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Abstract. Statistical theory for the estimators of the location, scale and shape parameters of the
approximating Generalized Pareto distribution in the Peaks-Over-Threshold approach to extreme value
statistics typically requires a second-order extended regular variation condition on the tail quantile
function of the distribution underlying the random variable of interest. Somewhat surprisingly, the
existing sufficient criteria ensuring that this condition holds appear not to easily apply to many common
light-tailed distributions, from the well-known Gaussian, log-normal and Gamma distributions to more
specific examples arising in finance and reliability theory. We provide several sufficient criteria based
on the computation of appropriate asymptotic expansions of a distribution function or of its quantile
function. A list of examples to which our theory applies is given.
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1 Introduction

In classical extreme value theory, the Peaks-Over-Threshold approach rests upon the assumption,
motivated by the Pickands-Balkema-de Haan theorem, that exceedances of the random variable of
interest X above a high threshold are approximately Generalized Pareto distributed. Equivalently, if
F is the distribution function of X, q is its quantile function, and U : t 7→ q(1− 1/t) is its tail quantile
function, the standard assumption is that there exists γ ∈ R, called the extreme value index of X, and
a positive scale function a such that

∀x > 0, lim
t→∞

U(tx)− U(t)

a(t)
=

∫ x

1

sγ−1ds.

This condition, rewritten as the extrapolation formula U(tx) ≈ U(t) + a(t)
∫ x

1
sγ−1ds, plays a funda-

mental role in the construction of semiparametric extreme quantile estimators of X; this usually rests
upon the construction of a triplet of estimators for the location parameter U(t), the scale parameter
a(t) and the shape parameter γ, see Chapters 3 and 4 in de Haan and Ferreira (2006) and Sections
5.2, 5.5 and 5.6 in Beirlant et al. (2004) for a detailed exposition.

At the heart of the statistical theory for the best-known estimators of these parameters, such as the
moment estimators of Dekkers et al. (1989), the Generalized Pareto maximum likelihood estimators
of Smith (1987) and Drees et al. (2004) and the probability-weighted moment estimators of Hosking
et al. (1985) and Diebolt et al. (2007), is a refinement of the extreme value condition called the second-
order (extended) regular variation condition on the tail quantile function U . It is usually formulated
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as follows: there exist a second-order parameter ρ ≤ 0 and an auxiliary function A having constant
sign and converging to 0 at infinity such that

∀x > 0, lim
t→∞

1

A(t)

(
U(tx)− U(t)

a(t)
−
∫ x

1

sγ−1ds

)
=

∫ x

1

sγ−1

(∫ s

1

uρ−1du

)
ds.

See Definition 2.3.1 p.44 in de Haan and Ferreira (2006) or Equation (5.32) p.163 in Beirlant et al.
(2004) and the subsequent discussion therein. This second-order condition quantifies the error made
when approximating the extremes of the underlying distribution by those of the Generalized Pareto
model, and as such, is key when evaluating the bias of extreme value estimators. Moreover, the function
|A| is necessarily regularly varying with index ρ (see for example Theorem 2.3.3 p.44 in de Haan and
Ferreira (2006)), so that the value of ρ gives an idea of the difficulty of the extreme value extrapolation
problem: the closer ρ is to 0, the slower A(t) converges to 0 and the harder the extreme value problem
tends to be.

It is therefore of interest to know whether a given tail quantile function U satisfies the second-order
condition, and if that is the case, to quantify the scale function a, the second-order parameter ρ and the
auxiliary function A. In the Fréchet and Weibull domains of attraction, that is, when γ ̸= 0, simple
sufficient criteria formulated in terms of asymptotic expansions of either U or F have been known
for decades, see for instance Exercises 2.12 and 2.14 p.62 in de Haan and Ferreira (2006); within the
Fréchet domain of attraction, such criteria typically require the distribution to belong to the so-called
Hall class of distributions, see Hall (1982). This idea was later extended to a sufficient criterion on a
probability density function in Lemma A.1 in Daouia et al. (2024a), so as to provide a result easier to
apply in models whose distribution and quantile functions cannot be expressed in simple closed form,
such as the Student and Fisher distributions.

Checking the second-order condition in the Gumbel domain of attraction γ = 0, however, appears
to be more difficult. We are only aware of three criteria: first, Theorem 2.3.8 p.48 in de Haan and
Ferreira (2006), which links this condition to an equivalent second-order condition on the distribution
function F . Checking the latter requires an ansatz for the function a and, in the examples we are
aware of, the computation of an asymptotic expansion for 1−F ; see for instance the application to the
Gaussian distribution in Exercise 2.9 p.61 in de Haan and Ferreira (2006) taken from p.391 in de Haan
and Stadtmüller (1996). A second criterion is Theorem 2.3.12 p.49 in de Haan and Ferreira (2006),
which states that the second-order condition is satisfied with γ = 0 if U if twice differentiable and the
function t 7→ 1 + tU ′′(t)/U ′(t) has constant sign, converges to 0 at infinity, and its absolute value is
regularly varying with nonnegative index. This criterion is useful when the quantile function is explicit
and smooth, which is for example the case for the logistic, Weibull and Gumbel distributions, but it is
much harder to use otherwise. A third result is Lemma A.1 in Daouia et al. (2024a), which contains a
criterion for the case when U is asymptotically equivalent to a power of the logarithm function, with
a remainder term of a fairly specific form, which is unfortunately not the case in many important
examples such as, again, the Gaussian and Gamma distributions. Interestingly, the companion, but
different, problem of checking the rate of weak convergence of renormalized maxima of light-tailed
distributions to the Gumbel distribution seems to have received much more attention: see Chapter 2
in Resnick (1987) and in particular Section 2.4.2 therein.

The contribution of this paper is to give several simple sufficient criteria to check the second-
order condition for γ = 0. Our overarching framework is the class of Weibull-tailed distributions,
which define a subclass of light-tailed distributions that has been the subject of a substantial body of
extreme value statistical research, from the work of Broniatowski (1993) to later research by, among
others, Girard (2004), Gardes et al. (2011), Mercadier and Soulier (2012) and El Methni and Girard
(2024). We first consider the case when the distribution of interest in fact has an exponential decay
of Generalized Gamma-type in the sense of Stacy (1962), that is, we assume that 1− F (x) satisfies a

suitable asymptotic expansion with leading term cxαe−Cxβ

as x → ∞ for some α ∈ R and β, c, C > 0.
This makes it possible to derive asymptotic expansions for the tail quantile function U and then to
check the second-order condition with explicit values for a and A. Second, we prove a high-level
result on the validity of the second-order condition when an asymptotic expansion for U is assumed

2



to be available in the first place. The intersection of these two settings is not empty: for example,
both results apply to the Generalized Gamma and Gaussian distributions, but our theory is crafted to
handle a wide range of examples, in which U may be explicitly determined or not. We provide a list of
distributions covered by our results, such as the Generalized Gamma distribution, the Gaussian and
Variance-Gamma distributions, the Gamma-Gompertz distribution and the logistic-beta distribution.

This paper is organized as follows. Section 2 gives necessary notation, after which Section 3 focuses
on the class of Generalized Gamma-type distributions and Section 4 discusses the class of Weibull-tailed
distributions in general. The Appendix gathers the proofs of our results.

2 Background and notation

Let F be a distribution function, with associated survival function F = 1 − F and quantile function
q : τ 7→ inf{x ∈ R |F (x) ≥ τ}. The corresponding tail quantile function is U : t 7→ q(1−1/t), for t > 1;
it is the left-continuous inverse of the function 1/F . We assume throughout that the right endpoint
of F is infinite, that is, q(1) = U(∞) = ∞. Our results will focus on distributions belonging to the
Gumbel domain of attraction, that is, whose tail quantile function U satisfies the extended regular
variation condition with extreme value index γ = 0:

∀x > 0, lim
t→∞

U(tx)− U(t)

a(t)
= log(x) for a certain positive scale function t 7→ a(t).

Our aim is to provide sufficient conditions guaranteeing that the following, stronger, second-order
extended regular variation condition holds:

C2(a, ρ,A) There exist a positive scale function a, a second-order parameter ρ ≤ 0 and an auxiliary
function A having constant sign and converging to 0 at infinity such that

∀x > 0, lim
t→∞

1

A(t)

(
U(tx)− U(t)

a(t)
− log(x)

)
=

∫ x

1

s−1

(∫ s

1

uρ−1du

)
ds.

The gist of our approach is that, similarly to what has been found in the Fréchet and Weibull domains
of attraction (see Exercises 2.12 and 2.14 p.62 in de Haan and Ferreira (2006)), having a sufficiently
precise asymptotic expansion of U at one’s disposal is enough in order to check condition C2(a, ρ,A)
and to calculate the functions a, A and the parameter ρ.

This insight will be the basis for our results. The asymptotic behavior of distributions belonging
to the Gumbel domain of attraction can however be quite difficult to characterize, as Theorem 1.2.6
p.22 in de Haan and Ferreira (2006) shows. Throughout this paper, we shall work with the class of
Weibull-tailed distributions, which contains the vast majority of the distributions belonging to the
Gumbel domain of attraction that are used in practice, and whose definition we recall below.

Definition 1 (Weibull-tailed distribution). We say that a distribution function F is Weibull-tailed (or
has a Weibull-type tail) with index θ > 0 if − log(1 − F ) is regularly varying with index θ; in other
words,

F (x) = 1− exp(−xθL(x)) for x large enough

where L is a slowly varying function, that is, a positive measurable function such that L(tx)/L(t) → 1
as t → ∞ for any x > 0.

The most obvious example of a Weibull-tailed distribution is the Weibull distribution itself, that
is, F (x) = 1− exp(−Cxθ) for x > 0 given a positive constant C, which arises when the slowly varying
function L is constant equal to C. In this case, it is immediate that U(t) = C−1/θ(log(t))1/θ. In
general, by the asymptotic inversion theorem for regularly varying functions with positive index (see
Proposition B.1.9.9 p.367 in de Haan and Ferreira (2006)), the fact that − log(1 − F ) is regularly
varying with index θ > 0 is equivalent to t 7→ U(et) being regularly varying with index 1/θ. In other
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words, if a distribution function F is Weibull-tailed with index θ > 0, there must exist a slowly varying
function LU such that

U(t) = (log(t))1/θLU (log(t)).

The Weibull distribution is recovered when LU is constant equal to C−1/θ. Our objective is to provide
simple sufficient conditions, either on F or directly on LU , so that C2(a, ρ,A) condition holds.

3 Distributions having Generalized Gamma-type exponential
decay

Let throughout, for any a > 0, Γ(a) =
∫∞
0

ta−1e−tdt denote Euler’s Gamma function at the point a.
The Generalized Gamma distribution with shape parameters a > 0 and b > 0 and scale parameter
λ > 0, proposed by Stacy (1962), has probability density function

x 7→ bλa

Γ(a/b)
xa−1e−(λx)b , x > 0.

The class of Generalized Gamma distributions contains several classes of standard distributions, such
as the Gamma distribution, of course (for b = 1), as well as the Weibull distribution (for a = b) and
in particular the Rayleigh distribution (for a = b = 2), and the half-normal distribution (that is, the
distribution of the absolute value of a unit Gaussian random variable, obtained for a = 1 and b = 2).
Outside of very specific cases, such as when a = b, the Generalized Gamma distribution function is
not explicitly determined, but its extreme value behavior can be characterized thanks to the following
lemma.

Lemma 1. Let α ∈ R, β,C > 0 be given. Then for any N ≥ 1,

∫ ∞

x

tαe−Ctβ dt =
xα−β+1e−Cxβ

βC

1 +

N−1∑
k=1

 k∏
j=1

(α− jβ + 1)

 x−kβ

(βC)k
+O(x−Nβ)

 as x → ∞.

In other words, the survival function of the Generalized Gamma distribution with shape parameters
a > 0 and b > 0 satisfies an asymptotic expansion of the form

F (x) = cxαe−Cxβ

(
1 +

D

xβ
(1 + o(1))

)
as x → ∞

for some constants α,D ∈ R and β, c, C > 0. The class of distributions satisfying this kind of
asymptotic expansion, which will be called throughout this section the class of distributions having
Generalized Gamma-type exponential decay, is much wider than the class of Generalized Gamma dis-
tributions; in particular, it contains any continuous distribution having a probability density function
f satisfying

f(x) = Kxa−1e−Cxb

(
1 +

d

xb
(1 + o(1))

)
as x → ∞

where a, d ∈ R and b, C,K > 0. This encompasses any continuous distribution whose probability
density function is asymptotically equivalent to a Generalized Gamma density function (with remainder
term converging fast enough), but also, among others, the Gaussian distribution, as well as several
other examples we shall study in this section. Writing

F (x) = cxαe−Cxβ

(
1 +

D

xβ
(1 + o(1))

)
= exp

(
−Cxβ(1 + ε(x))

)
where ε(x) → 0 as x → ∞, it should also be clear that any distribution having Generalized Gamma-
type exponential decay is also a Weibull-tailed distribution.
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For a continuous distribution function with infinite right endpoint and having Generalized Gamma-
type exponential decay, taking x = U(t) → ∞ as t → ∞ and using the identity − logF (U(t)) = log(t)
results in the equation

log(t) = C(U(t))β − α log(U(t))− log c− D

(U(t))β
(1 + o(1)) as t → ∞.

Working with successive approximations to U(t), this identity suggests that an asymptotic expansion
for the tail quantile function U can be obtained, and therefore that condition C2(a, ρ,A) can eventually
be checked. This motivates our first result.

Theorem 1 (Distributions with Generalized Gamma-type exponential decay). Assume that F is
a continuous distribution function with infinite right endpoint and having Generalized Gamma-type
exponential decay, that is,

F (x) = cxαe−Cxβ

(
1 +

D

xβ
(1 + o(1))

)
as x → ∞

for some α ∈ R, β, c, C > 0 and D ∈ R.

(i) Then

U(t) =

(
1

C
log(t)

)1/β (
1 +

α

β2

log log(t)

log(t)
+

1

β

(
log c− α

β
logC

)
1

log(t)

+
α2(1− β)

2β4

log2(log(t))

log2(t)
+

α

β3

(
α+ (1− β)

(
log c− α

β
logC

))
log log(t)

log2(t)

+
1

β

(
1− β

2β

(
log c− α

β
logC

)2

+
α

β

(
log c− α

β
logC

)
+ CD

)
1

log2(t)
+ o

(
1

log2(t)

))
as t → ∞.

(ii) If β ̸= 1, then the tail quantile function U satisfies condition C2(a, 0, A) with

a(t) =
(log(t))1/β−1

βC1/β

(
1 +

α(1− β)

β2

log log(t)

log(t)
+

1

β

(
α+ (1− β)

(
log c− α

β
logC

))
1

log(t)

)
and A(t) =

1− β

β

1

log(t)
.

(iii) Suppose that β = 1 and α ̸= 0. If moreover there exists D′ ∈ R such that

F (x) = cxαe−Cx

(
1 +

D

x
+

D′

x2
+ o

(
1

x2

))
as x → ∞,

then the tail quantile function U satisfies condition C2(a, 0, A) with

a(t) =
1

C

(
1 +

α

log(t)
− α2 log log(t)

log2(t)
+ (α (α+ α logC − log c)− CD)

1

log2(t)

)
and A(t) = − α

log2(t)
.

Results in the spirit of Theorem 1(i), which are of independent interest since they provide rather
precise approximations to tail quantiles, have been shown before in specific examples: for example,
Appendix A in Ledford and Tawn (1997) features a weaker asymptotic expansion of the tail quantiles of
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the standard Gaussian distribution, and Section 4 in Fung and Seneta (2018) contains weaker asymp-
totic expansions of the tail quantiles of the Gamma, Skew-normal and Variance-Gamma distributions.
In fact, one can view Theorem 1(i) as a stronger version of the result in Section 3.2 of Fung and Seneta
(2018), whose motivation for finding lower-order properties of tail quantiles was to calculate the rate
of convergence of certain bivariate copulas along the diagonal.

We now provide a non-exhaustive list of distributions to which Theorem 1 applies. In each case,
we work out suitable values of the functions a and A.

Example 1 (Generalized Gamma, Gamma, and chi-squared distributions). Let α, β > 0. Recall that
the Generalized Gamma distribution with shape parameters α and β and unit scale has probability
density function

fα,β(x) =
β

Γ(α/β)
xα−1e−xβ

, x > 0.

By Lemma 1, the corresponding survival function Fα,β satisfies the asymptotic expansion

Fα,β(x) =
xα−βe−xβ

Γ(α/β)

(
1 +

α− β

β

1

xβ
+

(α− β)(α− 2β)

β2

1

x2β
+ o

(
1

x2β

))
as x → ∞.

It is then a consequence of Theorem 1(ii) that, for β ̸= 1, the Generalized Gamma distribution with
unit scale satisfies condition C2(a, 0, A) with

a(t) =
(log(t))1/β−1

β

(
1 +

(α− β)(1− β)

β2

log log(t)

log(t)
+

1

β
(α− β − (1− β) log Γ(α/β))

1

log(t)

)
and A(t) =

1− β

β

1

log(t)
.

For β = 1, the Generalized Gamma distribution is nothing but the Gamma distribution, and Theo-
rem 1(iii) entails that the Gamma distribution with unit scale and shape parameter α ̸= 1 satisfies
condition C2(a, 0, A) with

a(t) = 1 +
α− 1

log(t)
− (α− 1)2

log log(t)

log2(t)
+ (α− 1)

log Γ(α) + α− 2

log2(t)
and A(t) = − α− 1

log2(t)
.

We therefore find back the result of Lemma A.2 in Daouia et al. (2024b). For α = β = 1, we find the
unit exponential distribution, whose tail quantile function satisfies U(tx)−U(t) = log(x) for any t > 1
and x > 0.

It immediately follows that the Gamma distribution with scale parameter λ and shape parameter
α ̸= 1 (i.e. with mean α/λ) satisfies the second-order regular variation condition with a replaced by
a/λ. In particular, the chi-squared distribution with ν degrees of freedom, having density function

fν(x) =
1

2ν/2Γ(ν/2)
xν/2−1e−x/2, x > 0,

is nothing but the Gamma distribution with scale parameter 1/2 and shape parameter ν/2, and as
such satisfies condition C2(a, 0, A) with

a(t) = 2

(
1 +

ν − 2

2

1

log(t)
− (ν − 2)2

4

log log(t)

log2(t)
+

(ν − 2) (2 log Γ(ν/2) + ν − 4)

4

1

log2(t)

)
and A(t) = −ν − 2

2

1

log2(t)
.
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Example 2 (Benktander type II distribution). Let α, β > 0. Consider the Benktander type II
distribution function, arising in actuarial science (see p.72 in Beirlant et al. (2004)) and defined by

Fα,β(x) = 1− xβ−1 exp

(
−α

β
xβ

)
, x > 0.

If β = 1, this is nothing but an exponential distribution, discussed in Example 1. When β ̸= 1, it is
a consequence of Theorem 1(ii) that the Benktander type II distribution satisfies condition C2(a, 0, A)
with

a(t) =
1

β(α/β)1/β
(log(t))1/β−1

(
1− (1− β)2

β2

log log(t)

log(t)
− 1− β

β

(
1− 1− β

β
log(α/β)

)
1

log(t)

)
and A(t) =

1− β

β

1

log(t)
.

Example 3 (Gaussian and truncated Gaussian distributions). Consider the standard Gaussian dis-
tribution, whose probability density function is defined by

φ(x) =
1√
2π

e−x2/2.

By Lemma 1, the corresponding distribution function Φ satisfies

Φ(x) = 1− Φ(x) =
1√
2π

e−x2/2

x

(
1− 1

x2
+ o

(
1

x2

))
.

Conclude, by Theorem 1(iii), that the standard Gaussian distribution satisfies condition C2(a, 0, A)
with

a(t) =
1√

2 log(t)

(
1 +

log log(t)

4 log(t)
+

(
1

2
log(4π)− 1

)
1

2 log(t)

)
and A(t) = − 1

2 log(t)
.

We thus recover the result of Lemma A.3 in Daouia et al. (2024b), which is compatible with Exercise
2.9 p.61 in de Haan and Ferreira (2006). It immediately follows that the Gaussian distribution with
mean µ and variance σ2 satisfies the second-order regular variation condition with a replaced by
σa. Meanwhile, the Gaussian distribution truncated to lie above a threshold x0, having distribution
function

Fµ,σ,x0(x) =
Φ((x− µ)/σ)− Φ((x0 − µ)/σ)

1− Φ((x0 − µ)/σ)
, x > x0,

satisfies the second-order regular variation condition with a replaced by

ax0
(t) =

σ√
2 log(t)

(
1 +

log log(t)

4 log(t)
+

(
1

2
log(4π)− 1 + log(1− Φ((x0 − µ)/σ))

)
1

2 log(t)

)
.

Example 4 (Log-normal and Johnson SU distribution). Let µ ∈ R and σ > 0. Consider first the
log-normal distribution with location parameter µ and dispersion parameter σ, whose distribution
function is

Fµ,σ(x) = Φ

(
log(x)− µ

σ

)
, x > 0,

where Φ is the distribution function of the unit Gaussian distribution. The tail quantile function
U = Uµ,σ of this log-normal distribution is then U(t) = exp(µ+ σW (t)), where W is the tail quantile
function of the unit Gaussian distribution. Clearly, for any t > 1 and x > 0,

U(tx)− U(t) = exp(µ+ σW (t))(exp(σ(W (tx)−W (t)))− 1).
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Set

b(t) =
1√

2 log(t)

(
1 +

log log(t)

4 log(t)
+

(
1

2
log(4π)− 1

)
1

2 log(t)

)
and B(t) = − 1

2 log(t)
.

It was shown in Example 3 that the unit Gaussian distribution satisfies the second-order extended
regular variation condition with scale function b and auxiliary function B; in particular,

W (tx)−W (t) = b(t) log(x)

(
1 +

B(t)

2
log(x) + o(|B(t)|)

)
.

Since b(t) ∼ 1/
√
2 log(t) → 0 and |B(t)| = 1/(2 log(t)) = o(b(t)) as t → ∞, one has

exp(σ(W (tx)−W (t)))− 1 = σb(t)

(
log(x) + σb(t)× 1

2
log2(x) + o(b(t))

)
.

Conclude that the log-normal distribution with location parameter µ and dispersion parameter σ
satisfies condition C2(a, 0, A) with

a(t) = σb(t) exp(µ+ σW (t)) and A(t) = σb(t).

We can provide simpler expressions for a(t) and A(t) by noting that the former is only determined
asymptotically up to multiplication by terms of the form 1 + o(|A(t)|) = 1 + o(1/

√
log(t)). Recalling

the asymptotic expansion of 1− Φ(x) found in Example 3 and applying Theorem 1(i), we find

W (t) =
√
2 log(t)

(
1− log log(t)

4 log(t)
− log(4π)

4 log(t)
+ o

(
1

log(t)

))
=
√
2 log(t)− log log(t)

2
√
2 log(t)

(
1 +

log(4π)

log log(t)
+ o

(
1

log log(t)

))
as t → ∞.

As such

U(t) = exp(µ+ σW (t)) = exp(µ+
√

2σ2 log(t))

(
1− σ log log(t)

2
√
2 log(t)

(
1 +

log(4π)

log log(t)

)
+ o

(
1√
log(t)

))
.

Since in fact

b(t) =
1√

2 log(t)

(
1 + o

(
1√
log(t)

))
,

one can conclude that suitable choices of a and A are

a(t) =
σ exp(µ+

√
2σ2 log(t))√

2 log(t)

(
1− σ log log(t)

2
√
2 log(t)

(
1 +

log(4π)

log log(t)

))
and A(t) =

σ√
2 log(t)

.

From this one can deduce the validity of the second-order condition for the Johnson SU distribu-
tion (Johnson, 1949), which has been used in finance to model index returns (Simonato, 2012). Let
arsinh denote the inverse of the hyperbolic sine function, that is, arsinh(x) = log(x+

√
x2 + 1) for any

x. Fix m,µ ∈ R and s, σ > 0. The four-parameter Johnson SU distribution (Johnson, 1949), with
parameters m, s, µ, σ, has distribution function

Gm,s,µ,σ(x) = Φ

(
arsinh(m+ sx)− µ

σ

)
.

Equivalently, the tail quantile function V = Vm,s,µ,σ of this distribution satisfies

V (t) =
sinh(µ+ σW (t))−m

s
, t > 1.
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Since sinh(z) = (ez − e−z)/2 for any z, the tail quantile function V is in fact linked to the tail quantile
function U of the log-normal distribution:

V (t) =
1

2s
(exp(µ+ σW (t))− exp(−µ− σW (t))− 2m) =

1

2s

(
U(t)− 1

U(t)
− 2m

)
.

Then, for any t > 1 and x > 0,

V (tx)− V (t) =
U(tx)− U(t)

2s

(
1 +

1

U(t)U(tx)

)
.

Now obviously

U(t)U(tx) ∼ exp(2µ+
√
2σ2 log(t)(1 +

√
log(tx)/ log(t))) ∼ exp(2µ+ 2

√
2σ2 log(t)) as t → ∞

so that

V (tx)− V (t) =
U(tx)− U(t)

2s

(
1 + O

(
1

exp(2
√
2σ2 log(t))

))
=

U(tx)− U(t)

2s
(1 + o(A(t))) .

Conclude that the Johnson SU distribution satisfies the second-order condition with ρ = 0, a replaced
by a/(2s) and the same function A as the log-normal distribution.

Example 5 (Fatigue life distribution). Let α > 0. The fatigue life distribution with shape param-
eter α, which is also the Birnbaum-Saunders distribution with unit scale (Birnbaum and Saunders,
1969), has distribution function

Fα(x) = Φ

(√
x−

√
1/x

α

)
, x > 0,

where once again Φ is the distribution function of the unit Gaussian distribution. Use Lemma 1 to get

Φ(x) =
1√
2π

e−x2/2

x

(
1− 1

x2
+

3

x4
+ o

(
1

x4

))
.

Straightforward calculations lead to

Fα(x) =
α exp(1/α2)√

2π

1√
x
exp

(
− x

2α2

)
×
(
1 +

(
1− α2 − 1

2α2

)
1

x
+

(
3

2
− 3α2 + 3α4 − 1

2α2
+

1

8α4

)
1

x2
+ o

(
1

x2

))
.

Then, according to Theorem 1(iii), the fatigue life distribution satisfies condition C2(a, 0, A) with

a(t) = 2α2

(
1− 1

2 log(t)
− log log(t)

4 log2(t)
+

1

4

(
3− log(4π) +

1

α4

)
1

log2(t)

)
and A(t) =

1

2 log2(t)
.

Example 6 (Skew-normal distribution). Let λ ̸= 0. Consider the skew-normal distribution with asym-
metry parameter λ, introduced by O’Hagan and Leonard (1976) in the context of Bayesian estimation
of a Gaussian location parameter, whose probability density function is defined by

fλ(x) =
2√
2π

e−x2/2Φ(λx) = 2φ(x)Φ(λx)

9



where φ and Φ respectively denote the probability density function and the distribution function of
the unit Gaussian distribution. For λ > 0, it was seen in Example 3 that

Φ(λx) = 1 + O

(
e−λ2x2/2

x

)
= 1 + o(x−α) as x → ∞ for any α > 0.

For λ < 0, however, one has, from Example 3 again,

Φ(λx) = 1− Φ(−λx) =
1

−λ
√
2π

e−λ2x2/2

x

(
1− 1

λ2x2
+ o

(
1

x2

))
.

Apply then Lemma 1 to obtain that the distribution function Fλ of the skew-normal distribution with
asymmetry parameter λ satisfies

Fλ(x) =


2√
2π

e−x2/2

x

(
1− 1

x2
+ o

(
1

x2

))
as x → ∞ when λ > 0,

1

−λπ(1 + λ2)

e−(1+λ2)x2/2

x2

(
1− 1 + 3λ2

λ2(1 + λ2)

1

x2
+ o

(
1

x2

))
as x → ∞ when λ < 0.

This coincides with Lemma 3.1 in Xiong and Peng (2020) up to terms of order 1/x2. It is now a
consequence of Theorem 1(ii) that this distribution satisfies condition C2(a, 0, A) with

a(t) =


1√

2 log(t)

(
1 +

log log(t)

4 log(t)
+

(
1

2
log(π)− 1

)
1

2 log(t)

)
if λ > 0,

1√
2(1 + λ2) log(t)

(
1 +

log log(t)

2 log(t)
+ (log(−2πλ)− 2)

1

2 log(t)

)
if λ < 0,

and A(t) = − 1

2 log(t)
.

Likewise, the skew-normal distribution with location parameter µ, scale parameter σ and shape pa-
rameter λ, whose probability density function is defined by

fµ,σ,λ(x) =
2√
2πσ2

exp

(
− (x− µ)2

2σ2

)
Φ

(
λ
x− µ

σ

)
also satisfies the second-order regular variation condition with a replaced by σa.

Example 7 (Variance-Gamma distribution). According to the first parametrization in Fischer et al.
(2024), the Variance-Gamma distribution with parameters r > 0, θ ∈ R, σ > 0 and µ ∈ R has
probability density function

f(x) =
1

σ
√
πΓ(r/2)

exp

(
θ
x− µ

σ2

)(
|x− µ|

2
√
θ2 + σ2

)(r−1)/2

K(r−1)/2

(√
θ2 + σ2

σ2
|x− µ|

)
.

Here Kν denotes a modified Bessel function of the second kind, that is, for any ν ∈ R,

Kν(x) =

∫ ∞

0

exp(−x cosh(t)) cosh(νt) dt, x > 0.

This distribution was introduced to the financial literature by Madan and Seneta (1990). To simplify
the discussion, we set the location parameter µ to 0 and the scale parameter σ to 1. This yields a
two-parameter family of distributions whose probability density function is

fr,θ(x) =
1√

πΓ(r/2)
eθx
(

|x|
2
√
1 + θ2

)(r−1)/2

K(r−1)/2

(√
1 + θ2|x|

)
.
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According to Formula 9.7.2 p.378 in Abramovitz and Stegun (1964),

Kν(x) =

√
π

2x
e−x

(
1 +

4ν2 − 1

8x
+

(4ν2 − 1)(4ν2 − 9)

128x2
+ o

(
1

x2

))
as x → ∞.

It follows that

fr,θ(x) =
xr/2−1e−x(

√
1+θ2−θ)

(2
√
1 + θ2)r/2Γ(r/2)

(
1 +

(r − 1)2 − 1

8
√
1 + θ2x

+
((r − 1)2 − 1)((r − 1)2 − 9)

128(1 + θ2)x2
+ o

(
1

x2

))
as x → ∞. By Lemma 1, the distribution function Fr,θ of this Variance-Gamma distribution satisfies
the asymptotic expansion

F r,θ(x) =
xr/2−1e−x(

√
1+θ2−θ)

(2
√
1 + θ2)r/2(

√
1 + θ2 − θ)Γ(r/2)

(
1 +

(
r − 2

2(
√
1 + θ2 − θ)

+
(r − 1)2 − 1

8
√
1 + θ2

)
1

x

+

(
(r − 2)(r − 4)

4(
√
1 + θ2 − θ)2

+
((r − 1)2 − 1)(r − 4)

16
√
1 + θ2(

√
1 + θ2 − θ)

+
((r − 1)2 − 1)((r − 1)2 − 9)

128(1 + θ2)

)
1

x2
+ o

(
1

x2

))
.

By Theorem 1(iii) then, when r ̸= 2, the Variance-Gamma distribution satisfies condition C2(a, 0, A)
with

a(t) =
1√

1 + θ2 − θ

(
1 +

r − 2

2 log(t)
− (r − 2)2

4

log log(t)

log2(t)

+
1

2

(
(r − 2)

(
r − 2

2
+

r

2
log(

√
1 + θ2 − θ) + log((2

√
1 + θ2)r/2Γ(r/2))

)
−
(
r − 2 + (

√
1 + θ2 − θ)

(r − 1)2 − 1

4
√
1 + θ2

))
1

log2(t)

)
and A(t) = − r − 2

2 log2(t)
.

For r = 2, it is readily seen from the identity K1/2(x) = e−x
√
π/(2x) that the Variance-Gamma

distribution is in fact the asymmetric Laplace distribution having probability density function

gθ(x) =
1

2
√
1 + θ2

exp
(
θx−

√
1 + θ2|x|

)
.

On the positive half-line, this distribution has cumulative distribution function

Gθ(x) = 1− 1

2
√
1 + θ2(

√
1 + θ2 − θ)

e−(
√
1+θ2−θ)x.

From this it immediately follows that, for t large enough, its tail quantile function Uθ is equal to

Uθ(t) =
log(t)− log(2

√
1 + θ2(

√
1 + θ2 − θ))√

1 + θ2 − θ
,

and, finally, that just like for the exponential distribution, one has Uθ(tx) − Uθ(t) =
1√

1+θ2−θ
log(x)

for any x > 0 when t is large enough.

4 A general result for Weibull-tailed distributions

The class of distributions having Generalized Gamma-type exponential decay is not closed under cer-
tain important operations in extreme value analysis, such as taking minima or maxima of independent
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random variables. For example, although the Weibull distribution is certainly a Generalized Gamma
distribution, the minimum of two independent Weibull random variables with different shape param-
eters, whose distribution function can be written as

F (x) = 1− exp(−C1x
β1 − C2x

β2), x > 0,

for parameters β1, β2, C1, C2 > 0, does not have a Generalized Gamma-type exponential decay. This
distribution, called the Bi-Weibull distribution and discussed in Section 1.1 of Berger and Sun (1993),
is a natural distribution in reliability theory and the competing risks literature. There are several such
examples we shall highlight later in this section where, despite the fact that the distribution does not
have a Generalized Gamma-type exponential decay, it is possible to obtain an asymptotic expansion
of its tail quantile function U , either because this function is explicitly determined or because an
asymptotic expansion can be found relatively easily. For such examples, it is of interest to have a high-
level result linking the validity of the second-order condition C2(γ, ρ,A) to that asymptotic expansion.
Our next theorem goes in this direction.

Theorem 2 (Weibull-tailed distributions). Assume that F is a continuous distribution function having
a Weibull-type tail with index θ > 0. Suppose that there are C > 0, β ≤ 0, µ ∈ R and a function
ℓβ, having constant sign and such that |ℓβ | is regularly varying with index −β and converges to 0 at
infinity, such that

U(t)− µ =

(
1

C
log(t)

)1/θ

(1 + ℓβ(t)) for large enough t.

(i) Assume that θ ̸= 1. If β < 0, or if β = 0 and under the extra assumption that there is a function
η, converging to 0 at infinity, such that

∀x > 0, ℓ0(tx)− ℓ0(t) = η(t)
log(x)

log(t)
+ o

(
1

log2(t)

)
as t → ∞,

then condition C2(a, 0, A) holds with

a(t) =


(log(t))1/θ−1

θC1/θ
if β < 0,

(log(t))1/θ−1

θC1/θ
(1 + ℓ0(t) + θη(t)) if β = 0

and A(t) =
1− θ

θ

1

log(t)
.

(ii) If θ = 1 and β < 0, then condition C2(a, ρ,A) holds with ρ = −β,

a(t) =
1

C
(1− βℓβ(t) log(t)) and A(t) = β2ℓβ(t) log(t).

Theorem 2 extends the part of Lemma A.1 in Daouia et al. (2024b) devoted to light-tailed dis-
tributions by allowing for a more general form of LU . Note that, for β < 0, the assumption made
in Theorem 2 on the function LU defined by the equation U(t) = (log(t))1/θLU (log(t)) is LU (t) =
C−1/θ(1+e−βtL(et)), where L is slowly varying, which corresponds to the setting where LU converges
to a constant at an exponential rate.

The assumption made on ℓ0 in the case β = 0 as part of Theorem 2(i) may seem quite precise; it is,
in fact, guided by our experience on examples, where ℓ0(t) can often be expanded as a series of terms
involving increasing powers of log(t), in which case Theorem 2(i) immediately applies. It is interesting
to note that, in such situations, the function t 7→ U(et) actually belongs to the Hall class (Hall, 1982),
only with a more precise form of the remainder term. We state a corollary of Theorem 2(i) summarizing
this discussion.
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Corollary 1 (Weibull-tailed distributions II). Assume that F is a continuous distribution function
having a Weibull-type tail with index θ > 0. If θ ̸= 1 and there is µ ∈ R with

U(t)− µ =

(
1

C
log(t)

)1/θ
1 +

l∑
i=1

Di

logδi(t)
+

m∑
j=1

D′
j

log1+δ′j (t)
+ o

(
1

log2(t)

) as t → ∞,

for some C > 0, D1, . . . , Dl, D
′
1, . . . , D

′
m ∈ R, 0 < δ1 < · · · < δl ≤ 1 and 0 < δ′1 < · · · < δ′m ≤ 1, then

the tail quantile function U satisfies condition C2(a, 0, A) with

a(t) =
(log(t))1/θ−1

θC1/θ

(
1 +

l∑
i=1

Di(1− θδi)

logδi(t)

)
and A(t) =

1− θ

θ

1

log(t)
.

More general results than Corollary 1 can of course be stated. For example, if the remainder
term ℓ0(t) can be written as a linear combination of log log(t)/ log(t), 1/ log(t), log2(log(t))/ log2(t),
log log(t)/ log2(t) and 1/ log2(t), then one essentially finds back Theorem 1(ii). The difficulty in practice
is to come up with such an expansion; this is where results such as Theorem 1(i), which provide an
asymptotic expansion of U starting from an asymptotic expansion of the survival function 1− F , are
interesting.

The reader will have noticed that we did not treat the case θ = 1 and β = 0 in Theorem 2. This
corresponds to the setting where the extremes of the underlying distribution are theoretically close
to those of the exponential distribution, but with convergence happening at a very slow rate. In our
experience with examples, this situation is quite rare. We nonetheless give a result in the spirit of
Corollary 1 that goes towards tackling such cases.

Theorem 3 (Weibull-tailed distributions III). Assume that F is a continuous distribution function
having a Weibull-type tail with index θ = 1. If there are a positive real number δ ̸= 1 and µ ∈ R such
that

U(t)− µ =
1

C
log(t)

1 +
D

logδ(t)
+

l∑
i=1

Di

logδ+δi(t)
+

m∑
j=1

D′
j

log1+δ+δ′j (t)
+ o

(
1

log2+δ(t)

) as t → ∞,

for some C > 0, D ̸= 0, D1, . . . , Dl, D
′
1, . . . , D

′
m ∈ R, 0 < δ1 < · · · < δl ≤ 1 and 0 < δ′1 < · · · < δ′m ≤ 1,

then the tail quantile function U satisfies condition C2(a, 0, A) with

a(t) =
1

C

(
1 +

D(1− δ)

logδ(t)
+

l∑
i=1

Di(1− δ − δi)

logδ+δi(t)

)
and A(t) = D

δ(δ − 1)

log1+δ(t)
.

We now list a few examples which are not distributions with Generalized Gamma-type exponential
decay, but where Theorem 2, Corollary 1 and/or Theorem 3 apply.

Example 8 (Exponentiated Weibull distribution). Let α > 0 be different from 1 and β > 0. Con-
sider the exponentiated Weibull distribution with unit scale, introduced to the reliability and lifetime
modeling literature by Mudholkar and Srivastava (1993), whose distribution function is

Fα,β(x) = (1− e−xβ

)α, x > 0.

When β = 1, this is the exponentiated exponential distribution discussed in Gupta and Kundu (2001);
when α is a positive integer, this is the distribution of the lifetime of a parallel system of components
having independent and identically distributed Weibull lifetimes with shape parameter β (i.e. the
distribution of their maximum). Its tail quantile function is

Uα,β(t) =

(
− log

(
1−

(
1− 1

t

)1/α
))1/β

, t > 1.
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In particular

Uα,β(t) =

(
log(t) + log(α) +

1− α

2α

1

t
(1 + o(1))

)1/β

as t → ∞.

When β ̸= 1,

Uα,β(t) = (log(t))1/β
(
1 +

log(α)

log(t)
+ O

(
1

t

))1/β

= (log(t))1/β
(
1 +

1

β

log(α)

log(t)
+

1− β

2β2

log2(α)

log2(t)
+ o

(
1

log2(t)

))
.

Theorem 2(i) applies (via Corollary 1) and yields that the exponentiated Weibull distribution with
unit scale satisfies condition C2(a, 0, A) with

a(t) =
(log(t))1/β−1

β

(
1 +

1− β

β

log(α)

log(t)

)
and A(t) =

1− β

β

1

log(t)
.

When on the contrary β = 1, that is, when the exponentiated exponential distribution is considered,
then in fact

Uα,β(t)− log(α) = log(t)

(
1 +

1− α

2α

1

t log(t)
(1 + o(1))

)
.

In this case Theorem 2(ii) applies: the exponentiated exponential distribution with unit scale satisfies
condition C2(a, ρ,A) with ρ = −1,

a1(t) = 1− 1− α

2α
t−1 and A1(t) =

1− α

2α
t−1.

In both situations, the versions with scale parameter λ > 0, whose distribution function is Fα,β(λx),
satisfy the same respective condition with the scale function divided by λ.

Example 9 (Gamma-Gompertz distribution). Let s, β > 0 with β ̸= 1. The Gamma-Gompertz
distribution with shape parameters β and s and unit scale, studied by Bemmaor and Glady (2012) in
the context of marketing applications, has distribution function

Fs,β(x) = 1− βs

(β − 1 + ex)s
, x > 0.

Its tail quantile function is

Us,β(t) = log(1− β + βt1/s) =
1

s
log(t) + log(β) + log

(
1 +

1− β

β
t−1/s

)
, t > 1.

In particular, an asymptotic expansion of Us,β is

Us,β(t)− log(β) =
1

s
log(t)

(
1 +

s(1− β)

β

1

t1/s log(t)
(1 + o(1))

)
as t → ∞.

Then Theorem 2(ii) entails that the Gamma-Gompertz distribution with shape parameters β and s
and unit scale satisfies condition C2(a, ρ,A) with ρ = −1/s,

a(t) =
1

s

(
1− 1− β

β
t−1/s

)
and A(t) =

1− β

sβ
t−1/s.

The Gamma-Gompertz distribution with scale parameter λ > 0, having distribution function x 7→
1− βs/(β − 1 + eλx)s, x > 0, then satisfies this same condition with a replaced by a/λ.
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Example 10 (Exponential-logarithmic distribution). Let p ∈ (0, 1). The Exponential-Logarithmic
distribution with parameter p and unit scale, introduced in Tahmasbi and Rezaei (2008) as a model
for a situation where failure of a device occurs due to the presence of an random number of initial
defects of some kind, has distribution function

Fp(x) = 1− log(1− (1− p)e−x)

log(p)
, x > 0.

Its tail quantile function is

Up(t) = log

(
1− p

1− p1/t

)
= log(1− p)− log(1− p1/t), t > 1.

An asymptotic expansion of U follows as

Up(t)− log(1− p) = log(t)− log(− log(p))− log(p)

2t
+ o

(
1

t

)
as t → ∞.

In particular

Up(t) + log

(
− log(p)

1− p

)
= log(t)

(
1− log(p)

2t log(t)
(1 + o(1))

)
.

By Theorem 2(ii), the Exponential-Logarithmic distribution with parameter p and unit scale satisfies
condition C2(a, ρ,A) with ρ = −1,

a(t) = 1 +
log(p)

2
t−1 and A(t) = − log(p)

2
t−1.

Consequently, the Exponential-Logarithmic distribution with parameter p and scale parameter β > 0,
having distribution function x 7→ 1− log(1− (1− p)e−βx)/ log(p), x > 0, satisfies this same condition
with a replaced by a/β.

Example 11 (Logistic-beta distribution). Let α, β > 0. The logistic-beta distribution, also referred
to as the type IV generalized logistic distribution in Chapter 23.10 in Johnson et al. (1995), has
probability density function

fα,β(x) =
1

B(α, β)

(
1

1 + e−x

)α(
1− 1

1 + e−x

)β

=
1

B(α, β)

e−βx

(1 + e−x)α+β
,

where B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt denotes Euler’s Beta function. Clearly

fα,β(x) =
e−βx

B(α, β)

(
1− (α+ β)e−x + o(e−x)

)
as x → ∞

so that the distribution function Fα,β satisfies

Fα,β(x) =
e−βx

βB(α, β)

(
1− β(α+ β)

β + 1
e−x + o(e−x)

)
.

To apply Theorem 2, it remains to find an asymptotic expansion of U(t). We adapt the idea of the
proof of Theorem 1(i): taking the logarithm, plugging in x = U(t) and letting t → ∞ results in the
equation

log(t) = βU(t) + log(βB(α, β)) +
β(α+ β)

β + 1
e−U(t)(1 + o(1)) as t → ∞.

This successively yields

U(t) =
1

β
log(t)− log(βB(α, β))

β
+ o(1)
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and

U(t) +
log(βB(α, β))

β
=

1

β
log(t)− α+ β

β + 1
(βB(α, β))1/β

1

t1/β
(1 + o(1))

=
1

β
log(t)

(
1− β(α+ β)

β + 1
(βB(α, β))1/β

1

t1/β log(t)
(1 + o(1))

)
.

By Theorem 2(ii), the logistic-beta distribution with parameters α and β satisfies condition C2(a, ρ,A)
with ρ = −1/β,

a(t) = β

(
1 +

α+ β

β + 1
(βB(α, β))1/βt−1/β

)
and A(t) = − α+ β

β(β + 1)
(βB(α, β))1/βt−1/β .

Example 12 (Bi-Weibull distribution). Let λ1, λ2 > 0 and β1, β2 > 0 with β2 < β1. Consider the
Bi-Weibull distribution BiWeibull(λ1, λ2, β1, β2) having distribution function

Fλ1,λ2,β1,β2(x) = 1− exp

(
−
(

x

λ1

)β1

−
(

x

λ2

)β2
)
, x > 0.

Taking logarithms and plugging in x = U(t) results in the equation

log(t) =

(
U(t)

λ1

)β1

+

(
U(t)

λ2

)β2

, t > 1,

or equivalently

U(t) = λ1(log(t))
1/β1

(
1 +

λβ1

1

λβ2

2

(U(t))β2−β1

)−1/β1

, t > 1.

Letting t → ∞ entails U(t) ∼ λ1(log(t))
1/β1 , and then

U(t) = λ1(log(t))
1/β1

(
1− (λ1/λ2)

β2

β1

1

(log(t))1−β2/β1
+ o

(
1

(log(t))1−β2/β1

))
as t → ∞,

and, by successive approximations, the above identity theoretically makes it possible to obtain an
asymptotic expansion of U(t) formulated in terms of inverse powers of log(t), in the spirit of Corollary 1
and Theorem 3. It is, however, very difficult to give such an asymptotic expansion up to terms of
order 1/ log2(t) or higher in the greatest generality, because the successive terms appearing in the
approximation will converge very slowly if β2 is very close to β1. We illustrate these calculations for
β1 = 1 and β2 = 1/4; we take the scale parameter λ1 to be 1 for the sake of simplicity, and we write
λ = λ2. The equation satisfied by U(t) becomes

U(t) = log(t)

(
1 +

λ−1/4

(U(t))3/4

)−1

, t > 1.

We then successively find

U(t) = log(t)

(
1− λ−1/4

(log(t))3/4
+O

(
1

(log(t))3/2

))
,

U(t) = log(t)

(
1− λ−1/4

(log(t))3/4
+

1

4

λ−1/2

(log(t))3/2
+O

(
1

(log(t))9/4

))
and U(t) = log(t)

(
1− λ−1/4

(log(t))3/4
+

1

4

λ−1/2

(log(t))3/2
+

1

32

λ−3/4

(log(t))9/4
+O

(
1

(log(t))3

))
.

Applying Theorem 3, we find that the BiWeibull(1, λ, 1, 1/4) distribution satisfies condition C2(a, 0, A)
with

a(t) = 1− λ−1/4

4(log(t))3/4
− λ−1/2

8(log(t))3/2
and A(t) =

3λ−1/4

16

1

(log(t))7/4
.
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Example 13 (Polynomial-exponential distribution). Let α > 0 be different from 1. Define a contin-
uous function Hα on the positive half-line by Hα(x) = x(xα − 1)/(x− 1) if x ̸= 1 and α if x = 1. The
polynomial-exponential distribution with shape parameter α and unit scale, introduced by Chesneau
et al. (2022) to model the occurrence of zero values in survival and environmental data, has distribution
function Fα(x) = 1 − e−Hα(x) for x > 0. Once again, taking logarithms, plugging in x = U(t) and
rearranging results in the equation

U(t) = (log(t))1/α
(
1 +

1

log(t)
− 1

U(t)

)1/α

for t large enough.

A Taylor expansion and a straightforward proof by induction shows that U(t) can indeed be expanded
using sums of inverse powers of log(t) as in Corollary 1. For instance, when α < 4, straightforward
calculations in the spirit of those carried out in Example 12 entail that there existm ≥ 0, D′

1, . . . , D
′
m ∈

R and 0 < δ′1 < · · · < δ′m ≤ 1 such that

U(t) = (log(t))1/α
(
1− 1

α(log(t))1/α
− 1 + α

2α2(log(t))2/α
− (α+ 1)(α+ 2)

3α3(log(t))3/α
+

1

α log(t)

+

m∑
j=1

D′
j

log1+δ′j (t)
+ o

(
1

log2(t)

) as t → ∞.

Following Corollary 1, the polynomial-exponential distribution distribution satisfies condition C2(a, 0, A)
with

a(t) =



(log(t))1/α−1

α

(
1 +

1− α

α log(t)

)
if 0 < α < 2,

(log(t))1/α−1

α

(
1 +

1 + α

2α2(log(t))2/α
+

1− α

α log(t)

)
if 2 ≤ α < 3,

(log(t))1/α−1

α

(
1 +

1 + α

2α2(log(t))2/α
+

2(α+ 1)(α+ 2)

3α3(log(t))3/α
+

1− α

α log(t)

)
if 3 ≤ α < 4,

and A(t) =
1− α

α log(t)
.
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Appendix: Proofs of our results

Proof of Lemma 1. Let, for any x > 0,

Iα,β,C(x) =

∫ ∞

x

tαe−Ctβ dt.

An integration by parts yields

Iα,β,C(x) =
xα−β+1e−Cxβ

βC
+

α− β + 1

βC
Iα−β,β,C(x).

Since

Iα−β,β,C(x) =

∫ ∞

x

tα−βe−Ctβ dt ≤ x−β

∫ ∞

x

tαe−Ctβ dt = x−βIα,β,C(x),

one clearly has

Iα,β,C(x) =
xα−β+1e−Cxβ

βC
+

α− β + 1

βC
Iα−β,β,C(x) =

xα−β+1e−Cxβ

βC
(1 + O(x−β)) as x → ∞.
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A straightforward proof by induction then entails

Iα,β,C(x) =
xα−β+1e−Cxβ

βC

1 +

N−1∑
k=1

 k∏
j=1

(α− jβ + 1)

 x−kβ

(βC)k

+O(Iα−Nβ,β,C(x))

=
xα−β+1e−Cxβ

βC

1 +

N−1∑
k=1

 k∏
j=1

(α− jβ + 1)

 x−kβ

(βC)k
+O(x−Nβ)

 as x → ∞

for any N ≥ 1, as required.

Proof of Theorem 1. (i) The distribution function F has an infinite right endpoint, U(t) → ∞ as
t → ∞, and is continuous, so F (U(t)) = 1/t for any t > 1. Plugging x = U(t) in the asymptotic
expansion of F leads to

log(t) = C(U(t))β − α log(U(t))− log c− D

(U(t))β
(1 + o(1)) as t → ∞. (1)

We repeatedly use (1) in order to get the desired asymptotic expansion of U(t).

Asymptotic equivalent of U(t): The leading term in the right-hand side of (1) is obviously C(U(t))β ,
so that U(t) ∼ ( 1

C log(t))1/β .

First term in the asymptotic expansion of U(t): Write

U(t) =

(
1

C
log(t)

)1/β

(1 + ε1(t))

with ε1(t) → 0 as t → ∞. It follows from (1) that

0 = β log(t)ε1(t)(1 + o(1))− α

β
log log(t) + O(1)

and therefore

lim
t→∞

log(t)

log log(t)
ε1(t) =

α

β2
.

Second term in the asymptotic expansion of U(t): Write

U(t) =

(
1

C
log(t)

)1/β (
1 +

α

β2

log log(t)

log(t)
+

log log(t)

log(t)
ε2(t)

)
,

with ε2(t) → 0 as t → ∞. Use (1) to get

0 = β log log(t)ε2(t) +
α

β
logC − log c+ o(1)

and therefore

lim
t→∞

log log(t)ε2(t) =
1

β

(
log c− α

β
logC

)
.

Third term in the asymptotic expansion of U(t): Write

U(t) =

(
1

C
log(t)

)1/β (
1 +

α

β2

log log(t)

log(t)
+

1

β

(
log c− α

β
logC

)
1

log(t)
+

1

log(t)
ε3(t)

)
,

with ε3(t) → 0 as t → ∞. Then

C(U(t))β − log(t) =
α

β
log log(t) + log c− α

β
logC + βε3(t) +

log2(log(t))

log(t)

(
α2(β − 1)

2β3
+ o(1)

)
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and

α log(U(t)) =
α

β
log log(t)− α

β
logC + o

(
log2(log(t))

log(t)

)
.

Plugging these two asymptotic expansions along with the fact that 1/(U(t))β = O(1/ log(t)) into (1)
results in

0 = βε3(t) +
log2(log(t))

log(t)

(
α2(β − 1)

2β3
+ o(1)

)
and therefore

lim
t→∞

log(t)

log2(log(t))
ε3(t) =

α2(1− β)

2β4
.

Fourth term in the asymptotic expansion of U(t): Write

U(t) =

(
1

C
log(t)

)1/β (
1 +

α

β2

log log(t)

log(t)
+

1

β

(
log c− α

β
logC

)
1

log(t)

+
α2(1− β)

2β4

log2(log(t))

log2(t)
+

log2(log(t))

log2(t)
ε4(t)

)
,

with ε4(t) → 0 as t → ∞. One has

C(U(t))β − log(t) =
α

β
log log(t) + log c− α

β
logC + β

log2(log(t))

log(t)
ε4(t)

+
log log(t)

log(t)

(
α(β − 1)

β2

(
log c− α

β
logC

)
+ o(1)

)
and

α log(U(t)) =
α

β
log log(t)− α

β
logC +

α2

β2

log log(t)

log(t)
+ o

(
log log(t)

log(t)

)
.

Plugging these two asymptotic expansions along with the asymptotic equivalent 1/(U(t))β = O(1/ log(t))
into (1) results in

0 = β
log2(log(t))

log(t)
ε4(t) +

log log(t)

log(t)

(
α(β − 1)

β2

(
log c− α

β
logC

)
− α2

β2
+ o(1)

)
and therefore

lim
t→∞

log log(t)ε4(t) =
α

β3

(
α+ (1− β)

(
log c− α

β
logC

))
.

Fifth term in the asymptotic expansion of U(t): Write finally

U(t) =

(
1

C
log(t)

)1/β (
1 +

α

β2

log log(t)

log(t)
+

1

β

(
log c− α

β
logC

)
1

log(t)

+
α2(1− β)

2β4

log2(log(t))

log2(t)
+

α

β3

(
α+ (1− β)

(
log c− α

β
logC

))
log log(t)

log2(t)
+

log log(t)

log2(t)
ε5(t)

)
,

with ε5(t) → 0 as t → ∞. One has

C(U(t))β − log(t) =
α

β
log log(t) + log c− α

β
logC +

α2

β2

log log(t)

log(t)
+ β

log log(t)

log(t)
ε5(t)

+
1

log(t)

(
β − 1

2β

(
log c− α

β
logC

)2

+ o(1)

)
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and

α log(U(t)) =
α

β
log log(t)− α

β
logC +

α2

β2

log log(t)

log(t)
+

α

β

(
log c− α

β
logC

)
1

log(t)
+ o

(
1

log(t)

)
.

Plugging these two asymptotic expansions along with the asymptotic equivalent 1/(U(t))β ∼ C/ log(t)
into (1) results in

0 = β
log log(t)

log(t)
ε5(t) +

(
β − 1

2β

(
log c− α

β
logC

)2

− α

β

(
log c− α

β
logC

)
− CD + o(1)

)
1

log(t)

and therefore

lim
t→∞

log log(t)ε5(t) =
1

β

(
1− β

2β

(
log c− α

β
logC

)2

+
α

β

(
log c− α

β
logC

)
+ CD

)
.

This yields the desired asymptotic expansion of U .

(ii) We first remark that for any x > 0,

log log(tx)

log(tx)
− log log(t)

log(t)
=

(
− log log(t)

log2(t)
+

1

log2(t)

)
log(x) + o

(
1

log2(t)

)
and

1

log(tx)
− 1

log(t)
= − log(x)

log2(t)
+ o

(
1

log2(t)

)
as t → ∞. It then follows from the asymptotic expansion of U shown in (i) that

U(tx) =

(
1

C
log(t)

)1/β (
1 +

1

β

log(x)

log(t)
+

1− β

2β2

log2(x)

log2(t)
+ o

(
1

log2(t)

))
×
(
1 +

α

β2

log log(t)

log(t)
+

1

β

(
log c− α

β
logC

)
1

log(t)

+
α2(1− β)

2β4

log2(log(t))

log2(t)
+

α

β3

(
α+ (1− β)

(
log c− α

β
logC

))
log log(t)

log2(t)

+
1

β

(
1− β

2β

(
log c− α

β
logC

)2

+
α

β

(
log c− α

β
logC

)
+ CD

)
1

log2(t)
+ o

(
1

log2(t)

))

+

(
1

C
log(t)

)1/β (
α

β2

(
− log log(t)

log2(t)
+

1

log2(t)

)
− 1

β

(
log c− α

β
logC

)
1

log2(t)

)
log(x)

as t → ∞. Consequently

U(tx)− U(t) =
(log(t))1/β−1

βC1/β

(
log(x) +

1− β

2β

log2(x)

log(t)
+ o

(
1

log(t)

))
×
(
1 +

α

β2

log log(t)

log(t)
+

1

β

(
log c− α

β
logC

)
1

log(t)
+ o

(
1

log(t)

))
+

(log(t))1/β−1

βC1/β

(
α

β

(
− log log(t)

log(t)
+

1

log(t)

)
−
(
log c− α

β
logC

)
1

log(t)

)
log(x)

=
(log(t))1/β−1

βC1/β

(
a1(t) log(x) +

1− β

β

1

log(t)
× 1

2
log2(x) + o

(
1

log(t)

))
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where

a1(t) = 1 +
α(1− β)

β2

log log(t)

log(t)
+

1

β

(
α+ (1− β)

(
log c− α

β
logC

))
1

log(t)

converges to 1 as t → ∞. Note that

a(t) =
(log(t))1/β−1

βC1/β
a1(t) ∼

(log(t))1/β−1

βC1/β
as t → ∞

to complete the proof.

(iii) When β = 1, one has the following refinement of (1):

log(t) = CU(t)− α log(U(t))− log c− log

(
1 +

D

U(t)
+

D′

(U(t))2

)
+ o

(
1

(U(t))2

)
as t → ∞. (2)

It also follows from (i) that

U(t) =
1

C
log(t)

(
1 + α

log log(t)

log(t)
+ (log c− α logC)

1

log(t)
+ α2 log log(t)

log2(t)

+(α(log c− α logC) + CD)
1

log2(t)
+ o

(
1

log2(t)

))
as t → ∞. As a consequence, for any x > 0,

CU(tx)

log(tx)
− CU(t)

log(t)

= α

(
log log(tx)

log(tx)
− log log(t)

log(t)

)
+ (log c− α logC)

(
1

log(tx)
− 1

log(t)

)
+ o

(
1

log2(t)

)
=

(
−α

log log(t)

log2(t)
+

α+ α logC − log c

log2(t)

)
log(x) + o

(
1

log2(t)

)
. (3)

Moreover, using the fact that CU(t) ∼ log(t) and since C(U(tx)− U(t)) → log(x) as t → ∞, one has

1

U(tx)
− 1

U(t)
= −C

log(x)

log2(t)
+ o

(
1

log2(t)

)
and

1

(U(tx))2
− 1

(U(t))2
= o

(
1

log2(t)

)
.

We then find that

log

(
1 +

D

U(tx)
+

D′

(U(tx))2

)
− log

(
1 +

D

U(t)
+

D′

(U(t))2

)
= log

(
1− CD

log(x)

log2(t)
+ o

(
1

log2(t)

))
= −CD

log(x)

log2(t)
+ o

(
1

log2(t)

)
. (4)

Combining (2), (3) and (4) yields

U(tx)− U(t) =
1

C
log(x) +

α

C
log

(
1 +

log(x)

log(t)

)
+

α

C
log

(
1 +

log(t)

CU(t)

(
CU(tx)

log(tx)
− CU(t)

log(t)

))
+

1

C

(
log

(
1 +

D

U(tx)
+

D′

(U(tx))2

)
− log

(
1 +

D

U(t)
+

D′

(U(t))2

))
+ o

(
1

(U(t))2

)
=

1

C
log(x)

(
1 +

α

log(t)
− α2 log log(t)

log2(t)
+ (α(α+ α logC − log c)− CD)

1

log2(t)

)
− 1

C
× α

log2(t)
× 1

2
log2(x) + o

(
1

log2(t)

)
.

The conclusion follows immediately.
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Proof of Theorem 2. (i) In the case θ ̸= 1 and β < 0, one has ℓβ(tx) = O(|ℓβ(t)|) = o(t−β/2) =
o(1/ log2(t)) as t → ∞ for any x > 0, because |ℓβ | is regularly varying with index β (use Potter
bounds, see Proposition B.1.9.5 p.367 in de Haan and Ferreira (2006)). Then

U(tx)− µ =

(
1

C
log(t)

)1/θ (
1 +

1

θ

log(x)

log(t)
+

1− θ

2θ2
log2(x)

log2(t)
+ o

(
1

log2(t)

))
and therefore

U(tx)− U(t) =
(log(t))1/θ−1

θC1/θ

(
log(x) +

1− θ

θ

1

log(t)
× 1

2
log2(x) + o

(
1

log(t)

))
as required. When β = 0, write instead

U(tx)− U(t)

=

(
1

C
log(t)

)1/θ
((

1 +
log(x)

log(t)

)1/θ

(ℓ0(tx)− ℓ0(t)) +

((
1 +

log(x)

log(t)

)1/θ

− 1

)
(1 + ℓ0(t))

)

=
(log(t))1/θ−1

θC1/θ

(
(1 + ℓ0(t) + θη(t)) log(x) +

1− θ

θ

1

log(t)
× 1

2
log2(x) + o

(
1

log2(t)

))
from which the result follows immediately.

(ii) When θ = 1 and β < 0, write, for any x > 0 and t large enough,

C(U(tx)− U(t)) = (1− βℓβ(t) log(t)) log(x) + β2ℓβ(t) log(t)

(
1

−β

(
x−β − 1

−β
− log(x)

))
+ ℓβ(tx) log(x) +

(
ℓβ(tx)

ℓβ(t)
− x−β

)
ℓβ(t) log(t).

Now

ℓβ(tx) = O(|ℓβ(t)|) and lim
t→∞

ℓβ(tx)

ℓβ(t)
− x−β = 0

because |ℓβ | is regularly varying with index β and has constant sign. Therefore

U(tx)− U(t) =
1

C

(
(1− βℓβ(t) log(t)) log(x) + β2ℓβ(t) log(t)

∫ x

1

s−1

(∫ s

1

u−β−1du

)
ds

)
+ o(|ℓβ(t)| log(t)).

The desired conclusion follows.

Proof of Corollary 1. The case when D1 = · · · = Dl = D′
1 = · · · = D′

m = 0 is handled directly.
Otherwise, one has

U(t)− µ =

(
1

C
log(t)

)1/θ

(1 + ℓ0(t))

where

ℓ0(t) =

l∑
i=1

Di

logδi(t)
+

m∑
j=1

D′
j

log1+δ′j (t)
+ o

(
1

log2(t)

)
defines a function having (up to alteration on a compact interval) constant sign, converging to 0, and
whose absolute value is slowly varying. Besides, since for any r ∈ R and x > 0,

logr(tx)− logr(t) = r logr−1(t) log(x)

(
1 +

r − 1

2

log(x)

log(t)
(1 + o(1))

)
as t → ∞, (5)
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one has

ℓ0(tx)− ℓ0(t) =

(
−

l∑
i=1

Diδi

logδi(t)

)
log(x)

log(t)
+ o

(
1

log2(t)

)
as t → ∞.

Conclude by applying Theorem 2(i) and recalling that a(t) is uniquely determined only up to terms of
order smaller than or equal to A(t).

Proof of Theorem 3. Using (5) again, one has for any x > 0 and large enough t,

U(tx)− µ =
1

C
log(t)

(
1 +

log(x)

log(t)

)
×
(
1 +

D

logδ(t)
− Dδ

log1+δ(t)
log(x) +

Dδ(δ + 1)

log2+δ(t)
× 1

2
log2(x)

+

l∑
i=1

Di

logδ+δi(t)
−

l∑
i=1

Di(δ + δi)

log1+δ+δi(t)
log(x) +

m∑
j=1

D′
j

log1+δ+δ′j (t)
+ o

(
1

log2+δ(t)

) .

Conclude that

U(tx)− U(t)

=
1

C

((
1 +

D(1− δ)

logδ(t)
+

l∑
i=1

Di(1− δ − δi)

logδ+δi(t)

)
log(x) +

Dδ(δ − 1)

log1+δ(t)
× 1

2
log2(x) + o

(
1

log1+δ(t)

))

as t → ∞ in order to conclude the proof.
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