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Abstract
The field of co-speech gestures synthesis is gaining more and
more interest. However, many new systems utilize complex or
resource-intensive architectures, making them impractical for
integration into Embodied Conversational Agents (ECAs) or for
exploration in fields like linguistics, where understanding the
connection between speech and gestures is challenging. This
paper introduces STARGATE, a novel architecture for Spatio-
Temporal Autoregressive Graph from Audio-Text Embeddings.
The model leverages autoregression for fast gestures generation,
alongside graph convolutions and attention to integrate explicit
structural knowledge and facilitate efficient spatial and temporal
processing. Through both subjective and objective assessments
against state-of-the-art models, our research demonstrates our
model capabilities of generating convincing gestures fast. It
also achieves slightly better scores in terms of credibility and
coherence of generated gestures in relation to speech.

1. Introduction
Co-speech gesture synthesis has rapidly gained traction in re-
cent years. While the exact mechanisms behind human gesture
generation and its link to speech remain under investigation, re-
searchers have made significant progress in developing method-
ologies for generating gestures from speech data, encompassing
both spoken transcripts [1] and acoustic signals [2]. The ubiq-
uity of gestures in human communication underscores their im-
portance role in simulating natural human interactions.

To understand and integrate gestures into artificial commu-
nication, researchers have explored gesture analysis and clas-
sification [3]. Initially, rule-based systems were employed to
create Embodied Conversational Agents (ECA) [4], drawing in-
sights from neuroscience and linguistics. However, these early
systems were rudimentary and often inconsistent with findings
from various literature sources. The absence of a unified classi-
fication scheme for gestures (e.g.,[3, 5, 6]) and the varying con-
clusions regarding the relationship between gestures and speech
within these frameworks [7, 8, 9] hindered the development of
reliable and consistent rules.

In recent years, data-driven approaches have emerged as
a promising avenue for implicitly extracting the intricate pat-
terns and rules governing the relationship between speech and
gesture. These approaches encompass a spectrum of architec-
tures, ranging from basic autoencoders [10, 11] to more so-
phisticated models such as variational autoencoders (VAEs) and
conditional VAEs [12, 13], with the aim of capturing a broader
array of gestures and enhancing conditioning from speech in-
put.

Significantly, StyleGestures [14] has garnered attention for
its pioneering autoregressive architecture integrating normaliz-

ing flow techniques [15]. Normalizing flow, a specialized neural
network approach, adeptly captures intricate distributions. This
model has emerged as a cornerstone for benchmarking gesture
synthesis systems, as evidenced by its widespread adoption in
subsequent studies [12, 2, 15]. Furthermore, its selection as the
baseline model for the GENEA Challenge [16] underscores its
lasting impact on the field.

While diffusion models [2, 17, 18, 1] have achieved impres-
sive results in generating high-fidelity gesture sequences, their
complex architectures often lead to slower processing times.
This trade-off between quality and speed presents a significant
challenge in our field. Developing new theoretical frameworks
holds potential for furthering our understanding of the speech-
gesture relationship. Additionally, faster and more responsive
models would significantly benefit gesture-enabled ECAs.

To address this challenge, we propose exploring graph con-
volutional networks (GCNs) [19] as a lighter and more inter-
pretable alternative. GCNs are a type of neural network specif-
ically designed to work with graph-structured data, where data
points (nodes) are connected by edges. This structure inherently
aligns well with the modeling of skeletal structures, which can
be naturally represented as graphs where body joints are nodes
and bones are edges. Inspired by the success of GCNs in lo-
comotion synthesis, a field closely related to gesture generation
but without speech input, we believe GCNs hold promise for our
work. They offer the potential to create a lightweight and effi-
cient architecture capable of generating realistic gestures while
considering anatomical constraints.

Motivated by these advancements, we introduce an innova-
tive network architecture designed to overcome the previously
mentioned constraints in gesture synthesis. Our proposed archi-
tecture aims to accomplish two primary goals:
• Leveraging graph convolutions to capture explicit gesture

structure within a deep neural network, ultimately aiming to
generate convincing gestures.

• Efficient design using an autoregressive architecture, to ac-
commodate applications where speed is critical, such as in
ECAs.

In the following sections, we present our novel architecture
and the methodologies employed, followed by a comprehen-
sive evaluation, using both quantitative metrics and subjective
evaluations. We finalize by analyzing the obtained results and
considering potential future directions for our model.

2. Methods
We propose a novel architecture named STARGATE (for
Spatio-Temporal Auto-Regressive Graph from Audio-Text Em-
beddings), an overview is depicted in Figure 1. This ar-
chitecture follows an encoder-decoder structure, employing a
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Figure 1: An overview of the STARGATE network with its
encoder-decoder structure. Our network use 3 separate en-
coders to process all 3 modalities separately and a unique de-
coder to generate motion from a multimodal latent representa-
tion. Numbers between brackets depicts tensor shapes: T being
the half-window length, V the number of joints, t the chunk size,
Cx the latent feature size, Ix the input feature size.

chunked-autoregressive approach. This means that the network
takes input from three different modalities:
• Audio: A window of 1s of past and 1s of future speech.
• Text: A window of 1s of past and 1s of future words.
• Motion: A history of 1s of past motions.
The choice of such context window is driven by the slow nature
of gestures, with an average duration of 1-2 seconds depending
on whether the gestures correspond to a single word or an entire
sentence [20]. Each modality has a dedicated encoder to gener-
ate a specific latent space representation, which are then fused
to form a multimodal representation of speech/gestures. This
representation is subsequently decoded into a chunk of next ges-
turer poses spanning t frames. We opt for chunk output instead
of frame-by-frame output to allow more flexibility for gesture
generation without overly relying on the autoregressive motion
history, but also to have more efficient computations. The first
second of motion history is a sequence of zeros, to start the au-
toregression loop.

2.1. Speech encoders

Speech can be categorized into two primary components:
acoustic content and linguistic content. The acoustic signal pro-
duced during speech carries various pieces of information, such
as prosody or emotional state. Meanwhile, the linguistic con-
tent, which is also part of the acoustic signal but presents a pho-
netic representation of what has been spoken, conveys semantic
information from the text. Text serves as a crucial source of
information for modeling iconic, deictic, and metaphoric ges-
tures, all of which are directly linked to semantic content, while
beat gestures, the last category according to [3], are associated
with the acoustic signal. Therefore, both modalities (acoustic
and textual) are essential for generating dynamic and meaning-
ful gestures. In our architecture, we employ both modalities
through two similar but distinct CNN-based encoders, as illus-
trated in Figure 2. The audio encoder takes 27 mel-frequency
cepstrum coefficients (MFCCs) as input, with convolution chan-
nels set to: 64, 96, 128, 128, 256, 256. Meanwhile, the text en-
coder uses BERT embeddings [21], where embeddings are tiled
based on word segmentation to obtain frame-level BERT em-
beddings (similar to the procedure of [22] for their text input).
This encoder uses convolution channels configured as follows:
768, 768, 512, 512, 396, 396.

2.2. Motion encoder

Since we are operating within an autoregressive framework, we
have the capability to use motion as an input for subsequent pre-
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Figure 2: The speech encoder, used for both audio and text
encoding separately. Conv1D parameters have the following
meaning : input channels, output channels, kernel size, dilation
size (default = 1) which double at each layer.

dictions. Consequently, our third input modality consists of a
history of previous motion, aiming to maintain coherent trajec-
tories in long-term synthesis and to establish a speech-gestures
multimodal latent space in the decoder. Our motion encoder is
based on the work of [23]. Input motions are represented using
exponential maps, which offer numerous advantages, including
serving as a continuous representation over Euler angles and
being more compact than quaternions.

2.2.1. Graph Neural Network

In order to generate human-like gestures and to delve into how
our network generates them, we integrated multiple mecha-
nisms within our motion encoder. The primary mechanism in-
volves employing a graph convolution network (GCN) [19] in-
stead of traditional CNNs. In the context of a graph, convo-
lutions are computed using an adjacency matrix to determine
neighboring nodes. In our approach, we adopted the ST-GCN
(for Spatio-Temporal GCN) block from [23], which incorpo-
rate multiple adjacency matrices, each containing specific links.
These are coupled with a temporal convolution network (TCN)
to create a network capable of efficiently processing spatio-
temporal data such as motion. Further details can be found in
the original publication.

To the best of our knowledge, our adaptation is the first
work in the field of co-speech gesture synthesis to employ graph
convolutions for injecting prior knowledge of gestures and to
obtain a more explicit representation of motion.

2.2.2. Attention mechanism

Both in the ST-GCN model by [23] and in our implementation,
a self-attention mechanism is applied to the adjacency matri-
ces prior to graph convolutions. The input motion data under-
goes a scaled dot-product self-attention process to generate an
’attention matrix’ for each adjacency matrix. These ’attention
matrices’ are then combined with the base adjacency matrices
to produce what we refer to as ’dynamic adjacency matrices’.
This approach is motivated by the observation that while we al-
low the network to make minor adjustments to the adjacency
matrices during training, they remain static during inference.
The incorporation of this attention mechanism enables dynamic
modifications during inference, allowing the network to focus
more on specific body parts for each chunk of generated frames.
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Figure 3: Our decoder uses a stacked GRUs approach. We
implemented bidirectionality using buffers at first layer (L1)
GRUs, the forward one storing forward L1 hidden features, the
backward one storing longer latent sequence.

2.3. Motion decoder

The audio, text, and gestures latent spaces are merged to gener-
ate a multimodal latent space spanning t frames, which is then
fed into the motion decoder as depicted in Figure 3. This de-
coder, comprising stacked RNNs (in our case, Gated Recurrent
Units, GRUs [24]), produces the next chunk of t-frame skeleton
poses, which are subsequently used to compute the next batch of
frames. One significant limitation of autoregression is to work
only with previous information, lacking the ability to analyze
complete sequences of gestures. Consequently, bidirectional
GRUs could not be used to gain a comprehensive understanding
of entire gesture sequences. However, motivated by the poten-
tial benefits it could offer and considering that we are generating
batches of frames, bidirectional GRUs can be applied to these
partial sequences. As continuity cannot be maintained across
subsequent layers, only the first forward GRU layer hidden state
is tracked. This bidirectional approach aims to enable the net-
work to learn relationships between past and future information
present in the multimodal representation.

3. Training
3.1. Dataset : BEAT

We conducted training for all our models using the BEAT
dataset [25]. This dataset offers a large volume of high-quality
multimodal data, encompassing audio recordings, word and
phoneme-level transcriptions, as well as motion capture data
for body, hands, and face. In our study, we used the data corre-
sponding to the speaker 1, giving us 4 hours of data, which we
split into training, validation, and test sets using a 90/5/5 ratio.
All data preprocessing and augmentation follows the protocol
and code proposed by StyleGestures [14].

3.2. Loss

During training, our model minimizes a combination of two Hu-
ber loss functions [26]. The first targets the exponential map,
ensuring overall gesture accuracy. However, minimizing solely
the exponential map treats all joints equally. To address this, we
include a second Huber loss applied directly to joint positions.
This prioritizes precise control over the hips and spine, crucial
body parts that significantly influence the movement of all other
joints (end effectors). Therefore, the loss function is defined as
follows:

Loss = H(r, r̂) +H(p, p̂)

With r and p respectively, the positions and exponential map
of the reference sample, r̂ and p̂ respectively the positions and
exponential map of the generated sample and H the Huber loss.

Figure 4: An example of ECA using motion generated by our
STARGATE network. This example highlights capabilities of
generating different type of gestures such as iconic gestures.

4. Evaluation
4.1. Quantitative metrics

This section presents evaluations of our proposed model and
a variant, ”Audio Only,” which excludes the text encoder.
Those two models are compared against state-of-the-art model.
We compare the performance of these models against a well-
established benchmark in the field, StyleGestures [14]. This
choice is motivated by StyleGestures’ autoregressive architec-
ture and its frequent adoption as a reference model for gesture
synthesis research [16].

Frechet Gesture Distance (FGD). The most promising ef-
fort to establish an objective quality metric for speech syn-
thesis draws inspiration from the Frechet Inception Distance
(FID) used in image synthesis research [27]. This approach
was adapted by [28] to introduce the FGD metric. We retrained
the proposed inception network because our output differs sig-
nificantly from the available network. The advantage of this
method is that the inception network acts as an unbiased eval-
uator, which allows to get a metric closer to actual human per-
ception.

As shown in Table 1, both variants of STARGATE outper-
form StyleGestures, with the Audio Only variant being the best
model in terms FGD.

Performance. While prioritizing performance is usually
the main focus when designing a model for gesture synthesis,
our objective was to create a network capable of operating in
scenarios with a need for fast generating models, such as for
Embodied Conversational Agents (ECAs), and producing con-
vincing gestures as quickly as feasible. To evaluate perfor-
mance within this framework, we conducted benchmarks that
take into account preprocessing steps, which can notably af-
fect computational load (e.g., BERT embedding computations).
Thus, all timing results provided are derived from raw wave-
form/sentence input with a batch size of 1. Additionally, we
present the execution time per frame to enable a fairer compar-
ison.

The Table 1 show us that both STARGATE variants are con-
sistently faster than StyleGestures. We can also observe that
StyleGestures’ performance does not improve with longer in-
put lengths, whereas STARGATE models exhibit better perfor-
mance in processing longer sequences.

4.2. Subjective Evaluations

In order to assess the gesture quality of our model more com-
prehensively, we conducted a Mean Opinion Score (MOS) sub-
jective evaluation. We tailored the evaluation protocol from the
GENEA Challenge [16], specifically focusing on refining the
questions to gain a clearer understanding of the aspects being
evaluated for each question.



Nb params Graph? Audio? Text? FGD ↓ Inference time ↓ [Time per frame ↓]
5s 10s 30s 80s

StyleGestures 82M ✗ ✓ ✗ 14.15 7.76s [90ms] 12.90s [70ms] 31.05s [50ms] 80.07s [26ms]

STARGATE 43.5M ✓ ✓ ✓ 10.58 6.51s [37ms] 8.31s [17ms] 13.40s [8ms] 23.78s [5ms]

STARGATE
Audio Only 30.9M ✓ ✓ ✗ 8.61 3.49s [19ms] 3.98s [8ms] 6.13s [3ms] 10.68s [2ms]

Table 1: Results of quantitative comparison using FGD and models benchmarks according to the duration of the utterance (5s to 80s).
Note that StyleGestures outputs 20fps while our model outputs 60fps. Bold values depict best model. Benchmark used the following
hardware configuration: i7-11850H and NVIDIA RTX A3000 Laptop.

Model Human-like ↑ Credibility ↑ Consistency ↑

Reference 6.19 ± 0.28 5.27 ± 0.23 5.16 ± 0.23
Mismatch N/A 4.92 ± 0.20 4.77 ± 0.22
StyleGestures 5.97 ± 0.25 4.87 ± 0.22 4.70 ± 0.23
STARGATE 5.89 ± 0.28 5.0 ± 0.20 4.85 ± 0.22

Table 2: Results of our MOS evaluation, we report the mean
and a 0.95 confidence interval for each aspect.

The evaluation process consisted of two phases. Initially,
participants viewed videos of a 3D avatar gesturing without au-
dio and rated the perceived human-likeness of the gesture mo-
tion. In the second phase, participants watched videos with
accompanying audio and responded to questions regarding the
credibility and consistency of the gestures relative to the speech.
Responses were provided on a scale ranging from 1 to 7. The
study assessed four systems: Reference (ground truth), Mis-
match (synthetic motion with different audio), StyleGestures,
and STARGATE. We presented 30 videos for each system, each
lasting 9 seconds. We had a total of 25 participants (12 female
and 13 male) for this study. Results are summarized in Table 2.

The findings indicate that StyleGestures marginally outper-
forms STARGATE in terms of human-likeness (without audio),
whereas our model demonstrates slightly superior coherence
and credibility when audio is present.

4.3. Discussions

Our primary objective was to ensure high-quality gesture gener-
ation, as evidenced by the superior performance of our models
in terms of FGD, as shown in Table 1. Additionally, our MOS
evaluation in Table 2 indicates slightly higher credibility and co-
herence scores compared to the StyleGestures model when au-
dio is included. However, StyleGestures outperforms our model
in the human-likeness aspect when audio is unavailable. We at-
tribute this difference to the generation of semantic gestures in
our model, which can occasionally result in unclear gestures,
blending iconic and beat gestures and leading to perceived un-
naturalness without audio cues. However, a more detailed anal-
ysis by gesture specialists is needed to fully substantiate this
claim.

The absence of semantic gestures in the ”Audio Only”
model naturally leads to its lower FGD score. Additionally, se-
mantic gestures present in the StyleGestures model might devi-
ate from the reference data, as a single speech segment can be
accompanied by various iconic gestures. Despite these factors,
our graph architecture achieves a better FGD score compared
to StyleGestures. This suggests that our model may possess a
stronger ability to link gesture representations to the underlying
anatomy, potentially leading to enhanced motion comprehen-
sion and a more robust connection between text and the gener-
ated motions.

Table 2 also supports previous research findings [16], where
the Mismatch model performs better than StyleGestures and our

model. This may be attributed to the prevalence of beat gestures
in the dataset. These gestures primarily focus on synchronizing
with the audio rhythm, leading to them being perceived as ”cor-
rect” even if the audio does not match.

Our secondary objective was to develop a model suitable
for scenarios where generation speed is crucial. In short 5s se-
quence generation, our model performs up to 1.4x faster than
the input length, while in 80s long sequence generation, our
model performs up to 7.5x faster than the input length. In com-
parison, StyleGestures is 1.5x slower in the first scenario and
remains neither faster nor slower in the second scenario. How-
ever, this model outputs 20fps gesture sequences, whereas ours
output 3 times more frames at 60fps. Thus, when considering
the time per frame, our model is 4.7x faster than StyleGestures
per frame generated in the short sequence scenario, and in long
sequence generation, our model takes advantage of parallel pro-
cessing of input modalities, becoming 13x faster per frame gen-
erated for our Audio Only variant, and 5x faster for our standard
model (audio + text).

This demonstrates the capabilities of our architecture for in-
tegration into ECAs, facilitating more natural interaction with
gestures-enabled avatars with low computation latency, both
with audio-only and text-integrated inputs.

5. Conclusion

Our work demonstrates the potential of GCNs for co-speech
gesture synthesis. To further explore this direction, future re-
search can delve into several areas. One avenue involves de-
veloping techniques for explainable gesture generation would
provide valuable insights into the model’s decision-making pro-
cess. By understanding how the GCN arrives at specific gesture
outputs, we can potentially refine the system for improved con-
trol and overall explainability. These advancements can further
solidify the role of GCNs as a powerful tool for generating nat-
ural and meaningful gestures.

Our findings highlight also the influence of beat gestures
on gesture synthesis models. To encourage more semantically-
driven generation, future work can explore several avenues.
One approach involves disentangled representation learning,
where the model learns separate representations for beat and
semantic gestures, allowing for better distinction during gen-
eration. Alternatively, a loss function with semantic weight-
ing could penalize the model for generating beat gestures when
clear semantic cues are present in the audio and text input. Fi-
nally, implementing an attention mechanism on audio features
could guide the model to focus on audio aspects that convey se-
mantic meaning, rather than just the rhythm. By incorporating
these techniques, we can potentially steer the model towards
generating gestures that are more tightly coupled with the in-
tended message.
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