Towards realtime co-speech gestures synthesis using STARGATE
Louis Abel, Vincent Colotte, Slim Ouni

To cite this version:
Louis Abel, Vincent Colotte, Slim Ouni. Towards realtime co-speech gestures synthesis using STARGATE. 25th Interspeech Conference (INTERSPEECH 2024), Sep 2024, Kos Island, Greece. hal-04667107

HAL Id: hal-04667107
https://hal.science/hal-04667107
Submitted on 2 Aug 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Towards realtime co-speech gestures synthesis using STARGATE

Louis ABEL1, Vincent COLOTTE1, Slim OUNI1

1Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
louis.abel@loria.fr, vincent.colotte@loria.fr, slim.ouni@loria.fr

Abstract

The field of co-speech gestures synthesis is gaining more and more interest. However, many new systems utilize complex or resource-intensive architectures, making them impractical for integration into Embodied Conversational Agents (ECAs) or for exploration in fields like linguistics, where understanding the connection between speech and gestures is challenging. This paper introduces STARGATE, a novel architecture for Spatio-Temporal Autoregressive Graph from Audio-Text Embeddings. The model leverages autoregression for fast gestures generation, alongside graph convolutions and attention to integrate explicit structural knowledge and facilitate efficient spatial and temporal processing. Through both subjective and objective assessments against state-of-the-art models, our research demonstrates our model capabilities of generating convincing gestures fast. It also achieves slightly better scores in terms of credibility and coherence of generated gestures in relation to speech.

1. Introduction

Co-speech gesture synthesis has rapidly gained traction in recent years. While the exact mechanisms behind human gesture generation and its link to speech remain under investigation, researchers have made significant progress in developing methodologies for generating gestures from speech data, encompassing both spoken transcripts [1] and acoustic signals [2]. The ubiquity of gestures in human communication underscores their importance role in simulating natural human interactions.

To understand and integrate gestures into artificial communication, researchers have explored gesture analysis and classification [3]. Initially, rule-based systems were employed to create Embodied Conversational Agents (ECA) [4], drawing insights from neuroscience and linguistics. However, these early systems were rudimentary and often inconsistent with findings from various literature sources. The absence of a unified classification scheme for gestures [e.g., [3, 5, 6]] and the varying conclusions regarding the relationship between gestures and speech within these frameworks [7, 8, 9] hindered the development of reliable and consistent rules.

In recent years, data-driven approaches have emerged as a promising avenue for implicitly extracting the intricate patterns and rules governing the relationship between speech and gesture. These approaches encompass a spectrum of architectures, ranging from basic autoencoders [10, 11] to more sophisticated models such as variational autoencoders (VAEs) and conditional VAEs [12, 13], with the aim of capturing a broader array of gestures and enhancing conditioning from speech input.

Significantly, StyleGestures [14] has garnered attention for its pioneering autoregressive architecture integrating normalizing flow techniques [15]. Normalizing flow, a specialized neural network approach, adeptly captures intricate distributions. This model has emerged as a cornerstone for benchmarking gesture synthesis systems, as evidenced by its widespread adoption in subsequent studies [12, 2, 15]. Furthermore, its selection as the baseline model for the GENEA Challenge [16] underscores its lasting impact on the field.

While diffusion models [2, 17, 18, 1] have achieved impressive results in generating high-fidelity gesture sequences, their complex architectures often lead to slower processing times. This trade-off between quality and speed presents a significant challenge in our field. Developing new theoretical frameworks holds potential for furthering our understanding of the speech-gesture relationship. Additionally, faster and more responsive models would significantly benefit gesture-enabled ECAs.

To address this challenge, we propose exploring graph convolutional networks (GCNs) [19] as a lighter and more interpretable alternative. GCNs are a type of neural network specifically designed to work with graph-structured data, where data points (nodes) are connected by edges. This structure inherently aligns well with the modeling of skeletal structures, which can be naturally represented as graphs where body joints are nodes and bones are edges. Inspired by the success of GCNs in locomotion synthesis, a field closely related to gesture generation but without speech input, we believe GCNs hold promise for our work. They offer the potential to create a lightweight and efficient architecture capable of generating realistic gestures while considering anatomical constraints.

Motivated by these advancements, we introduce an innovative network architecture designed to overcome the previously mentioned constraints in gesture synthesis. Our proposed architecture aims to accomplish two primary goals:

- Leveraging graph convolutions to capture explicit gesture structure within a deep neural network, ultimately aiming to generate convincing gestures.
- Efficient design using an autoregressive architecture, to accommodate applications where speed is critical, such as in ECAs.

In the following sections, we present our novel architecture and the methodologies employed, followed by a comprehensive evaluation, using both quantitative metrics and subjective evaluations. We finalize by analyzing the obtained results and considering potential future directions for our model.

2. Methods

We propose a novel architecture named STARGATE (for Spatio-Temporal Auto-Regressive Graph from Audio-Text Embeddings), an overview is depicted in Figure 1. This architecture follows an encoder-decoder structure, employing a
chunked-autoregressive approach. This means that the network takes input from three different modalities:

- **Audio**: A window of 1s of past and 1s of future speech.
- **Text**: A window of 1s of past and 1s of future words.
- **Motion**: A history of 1s of past motions.

The choice of such context window is driven by the slow nature of gestures, with an average duration of 1-2 seconds depending on whether the gestures correspond to a single word or an entire sentence [20]. Each modality has a dedicated encoder to generate a specific latent space representation, which are then fused to form a multimodal representation of speech/gestures. This representation is subsequently decoded into a chunk of next gesture poses spanning \(t \) frames. We opt for chunk output instead of frame-by-frame output to allow more flexibility for gesture generation without overly relying on the autoregressive motion history, but also to have more efficient computations. The first second of motion history is a sequence of zeros, to start the autoregression loop.

2.1. Speech encoders

Speech can be categorized into two primary components: acoustic content and linguistic content. The acoustic signal produced during speech carries various pieces of information, such as prosody or emotional state. Meanwhile, the linguistic content, which is also part of the acoustic signal but presents a phonetic representation of what has been spoken, conveys semantic information from the text. Text serves as a crucial source of information for modeling iconic, deictic, and metaphorical gestures, all of which are directly linked to semantic content, while beat gestures, the last category according to [3], are associated with the acoustic signal. Therefore, both modalities (acoustic and textual) are essential for generating dynamic and meaningful gestures. In our architecture, we employ both modalities through two similar but distinct CNN-based encoders, as illustrated in Figure 2. The audio encoder takes 27 mel-frequency cepstrum coefficients (MFCCs) as input, with convolution channels set to: 64, 96, 128, 128, 256, 256. Meanwhile, the text encoder uses BERT embeddings [21], where embeddings are tiled based on word segmentation to obtain frame-level BERT embeddings (similar to the procedure of [22] for their text input). This encoder uses convolution channels configured as follows: 768, 768, 512, 512, 396, 396.

2.2. Motion encoder

Since we are operating within an autoregressive framework, we have the capability to use motion as an input for subsequent predictions. Consequently, our third input modality consists of a history of previous motion, aiming to maintain coherent trajectories in long-term synthesis and to establish a speech-gestures multimodal latent space in the decoder. Our motion encoder is based on the work of [23]. Input motions are represented using exponential maps, which offer numerous advantages, including serving as a continuous representation over Euler angles and being more compact than quaternions.

2.2.1. Graph Neural Network

In order to generate human-like gestures and to delve into how our network generates them, we integrated multiple mechanisms within our motion encoder. The primary mechanism involves employing a graph convolution network (GCN) [19] instead of traditional CNNs. In the context of a graph, convolutions are computed using an adjacency matrix to determine neighboring nodes. In our approach, we adopted the ST-GCN (for Spatio-Temporal GCN) block from [23], which incorporates multiple adjacency matrices, each containing specific links. These are coupled with a temporal convolution network (TCN) to create a network capable of efficiently processing spatio-temporal data such as motion. Further details can be found in the original publication.

To the best of our knowledge, our adaptation is the first work in the field of co-speech gesture synthesis to employ graph convolutions for injecting prior knowledge of gestures and to obtain a more explicit representation of motion.

2.2.2. Attention mechanism

Both in the ST-GCN model by [23] and in our implementation, a self-attention mechanism is applied to the adjacency matrices prior to graph convolutions. The input motion data undergoes a scaled dot-product self-attention process to generate an ‘attention matrix’ for each adjacency matrix. These ‘attention matrices’ are then combined with the base adjacency matrices to produce what we refer to as ‘dynamic adjacency matrices’. This approach is motivated by the observation that while we allow the network to make minor adjustments to the adjacency matrices during training, they remain static during inference. The incorporation of this attention mechanism enables dynamic modifications during inference, allowing the network to focus more on specific body parts for each chunk of generated frames.
2.3. Motion decoder

The audio, text, and gestures latent spaces are merged to generate a multimodal latent space spanning t frames, which is then fed into the motion decoder as depicted in Figure 3. This decoder, comprising stacked RNNs (in our case, Gated Recurrent Units, GRUs [24]), produces the next chunk of f-frame skeleton poses, which are subsequently used to compute the next batch of frames. One significant limitation of autoregression is to work only with previous information, lacking the ability to analyze complete sequences of gestures. Consequently, bidirectional GRUs could not be used to gain a comprehensive understanding of entire gesture sequences. However, motivated by the potential benefits it could offer and considering that we are generating batches of frames, bidirectional GRUs can be applied to these partial sequences. As continuity cannot be maintained across subsequent layers, only the first forward GRU layer hidden state is tracked. This bidirectional approach aims to enable the network to learn relationships between past and future information present in the multimodal representation.

3. Training

3.1. Dataset: BEAT

We conducted training for all our models using the BEAT dataset [25]. This dataset offers a large volume of high-quality multimodal data, encompassing audio recordings, word and phoneme-level transcriptions, as well as motion capture data for body, hands, and face. In our study, we used the data corresponding to the speaker 1, giving us 4 hours of data, which we split into training, validation, and test sets using a 90/5/5 ratio. All data preprocessing and augmentation follows the protocol and code proposed by StyleGestures [14].

3.2. Loss

During training, our model minimizes a combination of two Huber loss functions [26]. The first targets the exponential map, ensuring overall gesture accuracy. However, minimizing solely the exponential map treats all joints equally. To address this, we include a second Huber loss applied directly to joint positions. This prioritizes precise control over the hips and spine, crucial body parts that significantly influence the movement of all other joints (end effectors). Therefore, the loss function is defined as follows:

$$\text{Loss} = H(r, \hat{r}) + H(p, \hat{p})$$

With r and p respectively, the positions and exponential map of the reference sample, \hat{r} and \hat{p} respectively the positions and exponential map of the generated sample and H the Huber loss.

4. Evaluation

4.1. Quantitative metrics

This section presents evaluations of our proposed model and a variant, “Audio Only,” which excludes the text encoder. Those two models are compared against state-of-the-art model. We compare the performance of these models against a well-established benchmark in the field, StyleGestures [14]. This choice is motivated by StyleGestures’ autoregressive architecture and its frequent adoption as a reference model for gesture synthesis research [16].

Frehet Gesture Distance (FGD). The most promising effort to establish an objective quality metric for speech synthesis draws inspiration from the Frechet Inception Distance (FID) used in image synthesis research [27]. This approach was adapted by [28] to introduce the FGD metric. We retrained the proposed inception network because our output differs significantly from the available network. The advantage of this method is that the inception network acts as an unbiased evaluator, which allows to get a metric closer to actual human perception.

As shown in Table 1, both variants of STARGATE outperform StyleGestures, with the Audio Only variant being the best model in terms FGD.

Performance. While prioritizing performance is usually the main focus when designing a model for gesture synthesis, our objective was to create a network capable of operating in scenarios with a need for fast generating models, such as for Embodied Conversational Agents (ECAs), and producing convincing gestures as quickly as feasible. To evaluate performance within this framework, we conducted benchmarks that take into account preprocessing steps, which can notably affect computational load (e.g., BERT embedding computations). Thus, all timing results provided are derived from raw waveform/sentence input with a batch size of 1. Additionally, we present the execution time per frame to enable a fairer comparison.

The Table 1 show us that both STARGATE variants are consistently faster than StyleGestures. We can also observe that StyleGestures’ performance does not improve with longer input lengths, whereas STARGATE models exhibit better performance in processing longer sequences.

4.2. Subjective Evaluations

In order to assess the gesture quality of our model more comprehensively, we conducted a Mean Opinion Score (MOS) subjective evaluation. We tailored the evaluation protocol from the GENEA Challenge [16], specifically focusing on refining the questions to gain a clearer understanding of the aspects being evaluated for each question.
model. This may be attributed to the prevalence of beat gestures in the dataset. These gestures primarily focus on synchronizing with the audio rhythm, leading to them being perceived as “correct” even if the audio does not match.

Our secondary objective was to develop a model suitable for scenarios where generation speed is crucial. In short 5s sequence generation, our model performs up to 1.4x faster than the input length, while in 80s long sequence generation, our model performs up to 7.5x faster than the input length. In comparison, StyleGestures is 1.5x slower in the first scenario and remains neither faster nor slower in the second scenario. However, this model outputs 20fps gesture sequences, whereas ours output 3 times more frames at 60fps. Thus, when considering the time per frame, our model is 4.7x faster than StyleGestures per frame generated in the short sequence scenario, and in long sequence generation, our model takes advantage of parallel processing of input modalities, becoming 13x faster per frame generated for our Audio Only variant, and 5x faster for our standard model (audio + text).

This demonstrates the capabilities of our architecture for integration into ECAs, facilitating more natural interaction with gestures-enabled avatars with low computation latency, both with audio-only and text-integrated inputs.

5. Conclusion

Our work demonstrates the potential of GCNs for co-speech gesture synthesis. To further explore this direction, future research can delve into several areas. One avenue involves developing techniques for explainable gesture generation that would provide valuable insights into the model’s decision-making process. By understanding how the GCN arrives at specific gesture outputs, we can potentially refine the system for improved control and overall explainability. These advancements can further solidify the role of GCNs as a powerful tool for generating natural and meaningful gestures.

Our findings highlight also the influence of beat gestures on gesture synthesis models. To encourage more semantically-driven generation, future work can explore several avenues. One approach involves disentangled representation learning, where the model learns separate representations for beat and semantic gestures, allowing for better distinction during generation. Alternatively, a loss function with semantic weighting could penalize the model for generating beat gestures when clear semantic cues are present in the audio and text input. Finally, implementing an attention mechanism on audio features could guide the model to focus on audio aspects that convey semantic meaning, rather than just the rhythm. By incorporating these techniques, we can potentially steer the model towards generating gestures that are more tightly coupled with the intended message.
6. References

