the next milestones of the project.

6.3.2. Technical challenges

To evaluate the technical challenges, we demon-
strate that the components and functionalities of
the proposed architecture can 1) cover the techni-
cal demands identified, and 2) be implemented by
corresponding technological solutions providing the
needed capabilities.

T1. Data management. Several architectural compo-
nents and capabilities have been defined to man-
age, store, and analyze large amounts of data.
In particular, the dedicated Data Engineering
Tool Set component offers functional capabilities
for the collection, management, and representa-
tion of data. To illustrate this, Table 2 shows
the number of implemented solutions/tools and
the number of mapped requirements. Moreover,
the data management capabilities are related to
the Data Handling Capabilities of the Core Tool
Set (cf. Table 3), as well as the Ingestion &
Handling component of the AI-augmented Tool
Set (cf. Table 4). Employing specific interfaces,
these independent entities (and their implemen-
tation) can interact and communicate with each
other. For instance, Figure 17 illustrates how
some of the developed solutions implemented the
Data Handling Capability, Data Representation
and Ingestion & Handling components.

Components
Provided
Solutions

Mapped
Requirements

Data Collection 11 36
Data Management 10 27
Data Representation 10 11

Table 2: Data Engineering Tool Set, number of provided solu-
tions and mapped requirements

T2. Modelling support.

Within the Core Tool Set component, several
solutions/tools have been implemented for ef-
ficient handling of the various kinds of data
artifacts (mostly data models), obtained from
the Data Engineering Tool Set. A key goal
of the Core Tool Set is also to provide sup-
port for all the other kinds of available software
and system engineering models. Table 3 shows
the number of implemented solutions/tools and
the number of mapped requirements. Employ-
ing specific interfaces, these independent enti-
ties (and their implementation) can interact and
communicate with each other, for instance, in-
terconnected models can then be used to feed
the AI-augmented features provided in the AI-
augmented Tool Set component.

27

Figure 22: Collaborations and potential indirect links between solution and case study providers

Among the others, the VCE scenario previously
described in Section 6.2 is a fitting example of
how theModel Based Capability and AI for Mod-
eling components have been combined to develop
solutions and meet the scenario’s requirements
(see Figure 17).

Components
Provided
Solutions

Mapped
Requirements

Storage Capabilities 3 21
Computation Capab. 9 9
Data Handling Capab. 10 12
Model-based Capab. 19 9
Accountability 1 5
Explainability 5 7

Table 3: Core Tool Set, number of provided solutions and
mapped requirements

T3. AI-powered DevOps. A large set of AI-based so-
lutions have been implemented in the project.
In particular, Table 4 shows the number of im-
plemented solutions/tools and mapped require-
ments of the AI-augmented Tool Set compo-
nent. As depicted in Figure 2, this component
combines sub-components and related capabili-
ties/interfaces, that can interact and communi-

cate to develop specific solutions. For instance,
the AVL scenarios (cf. Figure 13) show how the
AI for Modeling, AI for Testing and Engagement
& Analysis components have been implemented.
Another example is the BT scenario (cf. Fig-
ure 14) where the AI for Requirement Engineer-
ing component has been implemented.

Components
Provided
Solutions

Mapped
Requirements

Ingestion & Handling 7 12
Engagement & Analysis 16 39
Automation 13 13
AI for Requirements 7 5
AI for Monitoring 4 19
AI for Modelling 13 24
AI for Coding 6 3
AI for Testing 17 16

Table 4: AI-augmented Tool Set, number of provided solutions
and mapped requirements

7. Threats to Validity

In this section, we discuss the threats to validity
related the current evaluation of our proposed ar-
chitecture. We consider the following dimensions:

28

construct, internal, external, and conclusion validity
threats. We also discuss the actions we already took
in order to mitigate them.

7.1. Construct validity

Construct validity relates to the accuracy of a mea-
surement or a test assessing the targeted attribute or
concept. In our current evaluation, the selected at-
tributes concern different challenges that have been
identified from the literature. Given the diverse defi-
nitions of these attributes, we have explicitly defined
them in the paper in order to clearly delimit their
scope. Moreover, we have not included qualitative
measurements such as questionnaires in the presented
work because they have already been largely used in
another context [36, 37]. Instead, for each of the de-
fined challenges, we have employed quantitative met-
rics to assess the extent to which AIDOaRt provides
support for or addresses these specific challenges.

7.2. Internal validity

Internal validity threats are related to possible wrong
conclusions about causal relationships and potential
methodological errors. To mitigate this threat, a
unique global architecture model was created, built,
shared between all the project’s partners and then
maintained, evolved during the whole project’s du-
ration. More importantly, this architecture model
is always considered as the singular source of truth.
The construction and maintenance of this model
involved the definition of micro-tasks, which were
strictly monitored and assessed by each responsible
partner [36, 37]. This notably allows to guarantee a
high level of consistency in the collected data, and to
mitigate the potential for misinterpretations or erro-
neous inputs at the same tim.

7.3. External validity

External validity threats are related to the ability to
generalize the currently obtained results. The eval-
uation presented in this paper has been conducted
on various different and real industrial case studies
in order to mitigate threats related to the selected
participants (e.g. non-representative subjects). Nev-
ertheless, our evaluation has been conducted on com-
panies that are partners of the AIDOaRt project and

with which we have regular (and good) contacts. To
mitigate this, the companies who participated in the
evaluation are from diverse application and/or tech-
nological domains, in addition to being of various
sizes. Thus, this ensures that the presented findings
are not confined to a specific industry or organiza-
tional scale.

7.4. Conclusion validity

Conclusion validity is related to the reliability of the
conclusions drawn from the results. To ensure reli-
able results, our evaluation is based on a significantly
large set of 10 different industrial case studies. To
address these case studies, 54 different technologi-
cal solutions which have been designed, developed,
(re)used and/or combined in varied ways. Never-
theless, we have been cautious to avoid making too
strong statistical conclusions from the general obser-
vations we drawn as a result of our current evalua-
tion. Instead, the findings we made are mostly used
to demonstrate the feasibility, applicability and use-
fulness of the proposed approach.

8. Discussion

In addition to the experiment and corresponding
evaluation reported in Section 6, we also extracted
some general lessons learned from our overall expe-
rience of working on/with the proposed AIDOaRt
architecture. We believe these findings could be
possibly generalized to other kinds of collaborative
projects targeting various kinds of systems in the con-
text of different application domains. We hope these
to be useful to the architecture and modeling commu-
nities, as well as more globally to the whole Software
Engineering community at large.

A relevant support for project development. The
feedback already collected at this advanced stage of
the project (i.e., while reaching the last months of
the project) shows that our architecture is generally
beneficial from a project development perspective.
Indeed, the identified components, their interfaces,
and the corresponding cartography of supporting so-
lutions appear to make easier the design and devel-
opment of various technical environments suitable

29

for different kinds of practical industrial scenarios.
This has already been experienced with a satisfy-
ing level of success in the context of most of case
studies from the AIDOaRt project, and this is cur-
rently being applied also within the latest remaining
AIDOaRt case studies.

An interesting collaboration enabler. More globally,
we have observed that relying on such a shared ar-
chitecture fosters inter-partners collaboration, par-
ticularly between companies but also with aca-
demics (in all possible ways). In practice, the avail-
ability of the architecture and supporting solutions
already facilitated the creation of new direct collab-
orations inside AIDOaRt (e.g., between a case study
provider and solution providers relevant to his spe-
cific context). Moreover, it allowed companies to
identify new challenges and potential solutions go-
ing beyond the scope of the current architecture and
project. For example, a solution provider or an aca-
demic researcher can offer capabilities on other top-
ics of interest for a given case study provider.

A virtuous iterative process. The elaboration of our
architecture has been realized by following a combi-
nation of top-down and bottom-up approaches. On
the one hand, based on the result of a first collabora-
tive design effort carried out by a reduced number of
partners, the AIDOaRt core team proposed an ini-
tial version of the architecture to the other partners.
On the other hand, and in parallel, the case study
providers started to work on the description of their
case study requirements and scenarios. Then, all
partners reviewed these elements and checked the
alignment between the proposed architecture and
the described case studies. Such early feedback, and
the direct involvement of all the partners, allowed to
iteratively enrich and improve both the architecture
and the case study descriptions.

The required learning curve. From the beginning of
the project, we noted that some AIDOaRt partic-
ipants had previously limited experience in model-
ing and/or AI principles, concepts, and techniques.
This resulted in difficulties for them to initially catch
up with some of the characteristics of our proposed
architecture. It also appears that the way we de-

signed and maintained our architecture, by heav-
ily relying on the Modelio tooling, was sometimes a
source of misunderstanding in the first half of the
AIDOaRt project. However, this has since been re-
solved by the AIDOaRt core team and the Mode-
lio support team. In order to overcome these ini-
tial difficulties, we notably relied on multiple online
presentations and hands-on sessions for the differ-
ent project partners. Now that we are reaching the
last months of the project, we can state that the
use of such a model-based architecture has proven
to be globally very positive for the different involved
project’s partners.

9. Related Work

The AIDOaRt project was born as a direct
follow-up of the successful MegaM@Rt2 project [40].
MegaM@Rt2 aimed at realizing a scalable model-
based framework for continuous development and
runtime validation. Thus, it addressed one of the
key aspects of AIDOaRt, i.e., the continuous devel-
opment (or DevOps) of complex industrial Cyber-
Physical Systems (CPSs). However, AIDOaRt and
its architecture intend to go much further. Indeed,
the objective is to consolidate and improve DevOps
practices for such CPSs via the additional use of
AI/ML techniques.

In this context, the authors reported on their study
of the state-of-the-art at the crossroads of the three
areas of interest for AIDOaRt, namely MDE, AI/ML,
and DevOps [12]. The results show a more ro-
bust integration between MDE and DevOps com-
pared to other pairs, such as AI/ML and DevOps or
MDE and AI/ML. Most MDE+DevOps studies pre-
sented model-based approaches explicitly applied in
a DevOps context (e.g., generating a textual CI/CD
pipeline script from a model artifact via model-to-
text transformation) [63, 64, 65]. In contrast, studies
that focus on AI/ML and DevOps predominantly fo-
cus on the application of AI/ML techniques to en-
hance DevOps artifacts (e.g., updating steps of a
CI/CD pipeline based on outcomes of ML algorithms
applied to runtime data of the delivered applica-
tion) [66, 67]. Lastly, we identified several studies
presenting model-based approaches explicitly applied

30

in AI/ML context (e.g., a metamodel/grammar spec-
ifying a domain-specific language for neural network
specification) [68, 69].
However, the most challenging question remains

related to the adoption and integration of MDE,
AI/ML, and DevOps principles and practices alto-
gether. In fact, to the best of our knowledge, only
a few approaches intend to actually realize such an
integration in practice.
For example, in [70, 71], the authors propose a

Domain-Specific Model (DSM) and related DevOps
practices to design, deploy, and monitor performance
metrics in Big data analytics (BDA) applications.
Such applications use ML algorithms to extract valu-
able insights from large, fast, and heterogeneous data
sources. In this context, new challenges include en-
suring sufficient performance levels of the data-driven
algorithms even in the presence of large data volume,
velocity, and variety (3Vs). The proposed approach
also includes a design process and a framework to de-
fine architectural inputs, software components, and
deployment strategies through integrated high-level
abstractions.
In [72], the authors propose a framework that

treats model abstractions of AI/ML models as first-
class citizens and promotes transparent data detec-
tion, model verification, and model management.
This framework is the first attempt to incorporate re-
quirements stemming from intelligent enterprise ap-
plications into a logically structured architecture.
The goal is to instrument applications with intelli-
gence and continuously deploy, test, and monitor in-
telligent applications.
In [73], the authors propose a tool that retrieves

data-intensive topologies for 1) anti-pattern analysis,
thus allowing the detection of known and established
design anti-patterns for data-intensive applications,
and 2) transparent formal verification transposing the
recovered data-intensive topology models into equiva-
lent formal models to verify temporal properties, such
as basic queue-safety clauses. This tool can be part
of a DevOps pipeline dedicated to data-intensive so-
lutions. It can be used for instrumenting the contin-
uous refactoring of the data-intensive application by
studying the application structure and the underlying
topology to improve its operational characteristics.

In contrast with these quite specific works, we
rather propose a general architecture supporting
systems engineering and continuous delivery activi-
ties by combining AI-augmented, automated model-
based engineering and DevOps. However, the inves-
tigated state-of-the-art [12] provided the solid ground
on which we based the proposed architecture and re-
lated applications on case studies.

10. Conclusion

This paper presented the proposed AIDOaRt ar-
chitecture that provides the foundations of a model-
based framework for developing AI-augmented solu-
tions incorporating methods and tools for continu-
ous software and system engineering and validation.
Thus, the key characteristic of our architecture is that
it allows leveraging the advantages of both AI and
MDE approaches and techniques in a DevOps con-
text. The paper illustrated how this architecture is
implemented by different technical solutions within
the context of several real industrial case studies com-
ing from the AIDOaRt project. From this experimen-
tal evaluation and the corresponding collected data,
we analyzed the capabilities of the proposed architec-
ture regarding both architectural and technical chal-
lenges.

The paper reported on the applicability and useful-
ness of the proposed AIDOaRt architecture to tackle
the integration of solutions in the context of the
AIDOaRt case studies. Overall, we experienced in
practice that our approach is beneficial from a project
development perspective. The proposed architecture
proved to be a key element for the success of the
overall project outcomes, especially in terms of inte-
gration and satisfaction of requirements. It provided
a complete picture of the requirements and required
capabilities and a valuable integration strategy. In-
deed, the identified components and interfaces and
the corresponding cartography of the supporting so-
lutions appear to make the iterative design and de-
velopment of technical environments easier and more
suitable for different kinds of real industrial scenar-
ios. Some difficulties were encountered in the early
stages of adopting and understanding the architec-
ture, such as initial difficulties in understanding a

31

model-based approach (which were overcome during
development) or difficulties in implementing specific
collaborations within the architecture. After an ini-
tial learning phase, the project’s partners began to
benefit fully from the approach, which also proved
an interesting tool for driving collaborations.
Another limitation is the lack of an architecture

quality analysis assessment. According to the ATAM
approach [74] and the recent survey in [75], the eval-
uation of architecture quality must refer to an overall
framework with quality metrics, attributes, and char-
acteristics, or survey-based evaluations or interviews.
This work is under development, and we plan to pub-
lish a future contribution when the analysis results
are ready.

Acknowledgment

The work presented in this paper is funded by the
ECSEL Joint Undertaking (JU) under grant agree-
ment No. 101007350 (AIDOaRt project). The JU
receives support from the European Union’s Horizon
2020 research and innovation programme and Swe-
den, Austria, Czech Republic, Finland, France, Italy,
Spain.

References

[1] H. Thompson, M. Reimann, D. Ramos-
Hernandez, Platforms4CPS, Key Outcomes and
Recommendations, Steinbeis-Edition, Germany,
2018.

[2] R. Eramo, F. Bordeleau, B. Combemale,
M. van den Brand, M. Wimmer, A. Wort-
mann, Conceptualizing digital twins, IEEE
Softw. 39 (2) (2022) 39–46.

[3] B. Fitzgerald, K.-J. Stol, Continuous software
engineering: A roadmap and agenda, Journal of
Systems and Software 123 (2017) 176 – 189.

[4] C. Ebert, G. Gallardo, J. Hernantes, N. Serrano,
DevOps, IEEE Software 33 (3) (2016) 94–100.
doi:10.1109/MS.2016.68.

[5] R. Jabbari, N. bin Ali, K. Petersen, B. Tanveer,
What is devops? a systematic mapping study on
definitions and practices, in: XP2016, XP ’16
Workshops, ACM, New York, NY, USA, 2016,
pp. 1–11.

[6] Gartner, Gartner Predicts the Future of AI
Technologies (2019).

[7] L. Leite, C. Rocha, F. Kon, D. Milojicic,
P. Meirelles, A survey of devops concepts and
challenges, ACM Comput. Surv. 52 (6) (nov
2019).

[8] S. G. Charley Rich, Pankaj Prasad, Market
Guide for AIOps Platforms, ID G00378587,
https://www.ibm.com/downloads/cas/

AXO20DXM, accessed: 2018-12-06 (2019).

[9] D. C. Schmidt, Guest Editor’s Introduction:
Model-Driven Engineering, Computer 39 (2)
(2006) 25–31.

[10] M. Brambilla, J. Cabot, M. Wimmer, Model-
Driven Software Engineering in Practice, Second
Edition, Morgan & Claypool Publishers, U.S.A.,
2017.

[11] B. Combemale, M. Wimmer, Towards a model-
based devops for cyber-physical systems, in:
Second international workshop on software engi-
neering aspects of continuous development and
new paradigms of software production and de-
ployment, Vol. 12055, Springer, Germany, 2019,
pp. 84–94.

[12] L. Berardinelli, R. Eramo, H. Bruneliere,
A. Gomez, A. Cicchetti, B. Said, E. Brosse,
F. Herrera, G. Madi, J. Giner, L. Pandolfo,
L. Pulina, M. Wimmer, M. Tisi, M. Saa-
datmand, P. Potena, S. König, V. Mu-
tillo, W. Afzal, AIDOaRt D3.1 - Report
on Foundations of MDE and AIOPS for
DevOps, https://www.aidoart.eu/aidoart/

results/deliverables, accessed: 2023-04-14
(2022).

[13] H. Bruneliere, V. Muttillo, R. Eramo, L. Be-
rardinelli, A. Gomez, A. Bagnato, A. Sadovykh,

32

https://doi.org/10.1109/MS.2016.68
https://www.ibm.com/downloads/cas/AXO20DXM
https://www.ibm.com/downloads/cas/AXO20DXM
https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables

A. Cicchetti, Aidoart: Ai-augmented automa-
tion for devops, a model-based framework for
continuous development in cyber–physical sys-
tems, Microprocessors and Microsystems 94
(2022) 104672.

[14] R. Eramo, V. Muttillo, L. Berardinelli,
H. Bruneliere, A. Gomez, A. Bagnato,
A. Sadovykh, A. Cicchetti, Aidoart: Ai-
augmented automation for devops, a model-
based framework for continuous development
in cyber-physical systems, in: 2021 24th Eu-
romicro Conference on Digital System Design
(DSD), IEEE, U.S.A., 2021, pp. 303–310.

[15] F. Bordeleau, B. Combemale, R. Eramo,
M. van den Brand, M. Wimmer, Towards model-
driven digital twin engineering: Current oppor-
tunities and future challenges, in: ICSMM 2020,
Springer, 2020, pp. 43–54.

[16] Z. Wan, X. Xia, D. Lo, G. C. Murphy, How
does machine learning change software devel-
opment practices?, IEEE Transactions on Soft-
ware Engineering 47 (9) (2021) 1857–1871. doi:
10.1109/TSE.2019.2937083.

[17] L. Burgueño, M. Kessentini, M. Wimmer,

S. Zschaler, MDE intelligence 2021: 3rd work-
shop on artificial intelligence and model-driven
engineering, in: ACM/IEEE International
Conference on Model Driven Engineering Lan-
guages and Systems Companion, MODELS
2021 Companion, Fukuoka, Japan, Octo-
ber 10-15, 2021, IEEE, 2021, pp. 148–149.
doi:10.1109/MODELS-C53483.2021.00026.
URL https://doi.org/10.1109/

MODELS-C53483.2021.00026

[18] M. Felderer, E. P. Enoiu, S. Tahvili, Artificial in-
telligence techniques in system testing, in: Opti-
mising the Software Development Process with
Artificial Intelligence, Springer, 2023, pp. 221–
240.

[19] G. Bonaccorso, Machine learning algorithms,
Packt Publishing Ltd, 2017.

[20] Z.-H. Zhou, Machine learning, Springer Nature,
2021.

[21] S. Albawi, T. A. Mohammed, S. Al-Zawi, Un-
derstanding of a convolutional neural network,
in: 2017 International Conference on Engineer-
ing and Technology (ICET), 2017, pp. 1–6. doi:
10.1109/ICEngTechnol.2017.8308186.

[22] AIDOaRt Consortium, D4.1 AIDOaRt AI-
Augmented Toolkit - Initial Version, Deliv-
erable, H2020-KDT AIDOaRt project (Apr.
2022).
URL https://sites.mdu.se/aidoart/

results/deliverables

[23] AIDOaRt Consortium, D4.2 AIDOaRt AI-
Augmented Toolkit - Intermediate Version,
Deliverable, H2020-KDT AIDOaRt project
(Mar. 2023).
URL https://sites.mdu.se/aidoart/

results/deliverables

[24] AIDOaRt Consortium, D4.2 AIDOaRt AI-
Augmented Toolkit - Final Version - to appear,
Deliverable, H2020-KDT AIDOaRt project
(Mar. 2024).
URL https://sites.mdu.se/aidoart/

results/deliverables

[25] AIDOaRt Consortium, D5.5 Use Cases Re-
quirements and Scenarios Evaluation Report,
Deliverable, H2020-KDT AIDOaRt project
(Mar. 2022).
URL https://www.aidoart.eu/aidoart/

results/deliverables

[26] AIDOaRt Consortium, D5.7 Use Cases Eval-
uation Report 1, Deliverable, H2020-KDT
AIDOaRt project (Mar. 2023).
URL https://www.aidoart.eu/aidoart/

results/deliverables

[27] S. G. Charley Rich, Pankaj Prasad, Market
guide for aiops platforms, id g00378587, Tech.
rep., Gartner Research (2019).

[28] C. R. Manjunath Bhat, Augment decision mak-
ing in devops using ai techniques, id g00383246,
Tech. rep., Gartner Research (2019).

33

https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/MODELS-C53483.2021.00026
https://doi.org/10.1109/MODELS-C53483.2021.00026
https://doi.org/10.1109/MODELS-C53483.2021.00026
https://doi.org/10.1109/MODELS-C53483.2021.00026
https://doi.org/10.1109/MODELS-C53483.2021.00026
https://doi.org/10.1109/MODELS-C53483.2021.00026
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables
https://www.aidoart.eu/aidoart/results/deliverables

[29] Y. Dang, Q. Lin, P. Huang, Aiops: Real-world
challenges and research innovations, in: 2019
IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings
(ICSE-Companion), 2019, pp. 4–5.

[30] F. Hofer, Architecture, technologies and chal-
lenges for cyber-physical systems in industry
4.0: A systematic mapping study, in: Pro-
ceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering
and Measurement, ESEM ’18, 2018, pp. 1–10.
doi:10.1145/3239235.3239242.
URL https://doi.org/10.1145/3239235.

3239242

[31] M. Törngren, U. Sellgren, Complexity challenges
in development of cyber-physical systems, Prin-
ciples of modeling: Essays dedicated to Edward
A. Lee on the occasion of his 60th birthday
(2018) 478–503.

[32] F. Zampetti, D. A. Tamburri, S. Panichella,
A. Panichella, G. Canfora, M. D. Penta, Contin-
uous integration and delivery practices for cyber-
physical systems: An interview-based study,
ACM Trans. Softw. Eng. Methodol. (nov 2022).
doi:10.1145/3571854.
URL https://doi.org/10.1145/3571854

[33] B. Russo, M. G. Jaatun, P. Abrahamsson,
G. Botterweck, H. Ghanbari, P. Kettunen,
T. J. Mikkonen, A. Mjeda, J. Münch, A. N.
Duc, X. Wang, Towards a secure devops ap-
proach for cyber-physical systems: An industrial
perspective, International Journal of Systems
and Software Security and Protection (IJSSSP)
11 (2) (2020) 38–57. doi:10.4018/IJSSSP.

2020070103.

[34] P. Derler, E. A. Lee, A. Sangiovanni Vincen-
telli, Modeling cyber–physical systems, Proceed-
ings of the IEEE 100 (1) (2012) 13–28. doi:

10.1109/JPROC.2011.2160929.

[35] J. Bergelin, P. E. Strandberg, Industrial require-
ments for supporting ai-enhanced model-driven

engineering, Proceedings of the 25th Interna-
tional Conference on Model Driven Engineer-
ing Languages and Systems: Companion Pro-
ceedings (2022) 375–379doi:10.1145/3550356.
3561609.

[36] A. Sadovykh, D. Truscan, H. Bruneliere, Apply-
ing Model-based Requirements Engineering in
Three Large European Collaborative Projects:
An Experience Report, in: 2021 IEEE 29th In-
ternational Requirements Engineering Confer-
ence (RE), IEEE, U.S.A., 2021, pp. 367–377.

[37] A. Sadovykh, B. Said, D. Truscan, H. Brune-
liere, An iterative approach for model-based
requirements engineering in large collaborative
projects: A detailed experience report, Science
of Computer Programming 232 (2024) 103047.

[38] B. Said, A. Sadovykh, E. Brosse, A. Bagnato,
Towards aidoart objectives via joint model-
based architectural effort, in: RCIS Workshops,
CEUR-WE.ORG, Online, 2022, pp. 1–6.

[39] P. Desfray, Model repositories at the enter-
prises and systems scale: The Modelio Constel-
lation solution, in: 2015 International Confer-
ence on Information Systems Security and Pri-
vacy (ICISSP), IEEE, U.S.A., 2015, pp. IS–17–
IS–17.

[40] W. Afzal, H. Bruneliere, D. Di Ruscio,
A. Sadovykh, S. Mazzini, E. Cariou, D. Truscan,
J. Cabot, A. Gómez, J. Gorroñogoitia, et al.,
The megam@rt2 ecsel project: Megamodelling
at runtime–scalable model-based framework for
continuous development and runtime validation
of complex systems, Microprocessors and Mi-
crosystems 61 (2018) 86–95.

[41] H. Bruneliere, F. M. de Kerchove, G. Daniel,
S. Madani, D. Kolovos, J. Cabot, Scalable model
views over heterogeneous modeling technologies
and resources, Software and Systems Modeling
19 (4) (2020) 827–851.

[42] W. Maalej, M. Nayebi, T. Johann, G. Ruhe,
Toward data-driven requirements engineering,
IEEE Software 33 (1) (2016) 48–54.

34

https://doi.org/10.1145/3239235.3239242
https://doi.org/10.1145/3239235.3239242
https://doi.org/10.1145/3239235.3239242
https://doi.org/10.1145/3239235.3239242
https://doi.org/10.1145/3239235.3239242
https://doi.org/10.1145/3239235.3239242
https://doi.org/10.1145/3571854
https://doi.org/10.1145/3571854
https://doi.org/10.1145/3571854
https://doi.org/10.1145/3571854
https://doi.org/10.1145/3571854
https://doi.org/10.4018/IJSSSP.2020070103
https://doi.org/10.4018/IJSSSP.2020070103
https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10.1145/3550356.3561609
https://doi.org/10.1145/3550356.3561609

[43] G. Valente, T. Fanni, C. Sau, T. Di Mascio,
L. Pomante, F. Palumbo, A composable moni-
toring system for heterogeneous embedded plat-
forms, ACM Transactions on Embedded Com-
puting Systems (in press) (2021).

[44] G. Sebastián, J. A. Gallud, R. Tesoriero, Code
generation using model driven architecture: A
systematic mapping study, Journal of Computer
Languages 56 (2020) 100935.

[45] A. Barredo Arrieta, N. Dı́az-Rodŕıguez, J. Del
Ser, A. Bennetot, S. Tabik, A. Barbado, S. Gar-
cia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, F. Herrera, Explainable artificial in-
telligence (xai): Concepts, taxonomies, opportu-
nities and challenges toward responsible ai, In-
formation Fusion 58 (2020) 82–115.

[46] M. Blumreiter, J. Greenyer, F. C. Garcia,
V. Klos, M. Schwammberger, C. Sommer, A. Vo-
gelsang, A. Wortmann, Towards self-explainable
cyber-physical systems, in: 2019 ACM/IEEE
22nd International Conference on Model Driven
Engineering Languages and Systems Compan-
ion (MODELS-C), IEEE Computer Society, Los
Alamitos, CA, USA, 2019, pp. 543–548.

[47] R. Eramo, B. Said, M. Oriol, H. Bruneliere,
Dataset for Model-based and Intelligent Au-
tomation in DevOps: the AIDOaRt Project’s
Experience, The CSV files contain the raw
data. The PDF file contains the tabular
data and the generated charts. (Apr. 2023).
doi:10.5281/zenodo.7825177.
URL https://doi.org/10.5281/zenodo.

7825177

[48] AIDOaRt Consortium, D2.1 - Data collection
and representation - Initial Version, Deliverable,
H2020-KDT AIDOaRt project (May 2022).
URL https://sites.mdu.se/aidoart/

results/deliverables

[49] AIDOaRt Consortium, D2.2 - Data Collection
and Representation – Intermediate Version,
Deliverable, H2020-KDT AIDOaRt project
(Nov. 2022).

URL https://sites.mdu.se/aidoart/

results/deliverables

[50] AIDOaRt Consortium, D2.3 - Data Collection
and Representation – Final Version, Deliverable,
H2020-KDT AIDOaRt project (Jul. 2023).
URL https://sites.mdu.se/aidoart/

results/deliverables

[51] AIDOaRt Consortium, D 3.2 - AIDOaRt
Core Infrastructure and Framework - Initial
Version, Deliverable Ref. Ares(2022)3313183
- 29/04/2022, H2020-KDT AIDOaRt project
(Apr. 2022).
URL https://sites.mdu.se/aidoart/

results/deliverables

[52] AIDOaRt Consortium, D 3.3 - AIDOaRt Core
Infrastructure and Framework - Intermediate
Version, Deliverable, H2020-KDT AIDOaRt
project (Nov. 2022).
URL https://sites.mdu.se/aidoart/

results/deliverables

[53] AIDOaRt Consortium, D 3.4 - AIDOaRt Core
Infrastructure and Framework - Final Version,
Deliverable, H2020-KDT AIDOaRt project
(Jul. 2023).
URL https://sites.mdu.se/aidoart/

results/deliverables

[54] E. Muškardin, B. K. Aichernig, I. Pill, A. Pfer-
scher, M. Tappler, Aalpy: An active au-
tomata learning library, in: Z. Hou, V. Ganesh
(Eds.), Automated Technology for Verification
and Analysis, 2021, pp. 67–73.

[55] A. Bajceta, M. Leon, W. Afzal, P. Lindberg,
M. Bohlin, Using NLP tools to detect ambi-
guities in system requirements - A comparison
study, in: NLP4RE 2022: 5th Workshop on Nat-
ural Language Processing for Requirements En-
gineering @ REFSQ (CEUR workshop Proceed-
ings), Vol. 3122, 2022, pp. 1–10.

[56] S. Bashir, M. Abbas, A. Ferrari, M. Saadat-
mand, P. Lindberg, Requirements classification
for smart allocation: A case study in the railway

35

https://doi.org/10.5281/zenodo.7825177
https://doi.org/10.5281/zenodo.7825177
https://doi.org/10.5281/zenodo.7825177
https://doi.org/10.5281/zenodo.7825177
https://doi.org/10.5281/zenodo.7825177
https://doi.org/10.5281/zenodo.7825177
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables
https://sites.mdu.se/aidoart/results/deliverables

industry, in: 2023 IEEE 31st International Re-
quirements Engineering Conference (RE), IEEE,
2023, pp. 201–211.

[57] I. Nigmatullin, A. Sadovykh, S. Ebersold,
N. Messe, Rqcode: Security requirements for-
malization with testing, in: IFIP International
Conference on Testing Software and Systems,
Springer, 2023, pp. 126–142.

[58] J. Suryadevara, S. Tiwari, Adopting mbse in
construction equipment industry: An experience
report, in: APSEC 2018, IEEE, 2018, pp. 512–
521.

[59] T. Mayerhofer, M. Wimmer, L. Berardinelli,
R. Drath, A model-driven engineering work-
bench for caex supporting language customiza-
tion and evolution, IEEE Transactions on Indus-
trial Informatics 14 (2018) 2770–2779.

[60] M. Dehghani, L. Berardinelli, M. Wimmer, To-
wards modeling process mining for graphical ed-
itors, in: 26th ACM/IEEE International Con-
ference on Model Driven Engineering Languages
and Systems: Companion Proceedings, 2020,
pp. 929–933.

[61] H. Bruneliere, J. G. Perez, M. Wimmer,
J. Cabot, EMF Views: A view mechanism for
integrating heterogeneous models, in: 34th In-
ternational Conference on Conceptual Modeling
(ER 2015), Springer, 2015, pp. 317–325.

[62] C. Di Sipio, J. Di Rocco, D. Di Ruscio, P. T.
Nguyen, MORGAN: a modeling recommender
system based on graph kernel, Software and Sys-
tems Modeling (Apr. 2023).

[63] A. Colantoni, L. Berardinelli, M. Wimmer, De-
vopsml: Towards modeling devops processes
and platforms, in: Proceedings of the 23rd
ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems:
Companion Proceedings, 2020, pp. 1–10.

[64] F. Bordeleau, J. Cabot, J. Dingel, B. S. Rabil,
P. Renaud, Towards modeling framework for de-
vops: Requirements derived from industry use

case, in: J.-M. Bruel, M. Mazzara, B. Meyer
(Eds.), Software Engineering Aspects of Contin-
uous Development and New Paradigms of Soft-
ware Production and Deployment, Springer In-
ternational Publishing, Cham, 2020, pp. 139–
151.

[65] J. Hugues, A. Hristosov, J. J. Hudak, J. Yankel,
Twinops-devops meets model-based engineering
and digital twins for the engineering of cps, in:
Proceedings of the 23rd ACM/IEEE Interna-
tional Conference on Model Driven Engineering
Languages and Systems: Companion Proceed-
ings, 2020, pp. 1–5.

[66] M. Azizi, A tag-based recommender system
for regression test case prioritization, in: 2021
IEEE International Conference on Software
Testing, Verification and Validation Workshops
(ICSTW), 2021, pp. 146–157. doi:10.1109/

ICSTW52544.2021.00035.

[67] F. Beneventi, A. Bartolini, C. Cavazzoni,
L. Benini, Continuous learning of hpc infras-
tructure models using big data analytics and
in-memory processing tools, in: Design, Au-
tomation & Test in Europe Conference & Ex-
hibition (DATE), 2017, 2017, pp. 1038–1043.
doi:10.23919/DATE.2017.7927143.

[68] T. Zhao, X. Huang, Y. Cao, Deepdsl: A
compilation-based domain-specific language for
deep learning, CoRR abs/1701.02284 (2017).
arXiv:1701.02284.
URL http://arxiv.org/abs/1701.02284

[69] B. Jahić, N. Guelfi, B. Ries, Semkis-dsl: A
domain-specific language to support require-
ments engineering of datasets and neural net-
work recognition, Information 14 (4) (2023).
doi:10.3390/info14040213.
URL https://www.mdpi.com/2078-2489/14/

4/213

[70] C. Castellanos, B. Pérez, D. Correal, C. A.
Varela, A model-driven architectural design
method for big data analytics applications, in:

36

https://doi.org/10.1109/ICSTW52544.2021.00035
https://doi.org/10.1109/ICSTW52544.2021.00035
https://doi.org/10.23919/DATE.2017.7927143
http://arxiv.org/abs/1701.02284
http://arxiv.org/abs/1701.02284
http://arxiv.org/abs/1701.02284
http://arxiv.org/abs/1701.02284
http://arxiv.org/abs/1701.02284
https://www.mdpi.com/2078-2489/14/4/213
https://www.mdpi.com/2078-2489/14/4/213
https://www.mdpi.com/2078-2489/14/4/213
https://www.mdpi.com/2078-2489/14/4/213
https://doi.org/10.3390/info14040213
https://www.mdpi.com/2078-2489/14/4/213
https://www.mdpi.com/2078-2489/14/4/213

2020 IEEE International Conference on Soft-
ware Architecture Companion (ICSA-C), IEEE,
U.S.A., 2020, pp. 89–94.

[71] C. Castellanos, C. A. Varela, D. Cor-
real, Accordant: A domain specific-model
and devops approach for big data analyt-
ics architectures, Journal of Systems and
Software 172 (2021) 110869. doi:https:

//doi.org/10.1016/j.jss.2020.110869.
URL https://www.sciencedirect.com/

science/article/pii/S0164121220302594

[72] W. van den Heuvel, D. A. Tamburri, Model-
driven ml-ops for intelligent enterprise applica-
tions: Vision, approaches and challenges, in:
Business Modeling and Software Design - 10th
International Symposium, BMSD 2020, Berlin,
Germany, July 6-8, 2020, Proceedings, Vol. 391
of Lecture Notes in Business Information Pro-
cessing, Springer, Germany, 2020, pp. 169–181.

[73] M. M. Bersani, F. Marconi, D. A. Tamburri,
A. Nodari, P. Jamshidi, Verifying big data
topologies by-design : a semi-automated ap-
proach, J. Big Data 6 (2019) 40.

[74] R. Kazman, M. Klein, P. Clements, Atam:
Method for architecture evaluation (10 2000).

[75] S. Silva, A. Tuyishime, T. Santilli, P. Pelliccione,
L. Iovino, Quality metrics in software architec-
ture, in: 20th IEEE International Conference
on Software Architecture, ICSA 2023, L’Aquila,
Italy, March 13-17, 2023, IEEE, 2023, pp. 58–69.
doi:10.1109/ICSA56044.2023.00014.
URL https://doi.org/10.1109/ICSA56044.

2023.00014

37

https://www.sciencedirect.com/science/article/pii/S0164121220302594
https://www.sciencedirect.com/science/article/pii/S0164121220302594
https://www.sciencedirect.com/science/article/pii/S0164121220302594
https://doi.org/https://doi.org/10.1016/j.jss.2020.110869
https://doi.org/https://doi.org/10.1016/j.jss.2020.110869
https://www.sciencedirect.com/science/article/pii/S0164121220302594
https://www.sciencedirect.com/science/article/pii/S0164121220302594
https://doi.org/10.1109/ICSA56044.2023.00014
https://doi.org/10.1109/ICSA56044.2023.00014
https://doi.org/10.1109/ICSA56044.2023.00014
https://doi.org/10.1109/ICSA56044.2023.00014
https://doi.org/10.1109/ICSA56044.2023.00014

	Introduction
	Background
	Basic concepts
	Challenges
	The AIDOaRt project

	Proposed Software Architecture
	Data Engineering Tool Set
	Core Tool Set
	AI-Augmented Tool Set
	Cross-Layer Components Integration

	Integration strategy
	Generic Requirements mediation pattern
	AIDOaRt components mediation pattern
	Data Engineering mediation pattern
	Case study's environment extensions

	Implementation
	AIDOaRt Components Implementation
	AIDOaRt Mega-Model

	Evaluation
	Context
	Selected case studies
	AVL (AVL)
	Alstom (BT)
	Volvo Construction Equipment (VCE)

	Evaluation results
	Architectural challenges
	Technical challenges

	Threats to Validity
	Construct validity
	Internal validity
	External validity
	Conclusion validity

	Discussion
	Related Work
	Conclusion

